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ABSTRACT 

We consider the SM in terms of Majorana fermions and show that: the elec- 

troweak interactions conserve Parity; the Poincare and internal symmetries cannot,. 

be factorized because both do not commute with P and T; the fermions should 

be in the fundamental representations of SU(2) and SU(3); in general, the gauge 

groups should be U(1) or SU(n) with n-dimensional matter multiplets; the minimal 

Higgs mechanism has two iso-doublets and NFC follows from P and T invariance. 

P is spontaneously broken but CP-breaking requires two more Higgs doublets. 
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One of the most striking features of the standard modellY2 (SM) of the elec- 

troweak interactions is the fact that the chiral components of the elementary 

fermions come in completely different representations (reps) of the symmetry group 

SU(2)xU(l): the left-hand ones form isospin doublets and the right chiral fields 

are singlets. However, this description is itself arbitrary because the degrees of 

- freedom of a left chiral field, x, can also be represented by a right-hand one, xc, 
. 

related to it by the charge conjugation operation, defined3 as: 

xc =cxT. (1) 

Moreover, x can also be replaced by a Majorana spinor, 1c, = x + xc, in terms of 

which the kinetic Lagrangian, 

(2)- 

does not exhibit any chiral structure. 

It is well known4 that lk is invariant under the parity (P) and CP transfor- 

mations (trfs) of $, defined as the ones 3 for Dirac fields, but with the intrinsic 

P and CP phases restricted to the values fi in order to comply with the Majo- 

rana condition, II, = $“. This assumes a charge conjugation (C) trf as 1c, + A$. 

- However, Lk is also invariant under an axial phase trf, ezp(iq,), so we define C 

as: 

c: $J + (EL + e*q11,, (3) 

where L (R) is the left (right) chirality projector (“~s=Ri L) and c denotes the in- 

trinsic C phase. Likewise, the P and time-reversal (T) trfs are given by (ommitted 
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the space-time coordinates): 

P: ,q!J+(7rL-7r*R)P$J, (4) 

T: + + (7L - 7*R)I$* ) (5) 

where P and 7 are the standard3 unitary matrices for Dirac spinors and 7r (r) 

denotes the intrinsic P (T) phase. 

Let us consider a gauge symmetry group and a n-dimensional rep by matrices 

D = ezp(icPX,) with hermitian generators X,. A realization on a multiplet $ of 

Majorana spinors is given by the matrices 

U-= ezp(idT,) = DL + D’R, w- .*, 

where T,=X,L-X,‘R. The generators T, are hermitian too and obey the same Lie 

algebra as the X,. Clearly, the trfs (6) conserve the Lagra,ngian (1). In addition, 

the local gauge symmetry is implemented, as usual: by means of the covariant 

derivatives 

where the gauge fields A: undergo the canonical gauge trfs of the Yang-Mills 

fields. In contrast to the kinetic terms, the gauge couplings have a non-trivial 

chiral structure and one has to investigate whether or not they conserve parity. 

Theorem. The gauge interactions between the gauge bosons in the Lie algebra 

of a group G and a n-dimensional Majorana multiplet $, conserve parity, CP and 
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time-reversal, regardless of the II, basis, if and only if: the group G is SU(n) or 

U(1); the gauge fields are even eigenstates of C and transform as: 

P: Ap + -A;, 

T: Ap + +A;, 

(8) 

(9) 
. 

where A, = AiX,, and X, is a number if G is U( 1). 

Proof. Given the 1c, trfs as in the eqs. (3-5), the above A, trfs are the necessary 

ones for the gauge couplings to be invariant under P, T and C. In order that they 

really represent trfs of the gauge fields At, the matrices X,* have to lie on the same 

Lie algebra. In addition, since the 1c, kinetic terms do not depend on the basis, 

that should be true for any basis of the X,, if-the rep is irreducible and the group -, 

is simple or U(1). 

Let S E SU(n) b e a trf from a basis D to D’: XL = SX,St. In order that Xz 

lie on 27 and XF on D’, the matrix STS has to leave the Lie algebra invariant i.e., 

STSXaStS* generate 2, and likewise for all equivalent reps D”. Hence, [Y, D”] is 

contained in 27” for some Y # 0 (STS = ezp(iY)). From D = UD”Ut, U E SU(n), 

it follows that all [Yu,D], Yu = UYUt, lie on 2). The Yu generate the complete 

- SU(n) algebra because they form an invariant subalgebra (note that [Y, Z] can be 

written as the derivative at t = 0 of F(t) = iV(t)YVt(t), with V(t) = ezp(itZ)) of 

SU(n), which has no proper invariant subalgebras.! Therefore, apart from a U(1) 

subalgebra, D is an invariant subalgebra of SU(n) and for that very reason, is either 

the SU(n) or the nil algebra. Finally, the Ai trfs induced by different X, basis are 

equivalent because they only differ for global gauge trfs. 

4 



The sufficient condition is proved by noting that, first, the two n-dimensional 

fermion reps of SU(n), complex conjugate of each other, induce the same trfs of 

the gauge fields, second, the Yang-Mills “kinetic” term 5’7 (trFpyFCly) is invariant 

under P and T. q.e.d. 

We remark that in the SM the gauge group and fermion reps are in agreement 

- with this theorem: indeed, the simple groups are SU(2) and SU(3) and the non- 
. 

trivial irreducible reps are iso-doublets and color-triplets. Of course, the chiral reps 

can be replaced by Majorana multiplets without changing the Lagrangian. 

It is of some importance to understand why are the fermions in chiral and not 

Dirac reps. It is well known that the massless Dirac fields are not irreducible reps 

of the Poincare group: they are reducible into two chiral-Weyl spinors of opposite 

helicity which, in addition, are not mixed by the gauge interactions. Finally, since 

parity reverses the helicity, its reps are realized by Majorana ra.ther than Weyl .w. 

spinors. It is worth to remark that the standard CP and T trfs of a Dirac multiplet 

induce the very trfs (8-9) and the resultant restrictions on the gauge groups and - _ 

reps. In fact, the difference between Majorana and Dirac reps just lies on the C 

(or P) trf. 

Since the gauge fields are in the adjoint rep, their C, P and T trfs should result 

from the Lie algebra. Using the eqs. (4-6) one derives the algebra 

P Ta P-l = IIabTb = -T T, T-l, (10) 

where the matrix II is defined by: Xl = -II,*Xb. II is real and II2 = 1. The algebra 

is necessarily satisfied by the gauge fields rep since they are in the adjoint rep. The 

II eigenvalues, fl, represent their intrinsic P and T phases. Because P and T do 

not commute with the Poincare group and are geometric trfs by themselves, the 
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eqs. (10) establish the unification between the internal and space-time symmetries 

- they cannot be factorized. 

Although the constants Ha* .depend on the basis of the X,, the Lie algebra is 

well defined because, under a similarity trf U, not only the generators T, but also 

P and T are transformed. Yet, since U is itself a gauge trf (see eq.(6)), UPUt 

- (UTUt) is equivalent to P (T) up to a global gauge trf. 

In the gauge bosons rep, C and T commute with P. Since the fermions should 

be just a different rep of the same symmetry group, the constraints c = fl and 

7r = fir follow. As a result, CPT reduces to: V/J(Z) + 9$(-z). It is well known’ 

that, because T is antilinear, r can be made equal to 1 using a field redefinition 

by a phase factor. In the case of a Majorana spinor one can use an axial phase, so 

we fix T = 1 for all spinor fields. 

Now, let us consider the SM1’2’5 in detail. We denote the quark Majoran&. 

multiplets as: [i, Xi are the up, down quarks, singlets of SU(2), and $i are the SU(2) 

doublets (with i as the generation indice). The SU(2) generators are (ajL-nTR)/2; 

the SU(3) ones are (X,L - XzR)/2 for $i and (-XZL + X,R)/2 for [i,Xi - here, 

gi(&) are the Pauli (Gell-Mann) matrices. The U( 1) generator is Y(L - R) where 

Y is the hypercharge, l/3, -4/3 and 2/3 for $i,ti and Xi respectively. Denoting 

by Wi, B, G” the gauge bosons of SU(2), U(l), SU(3) respectively, one finds that 

- W2, G2, G5, G7 are vector fields and all the others are axial-vectors. Needless to 

say, the SM electroweak interactions conserve parity. 

It has been conceived that2’5 one scalar iso-doublet is the minimal Higgs con- 

tent to break SU(2)xU(l). H owever, no linear rep of parity anticommutes with the 

hypercharge, as required by the eqs. (10). Th ere ore we consider a 4-dimensional f 

rep, namely a bi-doublet 4 - ($I,&), where &,d 2 are doublets in complex conju- 
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gate reps of each other, with hypercharges 1, -1 respectively. The symmetry group 

rep is defined as: 

SU(2)xU( 1) : 4 + (Wl, U’$z>, (11) 

T: &+qS*, (13) 

where U is a unitary 2x2 matrix and the intrinsic T phases of $1,~ are fixed to be 1. 

The constraint PT=TP requires the phase ~4 to be fl. Since the ~4 sign can be 

absorbed in $2 without changing the T trf, we fix ~4==1. 41 and 42 are irreducible 

reps of T and SU(2). We point out that all scalar multiplets in irreducible reps 

-of SU(2) should be iso-doublets. Otherwise, as we showed for the ferm ions, the -1 

gauge couplings would not be invariant under time-reversal regardless of the basis - 

chosen. 

The specification r=ic for all ferm ions and the definition of C for the scalars 

as 

brings their CPT trfs to be like $(z) --f $J(--z). A s a result, any algebraic coupling 

like the mass terms is trivially invariant under CPT. In addition, the Yukawa 

couplings and scalars potential conserve C provided that they are invariant under 

P and T. Finally, the 4 gauge interactions conserve C. 

We adopt the following principles: 

1. The Lagrangian is invariant under the extended symmetry group, which includes 
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C, P and T, the gauge groups and the PoincarC group. 

2. Universality is extended to C, P and T: fields in equal reps of the continuous 

symmetry group have the same quantum numbers 6, 7~ and 7. - 

Then, the Yukawa couplings of the down quarks for example, are determined 

to be of the form 

I(ij 6 (41 - r+rx 4z)R xj + h.c., (15) 

with real coupling constants (T invariance). Remarkably enough, Natural Flavor 

Conservation (NFC) in the exchange of neutral Higgs particles results from pa.r- 

ity conservation, because 7r+,,rX, t r are the same for all generations (Universality 

Principle). 

For the sake of equality we choose that both 
.- 

couple with the quarks, not to the same singlets, of course. There is no loss of gen- 

erality in specifying which one couples with what singlets because the replacement 

42 + -42 (4+ * 44 1 eaves the scalars potential invariant up to a redefinition of 

the free parameters. Then, the full expression of the Yukawa couplings is 

LY = -I(ij $i (4-R+ $:L) xj 

-kij $i (J+R+ J:L) (j 7 
(17) 

:. 
where, as usual, 4 stands for ig24*. This corresponds to e$=ct=-cX. For definite- 

ness, e+=l. Because C and PT reduce to the reflection & + f&, it is convenient 
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to write the invariant quartic potential in terms of 46 rather than $r,2: 

where & stand for r& and the coupling constants are real. Whatever the vacuum 

is (consistent with a massless photon), it can be written as 

0 
< 4+ >= 

0 0 v+ ' 
< qL >= 

0 
eie, 

V- 
(19) 

where vi, 6 are real. Since both up and down quarks are massive, C and PT are 

necessarily broken; a non-trivial phase 0 results in CP-violation. 

We assume the same number of fields $i, ti and xi. Then, with orthogonal trfs 

of +!J,(, x in the flavor space one can bring the matrices 17 and Ii’ to be diagonal 

and symmetric respectively.- The mass eigenstates are Dirac spinors, u;, di, related 

to the weak eigenstates, in a matrix notation,-by: 
-1 

u=L$,+R[, d = VT(L& + e”‘RX) ; 

+ 4 are the Ts=1tl/2 components of II, and V is the generalized (orthogonal) 

Cabibbo matrix. Under C and P ( see eqs. (3-4)), they transform as 

c: u-+u 7 d+(L-R)d; 

P: u + iQuc, d + i( L - e2ie R)Q d” ; 

CP: u--t iQuc, d + i(L + e2ieR)Qdc. 

Remarkably enough, none of these can be identified with the standard trfs of Dirac 

masses. The mismatch in CP just signals the non-commutation of CP with the 
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matrix that diagonalizes the masses. The standard CP is of practical interest to 

study the CP-violating phases because it conserves the mass terms rather than 
- - 

the short range interactions. The discrepancy in C and P is more significant - it 

results from the fact that the fermions are in real (Majorana) reps. Hence, P can 

only differ from CP for a phase factor. 

Let us find out if CP-violation really occurs in this model. Of course, it 

cannot be like in the Kobayashi-Maskawa (KM) model’ because the Lagrangian 

is CP-invariant. But it could be as in the Weinberg model,‘0 i.e. via exchange of 

Higgs particles and with NFC at tree level, provided that the vacuum breaks CP. 

Actually, the potential given in the eq. (18) was already investigated because the 

same symmetry as & + *&., was introduced 
10 

in order”to assure NFC. Here, 

NFC results from parity (or C) conservation. It turns out lo’ I1 that such a potential 
. 
does not lead to spontaneous CP-breaking and, at least three Higgs.doublets are._, 

required for that. 

We enlarge the Higgs sector by one bi-doublet, q E (vr,v2), since that is the 

right rep of P and C. In order to keep NFC in the quark sector, an additional 

symmetry is lo introduced, namely the reflection 9 --t -9 with the quarks and $ 

fields unchanged. Depending on the trfs of the leptons under this reflection, they 

couple to either & or v*=(cpr f yl)/&. I n any case Universality holds, so at 

- least one of the C-eigenstates q-+ say y+, does not couple to the charged lepton 

singlets. The potential is still given by the eq. (18) but now & stand for &, y*. 

The relevant terms for the phase content of the vacuum are the ones proportional 

to r,b. In the case of three doublets, Branco” showed that CP-breaking occurs 

if all constants r,b are positive. Here, the same result holds in the limit that p+ 

does not couple with the other scalars. In conclusion, spontaneous CP-violation 
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can be implemented within the present theory. Parity and C are spontaneously 

broken since both d+ and d- have non-trivial vacuum expectation values. 

It is clear that the free parameters of the theory are to be fixed from the 

relevant experimental data. The models of CP-violation 
12 

use to be classified 

according to their predictions, if any, of the values of &‘/& in the kaon system, 

- and the neutron electric dipole moment, d,. Previous calculations12 based on the 

Weinberg model with three doublets indicate as possible values, E’/E - 10v3 and 

dn - 
12 1O-25 e cm, i.e. of the order of their contemporary experimental limits. 

At present the situation is not clear. The measurement of E’/E from NA31,r3 

(3.3 f 1.1)x10-3, h as not been confirmed by other experiments. On the other 

hand, recent results on d,, (-1.4-f 0.6)x10-25e cm l4 and (-5 f 5)x10-26e cm,15 

indicate the possibility of a non-zero d, of the order of 10-25ec,. Such a value 

.-would be too large to be accomodated withinthe KM model.r2 Hopefully, the CP,. 

question will be settled soon. 

We emphasize that not only the SM gauge interactions are invariant under C, 

P and T, but also the right representation of the symmetry group requires the 

Higgs mechanism to have at least two Higgs doublets and consequently, charged 

Higgs particles. Hence, there is no reason to postulate a Lagrangian not invariant 

under CP. CP-violation should result from spontaneous symmetry breaking. 

t On leave of absence from: Dept. de Fisica, Universidade de Lisboa, Rua 

Ernest0 de Vasconcelos, Cl, 49; 1700 Lisboa; Portugal. 
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