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~. Abstract 

The possibility of increasing the dynamic aperture in high brilliance synchrotron 

radiation sources by shaping the field of the chromaticity correction sextupoles is 

discussed. A new type of chromaticity correction magnets (“modified sextupoles”) 

is proposed, having the property of behaving like sextupoles near the magnetic axis, 

and more linearly at larger distances. It is shown that a large increase of dynamic 

aperture is achievable with this method. The off-momentum behavior is discussed in 

terms of chromatic properties and dynamic aperture. Several types of field shape are 

considered. The technique for designing such magnets is presented, together with an 

example of magnets that give the required field distribution. 

The proposed modified sextupoles seem particularly suitable for application to 

very small emittance synchrotron radiation sources and/or damping rings, where the 

strong focusing requirements often lead to insufficient dynamic aperture. 
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1. Introduction 
- 

c, 

-. 
Achieving a large dynamic aperture represents one of the most challenging aspects 

of third- and future-generation synchrotron radiation sources. The requirements of 

small emittance, necessary in order to exploit the full potential of long undulators 

and to achieve near diffraction limited conditions, affects the design of the lattice and 

the electron beam dynamics. A small emittance is achieved by reducing the disper- 

sion and the horizontal beta functions in the dipoles. This is obtained with strong 

focusing optics that have the disadvantage of requiring strong chromaticity correction 

sextupoles. The nonlinear and chromatic effects of the sextupole manifest themselves 

at large betatron and momentum amplitudes, compromising (if not corrected) the 

operation of the machine. A small dynamic aperture negatively affects the injection 

process and may reduce the beam lifetime via gas and Touschek scatterings. Of the 

above, the injection process is the most critical. In the rest of this report, we will 

assume that injection takes place in the horizontal plane. 

The linearity of the lattice can be increased by adding several families of sex- 

tupoles beside the two required for chromaticity correction. Additional sextupole 

families have the strength and periodicity such as to cancel the driving terms of 

the resonances excited by the chromaticity sextupoles. This method has been suc- 

cessfully applied to several machines with excellent results. As the strength of the 

sextupoles increases with stronger and stronger focusing lattices, however, even this 

method shows its limitations. The sextupolar compensation is very sensitive to the 

optical transfer functions between sextupoles: in the new generation of light sources, 

the sextupole periodicity is broken by the presence of insertion devices and the ef- 

fect of random quadrupole errors. This is particularly true for the UV and soft x-ray 

sources in the electron beam energy range of l-2 GeV. 
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In the next section we examine the possibility of turning the strong focusing 
- 

c characteristics of high-brilliance synchrotron radiation sources into an advantage for 

-. increasing the dynamic aperture limit, particularly in the horizontal plane, where (we 

assume) injection takes place. 

In sec. 2 we discuss the chromaticity correction magnet requirements. We show 

how, by appropriately shaping the field of these magnets (that we will call from now 

on “modified sextupoles’), the dynamic aperture can be increased. The effect of a 

modified sextupole on the dynamics of the off-momentum particle is also discussed. 

In sec. 3 we describe a technique for the design of modified sextupoles and provide 

. examples of magnets that give the required field distribution. 

For the sake of example we will apply our considerations to a “triple bend achro- 

mat-lattice” of the types adopted by the Advanced Light Source (ALS) at Lawrence 

Berkeley Laboratory [l] and the Synchrotron Radiation Research Center at Taipei [2]. 

The intention of this paper is not, however, to focus on any particular machine, but 

to report on the general points we perceive as being important for the understanding 

of the particle dynamics and of the design of a new type of magnets. 

The initial results of the study are encouraging. More work is needed on the 

outstanding issues, as reported in sec. 2.5. 

2. Chromaticity correction and dynamic aperture 

2.1 Chromaticity sextupole requirements 

Chromaticity sextupoles are required to accomplish two tasks: to correct the chro- 

maticity to avoid the head-tail instability and to reduce the momentum-dependent 

tune spread. 
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- 
In order to avoid growth of the head-tail instability the chromaticity must be 

- 
i nonnegative where the bunch charge density is appreciable. A few standard deviations 

away from the center of the bunch in the two transverse directions, the chromaticity -1 

is allowed to be different from zero (and usually is, due to chromatic aberrations). 

The tune spread at the tail of the momentum distribution must be kept reasonably 

small in order to be contained within the available tune space in the working diagram. 

The most severe demand on the momentum-dependent tune spread in the tail of the 

charge distributions comes from the quantum emission of light and from the Touschek 

effect. The latter is particularly important for high-brilliance synchrotron radiation 

sources in the l-2 GeV energy range, where a momentum acceptance of f2% or 

~. more is required (equivalent to 20 or more standard deviations for a typical l-2 GeV 

machine). 

In summary, the chromaticity sextupoles fulfill the need of correcting the chro- 

maticity to zero at the core of the -beam and of limiting the momentum-dependent 

- tune shifts at large momentum deviations. 

2.2 Aperture requirements 

Because of the strong focusing characteristics of third-generation light sources, 

the dispersion function is generally small at the sextupole location. Table 1 gives the 

values of the dispersion at the sextupoles in the ALS, together with the transverse di- 

mensions of the beam for momentum deviations corresponding to three standard de- 

viations, 30 (head-tail instability region), and to the height of the RF bucket (& 3%, 

as required by Touschek lifetime considerations). Momentum deviations and associ- 

ated beam sizes refer to one side of the momentum distribution (+ or -). SF and SD 

denote the locations of the horizontal and vertical chromaticity correction sextupoles. 
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Table 1 
- Transverse beam half-size at the sextupole location due to its momentum spread. 

c 
SF SD 

-. 
Dispersion (m) 0.21 0.14 

Core of the beam: 

Relative momentum ‘1 spread (3~) 0.004 0.004 

Momentum beam size (mm) 0.84 0.56 

Tail of the beam: 

Relative momentum spread 0.030 0.030 

Momentum beam size (mm) 6.3 4.2 

‘1 Typical value; the actual value depends on the charge per bunch and the RF voltage 
(see ref. [l]). 

Next we consider the betatron motion. The maximum amplitude of the betatron 

oscillations is determined in the horizontal plane by the injection process and by 

Touschek and gas scattering. In the vertical plane the gap of the insertion devices 

often determines the maximum allowable amplitude of the vertical oscillations. 
- 

The nonlinear correction in the horizontal plane is required to be a sextupole field 

of up to 0.84 and 0.56 mm, respectively, in the SF and SD magnets. Up to a distance 

of 6.3 and 4.2 mm the nonlinear correction must be such as to limit the momentum- 

dependent tune shift. The rest of the useful aperture must simply provide a stable 

region for the betatron oscillations. Injection typically requires a stable region of the 

order of lo-15 mm. There is no requirement for the magnetic field in this region to 

strictly follow a quadratic dependence on amplitude. 

We suggest, therefore, that the field in the sextupole magnets could be shaped, 

above a given distance from the magnetic axis, in such a way as to provide a more 

linear motion for betatron oscillations of large amplitudes. This approach has the 

potential to provide a wider dynamic aperture. 
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- 
In the next section we analyze possible analytical expressions for the magnetic 

- 
T field, compute the dynamic aperture and chromatic properties, and compare them 

with the ones obtained with conventional sextupoles. -. 

2.3 Example of modified chromaticity sextupoles and associated dynamic aperture 

In what follows we will use the complex notation for the magnetic field 

B* = B*(z), where z = z + iy [see eq. (6) in sec. 31. 

Consider now the following field shape: 

B* - -iSz’ eKzZ - , (1) 

where i2 = -1; S and K are constants. In this paper we will refer to this field as a 

“Gaussian sextupole.” The coefficient K in the exponential of eq. (1) is called the 

“damping coefficient .” 

- 
The horizontal and vertical field components are: 

B, = S exp[K(x2 - y2)] [(x2 - y2) cos (2Kxy) - 2xy sin(2Kzy)l , (2) 

B, = S exp[K(c2 - y2)] [(x2 - y2) sin (2Kxy + 2xy cos (2Kzy)] . (3) 

The constant S must be chosen so as to satisfy the conditions of chromatic correction 

in the momentum aperture discussed above. The constant K modifies the strength 

of the magnetic field at large betatron amplitudes compared to a purely sextupolar 

field. The form of the term exp[K(x2 - y2)] indicates that if the horizontal bending 

field decreases at large horizontal amplitudes, it increases at large vertical amplitudes 

and vice-versa. We tried to exploit the strong focusing aspect of the accelerator and 

chose opposite signs for the K constant in the F and D sextupoles: the F-sextupole 
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acts-mostly in the horizontal plane (the horizontal ,&function value is 3.6 m at the SF 
- 

f location and that of the vertical p-function is 1.9 m), and in this plane the field must 

be “damped” at high amplitudes (negative sign of the damping coefficient KF). In -. 

the D-sextupoles, on the contrary, the vertical betatron amplitudes are larger than 

the horizontal (horizontal p-function value: 1.5 m; vertical p-function: 9.2 m), and 

the damping coefficient KD is given a positive sign. 

The heart of the problem consists in selecting a pair of values for the coefficients 

KF and KD in the horizontal and vertical chromaticity correcting magnets that in- 

crease the dynamic aperture at large betatron amplitudes while preserving, as much 

as possible, good chromatic properties within the momentum spread of the beam. 

These conditions are evidently conflicting, as any departure from a pure sextupole 

field is bound to increase the variation of tune with momentum. 

- 

- _- 

We have considered various sets of values for the constant K. Consider, for exam- 

ple, the value I(F = -1000 rnB2 for.the horizontal chromaticity correction magnets. 

Figure 1 shows the horizontal deflecting field in the horizontal plane (y = 0) as a 

function of the distance from the magnet axis. The field is compared with the one 

given by a pure sextupole field. 

The lattice used for our study was the ALS lattice (fig. 2). The codes GEMINI/ 

b) FUTAGO were used for the tracking studies. A simplified tracking code, written in 

Basic for a Macintosh personal computer, was also used for quick checks. This sim- 

ple code gives results largely in agreement with the sophisticated GEMINI/FUTAGO 

codes. In most cases, a particle is tracked 400 or 800 turns, depending on the ambi- 

guity of the results. 

b) The codes GEMINI/FUTAGO (ref. [3]) h ave been appropriately modified by their authors 
(H. Nishimura and E. Forest) to allow the possibility of including unconventional magnets 
in the lattice, such as the ones used in this report. 
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Because of the complexity of the beam dynamics issues involved, we discuss the 
- 

i results separately for different assumptions. These are: 

l Horizontal plane motion only, on-momentum particle. 

l Coupled motion horizontal-vertical plane, on-momentum particle. 

l Effect of lattice magnet errors. 

l Variation of tune with momentum deviation. 

l Dynamic aperture for off-momentum particle, no synchrotron motion. 

23.1 Horizontal plane motion only (no coupling) 

(on-momentum particle, no magnetic errors) 

If a particle is launched in the horizontal plane with no initial vertical coordinates, 

it will stay in this plane if the magnetic fields are of the “normal” type (nonskew). 

In this case it is easy to increase the. dynamic aperture with a suitable choice of the 

“damping coefficient” Ii’ introduced in eq. (1). A s an example, consider replacing 

the normal horizontal correcting sextupole of the ALS with a Gaussian sextupole 

having a damping coefficient KF = -1000 m- 2. The vertical correcting chromaticity 

magnet is also a Gaussian sextupole with the damping coefficient of the opposite sign: 

I(D = 1120 m- 2. The coefficient KD of this magnet has the wrong sign for the motion 

in the horizontal plane, but its damaging effect in the horizontal plane is reduced 

because of the smaller horizontal /?-function at its location. For a particle launched 

in the horizontal plane only, the tracking simulation gives the following results cl. . 

c) The dynamic aperture at a given point of the accelerator is defined as follows: A test 
particle is launched at that point with initial conditions z, I’, y, y’. These initial condi- 
tions define the amplitudes of the linear motion. The maximum initial amplitude that is 
stable in the presence of nonlinear perturbations is the dynamic aperture. In our studies 
the dynamic aperture is computed in the middle of a straight, section (point C in fig. 2, 
where /3= = 11.0 m and & = 4.0 m. 
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Horizontal dynamic aperture of the ALS with normal sextupoles: 23.1 mm - 
i Horizontal dynamic aperture with Gaussian sextupoles: 45.0 mm 

No physical aperture limit was imposed in the computations. The mathematical 

expression for the field extends to infinity in the simulation. In practice, for a realistic 

magnet (see sec. 3) the field follows the required law up to a distance of the order of 

25-30 mm in the sextupoles. 

A calculation of the width of the main third integer resonance, 3v, = integer, 

driven by a normal sextupole and a Gaussian sextupole, gives a qualitative under- 

standing for the dynamic aperture increase. The resonance width definition is given 

in the Appendix. Figure 3 shows the ratio of the resonance widths for the two mag- 

nets as a function of the maximum betatron amplitude. At an amplitude of 30 mm 

the resonance width of a Gaussian sextupole is one-third the size of that driven by a 

normal sextupole. For this reason G.aussian sextupoles are more forgiving in terms of 

resonance overlap and amplitude-dependent tune shift. The latter is shown in fig. 4. 

The amplitude-dependent tune shift of fig. 4 is computed by Fourier-analyzing the 

tracking data. 

23.2 Coupled motion (on-momentum particle, no magnetic errors) 

When the horizontal and vertical motions are coupled, the analysis becomes more 

complicated. The effectiveness of the Gaussian sextupoles depends on the differences 

of the values of the horizontal and vertical ,&functions at the sextupole locations. As 

mentioned earlier, and as is evident by considering the field components of eqs. (2) 

and (3), the damping coefficients of the F- and D-Gaussian sextupoles have opposite 

signs in each plane. Nonetheless, it is possible to find a set of values for the damping 

coefficients KF and KD that give an overall increase in dynamic aperture. This is 
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- 
shown in fig. 5. In our search for a good solution we have placed the emphasis on 

- 
i the improvement in the horizontal plane, since we believe it to be more critical for 

injection. By increasing the strength of the damping coefficient KD at the SD location -. 

it would be possible to improve the vertical dynamic aperture at the expense of the 

horizontal one. A change of emphasis from the horizontal to the vertical plane may 

be required, for example, in order to make the vertical motion less sensitive to the 

breaking of the periodicity caused by the presence of insertion devices. 

23.3 Effect of random errors 

We have tracked particles in a perturbed lattice, where the perturbations are 

given by random quadrupole errors in the quadrupoles. A relative quadrupole error 

of standard deviation < Ag/g > = 0.001 was randomly distributed according to 

a Gaussian distribution truncated at f2 standard deviations. The main cause of 

dynamic aperture reduction is due to the breaking of the sextupole periodicity caused 

by random quadrupole errors [4]. Because of the reduced strength of the sextupole 

driving term at large amplitudes, it is to be expected that the dynamic aperture 

enlargement observed in fig. 5 will also apply to a machine with random errors. This 

is shown in fig. 6, where the results of tracking five machines with different sets of 

random errors is shown. The dynamic aperture with Gaussian sextupoles is still 

nearly a factor of 2 larger than that obtained with normal sextupoles. 

23.4 Variation of tune with momentum deviation 

This is the crucial problem of the Gaussian sextupoles. By definition, the field 

departs significantly from a pure sextupole field at some distance from the mag- 

netic axis (fig. 1). At large momentum deviation the effectiveness of compensating 

for the chromaticity decreases and the variation of tune with momentum increases. 
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The severity of the problem depends on the values of the lattice functions at the 
- 

c sextupoles, and thus on the detail of the lattice: the smaller the dispersion, the 

-. less important the problem. The benefits of Gaussian sextupoles increase with the 

focusing of the optics. We expect that very small emittance, high-brilliance, light 

sources, and damping rings would benefit most from this technique of chromaticity 

correction. 

Figure 7 shows the tracking results of tune with momentum in the ALS with nor- 

mal and Gaussian sextupoles. For relative momentum deviations larger than 2%, the 

horizontal chromaticity correction of the Gaussian sextupoles is considerably worse 

than with normal sextupoles. Because the dispersion is smaller at the vertical correct- 

ing sextupoles, the vertical chromaticity correction is not any worse with Gaussian 

sextupoles. 

It is possible to symmetrize the tune spread across the momentum aperture simply 

by increasing the field strength [coefficient S in eqs. (l), (2) and (3)]. This is shown 

in fig. 8, where the chromaticity of the on-momentum particle is now positive. The 

natural chromaticities (Av/AP/P) of the ALS are -24.1 (horizontal) and -28.5 

(vertical). In fig. 8 the horizontal chromaticities of the on-momentum particle are 

now $1.5 and the vertical chromaticity is still zero. The small positive chromaticity 

of the on-momentum particle is still effective in fulfilling its task of avoiding the 

head-tail instability. 

2.3.5 Dynamic aperture of the off-momentum particles 

The dynamic aperture of off-momentum particles is strongly affected by the feed- 

down effect of the Gaussian sextupoles. An off-momentum particle is now subject to 

even (given by the symmetry of the lens) and odd multipoles (given by the asymmetry 

of the closed orbit with respect to the lens axis). The odd multipoles contribute to 
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- 
the first-order amplitude-dependent tune shift (the first contributor is an octupole 

- 
z . . . term). These shifts have been calculated by numerical integration of eq. (A9) in the 

Appendix for m = 0 and are shown in fig. 9. -. 

The horizontal amplitude-dependent tune decreases with betatron amplitudes 

for positive momentum deviation and increases for negative momentum deviation. 

Since the second-order even-multipole-dependent tune shift decreases with amplitude 

(see fig. 4), the overall result is an asymmetric dependence of amplitude-dependent 

tune with momentum deviation: 

l For positive momentum deviation, the first-order horizontal amplitude-depen- 

dent tune shift adds to the second-order one. 

l For negative momentum deviation the first-order amplitude-dependent tune 

shift subtracts to the second-order one. 

The total amplitude-dependent horizontal tune shift, computed by Fourier an- 

alysis of the horizontal displacement, is given in fig. 10 as a function of the betatron 

amplitudes for various values of the momentum deviation. 

The horizontal dynamic aperture of the off-momentum particles is shown in fig. 11. 

In order to simulate more closely a real machine (and since the horizontal plane alone 

often gives a very large dynamic aperture that quickly collapses when a small verti- 

cal amplitude is added to the motion), in the simulation the particle was launched 

with a vertical amplitude which was 6.5% of the horizontal amplitude (in normalized 

Courant-Snyder coordinates). The phase-space plot unmistakably shows that the dy- 

namic aperture depression at AP/P = -1% is due to the effect of the proximity of the 

single isolated systematic resonance 5v, = 120. The small amplitude-dependent tune 

shift at this momentum deviation facilitates locking to the resonance. The dynamic 

aperture depression at AP/P = 1% is caused by coupling resonances of high order. 
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The pattern of the dynamic aperture of normal sextupole magnets does not show 
- 

e an appreciable dependence on the momentum deviation: the amplitude-dependent 

tune shift varies little with momentum deviation and is never small. In this case -. 

the dynamic aperture limit is more easily attributable to the overlapping of many 

resonances than to the effect of a single isolated one. 

2.4 Other types of modified sextupoles 

So far we have discussed exclusively the sextupoles with Gaussian damping. One 

can design a large number of field distributions that satisfy the generic conditions of 

behaving like a “normal” sextupole in the vicinity of the origin, but increasing in field 

strength less strongly than a sextupole along the x-axis for locations where ,& >> ,L$, 

(F-sextupole), or increasing less strongly than a sextupole along the y-axis for regions 

where ,By >> LL. Examples of such fields are: 

B’ 3 = Jiq - 1 , 
a 

z- 22 
2 - JiT2 ’ 

B3* 22 
7 2 = (u+diTq ’ 

B* 
-? = ztanh(z) , 

2 

B’ 5- 22 
- 

2 cash(z) ’ 

B* 6 = z2 e-z2 - 
i 

(Gaussian sextupole) , 

and 

3 = 1 -cos z + e (1 
i 

- cos (mz)) (cosine sextupole) . 
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Besides the Gaussian sextupole type we examined a number of the above magnets; 
- 

C in particular, the cosine magnet described in detail in sec. 3. Although this magnet 

type produces fields that are very similar to those of the Gaussian sextupole, the effect -. 

on the beam dynamics was less favorable. This is the reason why it may be important 

to produce field distributions that are used for the tracking studies with great precision 

in the real world. In particular, it appears that the gradient distribution, rather than 

the field, is a measure of the “goodness” of a particular magnet. The implications are 

that the horizontal component of the magnetic field B, close to the horizontal axis is 

an important quantity. 

2.5 Outstanding issues 

In this paper we are content with having pointed out the potential and the prob- 

lems of a new chromaticity compensation scheme. For a particular application, fur- 

ther investigation would be required. 

- Further study should includes the analysis of other types of modified sextupoles, 

the effects of synchrotron oscillations on the beam dynamics, the effects of the closed 

orbit errors on the beam dynamics and on the chromatic compensation, and the effect 

of high-order multipolar perturbations on the dynamic aperture. 

2.6 Other applications 

The technique studied in this paper conceivably can be applied to higher-order 

multipoles. Magnetic fields with the property of behaving like octupoles close to the 

magnetic axis and having a more linear behavior farther away from the axis may 

provide a way of introducing tune spread (Landau damping) at the core of the beam 

without deteriorating the dynamic aperture at large amplitudes. This may raise the 

threshold for the transverse instabilities of high-current, low-emittance beams. 
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2.7 Conclusions of the beam dynamics study 

t . . . 
The work carried out so far is only the beginning of a study aimed at under- 

.-. 
standing the beam dynamics implications of a new type of magnet for chromaticity 

corrections in low-emittance synchrotron radiation sources and damping rings. So far 

the following conclusions emerge from the study: 

l Modified sextupoles have the effect of increasing the dynamic aperture of the 

on-momentum particle and making it less sensitive to breaking of the periodicity 

due to, for instance, quadrupole errors. Further studies are needed to assess 

the effect of the insertion devices. In this case the perturbing effect is vertical, 

and a different set of damping coefficients may be required. 

l Good chromatic properties can be preserved, depending on the amplitude of the 

- momentum-dependent beam oscillation amplitude compared to the betatron- 

dependent one. 

l The dynamic behavior of the off-momentum particle is affected by the feed-down 

effect of the modified sextupoles. The possibility of preserving good dynamic 

- _- aperture over the required momentum deviation depends on the details of the 

lattice under study. 

l Other types of modified sextupoles are possible. Different beam dynamics be- 

havior (particularly the off-momentum behavior) is to be expected for different 

field configurations. 

l The initial results of the study are encouraging. The technique described in this 

paper may provide a way of achieving ultrahigh brightness lattices without the 

present problem of degradation of dynamic aperture. It may be applied with 
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good overall performance to lattices that are designed with this application in mind: 
- 

L very strong focusing lattices are, potentially, the main beneficiaries. 

-. We plan to continue the study with a test high-brilliance lattice designed ad hoc 

for this application. 

l Modified octupoles may be used to provide Landau damping for transverse 

instabilities without deteriorating the dynamic aperture. 

3. Design of modified sextupole magnets 

In this section, even though some properties of specific magnets will be discussed, 

the main purpose is to explain generically what the main choices are for the function 

that describes By along the z-axis or the y-axis, how to design such a magnet, and 

the difficulties that one can encounter in the design of such a magnet. Even though 

this discussion of the magnet design procedures and pitfalls is formulated for the 

design of magnets that behave like sextupoles near the coordinate origin, clearly 

these procedures are of very general validity and could be applied to design, for 

instance, magnets that behave like any multipole in the vicinity of the coordinate 

origin, but behave in a very different manner away from the origin. We assume that 

the magnetic field distribution is controlled by iron surfaces, and we further assume 

that iron surfaces are scalar potential surfaces, knowing that design details associated 

with saturation effects can be handled successfully with the same methods used for 

the design of other iron magnets. If a coil is close enough to the aperture that it affects 

the field distribution, we assume that this is also handled in the “standard” fashion. 

It is a consequence of these assumptions that we need to consider only 20 fields in a 

vacuum region, bounded by p = 00 surfaces. 
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It is worth restating that we are dealing with a magnet that behaves like a sex- - 
5 tupole close to the coordinate origin, and satisfies the condition B, = 0 along the 

-. x-axis and along the y-axis everywhere, i.e., also in regions where the field deviates 

strongly from the ideal sextupole. 

It should be noted that the assumptions made above were made only to simplify 

the description of design procedures. For instance, if one were designing a conductor- 

dominated magnet or a fast-pulsed magnet with the field parallel to conducting sur- 

faces, some of the details would look different but the basic design philosophy and 

considerations outlined here would still be applicable. 

3.1 Notation and basic relationships 

As mentioned earlier, we are dealing only with 20 fields in vacuum, thus allowing 

the application of the theory of a function of a complex variable. We use the standard 

notation: 
- 

z = x+iy = re i4 , 

B = B, +iB, = IB[ eiP , (5) 

with i2 = -1 and * indicating the complex conjugate of a complex quantity. 

Since B, and -By satisfy the Cauchy-Riemann conditions, 

B* = B,-iB, 

(4 

(f-9 

is an analytical function of z, and we are dealing mostly with that function. 
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The field components B,, B, are derivable from a scalar potential V or 
- 

c the component A of the vector potential that is perpendicular to the x-y plane. Since 

L. A and V satisfy the Cauchy-Riemann conditions, the complex potential function, 

F(z) = A+iV , (7) 

is also an analytical function of z, and that B* is related to F through: 

idF 
B* = dz (8) 

is easily verified. We represent the sextupole field designed into the region close to 

z = 0 by: 

idF 
B* = B, - iB, = dz = ib3z2 ; (b3 = real) 

b3z3 
F=-. 

3 

Because of the imposed symmetry condition, 

B2(x, 0) = B&y) = 0 , 

a “prescribed” field distribution, 

B&J3 = -s(x) , 

uniquely prescribes the field everywhere through: 

idF 
B* = ig(z) = x . 

(9) 

(10) 

(11) 

(124 

(12b) 
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If we want to prescribe the fields through: _- 
f 

B,@,Y) = -f (d ; 
.-. 

the field is similarly prescribed everywhere through: 

B* 
Z 

0 
idF =if - =-. 2 dz 

(134 

( w 
From these equations it obviously follows that both functions g(x) and f(y) must be 

even functions of their arguments, as is, of course, also obvious from the basic optical 

requirements. 

Because of the symmetry properties expressed by eqs. (12) and (13), we mostly 

discuss the case where the fields are described by g(x). 

Since g(x) will be deliberately designed to give a field that is much weaker (or 

stronger) than b3 x2 outside the central part of the aperture, it is interesting to note 

what effect that has on the field away from the x-axis. This can best be explored 
- 

with the help of the mean value theorem [5] that states that the value of an analytical 

function averaged over the circumference of a circle equals its value at the center of 

: -- the circle. 

Applying this to B*/ib3z2 = g(z)/b3z2 yields: 

. 2* 2* B*(z) dq5 

J 
--= 
ib3z2 27~ 

0 

A somewhat more interesting result is obtained by applying the mean value theorem 

to ln(B*/ib3z2): 



- 

From this follows: 

L. 

and 

0 

or, if b3 r2 and IBI are normalized in thl same way: 

(154 

Jen( IB(d)l) 2 = Tfn( I&-,4)1) 2 = en (lb31 r”) . (15b) 
0 0 

While eq. (14) g ives useful information, eq. (15b) g ives deeper insight, since it deals 

with-the absolute value of the magnetic field. Equation (15b) clearly expresses quan- 

titatively the qualitatively obvious fact that if IBI is smaller than the sextupole field 

strength in one location (on the x-axis), it has to be larger than the sextupole field 

strength someplace else. 

3.2 Discussion of some types of field function g(z) 

In this section we want to describe the properties of some representative functions 

that one might want to use to give along the x-axis a field that behaves like x2 for 

small 2, growing more slowly than x2 for larger values of x. 

What is described here also applies to the design of functions f(y) that have the 

equivalent behavior, but with some minor variations that may be quite important 

from a practical point of view. Since vacuum chambers are usually larger in the 

x-direction than in the y-direction, locations of singularities (see below) that are 

acceptable in one case may not be acceptable in the other, and the physical nature of 
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the singularities exchange roles (charge filament-like singularities on the y-axis versus 
- 

?. current filament-like singularities on the x-axis). 

. L .  In the following z = x + iy multiplied by an appropriate inverse scaling length. 

a(z) = 41+ .z2 - 1 . 

This function clearly behaves like z2/2 for IzI < 1, and like z for jz2) >> 1. The 

transition region where the function changes from one behavior to the other is fairly 

large. Clearly gl (z) has branch points at z = fi, values that do not satisfy the 

condition lz21 > 1. These branch points cannot be located in the vacuum region(the 

- field must obviously be uniquely determined by x + iy). 

If the branch points were excluded from the vacuum field region by using an iron 

pole-that has the branch point coordinates inside it, such a magnet could be built, 

but it will not frequently be an attractive option unless one is dealing with a system 

that requires a vacuum chamber that has a very large aspect ratio. - 

For y = 0, this function has a behavior similar to gr (x). It also has a branch 

point, but with 1/92(z) = 0 at the branch points. 

93(z) = 22 
a+&iYP ' 

z2 (u - JW) = 
a2 -1-z2 - 

Again, 93(x) looks similar to gl(x), but it has branch points at z = f i and has 

singularities at z = f J7-Z. 
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94(z) = z tanh(z) . 
L. 

This function goes from gq(x) = x2 behavior to 94(x) = x behavior, but the 

transition region is very short and-for moderately large values of x-the difference 

x - 94(x) decreases exponentially (- ew2’). While that behavior is very desirable, 

94(z) has singularities at z = f ir/2; f i3r/2; f i5r/2. . . making this function un- 

suitable for at least some environments. 

ss(4 = 
z2 

cash (z) . 

gg(z) reaches a maximum value at x = 2.07 and decreases beyond that point. 

gs(z) has singularities at the same locations as 94(z). 

g6(z) = z2 I?-” . 

- 

-‘ .- 

gfj (2) behaves similarly to gs(x), with the maximum occurring at x = 1. In 

contrast to all the functions discussed so far, it has no singularities of any kind for 

finite 121. The drawback associated with f&(z) is the fact that the rapid decrease of 

gfj(X) for large x is associated with an enormous increase of gS(Z) along the y-axis. 

97(z) = 1 -c OS 2 + E (1 - cos(mz)) . 

Like C&(z), this function also has no singularities for finite 121. gT(z) is not nearly 

as “violent” as gs (2). For m = 3 and for 0.2~ < x < O.&r, 97(x) is approximately a 

linear function of x, a behavior that is probably desirable for the particle trajectories. 

There is a “hidden” problem associated with gT(z) that will be discussed in more 

detail below. 
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It should be pointed out that the customary procedure to characterize a magnet 
- 

c by the harmonics it produces is not practical for the magnets discussed here because 

-. one simply has to list so many harmonic strengths that the physical meaning is not 

apparent anymore. It is also worth noting that, at least in principle, some of these 

magnets may not be characterizable by harmonics. This would be the case if the 

largest value of x where particles “see” the field is larger than the distance from the 

origin to the closest singularity on the y-axis. 

3.3 General magnet design procedure 

- 

In our opinion the best procedure to design an “exotic” magnet is to subject the 

-- geometry of the field shaping and producing entities (potential surfaces, coils) to a 

conformal transformation such that the task of designing a magnet that produces 

a nonuniform field is turned into the task of designing the simplest of all magnets, 

a dipole magnet. This has the advantage that one can use all the knowledge about 

dipole design, such as “recipes” about necessary pole width beyond the aperture limits 

to achieve a desired field uniformity, shimming of the pole, proper positioning of the 

coils, etc. In fact one of the frequently used magnet-computer programs (POISSON) 

allows analysis and design of magnets in dipole geometry even if one uses nonlinear 

iron [6]. 

Knowing what fields B* we want to produce implies, through eqs. (12b) or (13b), 

knowledge of the complex potential F(z) that describes potential surfaces and location 

of currents or charges in x-y geometry. It should be noted that the formulae for 

F(z) of some of the field functions discussed above (e.g., gs, gs) are not explicitly 

expressible in terms of elementary transcendental functions. 
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If one applies a conformal map Z(W) to the field shaping geometry, the complex po- 
- 

2 tential in the 20 geometry becomes F(z(w)). K nowing that the magnet with the ideally 

. . wanted field distribution is to be transformed into an ideal dipole (for which the com- 

plex potential is constant w), we obtain the equation for the desired conformal map: 

F(z) = ; 

dw 
dz 

= w’ 

u + iv = 1 a 

adF 
= - = a g(z) . 

dz 

(u = constant) ; (164 

ww 

From this follows, for the relationship between the fields in z and w geometry, 

Bf and B:: 
. 

idF idF dz B;=- =-- = 6 
dw dz dw 7 7 

Bf = B; w’ . (17) 

- 

: -- 

It should be noted that while Bf and Bc describe the actual fields for the real 

geometry of the magnet, w’ characterizes the chosen conformal map (i.e., depends 

only on the desired fields, but not at all on the actual fields produced by the real pole 

and coil configuration). Since eq. (17) holds also for field errors (i.e., deviations from 

the ideal field), it follows that: 

AB; AB; AB, AB, -= 
Bf F; -=B,; B* (18) 

i.e., relative field errors in the z-geometry are the same as relative errors in the w- 

geometry, independent of the mapping function w(z). 

After the mapping function w(z) has been determined the design procedure con- 

sists of the following steps: 
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(1) Map the outer boundary of the region that cannot be occupied by any part 
- 

r. of the magnet from the z-plane into the w-plane. This is usually the outer 

..^. boundary of the vacuum chamber; for this design exercise, we use the vacuum- 

chamber outlined in fig. 12. One needs to map only the region that completely 

characterizes the magnet to be designed. In our case, because of the demanded 

symmetries, this is the first quadrant of the system shown in fig. 12. 

(2) Map from the z-plane to the w-plane the boundaries of the regions within which 

the field errors have to be smaller than predetermined values. 

(3) Design the dipole magnet in the w-plane by placing flat poles of sufficient width 

- 

. outside the map of the vacuum chamber, apply shims if necessary, etc. In gen- 

eral we design only that part of the magnet in dipole geometry that has a signif- 

- icant effect on the dipole field uniformity, then map that back into z-geometry, 

and design the rest of the magnet in z-geometry. To arrive at a really “build- 

able” magnet, it is often necessary to iterate a few times between the magnet 

representations in the z-plane and w-plane. 

3.4 Design of specific magnets 

Figure 12 shows schematically the cross section of a vacuum chamber with two 

inscribed good field regions to indicate crudely the core region and outer limits of the 

halo of the beam. We describe the design of two types of magnets. The first magnet is 

the sextupole with Gaussian damping (gs in sec. 3.2), since that is the magnet whose 

beam dynamics implications we have studied most. That description is followed by 

the magnet characterized by g7 in sec. 3.2 (for m = 3). A significant amount of 

work was expended on this magnet; and even though the benefits obtained from this 

magnet are not as significant as those obtained from the sextupole with Gaussian 
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damping, we describe its design here because the study of this magnet yielded two 
- 

c interesting insights that were not clearly anticipated: 

-. 
(1) Since B, on the coordinate axes produced by magnets characterized by gs(z) 

and 97(z) are nearly identical when the free constants are chosen appropriately, 

the fact that their optical performance is noticeably different indicates that the 

values of B, near the axes (being proportional to the more noticeably different 

derivatives of BY) are quite important. This difference in performance leads to 

the conclusion that in order to achieve the desired increase in dynamic aperture, 

one should try to achieve the theoretical fields with great accuracy, at least until 

we better understand the more subtle aspects of the optics. 

(2) While th e d g esi n of the Gaussian-damped sextupole is straightforward, for not 

_ unreasonable values of the free parameters of a magnet with fields described 

by g7( z), it may be very difficult, or even impossible, to build a magnet that 

produces the desired fields within the given vacuum chamber. Since this design 

difficulty is due to a generic problem that can arise with some types of magnets, 

we choose the magnet with fields given by 97(z) as the example to demonstrate 

this kind of problem. 

- 

3.6 Two magnets characterized by g(z) = z2 eKz2 

Figure 13 shows the map of the outer vacuum chamber wall and the two “good 

field” regions outlined for K = -1000 m -2. Since the symmetry conditions require 

only investigation of the magnet for x,y > 0 (i.e., in the first quadrant), the map 

of that region covers 3 quadrants, with the t > 0 axis mapped onto the u > 0 axis, 

and the y > 0 axis mapped onto the v < 0 axis. Figure 13 also shows the flat part 

of a dipole-pole in the v > 0 space, and one-half of such a pole in the v < 0 space. 
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The closest permitted distance of the half-pole from the v-axis is determined by the 
- 

c map of the vacuum chamber wall. While it is possible to have the location of the 

-. other pole equivalently determined, it is advantageous to locate that pole at the same 

absolute distance from the u-axis. This location insures greater symmetry, and thus 

quality, of the generated fields; in addition, all poles will therefore have to be excited 

by the same number of ampere-turns. 

The shown poles are wide enough to give adequate field quality in the good field 

region if the ends of the poles are shimmed appropriately. We have not designed these 

shims here since their detailed contour depends on design details that exceed what 

can be described in this paper. 
. 

In order to get a qualitative indication of the local value of w’, and with it the 

local field strength, the maps of the vacuum chamber and the circle that forms the 

outer good-field region after “squashing” it into an ellipse have marker points that 

are equidistant in the z-plane; and the dipole-poles have markers that are equidistant 

in the w-plane. Figure 14 shows the maps of the dipole-poles with their markers that 

are shown in fig. 13. Also shown is the part of the vacuum chamber wall that falls 

within the figure frame given by the x and y axes and the extreme points on the poles. 

The location of the markers on the pole contours directly indicates the necessary 

width of the poles based on the understanding of the field quality achievable in the 

dipole geometry shown in fig. 13. For comparison fig. 14 also shows (dashed lines) 

the poles for the case I< = 0, i.e., a conventional sextupole. The difference between 

the conventional sextupole and a modified sextupole is clearly quite pronounced. 

Figures 15 and 16 correspond to figs. 13 and 14, respectively, but have been 

computed for K = 1120 mV2. Since in this magnet the field has to be smaller on 

the y-axis, right under a pole, than it would be for a conventional sextupole, it is 
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not practical to have the pole that is bisected by the y-axis on the same potential - 
e “. as the pole in the first quadrant. Figure 16 shows the magnet for the case in which 

the pole bisected by the y-axis is excited by about 10% of the excitation of the pole 

located in the first quadrant. It is clear without further elaboration that this magnet 

is extremely different from a conventional sextupole. 

3.7 A magnet characterized by g(z) = w’(z) = a [l - cos (Icz) + ~(1 - cos (31cz))] 

One of the magnets that we investigated during the course of this study was the 

type of magnet with Ic = 100 me2 and c = -0.01 ( “cosine sextupole”). Figure 17 is 

the map of the vacuum chamber and the good field regions for this magnet. 
. 

Putting both poles at the same distance from the u-axis, dictated by the map of 

the point z = 0, y = 23 mm of the vacuum chamber, mapping them into the z-plane, 

and analyzing the fields with POISSON showed substantial field errors in regions 

where one would expect to reproduce the specified fields with great accuracy. The 
- 

reason is the following: 

Application of the argument principle [5] h s ows that for y > 0, 0 < x < 30 mm, 

20’(z) = 0 at one (and only one) location. Putting an equation solver to work locates 

that point at lcxr = 1.6686; lcyl = 2.3171. This means that at that point the 

conformal map is, in fact, not conformal, and the map of that “danger point” is 

indicated in fig. 17. The consequences of the lack of conformality there are most easily 

understood in terms of the magnetic fields there. Since at that location w” # 0, the 

field in the vicinity of that point has the properties of a quadrupole with its axes 

rotated by about 75’, as shown schematically in fig. 18. If one chooses pole #l in the 

dipole geometry shown in fig. 17, it will map into the scalar potential surface #l in 

fig. 18. While the point z = 0 (lacking conformality also) is surrounded by poles that 
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are specifically designed to make the field zero there, such poles are not present in the 
- 

z “. vicinity of the point zr = x1 + iyl, leading obviously to nonzero fields there. Since 

.-. the fields in the vicinity of that point are not what they are supposed to be, they 

will be, at least to some degree, incorrect elsewhere also. In this case the problem 

is easily remedied by dropping the symmetry condition of having both poles excited 

by the same number of ampere-turns and using the pole indicated as #2 in figs. 17 

and 18. The complete pole configuration for that case is shown in fig. 19, and it gives 

the desired field. 

It is clear that when the point zr falls inside the vacuum chamber, the desired 

fields cannot be implemented. When the point zr is outside the vacuum chamber, 

but inside the frame of fig. 17, that pole could, in principle, be split into two poles, 

excited to different scalar potentials. But in general it will be preferable to modify 

- 

some of the free parameters in such a way that the point zr is outside the frame in 

fig. 17. After all there is very great freedom in choosing the field of this modified 

sextupole outside the immediate core region. 
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Appendix 
- 

c 

-. In this section we derive the stop-band width and tune shift for a generalized (i.e., 

not necessarily expressed in multipole form) magnetic perturbation. We consider the 

nonlinear coupled equations: 

d2x Ex(X,Y,S) 
ds2 + a4 x = E. , 

(Al) 
d2Y J%hc, Y 9 4 
ds2 + w4 Y = E. , 

where Eo is the particle’s energy. 

. The Hamiltonian of the motion is of the form: 

+ K,(s)y2 + V(X,Y,S) 
2 Eo 

7 w4 

with pz = dxlds; W/ax = E,; and dV/dy = E,. 

- Putting 0 = s/R (R being the accelerator radius), then 

H= 
R2Kx( 8)x2 

2 
+ f124/(@)Y2 + R2V(x, Y@) . 

2 Eo 

Transforming into action-angle variables &Y, <Z,v, with 

2CzPz l/2 x= - 
( > 

cos (4X + $x(e,) , 

px = -(;]I2 [sin($,+1L,(~))+a, cos($,+$,(B))] , (A4) 

where 



- 

is the unperturbed phase and C is related to the “emittance” of a particle e: 
- 

T 
c 

%Y R 
x,y = - * 2 

-. 

The canonical variable 4 is the perturbation to the unperturbed phase $J. Identical 

expressions for the y plane are obtained by changing the subscripts. 

Under this transformation the Hamiltonian becomes: 

R2 

H=E we, cx, dx, cy, $,I , 

giving 
.- 

KX -R2 dV -R2 dV 
dB= EC, & ’ 

d(Y _ 
-z- 

-- . 
Eo %y 

R2 dV 
7 

4X @Y R2 69’ 
-= E. E; x= de -zTc I 

(4 

(A6) 

where 

dV av axe- -=- 
84X ax z = -Ez 

sin$ 
2 

- 

: -- 

dV av ax 
-=asE= Ez 
XX 

cos 4, . 

The phase equations then become: 

& = R2 
de - Eo COS(~X,Y) Ex,y (4 Cx,dx, cy, h/> f WY 

Introducing the Fourier component of the driving term: 

COS(~,) E, eim* de 
0 

I 

7 

Gy,m (Cx7 4x7Sy,&) = $ 7 pi’” 

(4 

COS($~) Eu eime d0 
0 
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.- Equation (A7) becomes: 

c G x,m e -im6 

m 

c G y,m e -id 

m 

Introducing the slow phase: 

6 = NX$X + Nxqx + Nytiy + N,+!J~ - me ) 

4 d4X 

de = N, 
de 

c+N 
R 

PX 
Yijy” 

(A9) 

The resonance width of the coupled resonance Nzux + Nyvy = m is: 

. 
Ae = N, 3 + NY z , 

averaged over all the phases $x, c$~. 

We find from eqs. (A7) and (A8) re aining only the index m which gives the slow t 

phase 6: 
- 

N d4x 44, _ R 
xdB+NydB-- 

Nx 
E. z 

G 3 
x,m + ,/q Gyjm 1 

: .- x ~xP{--i [Nx@x -tix)+Ny($y -&,) -61) . 

Averaging over the slowly varying term e’+, we then have 

(All) 

2x 2* 

Ae = Eo;T)3 1 / / [ Ng2 Ex ~0s ($2) + N$!2 E, Wd] 

AOint 0 0 

x exP{-i[Nx(dx -+,) + NY& -+,)--me]} d$x d&, de , 
(AW 

where Ae;,, is the magnet length. On resonance we have me = N,c$, + NY& - 

NxGx - Ny~y. 



- 

- 
Example: A pure sextupole field. Consider a single sextupole of length L: 

E = E, - iE, = ~cS(x + i~)~ = zcS(x2 + 2ixy - y2) , 

E, = zcS(x2 - y2) , E, = 42cSxy , N, = 1 , NY = 2, 

where S is the sextupole strength, c is the speed of light, and E is the electron charge. 

From eq. (A12), 

2L 

Ae = (2~)~Bp 
cos (dx) [Pxex m2 (4x) - pyey cos2 @,)I 

2&12 s 
x cos (9X + 24,) - - 

A 

x 2 cos (4,) &Gm as ($2) cos (dy) 

x. ~0s (4x + 24y) d$x d$y , 
1 

2* 2n 
2SL 

= W3PP o o Jli 
PZ’” l/G cos3 (4x) - pi’” py Ey cos (qsx) cos2 ((by) 

6 

- 4/d’2 Py 6 ~0s (4x) cos2 ($,) CDS ($x + 24,) d$x dq$, . w9 

Now 
2% 2* 

JJ 
ax3 bx) ~0s (4x + WY) d& dqby = o , 

0 0 

and 

cos (4x) cos2 (4y) = cos ($2) 2 + f 1 cos (4x - 24,) + cos (qbx + 24,)] ; 
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so retaining the coherent term, - 
c 

VW 
2 -. 

Ae = $-#2~y&x [l+z] , 

which is the well-established result for a  single resonance. 

Example: the Gaussian sextupole. Let’s consider the Gaussian sextupole in the 

horizontal plane only: 

E, = FCS x2 exp(Kx2) . (AW 

Integration of eq. (A12) with N, = 3, NY = 0  gives, for a  short magnet  (i.e., 

assuming constant lattice function values in the magnet)  of length L, the resonance . 

width of the third integer resonance driven by a  single magnet:  

Ae = 3L S /$’ Jz, emb 
87r Bp 1  10 - 31  + 312 - 131 , VW 

- 

: .. 

where b  is K/3,6, J2, ,Bx is the horizontal beta function at mod ified sextupole location, 

cx is the invariant of linear motion (“emittance”) and is equal to u2  J/3% (u being the 

maximum betatron amplitude in absence of nonlinear perturbation at the mod ified 

sextupole location), and lo, 11, 12, and 13 are the Bessel functions of order 0, 1, 2, 

and 3  and argument b. 

The first-order amp li tude-dependent tune shift is found by numerical integra- 

tion of the first equation in (A9), with m  = 0  and by putting x = a  cos (#Jo) in 

eq. (A15). For an  off-momentum particle the amplitude x in eq. (A15) is replaced by 

x = a  cos ($J~) + d, d  being the orbit displacement from the on-momentum orbit. 
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Figure Captions - 
c 

. . . Fig. 1. Vertical component of the magnetic field along the horizontal axis for normal 

and Gaussian sextupoles with KF = -1000 m- 2. The vertical arrow indicates 

the orbit deviation for a momentum deviation of 3%, where good chromatic 

correction is required. 

Fig. 2. Lattice of one superperiod of the ALS. The symbol Q denotes a quadrupole 

magnet; B is a combined function dipole-quadrupole magnet; SF and SD are 

horizontal and vertical correcting chromaticity sextupoles, respectively. C is 

in the center of the straight section, where the dynamic aperture is computed. 

Picture credit: ref. 1, fig. 3.3. 

Fig. 3. Width of the third integer resonance 3v, = integer (defined in the Appendix) 

driven by a single normal F-sextupole divided by the width driven by a Gaus- 

sian sextupole. The ratio is plotted as a function of the maximum betatron 

amplitude at the reference point (center of straight section, point C in Fig. 2). 

Fig. 4. Horizontal tune shift versus maximum betatron amplitude for normal and 

Gaussian sextupoles. 

Fig. 5. Dynamic aperture of on-momentum particle with normal and Gaussian sex- 

tupoles. 

Fig. 6. Dynamic aperture of five different machines having magnetic field gradient 

errors randomly distributed in the quadrupoles. The rms value of the distri- 

bution of the relative gradient errors is 0.001. 

Fig. 7. Horizontal and vertical tune deviations as a function of momentum deviation 

with normal and Gaussian sextupoles. 
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Fig. 8. - 
I 

.L. 
Fig. 9. 

Horizontal tune deviation versus momentum deviation with Gaussian sex- 

tupoles of positive chromaticity (CH = 1.5). 

Amplitude-dependent horizontal tune shift driven by the first-order approx- 

imation of the Gaussian sextupoles. The tune shifts are given as a function 

of the maximum betatron amplitude and for two values (+l% and +3%) of 

the momentum deviation. Negative momentum deviation gives the same ab- 

solute value but a reverse sign to the tune shift. 

Fig. 10. Total amplitude-dependent tune shifts (computed from the tracking results) 

at various positive and negative momentum deviations. 

~. Fig. 11. Horizontal dynamic aperture as a function of the momentum deviation from 

the synchronous momentum. 

Fig. 12. Vacuum chamber with good field regions. 

Fig. 13. Map of vacuum chamber and good field region boundaries for Gaussian 

- sextupole with I< = -1000 m-‘. 

Fig. 14. Poles for Gaussian sextupole with I< = -1000 rnm2. 

: .- Fig. 15. Map of vacuum chamber and good field region boundary for Gaussian sex- 

tupole with I( = 1120 rns2. 

Fig. 16. Poles for Gaussian sextupole with K = 1120 rnT2. 

Fig. 17. Map of vacuum chamber and good field region boundaries for sextupole with 

Ic = 100 m-l and e = 0.01. 

Fig. 18. Scalar potential surfaces in vicinity of W’ = 0 - point. 

Fig. 19. Usable poles for sextupole with Ic = 100 m-l and c = 0.01. 
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