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ABSTRACT

We construct discrete space-time coordinates separated by the Lorentz-invariant

intervals h/me in space and h/mc2 in time using discrimination (XOR) between
pa?rs of independently generated bit-strings; we prove that if this space is ho-
mogeneous and isotropic, it can have only 1, 2 or 3 spatial dimensions once we
have related time to a global ordering operator. On this space we construct exact
combinatorial expressions for free particle wave functions taking proper account
of the interference between indistinguishable alternative paths created by the con-

struction. Because the end-points of the paths are fixed, they specify completed

processes; our wave functions are “born collapsed”. A convenient way to represent
this model is in terms of complex amplitudes whose squares give the probability
for a particular set of observable processes to be completed. For distances much
greater than h/me and times much greater than h/mc2 our wave functions can -
be approximated by solutions of the free particle Dirac and Klein-Gordon equa-
tions. Using an eight-counter paradigm we relate this construction to scattering
experiments involving four distinguishable particles, and indicate how this can

be used to calculate electromagnetic and weak scattering processes. We derive a

non-perturbative formula relating relativistic bound and resonant state energies

to mass ratios and coupling constants, equivalent to our earlier derivation of the
Bohr relativistic formula for hydrogen. Using the Fermi-Yang model of the pion

as a relativistic bound state containing a nucleon-antinucleon pair, we find that

(GzN)2  = (2mN/m,)2  - 1.
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1. INTRODUCTION

At ANPA 9, 10 and again at ANPA 11 I attempted to explain how to go from
discrimination between bit-strings to a relativistic quantum scattering theory. On

each occasion objections were raised by the audience which could not be success-
fully met while I was on my feet. Part of the problem at ANPA 11 was that I
made an incorrect connection between McGoveran’s  Theorem (FDP Section 3.4,

p p  30-34)?
.

Theorem 13. The upper bound on the global d-dimensionality of a d-space of
cardinality N with a discrete., finite and homogeneous metric is 3 for sufficiently
large N.

and the definition of “event” in my scattering theory. This theorem establishes

our right to claim that we have explained the 3+1 structure of “space-time” in our

finite and discrete context. The theorem was not shaken. However, I admit that
my attempt at ANPA 11 to tie it directly to the scattering theory was flawed. At
ANPA 11 I distributed a few sheets with the same title as this paper.and a heading
“SLAC-PUB-formulae”. These are now only of historical interest; the flaw occurs
at Eq. 1.8, p.3 in that manuscript. A correct derivation based on the construction
provided in this paper is given at the end of Sec. 2.4 below.

My intent at ANPA 11 was to present “a systematic discussion of the kine-

matics and dynamics of the bit-string scattering theory which has been developing
within the framework of discrete physics.” Subsequently I have come to realize

my attempt failed for a deeper reason than the technical flaw noted in the first
paragraph. The problem was that I was trying to use a discretized random walk in
space-time as the basic paradigm without paying sufficient attention to the broader
context within which the “random walk” is constructed. The random walk model
restricted to causal space-time trajectories captures much of the essence of rela-

tivistic quantum mechanics, as Stein taught us long ago[2-41  , but does not lead to
specific characteristics of the Schroedinger equation without an additional quan-

t u m  postulate’51.  KarmanovL6’ has suggested that a “Stein-like” random walk in
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Feynman’s sum over paths using a fixed imaginary step length of i h/me in space
and i h/mc2 in time can still lead to the Dirac equation in l+l dimensions for
x >> h/me and t >> h/me2. Work by Karmanov, McGoveran,  HPN and Stein[”

has not only provided a rigorous proof of this contention but led-to what I believe

to be a resolution of the problems raised by my earlier attempts to construct a
bit-string scattering theory.

It is characteristic of the ordering operator calculus that when there are paths
wiZh-interfering  alternatives due to the sharing of indistinguishable possibilities
that we obtain at least two alternative types of path; further, we do not have suffi-
cient information to choose between them without extending the context. However,

in our construction we find that the sum of the squares of the number of alternative
paths in each type provides the correct normalization condition for our calculated
probabilities. This is a specific example of the “adding in quadrature” which David

McGoveran  discusses in his contribution to this conference”‘. It is then a matter
of convenience to introduce the complex amplitudes of quantum mechanics; no
mysticism is involved. That is, we can go from our construction of rational, real
probabilities for real “interfering alternatives”, to the complex interfering alterna-

tives which Feynman finds characteristic of quantum mechanics[“.

Once we have seen how these alternative paths are generated, anchored to the

space-time trajectories and restricted by them, but not confined to the lattice of
space-time points in the way a “classical” random walk would require, my earlier

work on scattering theory falls into place. I hope that with this paper available
prior to ANPA 12, I will for once be able to confront at least a fraction of the (for

me) more exciting applications which are now hull up and moving rapidly toward
us.
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2. QUANTUM WAVE FUNCTIONS AS
A CONTINUUM APPROXIMATION

-
2 . 1 .  B I T - S T R I N G S

We specify a bit-string

X(S) = (..., b;, . . . . . )s (2-l)
by its S ordered elements

br E 0,l; i E 1,2, . . . . S; 0, 1, . . . . S E ordinal integers (2.2)
and its norm by

IX(S)1 = E,s_,b; = X (2.3)

Define the null string by O(S), by = 0 for all i and the anti-null string by l(S);

bt = 1 for all i. Define discrimination (XOR) by

X $ Y = (..., b;?‘, ...)s = Y $ X; brY = (b; - bY)2I (2.4)

from which it follows that

A$A=O;A$O=A

We will also find it useful to define

&. = A$l; hence A@&@l= 0

P-5)

P-6)
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2 . 2 .  O N E  D I M E N S I O N A L  A M P L I T U D E S

Consider two independently generated strings A(S), B(S) restricted by IA $ B I=n

and A - B = c. We call these the boundary conditions. We now construct two
substrings a(n),b(n) by the of 11owing recursive algorithm starting from i,j = 0

and ending at i = S, j = n.

i : = i + l
.

if bf = 1 and b: = 0 then j := j + 1 and b; := 1 and b: := 0

if bf = 0 and br = 1 then j := j + 1 and b: := 0 and b: := I

if (bt - bB)2 = 0 then j, b; and b: do not change
.L

Once we have made this construction,

a(n) @ b(n) @l(n) = O(n) (2.7)

and we can interpret the string a as representing a “random walk” in which a “1”

represents a step forward and a “0” represents a step backward, as in the Stein

paradigm. Define

We call the “points” (aj - bj, j) connecting (0,O) to (c, n) a trajectory; the new

ordering parameter j then represents “causal” time order along the trajectory.

Note that a + b = n and a - b = A - B = c for any trajectory because of our
boundary conditions.
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We can also define a path in the larger space s;, Ai, Bi where

(2.9)
Ai = Ci,,bf(bf  - bf)2 + sk; Bi = C;.,bf(bt - bf)2 + sk

.

Note that by construction Ai - Bi = pi - bj and hence Ai, Bi is tied to the same
trajectory in the (ui - bj,j) plane; it acquires a third “orthogonal” coordinate due

to those cases when both Ai and Bi are incremented by 1. Note also that there
is no way from our boundary conditions or from the trajectory to tell those cases
from those where i advances but neither Ai nor Bi nor s; is incremented. All we
know is that SAB = Ef=, b, b, ,A ’ lies in the range 0 5 SAB 5 S - n. It is these

indistinguishable  paths which create the interfering alternatives in our model.

We now ask how many paths characterized by the unknown parameter s =

0, 1,2, . ..) S - n satisfy our boundary conditions. By construction each path is tied

to the n points which compose a trajectory, and can be chosen in nS ways. Note,
that we have broken the causal connection between path and trajectory. Of the
total number of ways of choosing a path characterized by s from the S!/(S - s)!
possibilities, only S!/s!(S- )s ! are distinct. Consequently, the probability of having

a path characterized by s is

S!/s!(S - s)! = 1
S!/(S - s)! s!

Thus the total number of paths is

(2.10)

(2.11)

where ezpg-,(n)  is the finite exponential. This is a general result for the transport

operator referring to attribute distance as has been proved by McGoveran  in FDP,

Theorems 36-40, pp 55-58.
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2 . 3 .  A D D I N G  I N  Q U A D R A T U R E

Although Eq. 2.11 specifies the total number of paths, given S,n, it conceals a

four-fold ambiguity arising from the construction. However the sequence of paths
is generated, the order adopted in the sum implies a recursive generation of the
terms pg(n) = ns/s! given by

. ps+i(n) = nps(n)/(s + 1); pa(n)  = 1 (2.12)

The first ambiguity is the fact that we do not know whether S - n is even or odd
outside of the uninteresting case S = n when paths and trajectories coincide; hence
we do not know whether the sum terminates in an even or an odd term, which
affects the statistical calculation in an interesting way. The second ambiguity arises

because, however s is ordered, we do not know how many cases arise because both A;

and Bi are incremented, or neither. To include this dichotomy we split the even and
odd sequences themselves into two sequences corresponding to these alternatives.m
which we call 11 and 00, giving four recursion relations:

P:$:b, =
n4

(s + 4)(s + 3)(s + q(s + ,)P:‘l’(n);  6’Yn) = 1

P:f:(n) =
n4

(s + 4)(s + 3)(s + q(s + l)P:-(n);  PfYn) = n

P:f:(n) =
n4

(s + 4)(s + 3)(s + q(s + qP:joo(n); P;‘OO(n) = n
21

5

P:$%4 =
n4

(s + 4)(s + 3)(s + q(s + ,)P2”“(“);  d’OO(n) = n
31

6 (2.13)

At some point which depends on whether (a) S - n is even or odd and/or 2SAB
is greater or less than S - n, this four-fold ordering of the terms in the sum over

s has to stop, and may or may not leave some terms unaccounted for. Calling the
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contribution of these terms to the sum AP, we find that our construction allows
us to decompose the sum over paths as follows:

P(n; S) = c~~~[P~J’ + pz”’ + pzYoo  + pz’oo]  + 0 (2.14)

.

We are now in the general situation discussed by McGoveran  in this conference PI

where we know that for any specific generation of the paths which meets our bound-
ary we could compute the decomposition, but because of interfering indistinguish-

able alternatives the actual probability calculation eludes traditional approaches.
Consider first a situation with two alternatives, with PI and P2 paths characterized
by each separately. Since the total number of paths is P, the elementary treat-

ment takes Pr + P2 = P, but this cannot represent the situation when they are
independently generated and hence define a joint probability space with PI P2 ele-
ments. In order to satisfy both constraints, we form Pf + P! = P2 - 2PlP2 G R‘f2,

which is identically satisfied if the two are not independent. If, due to indistin-
guishable paths which we do not know how- to assign to either Pr or P - 2, we
have indeed made the two independent in the sense that the product PrP2 is no
longer constrained other than by the inequality 2PrP2 < P2, we can adopt R122

as the measure of the square of the number of paths in this new space. Taking the
product 2PrPz = f2P2 where f is some rational fraction less than unity, we thus

arrive at the general result

pf + P; = R;2 = P2(1 - f>(l + f) (2.15)

_
which has been derived by McGoveran I81 by considering case counts including in-
distinguishables.

Returning to the case at hand, and considering even and odd paths, this re-

stricts P, and PO to the circle defined by

P,” + P,” = R2 (2.16)
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independent of how P is partitioned between Pe and PO. We can now define

$5~~ = Pe + iPo (2.17)

with the normalization condition

@,!J = R2 (2.18)

- Clearly we can divide I,!I by R to get the normalization condition T/J*@ = 1 when we
. are modeling the case that a single system traverses the trajectory with certainty.

Our next step is to exploit the remaining ambiguity arising from the bisection
of the interval between 0 and S - n due to the indistinguishable parameter SAB.

We have already taken the basic step in Eq. 2.14 by splitting the sum into four
rather than two independent collections of paths. Now that we have recognized
that the amplitudes - whose square gives a quantity which can be normed to form
a probability -, can be complex, we have no conceptual barrier to forming real
combinations which can be negative as well as positive. The obvious choice is to
form those which lead to the finite sines and cosines, i.e. by subtracting the two

components of the odd or even series from each other:

n2’
R cosg-,(n)  = R C~~o-“‘(-l)k- =

(2k)!
-j$z;nl [pe,ll _ pejOO]5 s (2.19)

(2.20)

The two constructions can now be combined by taking the normalized wave func-
tion to be

(2.21)

Thus, by taking proper account of the interference between independently gen-

erated paths which share indistinguishable elements, we claim to have derived Feyn-
man’s prescription for quantum mechanics as a “sum over paths” with imaginary

10



steps. In other words, we have shown that by using the ordering operator cuZcuZus

to count the paths we can construct a completely finite version of “wave functions”
with finite step lengths and real probabilities. The i has been introduced simply
for mathematical convenience and carries no deeper significance. The significant

aspect of the system that eventually leads to observable quantum interference is
the fact that our construction of space-time from bit-strings includes interfering
alternatives due to paths which share indistinguishable elements.

.
2 . 4 .  C O N S T R U C T I O N  O F  S P A C E - T I M E  C O O R D I N A T E S

1+ 1 dimensions

In any universe of bit strings of length S, all quadruples such that

A@B@C@D=O (2.22)

are called events. Note that this implies that .-

A@B=C@D;A@C=B@D;A@D=B@C (2.23) -

A=B@c@D; B=C@D@A; C=D@A@B; D=A@B@C (2.24)

Consider an event defined by four independently generated strings F, B, R, L

whose norms are F, B, R, L; all must be less than or equal to 111 = S. For the

moment we need only define a fifth integer n by

IF $ BI = n = IR$ LI (2.25)

We will return below to the additional flexibility provided by the remaining two
equalities in Eq. 2.17. Our intent is to construct a discrete square coordinate

mesh (zi, tj) with (2n+ 1)2 points within which we can model piecewise continuous
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ordered trajectories (Zk, i!k) which connect the “endpoint” (0,O) to some “endpoint”
(z, t) lying on the boundary of the square

t=fn, -nsz<n; z=fn, -n<t<n (2.26)

The order parameter 0 2 k < n traverses any space-time point along the trajectory
only once; in addition we require that

. zk+l - zk = fl; tk+l - tk = fl; (f-OUT choices) (2.27)

The description is static in the sense that it can be read either from 0 to n or
from n to 0 and still describe the same trajectory. Note that in contrast to previous
discussions, (a) we consider space-like as well as time-like trajectories, and (b) that
the length of the strings S > n is not specified; it is some finite integer named in

advance of the construction. Note further that since we specify both endpoints,

we are describing a completed process. The “wave functions” we will eventually.L .m.
construct on this mesh will be “born collapsed”. All our results will belong to
the “fixed past”; whether we should or should not use our theory to predict the
future, either in a deterministic or a statistically deterministic sense, is a separate
issue we will not discuss in this paper. We have picked our boundary conditions
(0,O) - - - (z, t) in the precess of specifying the problem.

Any space-time point (Zk, tl;) not on the axes (Zk, 0), (0, tk) lies in one of the

four quadrants (+, +), (-, +), (+, -), (-, -). We fix the sign convention in terms

of our parameters R, L, F, B by the rule

(+,+)*R>L,  F>B; (-,+)HR<L,  F>B

(+,-)t)R>L, F<B; (-,-)++R<L,  F<B (2.28)

The interiors of the light cones are specified in the usual way: Time-like (t2 > z2):

Forward t > /zI,  Backward t < -1~1; Space-like (z2 > t2): Right z > Itl, Left z <
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-It I. We can now define our bounding endpoints in terms of our basic parameters,
and four new parameters r, 1, f, b by

Time-Zike,Forwardt,z=R-L=r-Z;t=n=-r-/-Z

T i m e - Z i k e , B a c k w u r d t , z = R - L = r - Z ; t = - n

Space - like, Right ++z=n=f+b;t=F-B=f-b

Space - like, Left t,z=-n;t=F-B=f-b; (2.29)

The advantage of introducing the new parameters r, 1, f, b is that they make it

easy to define what will become Lorentz invariants. Explicitly

t2 - z2 = r2 = 4rZ = n2( 1 - p2) with p = X - 1

2f
z2 - t2 = -72 = 4fb = n2(1 -w2) with w = ; - 1 (2.30) -

Since the sign of 72 specifies the light cone type and hence whether we use p or w,

and the sign of one or the other specifies the appropriate octant  (up to an overall

sign ambiguity which can only be resolved by reference to the laboratory situation
which is being modeled), we can start from z, t and calculate n and /3 or n and

w unambiguously; from these we get r, I, f, b. This leaves one unknown parameter
s = S - n which we will use to characterize all possible trajectories which fit our
boundary conditions by requiring that

R=r+s; L=Z+s; F=f+s; B = b + s (2.31)

As we have shown many times”” it is easy to give meaning to the concept

of Lorentz invariance in our discrete context. Defining r’ = pr, I’ = p-‘Z, r2
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is obviously invariant, and if we define yP = i(p + p-l), /?i = 1 - 3 we have

immediately that

z’=+dz+Ppt); t’=‘yp(t+PpZ) (2.32)

Although our original derivation applied only in the forward light cone, the current
context allows us to extend it to the square space-time mesh we constructed above.
Then we find that n is simply the space-like or time-like interval in some rest
system,  and the coordinate-system dependent quantities /?, w can be ignored until
we start making physical use of the model for discussing laboratory experiments.

In order to relate this model to the single bit-string “random walk” we have
used in the past, we construct two substrings r(n),l(n)  by the same recursive
algorithm starting from i,j = 0 and ending at i = S, j = n which led to Eq. 2.7
above. Once we have made this construction,

_ r(n) $1(n)  CT3 l(n) = O(n) (2.33)

.- .m.

and we can interpret the string r as representing a “random walk” in which a “1”
represents a step to the right and a “0” represents a step to the left, as in the Stein
paradigm; the new ordering parameter j now represents CUUSUZ time order along

the trajectory when F - B > 0.

3+ 1 dimensions

Clearly, until we make physical application of the formalism, the distinction
between space and time in this construction is only suggested by our choice of
symbols (z, t); the Minkowski symmetries are maintained. That is, any set of labels
R,L,F,B; r,l,f,b; n, z, t which maintain the connections defined above model the
same situation. An appropriate interchange of the symbols 0,l which maintains

both the dichotomy and the asymmetry [i.e. 1 $1 = 0 = 0 $01 used above
makes the whole scheme “label invariant” within the combinatorial hierurchy[“’

labeling scheme constructed by Kilmister; his latest version was presented at this
conference [12’.
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To distinguish space from time in the model, we include additional spuciul

dimensions which we require to be homogeneous and isotropic in the sense that
none of the symmetry properties depend on the choice of the labels Z, y, z, . . . . One

of the great conceptual advantages of our constructive approach is that McGoveran
has proved that in our theory the extension from l+l space-time to 2+1 and 3+1
has to stop there. This is McGoverun’s Theorem (FDP Section 3.4, pp 30-34)
which we already quoted in the first paragraph of the introduction. To see how

this applies in our context, fix the F, B pair as defining the universal ordering
parameter j for causal space-time events, and try to construct not only the z

coordinate from the R,L pair as above but three additional independently generated
pairs IV+, W-; X+,X-, Y+, Y- to construct the coordinates w = IV+ - W-,x =

X+ - X-, y = Y+ - Y-, and for consistency in the notation replace L,R by Z-, Z+
with z = Z+ - Z-.

Following the same procedure as above, we generate four substrings w+(n),

x+(n), Y+(n), z+(n)- sin& these four strings are independent by hypothesis, they
cannot discriminate to the null string, so we need a definition of event appropriat8
to this situation. We take this to be those values of j for which all four strings
have accumulated the same number of “1” ‘s, i.e.

(2.34)

The extension to D rather than 4 spatial dimensions is obvious. This reduces the
probability of events occurring after j space-time steps in D dimensions to the
probability of obtaining the same number of “1” ‘s in D independent Bernoulli

sequences after j trials,

(2.35)

Clearly this definition of events defines a “homogeneous and isotropic” d-space,

but the probability of being able to continue to find events for large values of j

15



vanishes for D > 3. Consequently we need only consider three spatial dimensions.

Thus, provided we have some clear way to label independent bit strings, we can
extend our construction of l+l space-time to 3+1 space-time, but no further. We
will return to the calculation of scattering probabilities in this space in the next
chapter.

2 . 5 .  D I S C R E T E  F R E E - P A R T I C L E  W A V E  F U N C T I O N S

.
Time dependence of the Schroedinger wave function

In the past we have used the macroscopic space-time interval between two
counter firings as our basic means of connecting our theory to the laboratory (the
“counter paradigm”). We have now extended our model to include left-right motion
in space and “forward-backward motion in time” using a single global ordering
parameter. The Lorentz invariance of the system allows us, in principle, to talk

about one or the other by going to the appropriate “rest system”. To relate this to
the time Zitterbewegwzg  of an isolated system-of rest energy mc2, which has period.
T = h/mc2 = l/v or angular frequency w = mc2/6, we require a new variant of

our “counter paradigm” which touches an empirical reflection of this basic aspect - -

of the theory. Fortunately Feynman has supplied us the clue by allowing us to

think of a particle moving “backward in time” as an antiparticle moving forward
in time.

This line of thought suggests that, just as we use counter telescopes to define
“monochromatic velocities” which are the starting point for making measurements

that exhibit deBroglie  wave interference effects, we think about external devices

before and after the counter firings [which in a rest system would be to = no(h/mc2)

seconds apart] that tell us whether a particle or an antiparticle enters or leaves
the system. This is easy for charged particles, since all we need do is to put a
region of magnetic field between the two counters in the entrance and exit counter
telescopes, and see which way the macroscopic space-time trajectory bends. In
this way, we find that particles of opposite charge bend in opposite directions,
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and that on the macroscopic scale a single particle has the same charge in the

entrance and exit telescopes. Although we cannot reverse time flow, we can reverse

velocities, and find that for all the time intervals between the four counter firings
kept the same, particles of opposite charge and opposite velocity follow identical

trajectories, although they are obviously traversed in the opposite sense. Thus the

same experimental setup does allow us to distinguish “forward” from “backward”
while passing along the same macroscopic trajectory, and we accept both this fact

and the conservation of charge (or more generally number of particles minus the

number of antiparticle with all other quantum numbers reversed) as part of our
ruZes of correspondence connecting our constructed model to laboratory experience.

With this experimental preliminary out of the way, we can now immediately
apply our general “adding in quadrature” result to construct free particle wave

functions. For time-like intervals, we need simply take the period to be h/mc2 =

h/E in the rest system, and find that any isolated system with rest energy mc2 = E

has a combinatorial wave function which can be approximated by a solution of the

equation
.-.

M+i&,b/& = E1C, (2.36) -

We emphasize that our solutions are derived only when restricted by the space-

time boundary conditions which represent completed processes. For us it would be

a serious error to try to interpret this or any other Schroedinger-type equation as

describing the cuusak evolution of a complex amplitude.

_ The Klein-Gordon Equation

We have seen that this time evolution can be transformed from the rest system

with  72 = ng(h/mc)2  to an arbitrary system with Q-~ = c2t2 - z2 in which the

velocity between the endpoints of the trajectory is p = z/et. Consequently we
have already constructed the discrete solutions which can be approximated by

continuum solutions of the equation
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if12$/t3z2  - d2+/c2dt2  = (mc/h)21c,

Extension to 3+1 dimensions is immediate.

The Dirac Eauation[7]

(2.37)

.

The Dirac case differs from the Klein-Gordon case because a step to the left
or to the right can have either left or right helicity, and spin-conservation adds
a second conservation law to the particle-antiparticle conservation implied by our
boundary conditions and reflected in our use of complex amplitudes. Consequently,
in addition to the two independent time sequences t*(s) we must have two inde-

pendent space sequences z&(s) ordered by the same global ordering parameter i
and characterized by the same path parameter s. We can take over the same
space-time boundary condition used above with Z+ = R the steps to the right

and Z- = L the steps to the left, and use a imaginary step length for the fc
Zitterbewegzlng, but the wave function now has two initial states cy depending on.L .-.
whether the initial step (or helicity) is positive or negative, and two final states
p. If @pa(B) are the number of trajectories with B bends, the extension of our
prescription derived above, which is equivalent to Feynman7s’13’141  except that our
step length is kept fixed at i h/me (ih/mc2),  amounts to calculating[71

J&(4 tb; a, ta) = &?20@pa(B)(i)B (2.38)

As we have shown elsewhereL71, the exact combinatorial result is

K-+ = (i)C,(-)‘$s = (i)Cs(-)s(~)2sf-&  + iJo(7)
. .

(2.39)

where we have used the fact that

4rZ = [(r + Z)2 - (r - Z)2] = [c2(tb - ta)’ - (b - u)2](y)2  = TV” (2.40)

is the square of the invariant interval. Applying the same reasoning to calculate
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the other three components, our final result is

Iqz, t; 0,O) = f qqJl(T) iJo

iJo - yJl(7) >
(2.41)

which for our boundary conditions is the solution of the Dirac equation

-ia,dlC)  / dZ - rno,G = id$ldt (2.42).

where fi = 1 = c, (T, and CT~ are Pauli spin matrices and T,!J  has two components.

Again, extension to 3+1 dimensions appears to be immediate.

Momentum-space equations

A major conceptual advantage arising from our finite and discrete approach
to relativistic quantum mechanics using end-point boundary conditions is that
we obtain the momentum-space wave function without additional effort. We have
already seen that for the interval specified z = (r-Z)(h/mc) and mc2t/h = (r+Z)  =

n; consequently the velocity in units of the limiting velocity c is p = z/et = $f - 1

Since we have already established our discrete version of Lorentz invariance for the

equations, we must use the implied definition of energy E = ymc2 and momentum

pt = yPmc = /3E/c.  This gives us immediately the Klein-Gordon equation in

“moment urn space”

(P: + m2)d(pz) = E$(pz) (2.43)

where (and from now on) h = 1 = c. Another way to see this is to recognize

that our energy (or momentum) conservation law, allows us to treat the left-right
Zitterbewegung in z as a one-dimensional problem analagous to our treatment of

forward and backward movement in time. Thus we can immediately conclude

that  r,!+=(z) =  eipZt. Since the space-motion and the time-motion are generated

independently in our model, we can multiply the two independent amplitudes to
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obtain

$cz, t) j ,fi(wfW (2.44)

and hence provide an alternative derivation of the Klein-Gordon equation which
is completely equivalent to our treatment above. Clearly, this route applied to
two amplitudes which conserve helicity  at the end points along the same lines will
yield the l+l Dirac equation in momentum space, and make extension to 3+1
dimensions even easier to accomplish. For instance, instead of pz,p, we can use

pl, j and the wave function ei(pLrL+j4 ) where the boundary condition on 4 is

periodic with period 27r or 47r depending on whether j is integer or half-integer.

3. A BRIEF LOOK AT INTERACTIONS

3.1. THE ~-COUNTER PARADIGM FOR 4-EvEwrs

So far we have considered only single particle wave functions modeled by pairs

of bit-strings of length S from which we constructed coordinate substrings c(n),
c E x, y, z, t subject to the constraint

c+(n)@--(n)$l(n)  = O(n) (34

Now label four sets of coordinate strings by strings of length 4 and some discrim-

inately independent choice of three of them, eg (1010) = a, (1001) = b, (1111) =
1 = qo. Clearly these model the seven strings and discriminately closed subsets of
the second level of the combinatorial hierurch#0~11~12].  Such a choice provides a

convenient way to model two types of particle, their antiparticles and three quanta.
This description carries with it two additive conservation laws[1o]  and Feynman di-
agrams corresponding to the processes

a@Ba=qo=b@L
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(3.2)
a@b=q-=1@6

.

We now put this together as an &counter  paradigm in figure 1. If we now
construct the content stings corresponding to each of these labels, following the
recursive algorithm leading to 2.24, but now in 3+1 dimensions, considering all

the pairs in Eq. 2.16 and all the triples in 2.17, we will find that we have the

full crossing-symmetric kinematics for all 2-2 elastic and anelastic scatterings and
all 3-body decays or bound states. We leave these technical details to another

publication.

_

To get the (free particle) Bohr-Sommerfeld quantization for finite velocity, note
that our definition of velocity (and coherence length) necessarily implies a period-
icity Nx specified by w or by p = $ - 1 = % - 1 where Icp, np have no common
factor. If we are considering boundary conditions defined by constant (average)
velocity between a coherent string of possible time-like events or constant average
separation along a string of possible space-like separated events - which is the

usual condition for free particle quantum mechanical interference - this means
that two events can be causally connected or spatially correlated only when they

are some integral number Nx of (relativistic) deBroglie  wavelengths apart. Thus,
in addition to the Zitterbewegung, we have a grosser quantized “random walk”
with the positions where events can either occur (in time-like sequence) and/or are
correlated in their space-like separations specified by their mass and some velocity
parameter 0 < ,8 < 1 in terms of the deBroglie  wavelength. In contrast to the un-
observable Zitterbewegung, this structure can extend over macroscopic dimensions

for low velocities and leads to our relativistic Bohr-Sommerfeld quantizationPJOI.

The space-time, and momentum-energy conservation laws come from the deBroglie
periodicities in the velocities, since events can occur only when all particles have

moved an integral number of deBroglie  wavelengths along their trajectories. We
will spell this out in detail elsewhere.

-
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3.2. SCATTERING CROSS SECTION, RESONANCES AND BOUND STATES

.

Our eight counter paradigm with constant velocities for labeled trajectories
connecting all pairs of counters defines a scattering volume measured by deBroglie
wavelengths with a linear dimension of at least one wavelength perpendicular to
some beam direction. This allows us to define a cross sectional area 47r(h/~)~  =

4r/k2  which can be taken out of the beam and scattered in any direction. If

the total scattered intensity is u*u compared to the beam with no scattering, this

corresponds to an isotropic average differential cross section

P = N2(1 + u*u) = 1; da/d0 = t2/k2

where the complex amplitude t = u/d- represents the interfering alter-

natives between scattering and not scattering and arises from the same type of
“adding in quadrature” analysis we developed above.

For a situation where the probability of scattering is small, .and is indeed

isotropic (i.e. the probable size of the scatterer is much smaller than the deBroglie
wavelength defined by the beam velocity and mass), we can model this by an “in-
teraction” with coupling constant f2 to which t is proportional. This is the actual

situation for the universal Fermi interaction between distinct spin-l/2 particles one
of which is a massless neutrino. Since there are four particle types, and each has

two spin states and is a particle or antiparticle there are 16 x 16 possible initial
states and similarly final states. Thus the probability of any one specific type of

scattering occurring is l/(256) 2 which is our calculation of the Fermi constant. Put
_

in appropriate units this calculation is good to 7%, and as McGoveran  reported at

this meeting, a correction similar to that computed for the fine structure constant
gives four figure accuracy in comparison with experiment.

Of course recognizing the coulomb interaction parametere2/tLc  implied by the
combinatorial hierarchy as l/137 was one of the earliest successes of the program.
At first sight the “short-range” approach used above for scattering due to the Fermi
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interaction looks hopeless when applied to the ‘infinite range” coulomb interaction.
Actually the fact that there is no range makes the coulomb case independent of h
(for non-identical particles), which is why Rutherford was able to find a classical

solution. However, once one introduces finite angular momentum conservation
and recognizes that the infinite cross section which the classical (or non-relativistic

quantum mechanical) theory predicts in the forward direction has to be modified
to take account of finite angular resolution, a simple treatment becomes possible.
It fits neatly with the McGoveran”51  calculation of the Bohr[16’ -Sommerfeld[171
-Dirac[“]  -Biedenharn[l” problem, and will be presented elsewhere.

One can unify these treatments by considering a system whose free constituents
(eg two masses ml, ~22) have invariant four-momentum squared s = (ml + rn~)~
and one bound (s < so) or resonant (s > so) state at so due to some interaction
energy f2p. This state decays once the resonance is formed with a lifetime l/l?

where I is the width of the resonance. The two invariant attributes (s - so) and
I2 must be added in quadrature by the now familiar argument to give

.q
(f2p)4 = (s - sO)2 + r4 (3.3) -

This our derivation of the relativistic Breit-Wigner probability unitarity condition
for a single resonance, familiar in S-matrix theory.

Note that for I = 0 this formula describes bound rather than scattering states.

To emphasize its importance I call it “A handy-dandy non-perturbutive  formula

for bound states and resonances”. It allows a uniform treatment of strong and

weak interactions, and might allow us to abolish the infrared slavery of QCD’zol.
_

In particular, it allows us make the following calculation. If we follow Fermi and
Yang’s suggestion[211 that the pion is a bound state of a nucleon-antinucleon pair,
so = n-&2,, (ml + 77~2) = 2MNand

(G2m,r)2 = (2~4~ - m; 2~ (14~~2~)~ (34

which is, so far as I know, the first prediction of the pion-nucleon coupling constant.
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But this just scratches the surface of what now becomes possible for both strong
(&CD), electromagnetic-weak (unified) and gravitational interactions. I wish I had

time to sketch some of these applications, but must close here. The summary table
give an inkling of what lies ahead.
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FIGURE CAPTIONS

1) The 8-counter  paradigm: four pairs of counters on a sphere of diameter D
which are uniquely sensitive to particles of type a, 13, c, d and may be traversed
in either direction. For explicitness, the single counters of each type carry
the index i or f for initial or final firing. The same apparatus can record
may different types of 4-events. Suppose that by using devices exterior to the
counters we can identify particle types IV, X, Y.2, IV;” means that a particle
of type W fires counter a as one of the initial firings, etc. Then (IV;“;  IV;)
calibrates the counters and, together with similar calibrations for all pairs
defines what we mean by “no scattering”. We consider all cases when four
counters fire: (1) (IV;“, Xi; IV;, Xi) e as ic scattering, illustrated in the fig1 - t
ure. (2) (IV;“, Xf; Y;, Zf”, anelastic scattering. (3) (IV;“; X:; YF, 2;) S-decay.
(4) (Iv;“, xf, y;“; 2;) coalescence. (5) (IV;, Xi; YF, 2;) 4-decay (requires a
source inside the scattering volume).
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Summary of WHERE WE ARE in January, 1990
General structural results

0 3+1 asymptotic space-time
l combinatorial free particle Dirac wave functions
l supraluminal synchronization and correlation without supraluminal signaling
l discrete Lorentz transformations for event-based coordinates
l relativistic Bohr-Sommerfeld quantization
l non-commutativity between position and velocity
l conservation laws for Yukawa vertices and 4- events
l crossing symmetry, CPT, spin and statistics

Gravitation and Cosmology
l the equivalence principle
l electromagnetic and gravitational unification
l the three traditional tests of general relativity
l event horizon
l zero-velocity frame for the cosmic background radiation
l mass of the visible universe: (2127)2m,  = 4.84 x 1O52 gm
l fireball time: (2127)2fi/m,c2 = 3.5 million years
l critical density: of RVi, = p/pc = 0.01175 [0.005 < RViS  5 0.021
l dark matter = 12.7 times visible matter [lo??]
l baryons per photon = 1/2564  = 2.328... x 10-l’ [2 x 10-lo?] .

Unified theory of elementary particles
l quantum numbers of the standard model for quarks and leptons
with confined quarks and exactly 3 weakly coupled generations

gravitation: k/Gmi = 2127  + 136 = 1.70147...[1  i &] x 1O38
=1.6934...  x  1O38 [1.6937(10)  x  1O38]
weak-electromagnetic unification:
GFmi/hc = (1 - &)/25S2fi  = 1.02 758... x 10m5  [1.02  684(2) x 10m5];
sin26Weak = 0.25(1 - &)” = 0.2267... [0.229(4)]
M$, = =a/l/ZGFsin20W  = (37.3 Gev/c2sin Ow)2;  MZCOS  8w = MW
the hydrogen atom: (E/~c~)~[l + (1/137N~)~]  = 1
the Sommerfeld formula: (E/~c~)~[l + u2/(n + Jm)2] = 1
the fine structure constant: d = 1-13T30)t12,  = 137.0359 674...[137.0359 895(61)]

mdme = T-&y& -- 1836.15 1497...  [1836.15 2701(37)]

m:/m, = 275[1  - &] =273.1292... [273.12 63(76)]
m,o/m, = 274[1  - &]= 264.2 1428.. [264.1  160(76)]
(G$Nmko)2  = (2m,)2  - rnz, = (13.86811m,o)2

[ ( )] = empirical value (error) or range
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