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ABSTRACT 

The energy-momentum tensor of the covariantly quantized GS heterotic sGperstring in 

-- D dimensions is found to be equivalent to that of a s^o(2(D - 2))k=2 theory plus a system 

of three bosons which carry background charges and the c = -2 system of world-sheet 

-‘ ‘- fermions familiar from the super-conformal ghost system. Both the R-symmetry and the 

K-ghost number symmetry are found to be anomalous. 
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7%: Green-Schwarz (GS) p su erstring was recently quantized in a Lorentz covariant 

- gauge [l-4]. Its q uantum lagrangian includes an infinite number of space-time spinor 
c, 

-. 
fields. In this note, we will study the conformal field theory of the gauge fixed action for 

this manifestly space-time supersymmetric string theory. There are many motivations for 

such an investigation. Among these is the possibility that there might be a simplier theory 

which is equivalent to the GS superstring. Additionally, such a study should shed light 

on the relationship between the spinning (NSR) and super (GS) strings. Whatsmore, it 

should be possible to see the origin (or lack) of R-symmetry in the GS theory. 

After covariant gauge fixing of the K-supersymmetry and in the conformal gauge for 

the reparametrization symmetry, the GS superstring lagrangian reads [l]:l = Leg + ts .- 

- with 

cg = &x. &x ) (1) 
n=O m=O 

The reparametrization ghosts have been excluded here. Futhermore, only the anti- 

holomophic sector will be of concern here. It has been pointed out [5] that the change 

-. of variables [l-4] which diagonalizes the original lagrangian to this form, is not invert- 

ible. Nevertheless, charges which generate space-time supersymmetry tranformations may 

be derived from eqn. (1). Th us it is a valid starting point for a conformal field theory 
: ‘- 

discussion of a space-time super-translationally invariant theory. 

The dimensions of the Ns component, space-time spinors 7r and C are [Ez] = (2172 - n) 

. 
and [7r,“+rs1] = 1 - (2m - n). Th eir Grassmann statistics assignments are the same: 

(->n+? Consequently, the energy-momentum tensor from Ls is 

n=O m=O 

The operator product of the spinors in eqn. (1) is 

(3) 
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With i&s, the central charge in the 5!‘s(~)Z’s(~) OPE is [l] 

- 

2, cs = -2Ns 2 2 (-)“[6(2 m - n)(2m - n - 1) + l] . (4) 
n=O m=O 

I. 
Numerically, Ns is given in terms of the space-time dimension, D, as Ns = 2(o - 2). 

Performing the ‘m’ summation leads to cs = -2Ns Cr!.o(-)n(72 + 1)[2n(n + 2) + 11. The 

first term in the square brackets may be regularized as lim,,r- [m] = $ Ns and the 

- last is limY,i- [2N s (l+Y)2 
( Y - $1 = -fNs. (Alt ernatively, one could use c-function 

regularization.) Thus cs evaluates to cs = Ns so that the central charge from eqn. (1) is 

c = D + Ns = 26. For example, in D=lO space-time dimensions, the spinors are indeed 

16's of SO(9,l). 
.- 

- . Repeated use of the sums: SUM[I] = ~~~,(-)“” CzZo(2m - IX)’ for I = 0, 1 and 

2, will be made in the calculations below. They evaluate to SUlll[O] = -a, SUM[l] = 0 

and SUJ4[2] = $. 

As is well known, the GKO construction [6] o ff ers a prescription for finding equivalent 

CFT’s. In order to follow that procedure, one must find the currents from eqn. (1) which 
-. 

form a closed Kac-Moody (KM) super-algebra. 

There are many independent global transformations under which eqn. (1) is invariant. 

: ‘- It is pedagogical to first study the simplier action given by the n = m = 0 term in the 

latter equation. Thus take 

Lb = -p&8 , (5) 

where p = 7ri and 8 E C: are both Grassmann odd with [p] = 1 and [0] = 0. ,Cl, falls into 

the class of first order Lagrangians studied in ref. [7]. Either by direct calculation or by 

regurgitating their results, one finds that the algebra of the energy-momentum tensor 

T; = p&O , (6) 

has a central charge: CL = -2Ns. 
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Associated with .Lk are fermion number and SO(N s vector symmetries. The respec- ) 

- tive currents are j = -pO which generates a R-symmetry and J’ 
2, 

to satisfying the respective KM algebras, these currents may be 

Sugawara energy momentum tensor Tkug z Tj + TJ which satisfies 

used to construct the 

(at level k for s%( Ns)) 

NS 
Tj =.qT $[: jj : + k&i] , 

A4 
Tj(W3 - (? _ q2 - (43 ’ 

-i Ns 

TJ = 
2(k+k-2)Iz1 c 

: J’JI. 
* ’ 

T~(z)J’(ti) N J1(” 

(7) 

(2 - ziq2 ’ 

= -pt18. In addition 

along with J1(5)j(z6) - 0. Note that j is anomalous with background charge Qj = -Ns. 

The central charge in the TAugT&ug operator product is easily computed and found to be 

c;.wJ = cj + CJ with cj = (1 - 3Ns) and cf”J=” = (Ns - 1) so that csUg = -2Ns. By 

- the quantum equivalence theorem [6], the Sugawara construction (7) is equivalent to the 

Virasoro energy-momentum tensor (6): Thus = Tk with k = 2. 

Some time ago, a superstring algebra was suggested in ref. [8]. It reads 

[Q;I,,) 7 Qfn)> = 2(ra)aPPa(m+n) 9 

[QTrn) > Pa(n) ) = 2(ru)aPa~(m+n) 7 
-. 

Lpu(m), Pb(n)} = m&m,--nrlab ) 

[pu(m),02,(n)} = [Rcx(m),a2,(n)l = O 7 

where Q” is the super-charge, Pa is the momenta and fit, is a new fermionic generator 

whose origin will be seen below. The m, n, . . . indices here and through eqn. (12) below, 

are loop indices. Mathematically, fit, is needed for the closure of the affine algebra. The 

super-Jacobi Identities vanish if (I”)(ap(I’,) 7)’ = 0. This Fierz identity is valid only in 

D = 3,4,6 and 10 space-time dimensions. 

Following GKO [6], the V irasoro generators constructed from eqn. (8) are 

Lm = i F ’ ‘?m+p) p4-~) + %m+,) Q” - Q&+y)‘e(-p) : > (--p) 
p=--00 

(9) 
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where the bosonic normal ordering is as in the latter reference and (without implied sum- 

- mation) the fermionic normal ordering is 
i 

:Q Q" Q Q" 4m) (n) ' if 172 < 0 , 
-. a(m) (n) : = -QTnlQ,(,) , if ~2 2 0 . (10) 

It is straightforward to show that 

where 0 is one of the operators in eqn. (8). Direct computation yields that L, satisfies the 

Virasoro algebra with central charge c = D - 2Ns = -30 + 8. The minus sign preceding 

.- Ns is due to the fact that the spinor generators are bosonic, Grassmann odd operators on 
- 

the world-sheet, i.e. ghost-like. More directly, recall that the central charge of a KM super- 

algebra [6] is proportional to its super-dimension which is [dim(bosonic) - dim(fermionic)]. 

Later, the KM algebra of the symmetry currents of the full lagrangian in eqn. (1) 

will be constructed (see eqn. (16) below). F rom it or by direct construction, the super- 

translation CUrrentS from LCg + Lk are: 
- 

QTm) = PTm) - CraJap C Bp(m+q)Pa(-q) ) 
Q 

P a(m) = Pa(m) + CraJap C Qecr(m+q)~~(-q) 2 

Q 

i-2 cr(m) = mea(m) 7 

(12) 

~. with pa E a,~,. These currents almost satisfy eqn. (8). Th e exception is the super-charge 

commutator for which {Q, Q} = 2?+ 3 re q uires the introduction of a new generator, F. 

The minimum value for D, namely D = 3, is precisely the smallest integer for which the 

central charge is negative. More importantly, as the latter quantity is necessarily negative, 

the theories (5-12) are not unitary. In particular, the norms of the states [L-nlO)] are not 

positive definite. These ghost states are, in principle, removed by Kc-supersymmetry via 

the full theory of eqn. (1). 
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Before returning to the study of the full theory, it is convenient to first introduce some 

- notation. First, definet r/l/ G 7rzTy+’ and e/l/ E C; with (-)/l/ z ( -)nS1. The super- 
c, 

script /l/ denotes the K index structure with indices (m,n). For example, 7r ‘2’ = &$+1 

where /2/ denotes the (p,q) collection of indicies and 6/1//2/ E S”J’6”q. Next, introduce 

the “circle” notation as a short-hand for the sum: 7r o c E Cr=,( -)“+l CzzO T,“~;“+~c:. 

Similarly, the “bullet” notation will be used to represent the weighted sum: 7r l c = 

- ~~~,(-)“+’ C”,,o(2m - n)7rET;“+‘cT. Finally, denote the dimension of c/l/ as d;” E 

- (2nz - n) and that of TT/~/ as dc’ = 1 - d;“. Henceforth, the indices m, n.. . will denote 

loop indices with the notations above implicitly understood. 

Continuing with the symmetries of eqn. (l), it is found that they include [2,3]: 

SXa = lo l?“c ) sir”’ = -2E’~‘l?“&x, ) (134 

&“I = p/ ) (1W 

&” = &‘&&” , &“’ = -&‘AG&’ . PW 

The first two sets of transformations account for the space-time supersymmetry. The 

transformations given in eqn. (13~) are those of the ghost number symmetry. From the 

Noether procedure, the respective currents are: .z ‘- 

c”’ = - 2~“~‘q~za ) (144 
~. & 1 Pb) 

s = -7rmc. (144 

The dimensions of the new currents are [C/r/] = (di” + 1) and [G] = 1. C is the current 

for the E transformation and is a member of an infinite set of currents. These particular 

symmetries are selected because of their relation to the MM algebras of other theories; eqn. 

t Rest assured that there are no n’s of the y variety in the formulae to follow. 
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(8) for-example. It is highly suggestive that the form of the graded currents in eqn. (14a) 

-. is isomorphic to the NSR super-current. 
i 

I. 
With the notations above, it is possible to unambiguously introduce loop indices so 

that 

[~‘l’ p) = (-)‘1’~/“‘2’~,+, o 
ml n 1 * 

The non-vanishing graded-commutators of the currents are found to be 

(15) 

E ml +} = -df’$‘, , 

[S,, C/l’} = d!“C~~,, n c ? [Gm,Gn} = iNs*srn+n,o 7 

[Cl”, 7Q’) = - (-)‘1’2rap,(,+,$i”“~ ) m 

. 
[cll',pa} = 2dx$, , m n 

pv, C/2’) = s;p + *J-;p 
m 71 > 

[S/W/, Tilj = _ 4D[(+nc~~n~/~/[31 _ (-)/1//2/(-)/2+ + n)cll’ 
m m+n 

6/2/[311 
7 

[Gm,S;1”2’} = (&’ + d;“)S$/,2’ + md;‘/J~~;2’ , 

[‘J’1”2’, K[31} = _ 4D[(-)‘1’92’ m n n1+np/[31 + ~-~/~//~/~~~/~/~~~~,~/~/~31~ , 
-. 

[G,, J-/“2’) = (d;” + d{“)J-,‘,/i2’ , 

[PG, Pk} = mrjabSm+n,O 7 (16) 
: ‘- 

where Sc”2’ E -40 ~~-,~F~$~E!~ and JL”2’ E -40 c,“=-, $!,E/-:/ are bi- 

spinors. The factor of i in the &7-G commutator arises from SUA6[2]. Turning to the . . 

computation of the semi-direct product with the Virasoro algebra, one finds 

L,= : fY [ 
1 
sPk+pPa( -p) - Prm+p O “(-p) - mTm+p l F-pl : 1 

p=-cm 

LLm, n $I] = - (n + mdf’)ci$, , 

[L,,TT~“] = - (n + mdgl’)rc.$,, , 

[Lm,C’l’] = - (n + md!“)C”’ 12 c m+n 3 
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From this it is seen that S is anomalous. None of the other currents will be used hence- 

forth. The graded-commutators in eqn. (16) d emonstrate the manner in which space-time 

supersymmetry is present in eqn. (1). They also illustrate how deceptively complicated 

the latter lagrangian is. There isn’t much experience in dealing with a theory in which 

there are an infinite number of fields. It is important to find a simplier theory (free or 

interacting) which is equivalent to eqn. (1). 

From the experience gained through the calculation of eqns. (5-7), it is best to first 

assemble the various KM currents. -4s before, there are the fermion number current j 

and the SO(Ns) currents J I. Now, there is also the ghost number current of eqn. (14~). 

Explicitly, these currents may be written as 
-. 

j = -2XOF ) JI = -7d 0 c ) G=--2&r.c. (18) 

The normalizations used here reflect the presence of the factors of SUM[O] (j) and SUM[2] 

(S); G differs from eqn. (14~). The U(1) currents satisfy the following OPE’s: 

. 
j(z)j(ti) N Ns 

(z-u))2 ’ 

&qqzig - - Ns qqqlq - s(z) +&Ns 
(2 - w)2 ’ (2 - iiy + (5L43 ’ 

JI(qp$q N QIJK y(w) + yJ 
(2 -w) (2 - wy ’ 

T(z)J’(w) N J1(z) 
(Z-42 ’ Q9) 

along with j(~)s(ti) N 0. N o ice t that there are background charges associated with the 

U( 1) currents: Qj = $Ns and Qp = t&N,. Tl lis means that both of these currents are 
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I 

anomalrrus and that there is a non-zero difference in the number of zero-modes of T and C. 

.- Also, J’ generates a s^o(Ns)k KM algebra with central term LY = ii where tr(tltJ) G &IJ. 
f 

The factor of i arises from SUn/i[O]. 

Following the Sugawara construction, introduce the energy-momemtum tensor 5!‘kus E 

T’+Tc +TJ: 

Tj = A[: jj : - &%j] , 

1 NS 

TJ = c 2(rC + Ns - 2) I=1 

T’ szLg satisfies the equations on the right-hand-side 
.- 

-charge for each sector yields: 

: J’J’ ’ . . 

of eqn. (19). Computing the central 

cj = I - INS , 
4 CG = 1 + ;IVs , 

k=2 
cJ = Ns - 1 . (21) 

Take the algebra i = s^o(Ns)k=2 $ us(l) $ up(l) w h ere two of the anomalous ~(1)‘s are 

from two independent copies of j and the third is the ghost-number U(1). Altogether 
-. 

this system has central charge ckag = Ns + 2. This extra factor of two in the central 

charge is familiar from the bosonization of the super-conformal ghost system [7]. To cure 

.z ‘- this problem and thus obtain the correct Sugawara energy-momentum tensor, one simply 

introduces two world-sheet fermions x and p respectively of dimension 1 and 0. Their 

~. central charge is - 2. Consequently, the energy-momentum tensor 

Tsug = T~I + Tjz + Tc + TJ + T(,,,) , (22) 

is quantum mechanically equivalent to eqn. (2): Ts,,(z) = T’(2). A general expression 

for the actions of the anomalous U(1) currents written in terms of bosons may be found 

below eqn. (78) of the first paper in ref. [7]. Th e well known field representations of the 

s^o(Ns)k KM algebras are reviewed in ref. [6]. As th ere are both Grassmann even and odd 
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fields in .Cs, presumably the (x, p) system plays the same statistics interpolating role as in 

- the N = 1 super-conformal ghost system. 
f 

Although only the heterotic theory has been treated here, it is straightforward to carry 

out the same procedure for the type II GS superstrings. It is expected that separate left 

and right versions of the kj algebra would give the quantum equivalence. Of course it is 

important to construct the operators and currents in eqn. (14) out of the operators which 

give a field representation of this algebra. These and many other important issues are left 

for the future. 
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