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Coset conformal field theories[ 11 may include all two-dimensional rational

conformal field theories[2]. For every finite Lie subalgebra h C 3, one can

construct a two-dimensional conformal field theoryi.  If G, H are the (covering)

Lie groups whose algebras are S, h, the embedding h c s will quite generally

specify a relation between the centres B(G), B(H) of the two groups. We will

.
explain how these relations may be identified. One of their consequences in the

coset conformal field theory is a selection rule saying that certain primary fields

do not occur[3,4].

Let i, k denote the Kac-Moody  algebras that are the central extensions of the

loop algebras of 3, h, respectively. Then the finite subalgebra h c s with index

of embedding e induces an affine subalgebra kek c i’“, where the superscripts

are the levels (see, for example, Reference [5]3.

There exist automorphisms of G (k) which are not themselves elements of

4 (L) and are therefore called outer automorphisms[6]. The outer automor-

phisms of 4 permute the fundamental weights &‘(p = 0, 1, . . . , R; R = rank(g))

in -such a way as to leave the Dynkin diagram of ij invariant. Similarly, outer

automorphisms of & permute the fundamental weights wO( cy = O,l, . . . ,r; r =

rank(h) ) of A.

The group of outer automorphisms of i, O(G), is isomorphic to the centre

B(G). Relations between the centres B(G) and B(H) are therefore accompanied

1 We assume h is a maximal subalgebra of ij, otherwise the coset theory factors into (a/i) @

(k/h) theories, where k C ij is maximal.
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by relations between the outer automorphism groups O(i) and O(k). One

consequence of these outer automorphism relations is that certain fields in the

coset conformal theory built from h C 3 must be identified[7,4].

Let A = C~zohP~P (X = C&,X, way> with 0 5 A,, E Z (0 5 X, E Z) be an

affine weight of i(i). Also let A = C~=,A,w” (x = C~,,X,w”) be the g(h)

weight that is the finite restriction of A (X). Then the isomorphism O(i) E B(G)-- _

may be described in the following manner. If we denote an outer automorphism

by A E O(i), there exists a corresponding element of the centre a E B(G) whose

eigenvalue on a s representation with highest weight A is2 exp[2ri(&‘]A)].  The

element cr E B(G) 1a so acts diagonally on representations of ij with the same

eigenvalues. For a representation with highest weight A, we have (symbolically)

g - A = A . exp[2ri(&‘]A)]
:

(1) .- _

where we have used

(&oI&) = (&‘]A).

Similarly, for A c O(h), there exists Q! E B(H) such that

(2)

a - X = X . exp[27ri(Aw0  ]A)] (3)

for all highest-weight representations X of k.

Because of the form of the eigenvalues (1,3), to get relations between the

centres of H and G we examine the relation between weights of s and 6. The

‘(AlA’) and (&,A’) are dot products of weights A, A’ and ;i, A’ determined by the Killing

forms of B and ij, respectively, and normalised so that a long simple root satisfies (alcx)  E

lo!12  = 2.
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embedding 6 c s is specified by the projection that takes weights of s onto

weights of h. Denoting a weight A of s by a column vector A = (AIR2 e . . AR)~,

we can construct a so-called projection matrix F[8] such that .A is projected

onto the weight FA of h. F is a r x R matrix with integer entries greater than

or equal to zero. FA is a column vector’whose r entries are the coefficients of

the fundamental weights tia of 6.-- _

If we let F act on all the weights {A’} in a representation with highest

weight A, the weights { FA’} of h will fill out several representations with highest

weights xi. This can be denoted symbolically by

-
A+ c xi .

i

and is known as a branching rule. Two embeddings  with distinct projection __

matrices F are said to be equivalent when their branching rules are identical.

Thus there are, in general, more than one valid projection matrices for the

“same” embedding. This will be useful later on.

Because of (1,2,3),  B E B(G) and o E B(H) are identified if and only if

(Aw’IR) = (AwOlF&) mod 1 (5)

for all A. So with a projection matrix F, it is straightforward to find relations

between the centres of G and H.

To find the consequences of the centre relations (5), we study characters.

Let x*(r) (x”(r)) denote the s( pecialised) character of the 4 (i) representation

with highest weight A (X). The characters of the coset theory are the branching

3



functions b?(r) [3] of the subalgebra &? > i, defined by

x^w = xY+m * (6)
The corresponding coset fields are labelled  by two highest weights (A, X). In

matrix notation (6) is

x=xb .- (7)

Note that

(Aw’JX + ,B) = (Aw’JX) mod 1

(&‘]A + p) = (&‘]A) mod 1

(8)

for any roots ,L?, ,B of h, g. Suppose A is the finite restriction of a weight A in the .*-

6 representation with highest weight A’, and FA is the restriction of a weight in

the k representation with highest weight X. Then (8) means the centre relation

(5) implies

(ho ]A’) = (Au’ IX) mod 1 . (9)

The representation with highest weight A’ will branch only to those represen-

tations of & with highest weights X obeying (9) . This means only those pri-

mary fields (A’, X) obeying (9) appear in the coset conformal theory. These

selection rules have been discussed previously (at least for particular cases) in

references[3,4].

The selection rule can be expressed using the characters in the following
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way:

exp[27ri(Aw0  IX)]bt exp[27ri(b”]A)]  = bf

or in matrix notation,

(10)

aba= b  . (11)

The phases introduced in (11) by a E B(G) and o E B(H) must cancel, or else

the-element bi of b must vanish, implying that the corresponding primary field

does not appear.

Equation (11) 1a so requires that certain fields in the coset theory be iden-

tified. To see this, consider how the characters transform under the modular

transformation S(r + -l/r). If

.

1..

(12)

X(-l/T) = xws

then from (7) we have

b(-l/r) =  S+b(T)S . (13)

Now in the space of characters of a Kac-Moody  algebra i, it is the modular

transformation S which diagonalises an outer automorphism A [9]:

S+AS=a ,- - w

thereby manifesting the isomorphism O(i) 2 B(G). A similar relation holds for

R:

S+AS=a ,

5
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where A E O(i), CE E B(H). Applying (13,14,15)  to (11) then yields

AbA=b . (16)

The characters of the fields (AA, AX) and (A, X) are identical, and so they must

be identified:

@A,AX) z (A,X) . (17)-- _.

Thus field identifications are a consequence of relations between the centres of

G and H that may be easily found via (5) using a projection matrix F.

These field identifications in coset conformal field theories have become of

interest lately[4], pes ecially in connection with the N = 2 superconformal coset

models[lO,ll]  of Kazama and Suzuki[l2].

Of course, the field identifications (17) are simply consequences. of the rela- 1m

tions between outer automorphisms of i and i c 4. One should not have to

introduce characters to find them. In the following we will discuss how they

may be discovered in a manner as direct as relations between centres are found.

To do this we study projection matrices fi for the affine subalgebra Lek c

G”[13,14]. Since affine KaE-Moody  algebras i, ?L have the fundamental weights

_ g”,wo as well as those of the finite algebras S, h, the matrix $ is a (r+l) x (R+l)

dimensional matrix3. An affine weight A (X) is written as a column vector

[Aoh - - .hlT ([X0&. . . &IT). Then the weight A of 4 is projected onto the

weight @A of i.

3Here  we assume both s and E are simple. Generalisation is straightforward.
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One way to construct a projection matrix & for i” > iek is to demand that

the finite parts of affine weights be projected according to a valid matrix F for

s > h. Denoting the elements of 8 by &, that is

this specifies all elements o # 0. The remaining elements are determined by
-- _

requiring that a level k weight A of i be projected onto a level ek weight of

?L. The level of a i (?L) weight A(X) is A&“‘” (X,k”“) where ~vp(kva) are the

co-marks of i (A). So we demand

k”“@A =  e kff P (19)

if APkVp  = k. Taking k = k”” and AP = 6; gives-

k”“fiE =  ekVV , (20) -

or in matrix notation

(k”)TE” =  e(b”)T , (21)

completing the determination of @ from F. Note in particular that

An affine projection matrix manifests a relation between A E O(G) and

A E O(k) if the following is true

A&=$’ , (23)
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- -

.

where @‘I is another valid projection matrix. In (23) A and A are the matrices

which permute the rows and columns, respectively, of F in the manner pre-

scribed by the corresponding outer automorphisms. (Note that-these matrices

are in general of dimension smaller than those of Eqs. (14,15,16).) Relations of

the type (23) with F’ = 5 were found in Refs [13,14].

Unfortunately, we have no general test for a valid affine projection matrix.

-
We can only check those that are built from a finite matrix F in the manner

just described. The test is then simply the requirements of the matrix F that is

a submatrix of F. A sufficient requirement[8] is that the matrix F produce the

correct branching rule for the second smallest (i.e. not the scalar) irreducible

representation of 3 into representations of 7~.

This means we must restrict the 3 in (23) to those satisfying (22). This .*

restricts us to a subset among the pairs A, 4 satisfying (23) in the general sense.

Our ignorance concerning affine projection matrices therefore makes the centre

relations (5) easier to verify.

However, quite often there are matrices $ which manifest outer automor-

phism relations in an obvious way (see Refs. [13,14]).  Furthermore, in all cases

_ we have checked, there is a sufficient number of different F’s such that a com-

plete set of relations may be derived from (23). At the very least, even with

the technical restriction (22) imposed on F’, the relations (23) provide checks

on the centre relations.

There is even a case when the relations (23) are the only ones that may

8



be simply verified. Suppose we drop for the moment the restriction that 6 is

a maximal subalgebra of s (see footnote page l), and suppose h $ h’ c s is

maximal. Suppose further there is a centre relation for this maximal subalgebra

of the form

- -
(bO]A)  = (Aw’]FA)  + (A’w”IFii) mod 1 , ( 24

where A’, w”’ are an outer automorphism and the Oth fundamental weight of A’ .

Then if we consider the non-maximal embedding h c s , we do not have

@&‘]A) = (Au’IFR) mod 1 (25)

even though A and A should be identified. On the other hand, a relation of the

type (23) will exist, at least subject to the restrictions discussed above.

The following examples should clarify our general discussion. .
. .

Example 1 G = SO(7), H = SU(4).

Our first example is the subalgebra SO(~) > su(4), with index of embedding

_ e = 1. This is an example of a regular maximal subalgebra, i.e. it can be

understood by deleting a node from the extended Dynkin diagram of SO(~) (see,

for example, Reference [ 151). The node omitted is the one representing the short_

simple root of so(7), so that the long roots and the negative of the highest root

are projected onto the simple roots of su(4). So the finite subalgebra projection



matrix is

The affine matrix built from (26) by the method discussed above is

(26)

(27)

A sufficient check of the validity of F is that it reproduce the branching rule

c

( loo)T + (010)T + (000)T . (28)
.L .e

We can check (28) by letting 2 act on the states having the minimum La

eigenvalue in the G(7) representation with highest weight [O1OO]T, since these

states transform under SO( 7) as the representation with highest weight ( 100)T.

- They are

0

-1

1

0
-L

and (28) is easily verified.

1

0

- 1

2

1

0

1

- 2

2 2

1 - 1

- 1 0

0 0

(29)

Now s%(7)  has outer automorphism group Z2, generated by CC, acting in the
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following way on a weight A:

. -

The 24 outer automorphism group of G?(4) is generated by a, with action

a[XoXJ2X,]T  = [XJlJ~A2]T . (31)

It is simple to verify

(~‘lh) = (&IA) = i As mod 1

(32)
--

(a2uo IFA) = (w”IFA)  = f As mod 1 ,

implying the following relation, of the form (5), between the centres of SO(7) __

and SU(4):

--
(=‘[A) = (a2w01FA)  mod 1 , (33)

for all A. This relation implies that any field (A’, X) appearing in the coset

conformal theory, labelled  by highest weights A’, X of representations of 4, L ,

respectively, must satisfy the selection rule

(olc~‘lA’) = (u2~‘lX) mod 1 . (34)

The corresponding relation of the type (23) between the outer automorphism
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groups is also easily verified. We have

and this matrix acting on

1 0 0 0

1
0 0 1 0

= j? (35)
0 1 0 0

0 0 1 1

the weights (29) reproduces the correct branching

rule (28). Fields of the coset ~0(7)/su(4) theor must therefore be identified asy

follows:

(oh’, a2X) E (A’, X) . (36)

Example 2 G=H@H.

Our second example is the diagonal embedding h c h $ h. A weight of i @ k
.-

may be denoted [X, X/IT, where X is a weight of the first i and X’ of the second.

If we demand that a pure k weight [X, OIT or [0, XIT is projected onto the same

weight [XIT of the diagonal subalgebra, we get

(37)

where c = 1,2 specify the two summands of k $ k and (Y, QI’ denote the funda-

mental weights of A. So a weight [X, X’lT of i $ k is projected onto the weight

[A + X’]T of L

Now consider any outer automorphism A of fi. The corresponding automor-

phism of i = i $ i is A = A @ A. Since

(&‘\A) = (Au’(X) + (Ati’ (38)
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and

(Aw’]FA)  = (Aw’lX + X’) (39)

we have a centre relation of the type (5) for all A. If A’ = [p, 01~ and X = [clT

are highest weights of ?L $ ?L and & representations, respectively, th.en only those

.

fields obeying the selection rule (9) may occur in the diagonal coset theory. In

- -
this example, it means FA’ - 1 = ,!i + 5 - 5 must lie in the root lattice of h[3,4].

Equation (23) 1 h Id ba so o s o viously, with 2 = g:

A@A @I A) = ? . (40)

Therefore the field ([p, (T]~, [<IT) is identified with ([Ap, AnIT, [A<lT).

Example 3 G = SU(6) , H = SU(2) @I W(3).

The last example illustrates that quite nontrivial relations exist-between the .-

centres of G and H. It also shows the limitations imposed by the technical

restriction (22) on the relations (23) that can be found.

The embedding %(p)‘Q  x Z(‘)L” c %(pq)” with k = 1 was studied in

_ Reference [13]. In this example we will not restrict k, but set p = 2 and q = 3,

just for the sake of simplicity. The following is a valid projection matrix[l3]:

3 2 3 2 3 2

0 1 0 1 0 0

2 1 0 0 0 1

0 1 2 1 0 0

0.0 0 1 2 1

13
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Let A6, AZ, A3 be the generators of the outer automorphism groups 0(&I(6)),

mw), O@(3)), respectively, so that (Ai)i = 1, i = 6,2,3. Then this

projection matrix immediately gives

(I@ As)F(A~)~ = g . (42)

On the other hand, with F the finite projection matrix contained in (41), we

have the following centre relation

(AGui\h) = (Api + (A3)2ui1FA) mod 1 , (43)

valid for all A, where wf is the 0th fundamental weight of Z(i). The resulting

selection rule for coset fields (A’, A) is

(AswiIA’) = (A~w; + (A3)2~i1X)  mod 1 . (44)
.q

The nontrivial centre relation (43) cannot be verified in the form of

(A2 @ (A3)2) FAG = p’ , (45)

since g’ in this last equation is not built from a valid finite projection matrix

F’; i.e., it does not satisfy (22).

However, another affine projection matrix[l3]

j%

3 2 1 0 1 2

0 1 2 3 2 1

2 1 1 2 1 1

0 1 0 0 1 0

0.0 10 0 1

14
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manifests

(A2 @ 1)@A6)3 = F . (47)

Together Eqs. (42) and (47) verify, albeit indirectly, the identification of As with

the product of A2 and (A3)2. Consequently, the identifications

(A& A2(A3)2X)  zs (A’, X)
-- _

(4%

must be made.

Before concluding, let us note that field identifications are properties of the

coset describing a particular conformal field theory, not necessarily of the field

theory itself. For example, the Ising model may be described by the subalgebra

Z(2)l $ Z(2)l > %(2)2. Since O(Z(2)) E 22, there is a nontrivial identi- .-

fication of fields due to an outer automorphism relation of the type discussed

in Example 2. However, the Ising model is also described by another diagonal

subalgebra: ,&?i $ @ > ,!?82. Since E8 has no outer automorphisms, this coset

_ has no such identifications. So we may conclude that field identifications are

not intrinsic to the Ising mode14.

We must also mention that we have avoided non-semisimple subgroups_

H c G. These involve some subtlety but are necessary for discussion of su-

perconformal coset models[l2]. We hope to report on field identifications in

these superconformal coset models in the near future.

4The authors wish to thank D. Lewellen for this observation.
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In summary, we have pointed out the importance of projection matrices for

embeddings iek c i” in the coset conformal field theories on which they are

based. Relations between the centres of G and H can be easily. identified, and

they imply selection rules excluding certain pairs of highest weights (A, X) as

possible primary fields in the coset theory. Relations between outer automor-

phism groups are also easily found from affine projection matrices, and result-- _

in identification of fields (A, X) g (AA, AX) in the coset theory.
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