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ABSTRACT

Important relations between basic parameters of a high-luminosity collider are discussed.
As the result, it is shown that the maximum bunch spacing is limited by the beam current -
to clear the threshold of the bunch lengthening. In order to solve the short bunch spacing, -

the crab-crossing scheme is applied to the design of a ring with 2.2 GeV, 2 x 1O33 cmm2sm1
luminosity.
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1. BASIC PARAMETERS

On a design of a high-luminosity storage-ring collider like the r/charm factory, there
are complicated interdependences  of system parameters. ’ Although it is quite difficult to

handle all data simultaneously, we choose the four equations below as the most important
relationships among them:

1. Luminosity:

L = ,,“,““, .
x Y

2. Tune shift parameter:

t
NrePZ,y

X,Y = 2V~x,y(flx + ay)
2 0.04 .

3. Longitudinal instability threshold:

4. Bunch length/P function ratio:

We introduce the symbols:
N Number of particles per bunch.

f Collision rate.
0X>Y,Z Horizontal, vertical, and longitudinal beam sizes at IP.

P*X>Y Horizontal and vertical p functions at IP.

re The classical electron radius.

v-/n> Longitudinal normalized impedance.

20 The impedance of vacuum.

CyP Momentum compaction factor.
6 Relative energy spread.

(1)

(2)

‘-’ (3)

(4)
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The condition (4) is necessary to avoid the synchrotron-betatron coupling due to the
beam-beam collision.2 The constraints (2), (3), and (4) are quite essential because neither
fundamental nor technical methods to cure them has been known until today. Although we

do not have a clear theory to determine the actual tune-shift limit (2), we take an empirical
value which is equal to the initial design of Jowett.3

Let us see what emerges from the combination of the above relations. First, from

Eqs. (1) and (2) an important relationship is obtained:

L = g$ (It;) )
e ;

(5)

where I = Nef is the beam current, and R = ,f?z/P,:  = CY~/CY~  the aspect ratio of the beam.
This tells that for a given luminosity, & is determined only by the beam current (and also R,

but so far as we concentrate on a flat-beam scheme, R >> 1, the dependence on R is weak).

Second, the factor cu,S2a,.in (3) is written as:

ew,,V,  3apii2a,  = - 0
cEL ’ ’ (6) -

by applying the formulas:

ecw,,  Vi
w,” = EL ap ’

(7)

_ where w,, wRF,  V,, E, and L are the angular synchrotron  frequency, the angular frequency
and the peak voltage of the acceleration cavity, beam energy, and the circumference of the
ring, respectively. Thus the condition (3) is rewritten as:

(8)



Substituting the conditions (4) and (5), we find there is a maximum limit on the bunch
spacing Sg = c/f:

(9)

In order to evaluate the term w,,L$/ (Z/ )n in the above, we roughly estimate the
longitudinal impedance (Z/n) as:

(-e> = (w-&l + aw,,V, , (10)

where (Z/n)o denotes the contributions from components except the RF cavity, and aw,,V,

denotes the impedance from the cavity. The coefficient a is determined from an estimation
of the impedance of a normal-conducting cavity given by P. Wilson4:

0.05 R forwn>  = wRF = 27r x 1.5 GHz, V, = 1 MV , (11)
.- .m,

which gives a x 5 x lo-“fl/V/(rad/s).  Although Eqs. (8) and (10) tell that the larger -
w,,V, always gives the longer bunch spacing, the gain beyond the point aw,,V,  2 (Z/~X)~

is small. Therefore, we choose

wRFK = (+-& , (12)

which gives the final result of the bunch spacing as:

SB < P43’2 1
6 4 c L  %i [i$% (‘+ ;)]“I2 * (13)

After ,SG and Sg are given as functions of I by Eqs. (5) and (13), the other system
parameters-like N, emittances,  and CT,---are  automatically determined. The relations
(5) and (13) both tell the difficulties of a machine which needs a high luminosity with a

small current.
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2. AN EXAMPLE WITH CRAB CROSSING

Figure 1 shows 5’~ and pi as functions of 1 given by Eqs. (5) and (13). This figure
corresponds to the Tau-Charm requirement, E = 2.2 GeV, .C = 2 x 1O33  cm-2s-1, and
L = 340 m. Although it is not clear how big a beam current we can store in the ring, we
choose 1 = 1 A-which requires &J = 1 cm and 5’~ = 1.7 m. This bunch spacing needs

enough bunch separation at the extra collision points, 85 cm from the IP. Making a crossing
angle is the easiest way to have such a separation, if the synchrotron-betatron resonance
can-be avoided by the crab-crossing scheme.5j6

There are two ways to make the crossing angle: (1) use common final quadrupoles for
both beams,’ and (2) use separate quadrupoles. The merit of the common quadrupole
scheme is a small crossing angle, but it still requires some separation devices after the final
quadrupoles. There also remains the effects of the extra collisions near the IP. The separate
quadrupole scheme can avoid the extra collisions completely and does not need a separator,
thus avoiding synchrotron-radiation backgrounds to the detector. In this paper we examine
a design with the separate quadrupole scheme with a horizontal crab-crossing. Figure 2
shows the crossing scheme at the IP. The crossing angle must be large enough to place
the separate final quadrupoles. In this case, we use a 50 mrad crossing angle, which gives
a 10 cm separation between the two beam axes at the quadrupole face, 2 m from the IP.
Since the maximum beam sizes in the final quadrupole are 1.1 mm x 0.9 mm in the optics

designed here, this crossing angle will be sufficient. We do not have a specific design for
these quadrupoles, but these can be made by a conventional magnet, because the pole-tip
field is less than 1 T.

The other design parameters are listed in Table 1. The longitudinal impedance from the
_ cavities is awR,Vc = 0.240, which allows impedances (Z/n)o 5 0.30 from other components

in the ring.

Figure 3 shows the lattice of this ring. Since this design uses a horizontal -crossing
scheme and both rings sit in the same horizontal plane, the number of the crossing points
becomes four if the ring has a mirror symmetry at the IP. In order to reduce the number of
crossing points to two, this design breaks the symmetry. This is done by inserting a special
section in the middle of one arc, shown on the left of Fig. 3.
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Table 1. Parameters for a r/charm factory with a large crab-crossing angle.

Beam energy E 2.2 GeV

Luminosity L 2 x 1033 cme2 s-r

Tune shifts WY 0.05/0.-05

Current I 1.0 A

Circumference L 344 m

Bunch spacing SB 1.7 m

Beta -functions at IP PUP; 0.50/0.01 m

Particle/bunch N 3.6 x 1Oro

Emittances &x I%! 9.2 x 10-8/1.8  x lo-’ m

Tunes ~x/~y/& 8.28/10.18/0.12

Relative energy spread 6 5.1 x 10-4

Momentum compaction aP 0.023

RF voltage K 10.8 MV

RF frequency fRF - 710 . MHz

Harmonic number h 816

Natural bunch length 02 0.47 cm

Vertical damping time 7.2 36 ms

Longitudinal impedance threshold wn> 0.54 R

Table 2. Parameters for the crab-crossing.

Crab angle at IP 0: 25

Crab cavity frequency fx 710

Crab voltage per cavity K 0.97

p function at crab cavity PXIPY 29145

Bunch diagonal angle UX/G 46

mrad

MHz

MV

m

mrad 1

The main parameters of the crab-crossing in this design are listed in Table 2. The crab
cavity is placed between QC2 and QC3 quadrupoles, where the horizontal phase advance
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from the IP is a/2, as shown in Fig. 4. If we assume the impedance per voltage of these
crab cavities is equal to that of the main acceleration cavity, the increase of the longitudinal
impedance due to the crab cavity is estimated to be about 18%, using the values in Tables 1
and 2. The contribution to the transverse instability is also estimated by the P-weighted
impedance. Since our ,&functions at the main cavities are 10 m, the increases by the crab
cavities are 52% and 80% for horizontal and vertical, respectively. Because the transverse
single-bunch threshold will be high enough, the most serious effect from the crab cavities
is the transverse multibunch instability. This must be solved by a feedback system or a

single-mode cavity. The bunch diagonal angle for the horizontal crossing is as large as the
crossing angle listed in Table 2. This gives a tolerance for the crab-crossing RF system.

This ring has a chromaticity correction system by four-family noninterlaced sextupoles.
This scheme reduces the geometric aberration from the sextupoles and provides enough
dynamic aperture. The four families, SD, SF, SDl, SFl, are shown in Fig. 3. Since the
main chromaticity is generated from the final quadrupole in the vertical direction, we locate

the sextupole family SD at 27r phase advance from the final quadrupole to correct the
chrbmaticity as locally as possible. The strength of sextupoles are so determined as. to
minimize the variation of the vx,y and ,61,y within the finite bandwidth &0.5%. FTgure  5
shows the stable region of this lattice, measured by a tracking simulation of 1,000 turns,
which includes the synchrotron  motion. The axes show the initial amplitude of a particle
in the longitudinal and transverse directions in units of the standard deviations. The initial

transverse position was chosen along the line X/CT~ = y/ay. This result shows this lattice
_ has enaugh dynamic apertures in every direction.

3. DISCUSSIONS

The design given in this paper surely gives the luminosity 2 x 1033cm-2s-1, if the beam

current of I = 1 A can be stored. There are several alternative choices to achieve the
same performance. One possibility is to use a superconducting cavity, which improves the

impedance/voltage ratio a by a factor of about 5. According to Eq. (13), one can expect

a five-times longer bunch spacing, or l/d smaller current with the same spacing (if the
shorter p* is possible according to Eq. (5)). Another possibility is the use of a round beam,8
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which also increases the bunch space by a factor of 8, or reduces the current by l/d (in
this case, l/a shorter p* is required), if the beam-beam limit is kept unchanged.

If one can avoid the radiation background from the separators and the common
quadrupoles, and if the beam-beam effects at the extra collision points are negligible, a
small-angle crossing will have merit over the large-angle scheme. Especially when the cross-
ing angle is much smaller than the bunch diagonal angle, the synchrotron-betatron reso-
nance due to the crossing angle becomes small. In that case, the crab crossing is not neces-
sary, or even if it is still required, the constraints on the accuracy and the effects from the
impedance will be quite light.
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Fig. 1. The dependences of the maximum bunch spacing and ,B; on the beam current I.

E = 2.2 Ge V, C = 2 x 1033cm-2s-1.
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Fig. 2. Design of the IP region with a horizontal crossing angle. The separate final

quadrupoles are used for both beams, and no separation device is required.
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Fig. 4. The crab cavity and the induced crab angle 8, around the IP.
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Fig. 5. The dynamic aperture of the ring with the noninterlaced sextupoles. This is

examined by a particle-tracking of 1,000 turn9 with the synchrotron motion.


