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ABSTRACT 

Theoretical constraints on both the polarized and unpolarized intrinsic gluorl 
distribution functions are developed. In pa.rticular, we study tllc beha\;ior of the 
gluon polarization aaymmetry in the nucleon in the sma.ll and la.rge s regiolls, a.ud 
relate the intrinsic distribution to the retarded part of the spin-depenclent I~ound-state 
potential. A simple model for the polarized and unpolarized intrinsic distriljutious is 
proposed which incorporates the QCD constraints. The model predicts t,llat, t,he spill 
carried by intrinsic gluons in the nucleon is approximately 0.5. 
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1. INTRODUCTION 
- 

The intrinsic gluon distribution GS,H(x, Qi) d escribes the fractional light-coue 
-. 

momentum distribution of gluons associated with the bound-sla.te dynamics ol’ t,l~e 

hadron H, in distinction to the extrinsic distribution, which is derived from ra.cliative 

processes or evolution. Given the intrinsic distribution, one cau obtain the eslriusic 

distribution by applying the QCD evolution equations starting at the boulld-st,ate 

scale Qo. 

In principle, one must solve the non-perturbative bound sta.te equation ot’ mot ion 

to compute the intrinsic gluon distribution. In the case of positronium ill c~uaiitu~ii 

. electrodynamics one can readily calculate the photon clistributiou, a,t, least to first 

order in the fine structure consta,nt cx. The analysis requires coherence betweeu u- 

plitudes in which the electron and positron couple to the photous. IIL the iul’ra4 

limit this coherence in the neutral atom ensures 2~ finite photou clistribut~iol~. 

In the QCD case, the analysis of the intrinsic gluon distribut,ion of a haclrou is 

essentially non-perturbative. However, there are several theoretica constraints \vhicll 

limit its form: 

1. In order to insure positivity of fragmentation functions, distribution I’llllctJious 

Gu,b(x) must behave as an odd or even power of (1 - x) at, :L t 1 according to 

the relative statistics of a and b!” Thus the gluon distribution of a. ullcleon must 

have the behavior: G&c) - (1 - x)‘,’ at z --+ 1 to ensure correct, crossing 

to the fragmentation function DN,~( 2). Tl iis result holds inclivitl\lallj~ for ea.ch 

helicity of the gluon a.nd the nucleon. 

2. The coupling of quarks to gluons telids to match the sign of tile quark llelicity 

to the gluon helicity in the large 2 limit!” We define the llelicity-aligllecl and 
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- 

anti-aligned gluon distributions: G+(x) = G,,,,,(x) and G-( .c) = C:,, I,\. 1 (x). 
- 

c .- The gauge theory couplings imply 

hll G-(x)/G+(x) --+ (1 - x)“. (1) 

3. In the low z domain the quarks in the hadron radiate g1u011s coherc-:lltly, and 

one must compute emission of gluons from the qua.rk lines t?l.liillg iill, account 

interference between amplitudes. We define AG(x) = G’(x) - (F(x) and 

G(z) = G+(z) + G-(z). W e s a slow that the asymmetry ra.tio AG(cc)/G(.c) h 11 1 

vanishes linea.rly with 2; perhaps coincidentally, this is a.lso the prediction fro111 

Reggeon eschange!31 The coefficient at 2 -+ 0 depends on the haclro~lic wave- 

functions; however, for equal pa,rtition of the ha,dron’s momentum among its 

constituents, we will show that 

where NQ is the number of valence quarks. 

4. In the z + 1 limit, the stuck quark is far off-shell so that one can use perturlxk 

tion theory to characterize the threshold dependence of the structure f’ullc.t.ions. 

We find for three-quark bound states 

lim G+(x) t C(l - ,)sNqP2 = c(1 - x)“, 
X-+1 

(:1) 

Thus G-(Z) -+ C(l- x)~ at J: N 1. This is equivalent to the spect,a.t~or-coulltillg 

rule developed in Ref. 4. 
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We can write down a simple analytic model for the intrinsic gluon distribution in 
- 

c the nucleon which incorporates all of the above constraint,s: 

LAG(X) = F[(l - x)~ + (1 - x)” - 2(1 - :@I 

a.nd 

1 - “)4 + (1 - X)5 + 2( 1 - X)j] 

(4) 

In this model the momentum fraction carried by intrinsic gluons in the nucleon is 

< xg >= J; dxxG(x) = (137/210)N, and the helicity ca.rriecl lay the intrinsic gluons 

-. is AG = so] &AG(z) = S/lSN. Th e ratio AG/ < zy >= 112/137 for the intrinsic 

gluon distribution is independent of the normalization N. Phenomello1ogic;l.l aual~~ses 

imply that the gluons carry aqproximately one-half of the protjon’s momentuln: < 

xq/N >Z 0.5. We shall assume that this is a good characterization of the intrinsic 

gluon distribution. The momentum sum rule then implies N - 0.9 and AC - 0.5. A 

review of the present experimental and theoretical limits on gluon and quark spin in 

the nucleon is given in ref.5. 

- 

-‘ .- 

In the following sections we will ana,lyze both the pola.rized aad unpolarizccl ill- 

trinsic gluon distribution functions using both perturba,tive a.ntl iloll-l’(~rtrlrl)a.t,i\ict 

methods. First we study the behavior of the gluon asymmetry (unpolarized over po- 

larized distributions) in the small 5 region where it turus out to be al’l-‘rosi111a.tel?; 

independent on the details of the bound-state wavefunction. ‘The loga.rithliiic ultriL- 

violet cut-off dependence of the intrinsic distribution matches with t,he lon:cer cumoff 

of the extrinsic distribution; the Q” evolution of the extrinsic distribution is studied 

in detail in Ref. 6. 
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In section 3 we shall show that the intrinsic gluon distribution is rclat.ed t,o t,he 
-. 

c 

.-. 

retarded part of the spin-dependent bound-state potential - 
( > 

$$ 
u 12fJ . 

‘l’liis a.llo\vs 

us to derive sum rules for the difference of gluon distribution (and fla.glllelltation) 

functions for hadrons with different spin in terms of the spill-depelldel~l part of the 

bound-state potential. 

2. INTRINSIC GAUGE FIELD DISTRIBUTIONS 

A general bound-state wa.vefunction can be espa.nded in terms of (FocIi) states 

of definite number (72) of elementary free fields. We defin(~ the FOCIi espansiotl at 

equal “time” 7 = t + z in the light cone gauge AS = A” + A3 = 0. Labelling t,lle 

corresponding renormalized amplitudes a.s GTalB tQ) (z&J), tl le c IS ri 3u 1011 I’uirction I’ t ‘I t’ 

for a constituent u in the bound state B (see Ref. 7 for deta.ils and definitiolls) is - - 

given by: 

We first consider positronium as an example, .and calculate t,he iut,rillsic dist2ril)ut1ion 

function of photons Gy,positrorliz~llL. To leading order in the billding energ!’ we can 

neglect pair annihilation, pair production, and higher pxticlc number FocIi states. 

The distribution function for positive helicity photons G+ is calculated f’r01u Ille 

diagrams of Fig. l(a) for th e case of Jz = $1 ortho-positrollium (~1.51 ). Similarly, t,he 

corresponding dia,grams for negative helicity photons are shown in Fig. 1( II), \vl~c~:re an 

arrow up 1 (d own L) indicates positive (negative) helicity. 11-l i,he diagrallls, t,lle ~1~1x1 

fermion line corresponds to a particle (electron), and the lower to an antiparticle 

(positron). We have also indicated the light-cone pa.ra.meteriza,tion of momenta t,lla.t 
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we will use when the photon couples to an electron or positron. With this clloice, 
- 

c .- the photon is always parameterized by (x, il) and the fina,1 state has the same form 

.^. in all cases. The appropriate matrix elements for the various helicit,y trmsitiolls are 

listed in Table I.[‘] 

The calculation is now straightforward. If we denote by 7,b( y, L71) the, tjwo-body 

bound-state valence wavefunction (lowest Foclc state amplitude), the results a.~: 

where 

D = nlgp (.ffl- il)" +m2 -$ +772'- it 
-- 

p--X l-y .c . 

Here m and MB are the electron and bound state masses, respectively. ‘l’ll(, illtrimic 

gluon distribution defined in Eq. 6 is obtained by integrating these expressions over 
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the transverse momentum up to the cut-off Qi. The sa.me a,pproa,ch gives -. 
c 

Gg;olt)io Jz=O = G,/ortl,o J,=O . 

The polarized and unpolarized photon distribution functions are given I~)-: 

AG(x, zl) z G+(x, CL) - G-(x, iL) , 

(9) 

G(x, CL) = G+(x, zL) + G-(x, gl, 

Let us now consider the sma.11 x limit for these functions. . Espaudillg arori~rcl 

2 = 0, we readily obtain: 

AG(x N o,Q = -!?.- 
7r2q 

0 

and 

G(X -0,l;;) = ---g 
w”ktx 

0 

The infrared singularity at Q1 --+ 0 is elimina.ted beca,use of the neutrality of the at,om. 

It should be noted that the singularity in G’(z, cl) at :I’ + 0 is actually a11 

ultraviolet singularity for any non-zero value of Gl since .C = (k” + 1;2)/(l~)0 + 11’) cau 

only be zero if k, t -co. By definition, the intrinsic distribution C(;L., (2;) refers to 

Fock states with limited parton invariant mass M: M” = xi ” Irn2 iL 1 i 
< Cji. ‘I’his 

restriction regularizes the x -+ 0, il # 0 region. On the other hand, the extrinsic 
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- 

contribution is derived from Fock states exceeding this cut-off, Q$ < Jbt’ < Q’. 
- 

c .- Physical quantities are independent of the intermediate cut-off Qo; the logarithmic 

-. dependence on Qo cancels in the sum of intrinsic aad extrinsic structure functiolls. 

Note that the integral of xG, the momentum fraction carried 1~~7 intrinsic pl~otous, 

is always well-defined. In order to proceed further, we sha.ll assume tha,t the wave 

function $(y,zl) is peaked at y r” l/2. We then obtain 

(12) 

for the polarization asymmetry. We have found that this result is numerically. ;-I.ccu ra t,e 

for a large range of positronium wavefunctions. 
. . 

The opposite region (x -+ l), where the fermions emit hard photons, CLUI be also 

readily studied. After changing variables (1 - y) = (1 - x)(1 - T), a.nd expallcling 

around (1 - x) + 0, we obtain: 

G+ (x&) = (1-x) l d7 
27r2 2(27r)3 s 

1 
X 

[ 

(j+L-l;‘,)‘+n12 if:+m2 1 
2 ’ 

+- T 1-T 

(X3) 

1 

G- (x,k7,) = (' - 'I3 
27r2 2(27r)3 s 

d7 
0 
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c .- 

-. 

Thus the x + 1 behavior depends on the endpoint beha,vior of the \Z’a,\‘ei’U1lctiol-l 

$(y,zl). Let us assume that $(y,zl) - y” for y -+ 0, and N (1 - y)” for y + 1. If 

p > 4, then the terms that contain / $(y,?l) I2 d ominate at z t 1 since y > .u. This 

regime corresponds to the photon taking most of the longitudinal momentum of the 

-- 
bound state from the electron. If p < (I, the terms that conta.in 1 ,$(y - :c,& - kll) Ii 

will dominate, which corresponds to the photon taBking its large momentum from t,lle . 

positron. Then 

GS = constant (1 - x)1+21,. 

G- = constant (1 - z)3+2h 
(231) : (P) 

- 

-‘ .- 

where h = mi72(p, s) is the lowest endpoint power (y t 0, y + 1) bcha.vior ol’,$(:y, ?l). 

If $(y,iJ is invariant under y + (1 -y), th en the two endpoint powers itre the s;~me. 

In any case: 

aG(x, ZL, t 1 
G(x, i.d 

(x --+ 1) ; 

i.e., the helicity of the photon tends to be aligned with that of the bound state at 

large 2. In the case of relativistic positronium h = l.[” 

We now extend this analysis to QCD bound states. A perturbative analJ;sis is 

certainly justified for heavy quark systems IlO1 . Since the general structure of tire 

fermion t fermion plus gluon vertices given in Table I is dictated by Lore~~t,z iuvari- 

ante and parity conservation, we will assume that this perturbalive structrl1.e is also 
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applicable to light-quark systems. We thus analyze the intrinsic gluon distribut,ion 
- 

C 

-. 

retaining only first order corrections to the valence Fock state. The appropriate color 

factor is obtained by the replacement of (a) by (CF~,) where CJ- = 4/3 for NC = 3. 

We find similar endpoint behavior to that found in the abelian calculation. 111 par- 

ticular, the gluon asymmetry at z -+ 0 is nG(z)/G(x) e< l/y > 2 N IR\;~x where 

Np is the number of fermions in the valence Fock state. The :c t 1 behaviol~ for the 

three-quark proton can also be determined[“’ 

G+ - (1 -X)4 

.- G- - (1 - x)6 
(x4) . w 

3. CONNECTION WITH THE BOUND STATE POTENTIAL 

- 

-‘ ‘- 

On general grounds we expect a connection between the proba.bility for emission 

(distribution function of photons or gluons) a.nd the hyperfine interaction part of t,he 

bound state potential since both depend on the exchange of t,ransverse ga.uge quant’a. 

In fact, each diagram that contributes to the transverse potential 1la.s a. corresponding 

cut-diagram in the expression for the distribution function. In the a,ctua.l ca.lculation, 

these quantities differ by just a denominator D. Thus 

1 

s 
dz GglB (x,Q;) = - > 

0 

U’i) 

where G,,B is the unpolarized distribution function of gauge fields y in the I~ouncl 

state B, V is the potential due to gluon exchange and self-energy correckiolls, ~IICI 1\4u 

is the bound-state mass. Note that the instantaneous (non-retarded) piece clots not 

depend on MB, so it does not contribute. As discussed in section 2, these quant,ities 
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are regulated at z + 0 by the ultraviolet cutofF Qi in the invariant ma.ss. ‘I’llis 
- 

c singularity cancels in the hyperfine splitting: 

j dx [ Gy/ortlm l~ (4 - %/pars (:I:)] = - (s)/,,. 
L 

0 

where ( )hfS refers to the spin-dependent part of the bound stnte potential. 

In the case of gluons in QCD bound states, we obta.in a.nalogo~~s results: 

for mesons (p and r), and 

- 

1 
J dx 

0 

for baryons (p and A). 

[ G!d, (x) - G,/* (x)] = - (20) 

-‘ ‘- These expressions can be analytically continued, relating the diff’erence of hag- 

mentation functions of gluons DHls (z, Q2) into hadrons H of diKerelIt spin to t,he 

hyperfine splitting piece of the bound state potential. 

4. CONCLUSIONS 

The gluon distribution of a hadron is usually assumed to be generat;ed from QCD 

evolution of the quark structure functions beginning at an initial scale Qi.“” In such a 

model there are no gluons in the hadron at a resolution scale below Qo. The evolution 

is completely incoherent; i.e., each quark in the hadron ra,diates intlcpendelltly. 
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In the approach presented here it is recognized that the bound state wavefunction 
-. 

c itself generates gluons. This is clear from the relationship, Eq. 17, which com~ects 

.-. the gluon distribution to the transverse part of the bound-state poteutial. ‘l’o tl~e es- 

tent that gluons generate the binding, they also must appear in the iutrillsic gluon 

distribution. We emphasize that the diagrams in which gluons connect o11e quark to 

another are not present in the usual QCD evolution equations. Evolution contribu- 

tions correspond in the bound-state equation to self-energy corrections to the qua’.rk 

lines at resolution scales M2 > Qi. 

Eqs. 4 and 5 give model forms for the polarized and unpolarized iutriusic gll1011 

. distributions in the nucleon which take into account coherence a.t low :c and pert urba- 

tive constraints at high Z. It is expected that this should be a good chara.c:teriza.tioll 

of the gluon distribution at the resolution scale Qi N “4;. 

- 

It is well-known that the leading power at z - 1 is increased wheu QCD e\‘olut,iou 

is taken into account. The change in power is [II 

(21) 

where CA = 3 in QCD. For typical values of Qo - 1 GeV, Am - 0.2 Gel/” the 

change in power is moderate: Aps(2 Gel/“) = 0.28, A~~(10 GeV’) = 0.78. .q recent 

determination of the unpolarized gluon distribution of the proton a.t Q’ = :! GeV” 

using direct photon and deep inelastic data has been given in ref. 13. 7’11e best fit o\xx 

the interval 0.05 5 z 5 0.75 assuming the form zG(z, Q” = 2 Gel;.‘) = A(1 - L)‘I~ 

gives qs = 3.9 f 0.11(+0.8 - 0.6), w h ere the errors in parenthesis allow for sJlst,ematic 

uncertainties. This result is compatible with the prediction qy = 4 for t,lrcJ intrinsic 
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gluon distribution at the bound-state scale, allowing for the 
-. 

z to evolution. 

increase i n the power clue 
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-kl + ik:! + ([I - k1) - i(!p - k2) 
2 Y-X > 

ICI + ikz (!I - ICI) + i(tz - X-2) - 
X Y-X > 

kl + ih el + 222 
- 

2 Y 

-ICI + ik2 + .tl - it2 
X Y > 

Table I 

Photon/gluon emission vertices (eux, c;,qux,) for particles with positive (T) 

and negative (I) helicities, in light-cone coordinates. An overall fact,or A = 

zk2& d= ,/j multiplies each result, for fermions and anti-fermions re- 

spectively. For gluon emission cr is replaced by 4/3 cr,. 
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Fig. 1 Diagrams that contribute to the distribution function for positive polarized pho- 

tons (a), and for negative polarized photons (b), for J, = $1 ortho-positronium 

bT’i?T). 


