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ABSTRACT

Theoretical constraints on both the polarized and unpolarized intrinsic gluon
distribution functions are developed. In particular, we study the behavior of the
gluon polarization asymmetry in the nucleon in the small and large x regions, and
relate the intrinsic distribution to the retarded part of the spin-dependent bound-state
potential. A simple model for the polarized and unpolarized intrinsic distributions is
proposed which incorporates the QCD constraints. The model predicts that the spin
carried by intrinsic gluons in the nucleon is approximately 0.5.
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1.  INTRODUCTION

The intrinsic gluon distribution Gy y(z, Q3) describes the fractional light-cone
momentum distribution of gluons associated with the bound-state dynamics of the
hadron H, in distinction to the eztrinsic distribution, which is derived from radiative
processes or evolution. Given the intrinsic distribution, one can obtain the extrinsic
distribution by applying the QCD evolution equations starting at the bound-state

scale Q.

In principle, one must solve the non-perturbative bound state equation of motion
to compute the intrinsic gluon distribution. In the case of positronium in quantuin
electrodynamics one can readily calculate the photon distribution, at least to first
order in the fine structure constant a. The analysis requires coherence between am-
plitudes in which the electron and positron couple to the photons. In the infrared

limit this coherence in the neutral atom ensures a finite photon distribution.

In the QCD case, the analysis of the intrinsic gluon distribution of a hadron is
essentially non-perturbative. However, there are several theoretical constraints which
limit its form:

1. In order to insure positivity of fragmentation functions, distribution functions
Go/5(z) must behave as an odd or even power of (1 —2) at @ — 1 according to
the relative statistics of @ and b™ Thus the gluon distribution of a nucleon must
have the behavior: Gy y(z) ~ (1 - 2)* at x — 1 to ensure correct crossing
to the fragmentation function Dy/,(2). This result holds individually for each

helicity of the gluon and the nucleon.

2. The coupling of quarks to gluons tends to match the sign of the quark helicity

to the gluon helicity in the large z limit™  We define the Lelicity-aligned and
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anti-aligned gluon distributions: G*(z) = Gy ny(2) and G~ (x) = Gypnyle).

The gauge theory couplings imply

lim G=(2)/G¥(z) = (1~ 2)°. (1)

. In the low z domain the quarks in the hadron radiate gluons coherently, and

one must compute emission of gluons from the quark lines taking into account
interference between amplitudes. We define AG(x) = G (z) — G (2) and
G(z) = Gt (z)+ G~ (z). We shall show that the asymmetry ratio AG(x)/C/(«)
vanishes linearly with x; perhaps coincidentally, this is also the prediction from

] . :
The coefficient at © — 0 depends on the hadronic wave-

[
Reggeon exchange.
functions; however, for equal partition of the hadron’s momentum among its

constituents, we will show that

lim AG(z)/G(z) — Ny z,

z—0

—_
o
~—

where N, is the number of valence quarks.

. In the z — 1 limit, the stuck quark is far off-shell so that one can use perturba-

tion theory to characterize the threshold dependence of the structure functions.

We find for three-quark bound states
lim G* (@) = C(1 - o) = C(1 - 2}, (3)

Thus G~ (z) — C(1 —=2)% at  ~ 1. This is equivalent to the spectator-counting

rule developed in Ref. 4.
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We can write down a simple analytic model for the intrinsic gluon distribution in

the nucleon which incorporates all of the above constraints:

AG(z) = %[(1-@%(1 —2)® = 2(1 — 2)% (4)
and
G(e) = (1~ )t + (12 +2(1 — 2)) 5)

In this model the momentum fraction carried by intrinsic gluons in the nucleon is
<ag >= fol drzG(xz) = (137/210)N, and the helicity carried by the intrinsic gluons
is AG = [ deAG(z) = 8/15N. The ratio AG/ < z, >= 112/137 for the intrinsic
gluon distribution is independent of the normalization N. Phenomenological analyses
imply that the gluons carry approximately one-half of the proton’s momentum: <
zgv > 0.5. We shall assume that this is a good characterization of the intrinsic
gluon distribution. The momentum sum rule then implies N ~ 0.9 and AG ~ 0.5. A
review of the present experimental and theoretical limits on gluon and quark spin in

the nucleon is given in ref.5.

In the following sections we will analyze both the polarized and unpolarized in-
trinsic gluon distribution functions using both perturbative and non-perturbative
methods. First we study the behavior of the gluon asymmetry (unpolarized over po-
larized distributions) in the small @ region where it turns out to be approximately
independent on the details of the bound-state wavefunction. The logarithmic ultra-
violet cut-off dependence of the intrinsic distribution matches with the lower cut-off
of the extrinsic distribution; the Q? evolution of the extrinsic distribution is studied

in detail in Ref. 6.
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In section 3 we shall show that the intrinsic gluon distribution is related to the
retarded part of the spin-dependent bound-state potential — <§%>hfs . This allows
us to derive sum rules for the difference of gluon distribution (and fragmentation)

functions for hadrons with different spin in terms of the spin-dependent part of the

bound-state potential.

2. INTRINSIC GAUGE FIELD DISTRIBUTIONS

A general bound-state wavefunction can be expanded in terms of (Fock) states
of definite number (n) of elementary free fields. We define the Fock expansion at
equal “time” 7 = { + z in the light cone gauge AT = A" + A3 = 0. Labelling the
corresponding renormalized amplitudes as 1,[) /B(:c“ kl,, Ai), the distribution lunction
for a constituent a in the bound state B (see Ref. 7 for details and definitions) is

give;1 by:

dlzd k g -y . .
G, @) = 3 B =l EAC RN SEE T
b

We first consider positronium as an example, and calculate the intrinsic distribution
function of photons Gy /pesitronium- 10 leading order in the binding energy we can

neglect pair annihilation, pair production, and higher particle number Fock states.

The distribution function for positive helicity photons G is calculated from the
diagrams of Fig. 1(a) for the case of J, = 41 ortho-positronium (uTy). Similarly, the
corresponding diagrams for negative helicity photons are shown in Fig. 1(b), where an
arrow up T (down |) indicates positive (negative) helicity. In the diagramns, the upper
fermion line corresponds to a particle (electron), and the lower to an antiparticle

(positron). We have also indicated the light-cone parameterization of momenta that
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we will use when the photon couples to an electron or positron. With this choice,
the photon is always parameterized by (z, E_L) and the final state has the same form
in all cases. The appropriate matrix elements for the various helicity transitions ave

listed in Table I."

The calculation is now straightforward. If we denote by 1/)(3/,(’1) the two-body

bound-state valence wavefunction (lowest Fock state amplitude), the results are:

2
+ 7 _ « d [J_
Gv/orthoT(x’k-L) ) / 20273 /dy

T
[ yE -l I B I A R
Q| ply, 0 LEETEL oy e 1~ Fyy LW LJ =
y—cz L=y &
- [ 7 2 1
+ ‘w(y,ﬁ) —————
] (y — )%y
Flow—ai - | 1 [omt t e o @
y—xz,6; — k) = | am — {
(1—y)? (1 —[y—=])? :
d*¢ ;
- - o 1
G Jorthot (&5 K1) = o2 / (21 )3 /dy
xz
L yky —al) N (R T
e T -
X[¢(y’ . A P oy DT
where
e 7 72 2 72
D - A4123_(€L“ki)2+7n2_€J_+771 _ﬁ (8)

y— 1 -y T

Here m and Mp are the electron and bound state masses, respectively. The intrinsic

gluon distribution defined in Eq. 6 is obtained by integrating these expressions over
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the transverse momentum up to the cut-off Q2. The same approach gives
G+ = G- : (9)

v/para v/para

G+ = G

v/ortho J.=0 v/ortho J,=0

The polarized and unpolarized photon distribution functions are given by:

— - —

AG(z, k) Gz, ky) — G (2, ky)

il

Gla,ky) = GH(z, kL) + G (2, k1)

Let us now consider the small z limit for these functions. Expanding around

x = 0, we readily obtain:

1
) . a 420, y L
AG(a~0.Fy) = =5 [ v [o i - vt 8- R

m2k3 2(2m)° / [ '
Y L=y
and
1
- o! d*0 - N
Glo~0.kL) = WQEix / 2(27)3 ./dy {@D(Z/,ﬁ)—w(y,(i~ﬁ¢)
0

The infrared singularity at l:zl — 0 1s eliminated because of the neutrality of the atom.

It should be noted that the singularity in G(Qj,EL) at @ — 0 1s actually an
ultraviolet singularity for any non-zero value of EL since @ = (kY + £%)/(p" + p7) can
only be zero if k; — —oo. By definition, the intrinsic distribution G(x, Q7)) refers to
Fock states with limited parton invariant mass M: M?* = 3. {ﬁ%ﬁ)}z < Q§. This

restriction regularizes the @ — 0, El # 0 region. On the other hand, the extrinsic
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contribution is derived from Fock states exceeding this cut-off, Q2 < M? < Q.
Physical quantities are independent of the intermediate cut-off (Qg; the logarithmic

dependence on (¢ cancels in the sum of intrinsic and extrinsic structure functions.

Note that the integral of (G, the momentum fraction carried by intrinsic photons,
is always well-defined. In order to proceed further, we shall assume that the wave

function gb(y,lz_) is peaked at y ~ 1/2. We then obtain

M ~ ;L<l> ~ 2 (¢ —0) (12)
Gz, k1) y

for the polarization asymmetry. We have found that this result is numerically accurate

for a large range of positronium wavefunctions.
The opposite region (z — 1), where the fermions emit hard photons, can be also
readily studied. After changing variables (1 — y) = (1 — 2)(1 — 7), and expanding

around (1 — z) — 0, we obtain:

272 2(2x
LR =T BT
{Tl)(y,h) = gy -, [ Fy) fT
2 L2
I EICR0) RPNy
tm T2 + (1—71)2
1
X - ; (13)
@J_—EJ.)QJI‘le {3+m?
T 1—-71
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1
X
(CL -k )P+m? | Li4m?
T 1—7

Thus the x — 1 behavior depends on the endpoint behavior of the wavelunction
Qb(y,[J_)- Let us assume that w(y,ll) ~yPfory — 0, and ~ (1 —y)? fory — 1. If
L2

p > ¢, then the terms that contain I Y(yL1) ‘ dominate at @ — 1 since y > a. This

regime corresponds to the photon taking most of the longitudinal momentum of the
2

bound state from the electron. If p < ¢, the terms that contain | ¥(y — «, (’1 — /;:J.)
will dominate, which corresponds to the photon taking its large momentum from the

positron. Then

- GT = constant (1 — )+
‘ (z—1) (14)
G~ = constant (1 — z)**+?"

where b = man(p, ¢) is the lowest endpoint power (y — 0,y — 1) behavior of 4 (y, (/1).

If ¥(y, [_L) is invariant under y — (1 —1y), then the two endpoint powers are the same.

In any case:

AG(z,ky)

= — 1 x—1) ; 15
Gl k) ( ) (15)

i.e., the helicity of the photon tends to be aligned with that of the bound state at
large z. In the case of relativistic positronium h = 1."
We now extend this analysis to QCD bound states. A perturbative analysis is

19 " Since the general structure of the

certainly justified for heavy quark systems
fermion — fermion plus gluon vertices given in Table I is dictated by Lorentz invari-

ance and parity conservation, we will assume that this perturbative structure is also
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applicable to light-quark systems. We thus analyze the intrinsic gluon distribution
retaining only first order corrections to the valence Fock state. The appropriate color
factor is obtained by the replacement of () by (Cras) where Cp = 4/3 for No = 3.
We find similar endpoint behavior to that found in the abelian calculation. In par-
ticular, the gluon asymmetry at z — 0 is AG(z)/G(z) =< 1/y > 2 ~ N, where
Ng is the number of fermions in the valence Fock state. The @ — 1 behavior for the
three-quark proton can also be determined""
Gt ~ (1 —2)*

(@ —>1) . (16)
G~ (1—2)°

3. CONNECTION WITH THE BOUND STATE POTENTIAL

On general grounds we expect a connection between the probability for emission
(distribution function of photons or gluons) and the hyperfine interaction part of the
bound state potential since both depend on the exchange of transverse gauge quanta.
In fact, each diagram that contributes to the transverse potential has a corresponding
cut-diagram in the expression for the distribution function. In the actual calculation,

these quantities differ by just a denominator D. Thus

1

)V
de Gopp (2,Q3) = —(—2) (17)
o/ ° IM3,/ o

0
where G/ p is the unpolarized distribution function of gauge fields ¢ in the bound
state B, V' is the potential due to gluon exchange and self-energy corrections, and Mp
is the bound-state mass. Note that the instantaneous (non-retarded) piece does not

depend on Mp, so it does not contribute. As discussed in section 2, these quantities

10
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are regulated at 2 — 0 by the ultraviolet cutoff Q% in the invariant mass. This

singularity cancels in the hyperfine splitting:

1
AQV
/ dx [Gy/orthoT (‘7“) —G'y/para (x)] = _<W> . (18)
. B/ hys

where ( >hfs refers to the spin-dependent part of the bound state potential.

In the case of gluons in QCD bound states, we obtain analogous results:

1
AV
/d.’E [Gg/p (iL) —Gg/ﬂ. (.’L‘)] = '—<m—2‘> ' . (l())
0 B hfs

for mesons (p and 7), and

1
AJV |
/ dz [ Gy (z) —Gya (2)] = ~<aMg> (20)
0 B/ ufs

for baryons (p and A).

These expressions can be analytically continued, relating the difference of rag-
mentation functions of gluons DH/g(z,QQ) into hadrons H of different spin to the

hyperfine splitting piece of the bound state potential.

4. CONCLUSIONS

The gluon distribution of a hadron is usually assumed to be generated from QCD
evolution of the quark structure functions beginning at an initial scale Q. "I nsuch a
model there are no gluons in the hadron at a resolution scale below Q. The evolution

is completely incoherent; i.e., each quark in the hadron radiates independently.

11
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In the approach presented here it is recognized that the bound state wavefunction
itself generates gluons. This is clear from the relationship, Eq. 17, which connects
the gluon distribution to the transverse part of the bound-state potential. To the ex-
tent that gluons generate the binding, they also must appear in the intrinsic gluon
distribution. We emphasize that the diagrams in which gluons connect one quark to
another are not present in the usual QCD evolution equations. Evolution contribu-

tions correspond in the bound-state equation to self-energy corrections to the quark

lines at resolution scales M?% > Q3.

Egs. 4 and 5 give model forms for the polarized and unpolarized intrinsic glion
distributions in the nucleon which take into account coherence at low @ and perturba-
tive constraints at high z. It is expected that this should be a good characterization
of the gluon distribution at the resolution scale Q% ~ ]\4];2.

It is well-known that the leading power at z ~ 1 is increased when QCD evolution

. . . .1
is taken into account. The change in power is”

@
Bny(QY) = 4Ca Q% QF) = 1 [ el 21)

where C'4 = 3 in QCD. For typical values of Qo ~ 1 GeV, Az ~ 0.2 GeV the
change in power is moderate: Apy(2 GeV?) = 0.28, Apy(10 GeV?) = 0.78. A recent
determination of the unpolarized gluon distribution of the proton at Q) = 2 GelV'?
using direct photon and deep inelastic data has been given in ref. 13. The best fit over
the interval 0.05 < z < 0.75 assuming the form zG(2, Q% = 2 GeV?) = A(l — a)%
gives ng = 3.940.11(4+0.8 — 0.6), where the errors in parenthesis allow for systematic

uncertainties. This result is compatible with the prediction 5, = 4 for the intrinsic

12
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gluon distribution at the bound-state scale, allowing for the increase in the power due

to evolution.
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Table I

Photon/gluon emission vertices (euy, €}, vuy,) for particles with positive ()
and negative (]) helicities, in light-cone coordinates. An overall factor A =
+2v/27a \/y — z /y multiplies each result, for fermions and anti-fermions re-

spectively. For gluon emission « is replaced by 4/3 as.
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Fig. 1 Diagrams that contribute to the distribution function for positive polarized pho-
tons (a), and for negative polarized photons (b), for J, = +1 ortho-positronium

(u1o1)-



