
Abstract

SLAC-PUB-5035
4 October 1989

(4

Computation and Control with Neural Nets*

A. Corneliusen!  P. Terdali T. Knight and J. Spencer
&nford Linear Accelerator Center, Stanford University, Stanford, California 94309

As energies have increased exponentially with time so have the size and complexity
of accelerators and control systems. NN may offer the kinds of improvements in
computation and control that are needed to maintain acceptable functionality. For
control their associative characteristics could provide signal conversion or data trans-
lation. Because they can do any computation such as least squares, they can close
feedback loops autonotiously  to provide intelligent control at the point of action
rather than at a central location that requires transfers, conversions, hand-shakiftg
and other costly repetitions like input protection. Both computation and control can
be integrated on a single chip, printed circuit or an optical equivalent that is also
inherently faster through full parallel operation. For such reasons one expects lower
costs and better results. Such systems could be optimized by integrating sensor and
signal processing functions. Distributed nets of such hardware could communicate
and provide global monitoring and multiprocessing in various ways e.g. via token,

-slotted or parallel rings(or Steiner trees) for compatibility with existing systems.
Problems and advantages of this approach such as an optimal, real-time Turing
machine are discussed. Simple examples are simulated and hardware implemented
using discrete elements that demonstrate some basic characteristics of learning and
parallelism. Future ‘microprocessors’ are predicted and requested on this basis.

Invited talk presented at the Accelerator Control: International Conference
on Accelerator and Large JSxper-imental  Physics Control Systems,

Vancouver, Canada., October 30-November  3, 1989.

*This work was supported by U.S. Department of Energy contract DE-AC03-76SF00515
tSummer students at SLAC from Avila and Reed Colleges, respectively.



1. Introduction

Except for space and time limitations, the conventional von Neumann computer can

simulate any physically realizable process of interest here. However, since physical

processes compute much faster, there has been a consistent drive toward increasing

time and space complexity in computers. At the same time, there is no question that

NN are possible that could do any conventional computer calculation[l, 21. Further,

by integrating memory and processor in a fully parallel way, NN could provide a

Turing-equivalent machine that eliminates the von Neumann bottleneck[3].  Failing

- -this, techniques like hierarchical memory(cache), vector processing, pipelining and

multiprocessing are needed to minimize the associated bottlenecks that arise in dif-

ferent implementations of the von Neumann architecture. While such developments

may continue, Fig. 1 shows an exponential growth in integrated circuit complexity

every bit as rapid as that observed for accelerators[3,4].  This is both good and bad.

Good because larger rings need better microprocessors in increasing numbers to op-

erate efficiently and they in turn can produce the kinds of beams that are needed to

make higher density chips. Bad because the growing complexity ultimately conspires.w.
to worsen the effective throughput and reliability through a more ill defined, hard

to control problem environment.

While it is unlikely that storage rings will continue increasing at this rate[5],

one could see a 64-bit, 5-million transistor micro by 1993 through a doubling of

word size every 6-8 years[6] as well as a lOO-million  micro and one gigabit RAM
-

chip around 2000 through doubling the density every l-2 years. The success of such

predictions depends more on impetus than technical problems like connectivity or

power dissipation, even though these are considerable. While some may prefer a 64-

bit word, the majority probably prefer more memory at all levels of the heirarchy.

Thus, the real questions are not when but what and how. The what and how are

closely related and this is where NN appear to be important. As a metaphor for large

complex systems(LCS) that operate in a highly connected and massively parallel way,

they provide an ideal model for the architecture needed to make and perhaps justify a

billion-transistor chip because more transistors don’t necessarily mean greater speed

or reliability which are both important for computers and real-time control[3].
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Our approach to optimal control systems for LCS is similar to that for large

computers because this is what they are in many respects when we generalize our

ideas of computer storage to include real-time data. One negative implication is that

they have the same indigenous bottlenecks unless concurrency is exploited - at least

to the extent that concurrent hardware can be kept running in a productive way.

Also, because such hardware should be kept as close as practicable to the sensors

and data sources that feed it, as well as to the actuators and systems it controls, this

implies distributed nets of intelligent controllers - not general purpose computers or

- - micros. Improvements in IC technology such as shown in Fig. 1 make this feasible

i.e. possible at reasonable costs.

Perhaps the first and in many ways the most important bottleneck is a kind of

mindset  that preordains certain approaches. Due to its impressive longevity, the von

Neumann computer model and its process-at-a-time sequential logic is a remarkably

pervasive example. As a result we begin by comparing current manifestations of AI

and NN. Next, we consider combinational logic functions, which require no memory

in the sense that the output is solely a function of the inputs. This provides an
.- .*.

alternative model for both hardware and software that avoids many complexities

and bottlenecks of the von Neumann model[7]. Multiplication as a basic computa-

tion process demonstrates different alternatives and architectures e.g. the difference

between calculating a result or remembering it. Back Propagation[8]  and Adaptive

Resonance Theory[S] h ave been used to simulate such processes. They illustrate

-some basic ideas like delearning, learning, unlearning and generalization as well as

some weaknesses and possible improvements.

The goal is a method that allows computation, comparison and optimization

for LCS even though they may be ‘unpredictable’ in some important way such as

long term stability. This implies only that the design, simulation and control are

inseparable because feedback, when fast enough and clean enough, can subvert such

effects. This is why we repeatedly link computation and control and why one needs

new technology that integrates data acquisition, analysis and control in a real-time,

Turing-equivalent machine. Combinational NN provide a model that is faster, less

expensive and ultimately less complex than present alternatives.
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2. Relation Between AI and NN - Expert Systems

A recent survey of AI software revenues(Computerworld/Sept.4)  showed the two

lowest categories to be AI(5%) and NN(ll%)  with Expert Systems and Applications

the highest with 70% of the market. One wonders if this is due to the growth of

complexity or efficacy of expert systems and whether it reflects the relative merits?

Can ‘Expert systems capture human and other expertise and make it available,

upon demand, and under almost all circumstances?’ Can any system? This implies

that response times can be accelerated and made more reliable using stress-free

- - micros and state-of-the-art methods. A few questions that need to be asked concern:

l Accurate Decision/Control Systems for Changing Data and Environments,

l Maintaining Efficiencies for Ever Increasing Amounts of Data,

a Acquiring Expert Knowledge to Model Decision Making Processes, or

l Acquiring Expert Knowledge Where It May Not Exist or

l Involves Proprietary or Confidential Information,

l Resolving Apparent or Real Differences between Experts, .

l Cost and Time of Incorporating into Existing Systems and

l Other Fundamental Problems and Dichotomies.

The time and difficulty of implementing expert or other algorithmic systems as well

as problems that arise when the underlying systems or data change can be significant.

-Experts may not know or be willing to admit how they actually do some jobs. The

‘expert’ is a unique NN that may be difficult to reconcile with others - either experts

or interrogators. In fact, it may require an artificial NN(ANN) to learn via training

rather than with expert system software.

Many distinctions have been made between AI and NN. While they share the goal

of simulating intelligent behavior their means differ widely. Many are directly related

to the available hardware, the brain and conventional digital computer(CC).  Like

the CC, expert systems are stepwise, heirarchical, sequential processes. The basic

distinctions and dichotomies are summarized in Fig. 2. While we have discussed

this before[lO,  31 we reference an interesting comment by Freud[ll].
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3. Description of NN for Computation and Control

The acronym NN originated from simple models of the neuron and its connectivity in

the central nervous system. The acronym PDP for parallel distributed processing is

also used[8]. Being equivalent to any finite state Turing machine[l],  they provide an

alternative to the conventional von Neumann computer. Although McCulloch  and

Pitts[l] appear to have been the first to use mathematical logic beyond propositional

calculus, there is still no satisfactory way to characterize finite automatons that

optimizes convergence, minimizes complexity or guarantees that there will be no

- -spurious results. To the extent that the Turing-Church hypothesis is valid, so is the

original criticism of Minsky and Papert[l2]  if it argues against NN for general purpose

systems. However, one can argue in favor of NN for computational problems with

high algorithmic complexity e.g. where a satisfactory algorithm isn’t known such as

pattern recognition or for complex adaptive control problems.

A McCulloch-Pitts  neuron[l] can be represented by Rosenblatt perceptrons[l3]

or Widrow/Hoff  adaptive linear neurons (Adalines)[l4].  In Fig. 3 there are inputs

2;=1,2 or outputs from the axons of two neurons in a preceding layer which feed.- .s
synapses w;j and the cell through dendrites. Such inputs are called links or edges

and the cell body, which does the computation and sends it out on axon j according

to some transform or activation function fj, is a node. Such elements are often given

an adjustable bias for fixing thresholds that is equivalent to a self-excitation wjj for

fixed unit input that can latch or inhibit. This is the simplest example of a learning
-

element from which more complex NN or automatons can be constructed.

For digital systems with n binary inputs (0,l)  or (fl) there are 2” possible input

states. In the (0,l)  basis, weights are excitatory or inhibiting depending on the sign

of w. The output yj is some function of the weighted, linear sum of inputs ij:
n - l

yj(t+l)  = fj(ij)  w h e r e  ij = Cwij~;(t) +  bj .

0
(1)

f is the transfer function which maps z to y and the network problem is to obtain a

desired mapping from a limited training set that does not produce spurious results

when extended. The connectivity matrix w;j generally allows n2 interactions or

couplings between n neurons. This is reduced to O(n) i.e. 5 2(n-  1) in a feedforward

or forward directed graph.
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yj = Sgn(ij)

Figure 3: Two-Input, One-Output Feedforward Neuron.

A classic test for such a device is whether it can solve the XOR problem[l2,  81

which is not linearly separable. To obtain all such states from the 22” possible, it is
- _

necessary to have nonlinear inputs or- another layer of ‘hidden’ neurons e.g. Fig. 4

shows how an AND neuron, embedded in a single hidden layer, functions to give

XOR. It is not possible, by any method such as Back-Propagation or ART1 with

only two layers and linear inputs such as shown in Fig. 3 to compute states like XOR.

A possible exception occurs if cross links within the input layer are allowed; timing

considerations make this equivalent to another layer although such a configuration

would have fewer neurons for comparable power.
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Figure 4: Schematic, General Neural Net with XOR.

A general purpose controller providing both feedforward and feedback elements

might look as shown in Fig. 5. In feedforward mode, it tracks input commands

in the presence of measureable or predictable perturbations of plant characteristics

such as near term history, temperature and the like. The feedback controller, like

the others, can be activated with a stored state or for training or deactivated by the

‘Desired Response’ input. Feedback provides stability, reduces sensitivity and can be

used to augment other NN such as the perturbation nets. It’s also possible to have

an overseer net for such control. Adaptive signal processing is treated in Ref. [15].
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4. Some Examples

Among many possible questions one might raise is why they should consider this

approach as opposed to increasingly powerful microprocessors that make distributed

control based on expert systems possible? Some reasons in favor of the micro based

expert systems approach are their availability and our growing experience with them.

Some reasons against are the speed and vulnerability of general purpose systems.

NN could supply superior front end control and monitoring while micros supply

overall direction and feedback of performance data or abnormal or out-of-tolerance

- - characteristics.

Another question is what needs to be done to new or conventional systems to

simplify their subsequent extension to include NN techniques? How might one in-

corporate or integrate these into existing systems without disruption or necessarily

being forced to use them. Since most ‘NN’ are software simulations this is simpler

than for hardware but many of the advantages are also sacrificed. For systems inte-

grated on a single PC-board such as data acquisition and analysis for beam position

monitors it seems a reasonable beginning - especially when such measurements are.- .w
critical to the feedback and control process.

With increasing accuracy, it becomes increasingly difficult to specify or qualify

conventional hardware because it may be changing with time and conditions. In

many cases there is no hardware yet available that meets the specifications for the

next generation system. Integrating them with something that has the capacity to
-

undergo adaptive learning is a new way of improving the accuracy of old devices and

designing new ones.

We begin by looking at linearly separable logic functions to test and improve

methods like back-propagation because such methods provide a basic control system

model. It is therefore interesting to use them to simulate the basic components of

the system including multiplication which is used throughout the process.

4.1 Learning with Back-Propagation(BP)

Back Propagation [8]  is probably the most popular method for supervised learning

now being used. Typically, it has a representational or input layer for conditioning

7



and fanout,  some intermediate or hidden layers and an output or decisional layer.

There is no feedback, which could make the graph cyclic, nor linkage sideways. Time

is measured in discrete units[l6]:  the output state {yj(t+ m)} for an m-layer system

corresponds to the input state {s;(t)}. For a monotonically increasing function like

Fermi-Dirac for activation, the weights can be adjusted by a gradient method[8]  that

generally finds solutions given enough neurons. Although Back-Propagation tends

to be slow[8]  and often hard to understand physically when not set up carefully, it is

easy to use and appears capable of computing any function with one hidden layer[3].

- - -Although this provides the highest speed it would also have the worst reliability.

In Fig. 6 we show some results for the minimum logical AND using this method.

In Case (A), all possible input patterns were used together with a fast learning rate.

While TSS, the total sum of squares, decreases monotonically there was only slow,

partial learning or what we will call delearning for pattern Pll initially. This is

shown by both the output activation Arr and the partial sum of squares PSSrr  for

this pattern. The initial values for the two input weights were randomly selected and

left unconstrained throughout the calculation. The greatest learning rates, defined
.- .s

by Arr,  P and T, occur when we = wr on the 6th iteration. The maximum rate of

delearning occurs near iteration 12 where the difference between the w’s reaches a

local maximum.

In another case(not shown) with everything identical to Case (A) except that the

weights were constrained equal, we observed comparable results but more emphatic

- -oscillations.- In Case (B), weights were constrained equal and pattern PO0 was re-

placed with Pll so that target activations(Tpj)  of 0 and 1 were equally weighted.

This reduces delearning in all patterns to negligible amounts and provides an ex-

ample of generalization because it responds correctly for pattern PO0 without being

trained. While there is still some modulation, this would be quite noise immune.

This problem is eliminated by constraining the bias to be b2=1.5w  as shown by the

dot-dashed lines for Arr and PSS.

Finally, we show a three-input, four-neuron case in Fig. 7 corresponding to Case

(A) above i.e. all 8 possible input patterns were used with equal weighting. The first

few iterations are comparable to Case (A) bu more emphatic so that by the 7th ort
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8th cycle, Arrr  appeared to be stably trapped at 0 with PSSrrr totally dominating

TSS. This is a case of rapid but partial learning with one error in eight. This

situation remained unchanged for the next 8000 iterations. The characteristics then

become similar to previous cases. The only exception is the oscillation in TSS. This

can happen near a trend reversal that continues improving Pll I at the expense of 7

other patterns when weights are changed according to[8]:

nWij(n + 1) = anWij(n) + 1, C(6pjZp;) 7 (2)

P

-- _ with high momentum CE = 0.9. Spj  is defined as (Tpj-Apj)Apj(  l-Apj).  Decreasing both

the learning rate I, and Q generally smooths the results but causes a proportionate

increase in the number of iterations 72.

In another case(not shown) with random, unconstrained input weights but only

four patterns PllO, PlOl,  PO11 and Plll(weighted 3-fold), Arrr converged to 20.9

in about 22 iterations quite similar to Case (A) with 3 neurons which also had 4

patterns but in this case, 4 other patterns were predicted correctly. In all cases, the

solutions satisfy the relations:

Wij = Wkj for i, k < j and bj = (t - n)w;j ,

.m.
(3) _

where n is the number of inputs. These are just the slope and intercept relations for

an n-dimensional hyperplane separating Pl. . -1 from all other permutations. The

dot-dashed lines in Fig. 6B show this case for the same values of 1, and (Y.

The results demonstrate a number of characteristics reminescent  of human learn-
-

ing such as-the difficulty of unlearning something or discriminating essential prop-

erties and symmetries. We know that real neural systems take about 100 steps to

execute many complex, real-time tasks[3].  For this example, it should take only two

steps or a couple of milliseconds once we are properly trained. However, it seems

to take an inordinately long time to learn and it is hard to see how we learn in this

way. A more relevant question here is how we should set up an artificial NN that

implements BP and minimizes cycle time. It is hard to avoid multiplication in such a

net and, depending on the specific implementation e.g. analog/digital, it also seems

hard to avoid multi-input, combinational AND/NAND logic.
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4.2 Parallel Multiplication

Multiplication is a natural extension of the above examples. We considered it a good

benchmark for comparing serial and pa.ra.llcI  computations[3]  as well as for compa.r-

ing different network implementations. IIowcver,  many processes are multiplication

intensive such as DSP, differential equation solving and graphics; In adaptive signal

processing(ASP) we have to repeatedly compute the weighted sum of inputs as well

as do some kind of least squares optimization.

Although one could use associative memory to remember an answer rather than

-- ’ calculate it, this would be very inefficient and no justification for gigabit memories.

Most schemes follow the basic way we first learn to multiply and so provide a good,

literal example of a Turing machine. The largest number, called the multiplicand

with Nr digits, is put on top and the multiplier Nz below. One forms the NrxNz

partial products and then forms the Nr+Nz  digit result from Nr+Nz-1  sums and

carries. Assuming that the N2 products(for Nr=Nz=N)  are all done initially in par-

allel, the time is proportional to 2N for the sums which are done sequentially(because

of the carries) with N(N-1) full adders[l7].  The procedure is the same regardless of

the number system. .*. <’

The question of how the partial products are done is important because with

enough combinational logic we get the result independent of the usual sequence of

sums and carries. One might try to reduce the 2N-1 sum cycles to order 1ogzN

via parallel adders that sum partial products of the same order with a binary tree

- structure. While this is useful for large N, an alternative is a fully parallel multiply.

Either way, connectivity could be a significant problem for large enough N.

One can deduce a result for a fully parallel multiply of two N-bit numbers that

takes only 3-layers independent of N assuming the appropriate AND’s a.re  formed by

the intermediate  or hidden layer[3]. The 2N-bit  product C ZiZi  is:

z, = 2o.Yo  = ZOYO

z, = ~,Yo~oY, + ~OYl”lYO = q/0(:0  + 7,) + 5oy1(:1  + 70) (4
-- -- --

22 = z,yo[zoy,  + x,y, + (~OY,)(YO~l)]  + -** = Z2Yo[ZoG + ZOY, + Y1Y2 + ~oV,l +

-- -- -- -- --
2,y,[zoz2 + JJOY, + y,y,] + ~oY2[%~2 + ZlYO + YOY, + Yo221
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. _

The dot implies a logical multiply or AND while the plus sign implies a logical sum

i.e. an inclusive OR. Also, we consider only the integral part(i  2 0) for simplicity.

Each successive order incorporates the previous variables to that order. If the input

layer provides {z,~,y,y} and the hidden layer the multi-input AND’s, then the output

layer OR’s the proper combinations into (2). We can also form tile pairwise  AND’s

and NAND’s in the hidden layer, combine them in the ‘output’ layer and form the

OR as a literal sum of signals from the proper ‘output’ neurons. This is the case

shown in Fig. 8 although, in principle, it takes another layer.
-- _ Fully parallel schemes generally imply 3-dimensions which raises many questions

e.g. VLSI is 2-D and this limits the degree of parallelism and the resources it can

bring to a problem in any fixed time period. However, 3-dimensions and high speeds

can cause many unforeseen problems so we decided to test the schema. Fig. 8 shows

a <2.5  ns multiply going from the output of the TTL-to-ECL to the output of the

last AND gate with a spacious PC layout. Since adequate pulsers and probes weren’t

available, we didn’t try to improve the pulse shape. We estimate it is possible to

reduce this number to picoseconds  depending on the switching times achievable.
.-

Although the i486 chip includes RISC features, cache and a m&h  coprocesso;;

it’s integer multiply between a register and accumulator takes >460 ns for the 25

MHz i486. In big, general purpose computers like the IBM 3090 at SLAC in scalar

mode, it takes 5 cycles while in vector mode it could take longer because it takes 30

cycles to start the pipeline(3090/120E). Fairchild also has a 2x8 Recode Multiplier

which provides a comparable speed but the timing compounds with N e.g. a 16x16

takes 24 ns. Honeywell has used a heterojunction or superlattice structure of GaAs

to obtain a 1.8 ns, 5x5-bit multiplier.

4.2.1 Multiply Simulations

With insight into such a multi-layer problem, it is interesting to try to use NN to

simulate the design of VLSI and other circuits. This was explored only briefly before

finding sufficient flaws to lay it aside. For instance, we couldn’t use constraints such

as Eq.[3]  in a natural way nor use more general minimization constraints without

more software work which is in progress. The goal is a method with the power to

generalize results such as represented byIyq.[4] w lere1 a single AND for the binary



function z0 predicts 22(N-‘) nonzero results for NxN  multiplication. We note that

the problem can’t be done in two layers for the same reason as the XOR problem.

4.3 Other Examples

Beam position monitors(BPM’s) are a good example of a distributed system that is

important, expensive and often inadequate due to noise and error sources that are

difficult to measure or unfold from one another. Many of these are a direct result

of the sequential nature of the control system that ignores the parallel nature of the

. - - problem. The trigger system of a large particle detector which decides whether to

readout and store megabits of information on a possible event is another example.

One criticism of fully parallel schemes that often arises is the expense of im-

plementing them due to the growth in the number of components i.e. their spatial

complexity and the increased power dissipation this implies. For control applications,

this number is relatively small because the required word sizes are often smaller and

the number of functions required are much smaller than in a conventional computer.

5. Conclusions and Possibilifies

Minsky and Papert  have reissued Perceptrons[l2]  recently with a prologue in which

they remark: “Some readers may be shocked to hear it said that little of significance

has happened in this field ( since publication almost twenty years ago).” While they

are often given considerable credit for this, it is fair to say that little hardware has
-

been developed nor some of the theoretical questions resolved. While it is clear that

a more analytical framework is needed to study and understand the topology of NN,

it is still impressive how well combinational methods work. One might question in

reply: Where are the parallel circuits and techniques that could have been in the

i486 but may only appear in the i686 - if we’re lucky[6].

Using the example of parallel multiplication we have tried to show how one ob-

tains a real-time Turing machine i.e. one that minimizes time requirements if not

the space or number of neurons. This is important for both computation and con-

trol. Further, since this is provided by an NN which can also provide reliabili’ty

through high connectivity[3], one can postulate an optimal control system. The con-

12



straints(correlated) of reliability and spatial complexity demonstrate the importance

of minimizing expressions such as Eq.[4]  for single (and multi) output functions of

many variables. More generally, this is a problem associated with the need for a

more analytic, inductive mathematical logic. The efficient use of PLA’s  in todays

VLSI chips is one application but the need to extend such chips to 3-D or increase

their fractal dimensionality(> 2) is clear. This also explain the current interest in

optical circuits.

Many current problems in NN are directly related to weaknesses observed with

- - some NN algorithms. The Hopfield  model[l8] is easy to understand physically with

mij a symmetric matrix. The Hebb learning algorithm[8]  seems natural and a Lya-

punov function exists which guarantees that all attractors in the difference equations

are stable fixed points. Nevertheless, although stable associative memory is possible,

this still doesn’t preclude spurious states.

Other methods like BP often fail to get the preferred answer or may take an

inordinately long time for problems a person can solve by inspection. Because this

depends on how we set them up, we have taken a combinational approach that
.-.

emphasizes symmetry and repetitiveness for its usefulness in circuit design. This is

especially important where size and complexity are significant because they influence

time response and reliability. The error correcting algorithm needs improvement in

a number of ways that make it more immune to a poor choice of training set or

network. This often leads to delearning in some patterns initially and can even lead

to trapping in semistable or stable states that may not allow unlearning even when

new training data are added. The system becomes infexible or unadaptive. This

can also worsen the net’s capacity to generalize outside the training set. Poor use of

constraints and correlations between variables can lead to the same result.

Nevertheless, many interesting characteristics of human learning are demon-

strated. It also provides a straightforward way to implement expert systems in cases

where the knowledge or data bases exist that requires no direct access to the expert.

However, explaining the resulting system’s decisions is not so straightforward. This

is another symptom of our limited understanding of how we should construct the net

itself in terms of the number and distribution of neurons or the impact and interplay
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of the training set. The example of multiplication shows the mechanics of sums and

carries quite clearly. The feedforward net with combinational logic simplifies the

situation but still provides a powerful tool.

Of course, there are many technical problems with implementing NN in hardware.

Recurrent training based on a standardization procedure consistent with ones such

as used for setting magnets is relevant since it relates to the overall problem of

remembering a solution once trained e.g. what happens when one loses power? Are

there effects equivalent to hysteresis that require an annealing procedure to forget or

- - wipe out the perturbation and return the system to its initial state? We could also

use the terms ‘reconditioning’ for ‘standardization’ and ‘training’ for ‘magnetization’

as well as ‘operant conditioning’ for their combination.

Besides technical problems there are the risks of attempting to implement any

new approach. An important presupposition that often blocks acceptance of NN

as a control procedure is the belief in the existence of well-defined, reproducible

standards. In such cases, an important and necessary goal is the establishment of

a robust, reproducible control standard. Even though the standard may change,
.- .q

its existence is a fundamental premise for many expert systems that are buttressed

by phrases like ‘paradise’ and ‘golden’ solutions[l9].  In a microscopic sense these

don’t exist and their probability macroscopically decreases with increasing size and

complexity.

Because there are a number of problems that are common to different laborato-

-ries, it seems practical to try to explore the possibility of joint projects - especially

in the area of hardware. While there are undoubtedly broader concerns that should

be explored, this one is lucrative enough to interest private industry in collaborating

as well.
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Figure Captions

Fig. 1: Complexity, as measured by the number of elements, versus time for Intel
microprocessors, random access memory chips(dashed) and electron storage rings.-. _

Fig. 2: Schematic comparison of AI, shown as left side activities, and NN as right
side activities.

Fig. 3: Two-Input, One-Output, Feedforward Neuron.

Fig.-& Schematic, General Neural Net with XOR.

Fig. 5: Schematic, general purpose control system using NN for feedforward and
feedback control optimization. The neuron-like elements are schematic NN such as
shown in Fig. 4. Their controllers can select states or allow training.

Fig. 6: Back Propagation method for a 2-input, S-neuron logical AND with learning
rate 1,=1.0 and momentum cu=O.9. Case (A) uses all 4 possible patterns for learning
with random starting weights wo,r= 0.23,-0.37  and bias bz=-0.14. Case (B) is the
identical setup except that only 3 training patterns were used and weighted as 2Pll,
Par. and Plo. Also, the synapse weights were constrained to be equal with starting
values wo,l=O.23.  The dotdash curves result from the added constraint of Eq. 3 on
the bias. .w

Fig. 7: Back Propagation method for a 3-input, $-neuron logical AND with random
starting weights WO,JJ= 0.33,0.41,-0.39  and bias b3=-0.31.  All 8 possible patterns
were used for learning with equal weighting and Zr=l.O and a=0.9.

Fig. 8: Tektronix 2465B scope trace obtained by switching between multiplying 3x3
and 3x1 using three Fairchild 1OOK series chips. The F100124 TTL-to-ECL Hex

-Translator provides the input pattern and two F100104 Quint AND/NAND ECL
Gates provide the internal and output layers. The vertical scale 200mV and the time
scale is 5 ns per major division.
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