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ABSTRACT 

- 

-‘ .- 

We show how to construct a topological quantum field theory which corre- 

sponds to a given moduli space. This method is applied to several cases. In 

particular we discuss the moduli space of flat gauge connections over a Riemann 

surface which is related to the phase space of the Chern-Simons theory. The ob- 

servables of these theories are derived. Geometrical properties are invoked to prove 

that the global invariants are not trivial. 

Presented at the XVIIIth International Conference on Differential Geometric 
Methods in Theoretical Physics: Physics and Geometry, Tahoe City, CA., July 2-8, 1989 

+ This work was supported in part by Dr. Chaim Weizmann Postdoctoral Fellowship and 
by the US Department of Energy,contract DE-AC03-76SF00515. 

* Address after August 1989, Department of Physics, University of California, Los Angeles, 
CA. 90024. 



Generally covariant field theories have observables which are metric indepen- 
-- 

z dent. Hence they are global invariants. Recently, a new class of such theories, the so 

called topological quantum field theories (TQFTs’), were introduced by E.Witten. 
-. 

Originally they were affiliated with Yang-Mills instantons (TYM),[l’ sigma models 

(TSM)[*’ , and gravity (TG)[“’ . Later on they enveloped other domains of physical 
[5--81 systems . The main question is obviously whether the TQFT’s probe some 

physical phenomena or are they merely mathematical tools to study topological 

properties of certain bundles ? The answer to this question is two-fold: (i) The 

observables of the TQFT span the cohomology ring on certain moduli spaces. 

These moduli spaces may be intimately related to physics. An example familiar 

to string theorists is the moduli space of Riemann surfaces. Another example is 

.- the moduli space of instantons. (ii) The possibility that the TQFT’s describe a 
_ generally covariant phase of some physical systems[l’al. In this work we follow the 

first direction. 

- 

_ The main feature of the TQFT’ s is the “topological symmetry” which is the 

largest local symmetry possible for the fields that describe the system. This sym- 

metry is responsible for gauging away any dependence on local properties. The 

classical action does not play any role and can be taken to be zero or a topolog- 

ical number. The quantum Lagrangian is derived via BRST gauge fixing of the 

topological symmetry and related “ghost symmetries”‘lO1[lll . The observables of 

the theory, which are expectation values mainly of the ghost fields, can be ex- 

pressed as an integral of closed forms on some moduli space. Can one write down 

? TQFT which corresponds to any given moduli space? In this work we present a 

general prescription for the building of such a TQFT. Several examples of TQFT’s 

which correspond to interesting moduli spaces are presented. We show how the 

observables of the theory correspond to cohomologies on the moduli space. The 

perception that those global invariants are trivial is shown to be incorrect. 

The connection between moduli spaces and physical systems can be described 

simply in the following way. Assume that a physical system is defined by a set of 

fields @‘; on a d dimensional space-time manifold M, and a certain local symmetry 
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-- 
- 

G under which the fields a,; transform in some representation of the group G . 
- 

c Mathematically, a certain bundle is defined over M. Very often we are interested 

not in the whole space of possible @d configurations but in a particular subset which 
-. 

can be characterized by 

{@IF(@) = O}, (1) 

where F( @i) is a given functional of the fields a’;. The condition (1) can be, 

for example, the Euler-Lagrange equations of the action describing the physical 

system. We now perturb a given configuration in this subspace and demand that 

the perturbation does not take CD’; out of this subspace, namely: 

F(@ + S@;) = 0 + 

We want further to mod out from the possible variations, S@i, those redundant 

ones which are the transformation of @i under G. We, therefore, choose a gauge 

slice by imposing a gauge condition 

- GG~(@ + ix?,;) = o + 

As for solutions to the equations (2-3) th ere are two possibilities (i) No non-trivial 

solutions, then the @p configurations are isolated. (ii) There are solutions and then 

these solutions span the moduli space, M, of configurations fulfilling (1) modulo 

gauge transformations. For finite deformations we want to integrate SQi but there 

may be obstructions [‘J’ to the integration of the infinitesimal deformations. Re- 

garding the solutions of (2-3) as the kernel of an operator D acting on S@i, then the 

obstructions are given by the cokernel of this operator. Therefore, the dimension 

of the moduli space is the number of solutions minus the number of obstructions 

which is : 

dimM = dim(KernelD) - dim(coKerneZD) = indeed (4) 



-- 
- 

- We demonstrate the statements made above in table 1’ for the moduli spaces 
c .m 

which are related to various physical systems: (i) Yang Mills instantons in four 
-. 

dimensions’1’111 , (ii) flat connections in two dimensions (which is equivalent to the 

phase-space of the correspondig three dimensional Chern-Simons theory), (iii) flat 

w24 connections’121 (which is equivalent to the space of Riemann surfaces with 

g > l), (iv) World h t s ee instantons in two dimensions [21, (v) two-torus[41 and (vi) 

(1,l) forms on Calabi-Yau manifolds. 

.- 

. 

+ The notations in the table follow references:[l,ll], [2,4], and’l” 
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Configuration G-Symmetry Conditions on S@; Moduli Space 

A PZ non-abelian DL,SAvl + e,,,,DIPGAO] = 0 Yang Mills 

non-abelian gauge gauge symmetry D&A” = 0 instantons 

fields in four dim. 

A, : non-abelian D[,SABl = 0 non-abelian 

non-abelian gauge gauge symmetry D&A” = 0 flat connections 

fields in two dim. 

(e aa 44 : sww +JWp] + tabera6epj - b -0 Riemann surfaces 

world sheet sC(2,l) gauge symmetry (bl(y6epl)a + cabebla6Wpl = 0 ofg>l 

connections i7Eb = 6abaa + tabw, 

xa : world-sheet D,Sxi + e,8J~Dkixj = 0 3 world sheet 

coordinates on reparametrization J: complex structure instantons 

rymplectic manifold 

sffp : world sheet d,d,(gzzSgz~) = 0 torus 

metric reparametrization gzt = gz.2 - -0 

on torus 

gi; : diffeomorphism on CYittj(:) = 0 (1,l) forms 

metric on Khaler manifold g = det(g;;) Calabi-Yau 

Kahler Manifold Manifold 

Table l- Examples of moduli spaces. 

The basic idea of the use of TQFT to explore the moduli spaces is to formulate 

a field theory which is invariant under an additional local “topological symme- 

try “[g-111 of the form S@i = O;(X) w h ere 0; has the same properties as @i under 

the Lorentz and G transformations but may differ in boundary conditions. The 

form of the original action is not important as long as it is invariant under the topo- 

logical symmetry. In general, the Lagrangian is taken to be zero up to topological 
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terms and up to eliminating auxiliary fields. In the case that the configurations, 
- 

c @p, are characterized by a topological number which can be expressed as a d di- 

mensional integral, it makes sense to take the later as the action. This will imply 
-. 

some boundary condition on the local parameter of the topological symmetry 1111 . 

Quantization of the TQFT is performed by using the BRST method. e\lr; is now 

replacing 0; where e is an anti-commuting global parameter and @‘; is an anti- 

commuting ghost. The gauge-fixing and Faddev-Popov Lagrangians are derived 

by BRST variation of a “gauge condition” 2(l): 

L(l) (G$‘+F~) = C%9) = i(“[GF(@;)] = BF(@;) - $@(@;)]. (5) 

.- Here SBRST = ic8, s is an anti-ghost in a representation of the group G and 
. . the Lorentz group such that $IF(@a;) is a singlet under both groups and B is the 

associated auxiliary field. The Euler-Lagrange equation for ‘z’ leads to an equation 

for \zI; which is the same as eqn. (2) for 6@i . The Lagrangian (4) is further 

invariant under a local “ghost symmetry”. The origin of this symmetry is the 

following: 2(r) is obviously invariant under the G symmetry, thus transformations 

that leave a’; and \II; inert and transform \Ir; and B in the same way as @D; and 

s transform under G, leave (5) invariant. In general, one can replace 2(r) by 

2(l)’ = %(F(@;) + cd?) w h ere CY is an arbitrary parameter. For o # 0 the “ghost 

-‘ .- symmetry” mentioned above is not a symmetry. However, by adopting the “ghost 

symmetry” transformation, for the variation of B in 2(l)’ the resulting ,C(r)’ is 

invariant again under a “ghost symmetry “[13’ . We thus use here the cr = 0 gauge. 

To fix the “ghost symmetry” we introduce a commuting “ghost for ghosts” 

field 4 and a its anti-ghost 4. The BRST gauge fixing Lagrangian now has the 

following form: 

p (GF+FP) = 82)2(2) = 8c2) [ $GGF ( qi)], (6) 

where 8’) is the sum of the i(r) and the BRST transformations associated with 

the ghost symmetry. GGF(@~) is th e au g g e condition of (3). It is now obvious that 
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the equation of motion of the combined action will require q’; to obey eqn. (3). 
- 

c .- The equations for 9; are therefore identical to those which define the moduli space 

(2-3). The condition for having a moduli space M, thus, translate into a condition 
-1 

of having ghost zero modes. 

We now describe this construction for the examples of above in table 2. 

Table 2- the TQFT’s which correspond to 

the moduli spaces given in table 1. 

Several remarks on the TQFT’s given in table 2 are in order: (i) The TFC case 

and its relation to the Chern-Simons theory and to conformal field theory were 

presented in ref. [5]. 

(ii) The TFC for the SO(2,l) g rou p was shown to correspond to the space of 

Reimann surfaces1’2’51 
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(iii) The combination of the TSM and TG leads to a theory of topological 
- 

f strings [41. The corresponding target manifold, which has to be a Kahler manifold, 

can have any number of dimensions. This bosonic string theory is freed from 

tachyons. 

The BRST algebra that we have at the present stage is not nilpotent but 

rather it is closed up to a G transformation, &, with the ghost for ghost $ as the 

parameter of transformation. For example (82))2@; = i~@i. 

So far we considered only configuration which minimize the action. In partic- 

ular @y and $; configurations which are solutions to eqn.(2-3). This is justified 

only if the path integral is dominated by those configurations. As for a’, this is 

obvious since this was the gauge fixing we used. As for the rest of the fields we 

can modify the BRST transformations 8 -+ 8’ = n8 such that the L t rL. It is 

straightforward to see that correlation functions are also K: independent [51. Now in 

the large IC. limit it is obvious that the path integral is dominated by the minima 

of -the action. 

The correspondence between the TQFT and the related moduli spaces includes 

the obstruction as well. Recall that the dimension of the moduli space is equal 

to the index of the operator defined in (2) and (3). In the TQFT the kernel 

corresponds to the 9 zero modes. The cokernel is given by the zero modes of G 
A- 

-‘ ‘- 
and SC$. Thus the number of obstructions is given by the number of the latter zero 

modes. 

indexed = #(\lr zero modes) - #(G, 84 zero modes) = DimM U-1 

We want to address now the question of the observables of the TQFT’s. The 

correlation functions of BRST invariant operators are independent of arbitrary 

variations of the metric”‘. 

hAQ3 < 0 >= 4Axp J 
DXQei j” ddx82 = 

J DXei J ddx”~Q~gap 
s 

ddx2] = 0, (8) 

where DX is the measure, and 0 is an operator which is a BRST scalar and 
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- 

c 

is independent on the metric. We used here the fact that a vev of any BRST 

transformation is zero. 

Due to the BRST symmetry, the fermionic determinant is equal to the bosonic 

up to a sign “I. Therefore, in the case of no ghost zero modes (dimM = 0) , the 

partition function is given by 2 = Cj( -1) ‘3 where the sum is over all isolated 

@p(‘) configurations and Sj is the sign of the ratio of determinantes at the (j) 

configuration. In general, it was shown[“that an expectation of an operator has 

the form of an integral over the moduli space of a closed form on this space. 

- where da;, d$i denote the bosonic and fermionic zero modes respectively and _ . 

S2i,...;,dai1 . ..dain = C? is an n form on M. 

(4 The global invariants Ii , i = 0, . . . . d (the pair of superscripts are the degrees 

of the form on M and M respectively) obey the following properties: 

- J 
Yt (10) 

-‘ _- 

. 

where y; is a non-trivial i ” homology cycle. In case that dimM # 0 there are 

fermion zero modes for the Q system. Therefore the only non-trivial expecta- 

tion values are of operators which can soak up those zero modes. This condition 

translates to a requirement on an observable 1: 

< I >=< l2jIj > Clj = DimM (11) 

In fact, the Wi are mappings from closed forms on M to closed forms on M and 

therefore the global invarinats span the cohomology ring on M. It is, thus, clear 

why they can be sensors only for topological properties on M but not local ones. 
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The dimensions’1’5’12’2’41 and global invariants of the previous examples are given 

in table 3. 

Dim. of moduli space Global Invariants 

(#QO - #@A G)D) Ii = Sy; W 

8P - ;(x(W + 4V) Wo = $Tr(qh2) 

for G=SU(2) P-Pontryagin# WI = Tr($$) 

TYM x(M)- Euler # , a(M)-signature W2 = Tr(iG2 + i$F) 

8P- 3 for Euclidean A4 W3 = iTr($,F) 

WJ = -+Tr(F2) 

Wo = !jTr($2) 

TFC (29 - 2)DimG W = Tr($$> 

for genus g W2 = ~Tr(q!?) 

TFC (69 - 6) same as above 

SW, 1) 

2(2n + 1) wo = fhp...~” 

for Co + CP” WI = S2dx+b2...@ 

TSM 6 W2 = Rdx1dx2$3...$k 

for C1 t cubic surface in CP3 fIdxl...dxk - &form on a 

TG 2 none 

Table 3- Dimension of moduli spaces and global invariants. 

So far we ignored the necessity to gauge fix the G symmetry prior to any path 

integral computations. To pick a gauge slice we take the gauge fixing and Faddev- 

Popov actions of the form: LizF+FP) = &[~GGF(@)] where ST = i(‘) + 8~ and 

C is a new anti-ghost. In general the equation of motion which corresponds to c 

may impose conditions on Qi which are incompatible with eqns. (2-3). However, 
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it turns out that for local symmetries like gauge symmetries and diffeomorphisms 

C .- (as can be checked in the examples of above) they are compatible. Several other 

procedures of gauge fixing the G symmetry in the case of TYM were introduce in 
--I 

the past!10’131141 . 

The question is whether the third stage of gauge fixing can alter the previous 

results. Since the observables in (10) are both 8t2) and gauge invariant, they 
,. 

are also ST invariant. However, the issue of triviality[14’ under the total BRST 

cohomology is different for the 6, and 8c2) operators. To discuss this question 

we restrict ourselves to the case where the G-Symmetry is a non-abelian gauge 

symmetry ( TYM,TFC). The conclusion , however, will apply also to the rest of 

the TQFT’s. It turns out that all the W; which were in a non-trivial cohomology 

class of 8c2) (apart from WI) can now be written as a sum of an exact form on A4 
_ 

and M for example: 

w(“‘4) = &FTr(-c$ $ ic3) 
0 

w(lF3) = i[iTr(-Aq$ - ic”A + c$) + dTr( kc3 - ic$)] 

W12’2) = &Tr(icDA + A$ - iA2c + iAD+ + iAdc) 
(12) 

0 

+ dTr(-iA + icy5 + SAC” - icdc + icll) - cD$) 

Does it mean that the corresponding global invariants are all trivial? To get a 

better insight on this question we use the interesting geometrical interpretation of 

the BRST system that was given in”‘. Following the later reference, the BRST 

transformations of A, $, c, #, follow from Jj + +[A, A] = p and the associated 

Bianchi identity fip = 0 where d” = d + 8 T, A = A + ic and 121 = F + q!~ + i$. 

The objects 2, A and 8’ are the exterior derivative, connection and curvature on 

the product space P x A/&7 w h ere P is the principle bundle and A/G is the orbit 

space. In this picture the set of Wi are the (i,4 - i) components of the second 

Chern class: 
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Following ( 10 ) the BRST variations of the various IV; are given by exterior -- 
t derivatives on M of IV;-1 which according to ( 13 ) are derivatives of components of 

a second Chern class. Therefore the BRST variations of the various IV; given in eqn. 
.-- 

( 10 ) are also globally valid. On the other hand ( 12 ) tells us that the IV; are given 

by a combination of the exterior derivatives on both 1M and A/S of some functional 

of the connections over those spaces. The moduli space, hence also the product 

space, are topologically non-trivial which means that they can not be covered by a 

single coordinate patch. Thus the statement of equation ( 12 ) is that the W; are 

only locally trivial. These local properties cannot be simply extended into global 

properties. This is manifested in eqn. ( 13 ). A n integral over the product space 

would not vanish, even though the integrand can locally be expressed as an exterior 

.- derivative of a generalized Chern-Simons term ( a generalized instanton number). 
_ . The I; are therefore BRST invariant but not trivial. 
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