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ABSTRACT 

The  field theory lim it of antiferromagnetism with holes is described using the 

O(3) nonlinear sigma mode l. The  m inimal coupling to the spin-wave gives a  Pauli 

term that couples the hole charge density to the topological charge density for 

solitons. This term leads to drastic consequences;  an  attractive potential for holes 

and  solitons, spin-charge coupling for the holes and  zero-momentum modes.  The  

zero-momentum modes are exact nonperturbative solutions to the full coupled 

equations of motion for spin-waves and  holes. The  effect of a  Chern-Simons term, 

connections to other mean-field approaches and  the quantum boundstate problem 

are discussed. If the zero-modes are the states of lowest energy, then the holes in 

this field theory lim it are attached to skyrmions. 
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.- 
- I. MOTIVATION 

f Many of the new high-Tc superconductors exhibit a N&eel antiferromagnetic 

--I state at zero doping. After the addition of roughly one hole per ten Cu atoms, 

this ordering becomes short-ranged,’ and moreover, the system becomes supercon- 

ducting. The anisotropic magnetic and superconducting properties2 hint at the 

importance of dimensionality. If the feature of antiferromagnetism is at all crucial 

to the superconducting state, an adequate description of the magnetic state be- 

comes necessary. The unique feature of two-dimensional antiferromagnetism, once 

the connection to the nonlinear sigma model is made in the continuum limit, is the 

finite energy soliton excitations. 3 - If these are to play any role in the transition to _ . 

the superconducting state, their interaction with holes must be fully addressed. If 

the holes and the solitons form bound pairs,* a natural explanation for the short- 

- 

-‘ -- 

range magnetic order emerges, since each soliton presents a small area of disorder. 

Thus the disordered state could be equivalently viewed as the soliton condensed 

state.5 If the soliton could bound two holes and no more, then the other half of the 

picture, namely Cooper pairs, provide an explanation for the superconductivity. 

Interestingly enough, many of these notions can be explicitly written as solutions to 

various equations. Although the solutions are difficult to extract, the classical and 

quantum regimes will be systematically discussed. Even though our conclusions are 

that soliton-hole energetics do not favor the above picture, the possibility remains 

that new methods may demonstrate the above scenario. The attractive feature of 

this description is its uniqueness to two dimensions and its deep connection to the 

magnetic properties. 
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xr. FIELD THEORY OF THE 2D HEISENBERG MODEL 

-. 
With the exception 6 of the 30K Bismuth-oxide superconductors, numerous 

f 

--I 
evidence exists that the most of the high-Tc compounds undergo a transition to 

the Neel state at low doping. The Neel state is a variational state for the S = l/2 

- 2D Heisenberg model and is the exact ground state for spin S 2 1, due to a theorem 

by Dyson, Lieb and Simon. 7 Numerical simulations of the nonlinear sigma model 

and the Heisenberg model show that it is N&e1 ordered’ for S = l/2. Starting 

with the 2D Heisenberg model on the square lattice and expanding around the 

N&e1 State, Haldane was able to show that the relevant operators that appear in 

the long wavelength continuum limit are just given by the O(3) nonlinear sigma 

- -model. The assumption of this particular ground state then leads to a relativistic 

2+1 field theory, which, after making the standard CP1 rnap,l’ is given by 

JkP = j(D,Z)+(D’Z) - q(Z+.Z’ - 1) 7 (1) 

with p = 0,1,2; D, = a,, + iA,; and 2 a complex two-spinor (a, /3). The theory 
- 

has one dimensionful coupling constant j and constraint fields ~(2) and A,(z). 

The Neel state corresponds to the field theory ground state of CI = constant and 

-‘ -- p2 = 1 -02. The field theory description has precisely the same number of massless 

spinwave modes as the lattice version, but unlike the lattice version, has a space- 

time Lorentz symmetry.lr 

The Hamiltonian in the presence of holes on the lattice is probably some- 

thing like the Hubbard Hamiltonian with onsite repulsion and nearest-neighbor 

hopping. I2 The field theory limit of the Hubbard Model is much more difficult to 

derive although many mean-field models exist.13 
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Writhe limit of large onsite repulsion, one can instead start with the t-J model 

- with hopping parameter t and a Heisenberg spin-stiffness term J. At zero doping, 

i 

I. 

the t term is irrelevant since it will lead to double occupancy which in the large 

U limit is energetically suppressed. The Heisenberg interaction is then mapped 

onto the sigma model by dividing the two-dimensional lattice into nonintersecting 

plaquettes of four sites each giving four mean-field variables for each plaquette. 

The massless modes in the large S limit are just the $ and n,#, fields which then 

describe the sigma model. The number of massless modes is two, even though 

four sites lead to four degrees of freedom in the continuum in agreement with the 

Goldstone theorem upon expanding around the Neel state. The expansion around 

- the N&e1 state thus describes the spin-spin interaction portion of the t - J mode. _ . 

For the problem with nonzero doping, it is simplest to discuss the case of 

extremely small doping where the experimentally observed Ndel state is still a 

good description of the ground state and its symmetries. The mean-field descrip- 

tion of the small number of vacancies with spin-waves has attracted considerable 

attention.‘4t25 Like the two spin-wave modes, the single hole.ground states will 

identify the relevant number of degrees of freedom. Lattice calculations as well as 

other mean-field descriptions show that there are four minima in the Brillouin zone 

locatedI at z = (&n/2, f7r/2). Th ese four states should appear in any mean-field 

theory. Let us introduce two fermion operators Cl , Cl which live on each plaquette. 

From these two degrees of freedom, we can construct a Dirac Spinor, $J = (CT , CJ). 

The number of low-energy hole states corresponds to two such Dirac fermions but 

none of our results on soliton-hole physics will be affected if we just concentrate 

on one species of holes. Interactions of the spin-waves with the fermion degrees of 
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-1 

free&-m should flip down spins to up spins in the plaquette and this corresponds 

to the hopping of a hole from the up sublattice to the down sublattice. In order 

to write the mean-field theory for the Dirac fermion coupled to the spin-waves, we 

follow closely the symmetries of the spin-wave theory which like the Hamiltonian 

for the vacancies comes from the t - J model. In the limit of an extremely small 

number of holes, we expect the mean-field Lagrangian to have the same symme- 

tries as the system without any holes. The surprising symmetry of the N&e1 state 

is of course the Lorentz symmetry, a pseudorelativity with the speed of light be- 

ing the spin-wave velocity. At large doping, the NCel state is no longer the valid 

ground state and no symmetry arguments are valid in this regime, but luckily the 

low-density regime may determine the nature of the spin-disordered state. The - 

other symmetry of the nonlinear sigma model is the internal symmetry related to 

2 -+ GZ where G is an element of SU(2). By restricting our attention to just 

-. 

-‘ -- 

the one Dirac fermion, we can consistently treat it as a singlet under this internal 

symmetry. Had we used the two “flavors” of fermions on each plaquette, other 

rich possibilities exist. l3 After considering various II, - 2 interactions, the simplest 

Lagrangian that preserves all the symmetries and contains the lowest number of 

derivatives and includes the spin-flips is given by 

L = j(D,Z)+(DV) + r&Z+2 - 1) + &“(ia, -id, + m)ti 9 (2) 

where we consider holes of any general coupling g and mass m (ti = 1, c = 1). The 1c, 

is a complex two-spinor and the yp is a 2 x 2 spin matrix that will be defined below. 

The coupling g begins as S but receives the usual renormalization. This Lagrangian 

for holes at low density has a rigorous formulation for the one-dimensional spin 
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chair?* Neither the sign of the mass nor charge nor the relativistic version of the 

- fermion Lagrangian is crucial to the behavior around solitons. We consider this 
c .- 

coupling for its generality, and the cases of same-sign fermions and nonrelativistic 
--I 

fermions are subcases of what follows. Having discussed the interactions of holes 

with spin-waves, we next examine the soliton sector of the theory. The solutions, 

however, come with arbitrary size and thus are not true minima of the energy 

functional. This property, in the absence of additional physics like holes, makes 

solitons unstable against quantum or l/S corrections to the nonlinear a-model. 

This problem in the presence of fermions is examined in Sec. III. 

III. SOLITONS AND SIZE INSTABILITY 

Solitons of the O(3) nonlinear sigma model in the CP’ language can be brought 

in cylindrical coordinates to the formI* 

z sol = 
( 

(l+J&,2 ezPGw 

(1+&/2 ) 
, (3) 

where r ’ = (r/X)lNl, with X being the size and N the winding number. The 

lowest-energy excitations are the N = fl solutions with energy 27r j. The energy 

is independent of X and this is the size instability that was addressed in an earlier 

paper. I4 Two solutions have been suggested to cure this problem. First, as sug- 

gested by Dzyaloshinskii, Polyakov and Wiegmann,* topological terms, relevant in 

the long-distance limit, like the Chern-Simons term or the Hopf term, can arise 

either from fermions being integrated out of the path integral or from a complete 

field theory limit of the Hubbard Model in two dimensions. However, another pos- 

sibility arises for soliton stability through the self-consistent trapping of holes in 
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solitis. The first scenario will be shown easily not to hold true. Our idea on the 

f 

second possibility, as we demonstrate here, provides a consistent mechanism. 

-1 
As we saw above, the effect of holes is to introduce two species of fermions 

interacting with the CP1 gauge field. l5 If we integrate out the fermion degrees of 

_ freedom,r6 we obtain the following effective action for the spin-waves to lowest- 

order momentum, 

L eff = Lcp + k&,,xA”d”AX , (4 

with k = g2/4.rr since we have two species with the same-sign mass. The same-sign 

mass has been suggested as a way of realizing the parity-violating Chern-Simons 

term17 and our purpose is to study only its effect on the soliton stability. Our - 

results on soliton-hole pairing do not depend upon the signs of the mass terms. 

Dilation invariance of the energy functional is broken when the Chern-Simons term 

is present. In an earlier paper,r* we suggested a parameterization of the 2 fields 

for determining the new soliton solutions. Here, we show that in the presence of 

- this new term, solitons are pushed to infinite size. The energy functional with the 

Chern-Simons term present becomes 

-‘ -- 

f = f d2+(” x x)2+ (D$)+(DiZ)] , 
J 

k2 d 
(5) 

where we consider static configurations Z(z) only and Gauss’s Law gives A0 = 

@/f)(~x~~* SUPP ose an exact solution to the equations of motion in the presence 

of the Chern-Simons term is known, called Z(Z). By doing an appropriate scale 

transformation, the energy functional can be brought to the form & = j J &z[( a x 

Z)2+(DiZ)+(DiZ)]e Forth e solution z(z), this becomes & = j(Er +E2). If we then 
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cons+&& a solution z(ar) for some scale factor a, the energy is & = j(u2Er + E2), 

and we see that the energy is reduced for a -+ 0. Therefore, the addition of the 
f 

-1 
Chern-Simons term, whatever the reason, to the sigma model Lagrangian gives 

minimum energy to the solitons for small a or equivalently infinite size. The energy 

_ of the minimum in the presence of the Chern-Simons term is still 27r j. The Chern- 

Simons term breaks the dilatation invariance of the energy functional, but since it 

is a higher-derivative correction, pushes the solitons to infinite size. Although the 

Chern-Simons term does not appear in the covariant energy-momentum tensor due 

to the absence of the metric gPV, it affects the Gauss’s law condition through the 

A0 equation of motion l8 and changes the form of the canonical momenta. Leading 

- _ .quantum effects-zero-point corrections to the soliton mass”- in the presence of 

the Chern-Simons term were considered elsewhere; again, it was found that large 

size solitons were preferred.‘s Quantum effects to the first order in k remain to be 

done and it is not clear whether finite size solitons will arise. Lattice effects may 

also stabilize the soliton when the Chern-Simons term is present, but the solitons 
-. 

-‘ -- 

solutions on the lattice even for k = 0 are not known. Instead, we consider the 

motion of a single hole in the background of soliton and see if the eigenspectrum 

reveals any nontrivial stabilization. 

To begin the analysis, we start with the original Lagrangian for spinwaves and 

fermions. The full equations of motion couple the fermions and the spinwaves 

through the gauge field A,. We will examine the one soliton sector of the spinwave 

theory and treat the A,, that arises as the background in which a single fermion 

is to move. Since there is no Chern-Simons term in the original theory (although 

quantum effects could generate it at order h), the classical equation of motion for * 
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A0 b&comes A0 = 0 for static solitons. Therefore, the soliton presents field config- 

urations ,$ = 0, B f 0. If the background magnetic field has bound eigenstates for 

fermions, then the requirement that the binding energy E plus the soliton mass 

27r j be less than zero could place a condition on the size. The size of the soli- 

ton effects boundstate energies, since the potential well for the fermions becomes 

narrower as the size decreases. Using the soliton solutions of winding number N 

we wrote earlier, we are automatically in the gauge e -2 = 0. B(z) can thus be 

written as B = -V2$, and A; becomes Ai = ciiajd for some scalar field $(cc). For 

general soliton winding number N, the scalar potential 4(z) is 

d(x) = - sgn~N)In(l + r21Ni) . 
_ . 

(6) 

The fermion equation of motion is the usual dirac equation of motion in the above 

solitoa background field Ai or ir’&lC, + +/‘(i& - gAi)t,b + mlC, = 0. Using the 2 x 2 

Pauli matrices with y” = Q,, y’ = ia,) r2 = igY, we get the Schroedinger equation 

-. 

2.4 
-‘ -- where or = -fYy,cY2 = u2. For fermions $J = 

0 7 when m f 0, the two 
V 

components are coupled. In order to analyze the eigenstate spectrum, we square 

the equation to get the usual decoupled form, 

[a2 + 2igi. 9 + ((E2 - m2) - g2A2 - ga,B)]$ = 0 . (8) 

Had we started with nonrelativistic fermions, essentially the same equation would 

have arisen if we had added the two-dimensional Pauli term s,B to the usual 
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(p <A)2/2772 term. Although such a term has to be put in my hand in the 

nonrelativistic picture, the internal spin degree of freedom of the holes requires it 

in the case of electrons moving in a constant external magnetic field, just as in the 

Quantum Hall phenomena. The addition of this Pauli term preserves all the gauge 

symmetries of the nonrelativistic field theory, and written purely in terms of the 

Z(z) fields, appears as 

where in the nonrelativistic case, 1c, is a single component anticommuting field. 

This interaction represents a coupling of the fermion charge density to the topo- 

-. logical charge density where the general topological conserved current is given by 

Jp = c,,,P’Z+PZ. 2o This additional term is the origin of the attractive poten- 

tial for both the relativistic and the nonrelativistic cases. This higher-derivative 

interaction between spin-waves and holes has been missed in all other mean-field 

approaches, but here it emerges naturally. Having now a wave equation for the 

holes in a soliton background, we look for eigenstates. 

To generalize for a moment, it is known 21 that for A0 = 0, static fermion zero 

modes exist for any B as long as the c$( ) x corresponding to it is continuous. These 

zero-momentum modes are, in the gauge 9 . x, 

$0 = 9 (rd(x, Y>> 2 exp We) , k = O,l,... , (10) 

for o,lc) = II+, where the restriction on k to the nonnegative integers arises from 

the integrability of the wavefunctions. Therefore, the zero-momentum modes in 
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the s&ton background have E = fm and are given by 

f 
$0 = (1 + .2lNl)F 

w$% 
T-’ exp (&ikO) . (11) 

_ Normalizability of the zero-modes therefore requires IgNl - lkj > 1. Given a 

soliton of winding number N = +IN I, normalizable zero-modes exist only for 

sgn(s,g) > 0 where sZ is the eigenvalue of a,. Hence, for the fermion species 

with g > 0, spin up electrons for normalizable zero-modes and vice versa for 

g < 0 and exactly the opposite holds in the background of an antisoliton with 

N = -INI. Th is coupling between soliton number, charge and spin also extends 

- _. to the angular momentum of the fermion. For general N, there will be IgNl zero- 

modes for k = O,l,.. . (IgNl - 1). Wh en g and N are fixed, all these modes 

will be of one chirality only. The integrated flux for a soliton of winding number 

N is Jd2xB = -27rN. If it were not for the dependence of the number of zero- 

modes on g, there would be an index theorem relating the difference of .normalizable 

opposite chirality zero-modes to the winding number of the gauge field. In the case 

of solitons of winding numbers one and two, the potential and the zero-modes for 

the s-states is plotted in Fig. 1. Had we instead started with the full nonrelativistic 

form for the holes, 

&$-ia+,~)2 + gs,B]$ = ,Q/, , (12) 

then the final zero-mode equation would be exactly as before, and similar restric- 

tions on sgn(gNs,) would arise for s, = fl. For higher angular momentum states, 
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we tite +(r,S) = #‘x(r). Th e c roe mger equation for x(r) becomes S h “d’ 

- 

c .- 
x” + 3 + [(E2 - m2) - K&)]x = 0 , (13) 

-1 

where the effective potential is determined by summing all the relevant terms, 

_ giving 

2&kr21NI-2 rWI-2 

1 + r2lNI + (1 + GINI) 
((~N)~r~l~l - 2glNlNsJ . (14) 

Previously, we analyzed the restrictions on g, sZ and N arising from normalizability. 

The k quantum number for the zero-modes corresponds precisely to the angular 

momentum quantum number, and integrability of r$a2(r) for the zero-modes re- 

- _ . quires 1gNI - lkl > 1 and k > -l/2. The effective potential shows attraction 

in the s-channel only when sgn(gNs,) < 0 and the long-distance behavior is like 

+l/r21NI. Th e p t t’ 1 o en la is thus short-ranged but attractive at small distances (see 

Fig. 1). For k > 0, attraction arises whenever sgn(gkN) < 0 and sgn(gNs,) > 0. 

Requiring both conditions simultaneously thus couples k to s,. Had we dropped 
-. 

the Pauli term, the effective potential could be written as 

v,ff = 
r41NI(gN + k)2 + k2 

?-2(1 + ANI) ’ (15) 

which is clearly positive for all r. The Pauli term therefore gives an attractive 

piece to the effective potential in all angular momentum channels and is crucial 

for the existence of the zero-modes. Sgn(gks,) determines whether the potential 

is attractive or repulsive. Having discussed the hole-soliton wave equation and the 

existence of an attractive potential and unexpected zero-modes, we turn now to 

the size stability of the solitons. 
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f 

ClZssically, the hole would drop into the minimum of the potential and the 

quantum zero-point motion would be the first correction to the energy. The zero- 

point motion can be estimated by making a saddle point expansion of the potential 

around the minimum and thus determine the relevant oscillator frequency w. For 

simplicity, we consider the case k = 0 and N = 1, for which, upon restoring the 

soliton size X, the effective potential has the form 

V gr 
( > 

2 (iI2 w* 1 
eff = x (1 +r2)2 - x2(1 + r2)2 * (16) 

There is an attractive minimum for any sgn(gs,) > 0, and we pi& sz = +1 and 

g > 0. The classical binding energy becomes 

- E 2l!Pz I _ class = 
-- 

x2 ’ 

Solitons would be spontaneously produced only if the binding energy gain is enough 

to offset the cost of creating the soliton, which we computed to be 2rf. This 

restriction constrains X to 

A<$. (17) 

In physical units X < g/3 A, which, ‘f 1 we use values of g in the range of one to 

ten, gives an upper limit to soliton size of the order of one lattice spacing. Since 

the sigma model represents the long wavelength fluctuations, details at the level of 

one-lattice spacing are more difficult to accept. In any case, the interaction of holes 

and subsequent binding, at least at the classical level, break the dilation invariance 

and establish an upper bound on soliton size. Although the classical result favors 

X + 0, the exact quantum problem, in principle, fixes the soliton size to a finite 

range, as we will see below. 
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.- - Iv. QUANTUM EFFECTS 

f 
The Schroedinger equation for k = 0, N = 1, s, = 1 becomes, after resealing 

by A, -. 
x” + $+[-c+ (g2r2 (1 +;2;:)lx = 0 7 (18) 

2 where -6 G  (E2 - m )X 2. For boundstates, the eigenvalues satisfy E > 0. If EO is 

the lowest eigenvalue, then the energy of the hole becomes E = m(1 -c~/rn~X~)r/~. 

Requiring E2 > 0 gives the lower bound X > A/m. The binding energy in the 

large m limit is given by -(co/2n2X2) + 0(mF3). Since this must be enough to 

offset the soliton rest energy, an upper bound like the classical regime results in 

- Xdm.Th f ere ore, positivity of the energy-squared for stationary states 
_ . 

and the energetics of soliton-hole binding gives a finite range for the soliton size A, 

@ 60 
<A< - 

m J- 47rjm ’ (19) 

Solutions for eigenvalues E = 0 were the zero-modes we explicitly constructed above. 
-. 

It is necessary for soliton-hole binding to demonstrate that solutions for positive E 

also exist. We turn now to the search for boundstates. 

-‘ ‘- Saddle-Point Approximation. Corrections to the classical trajectory can be 

done by a saddle-point expansion around the minimum of the potential. In the 

harmonic approximation to the potential V(r) = V(0) + (1/2)V”(0)r2, the new 

energy is E = Eclass + (1/2)tiw. We expand about zero, since the minimum is at 

r = 0 for k = 0, N = 1, sZ = 1, g > 0. In the case of a minimum at zero, it 

is necessary to analytically extend V(r) to th e unphysical region of -r, since the 

problem in radial coordinates can also be thought as a one-dimensional problem. 
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f 

Usingthe effective potential we wrote earlier, V”(0) = 2g2 + 8g - 20~. Therefore, 

in the harmonic approximation, the X(T) equation becomes 

-1 x” + 6 + (6’ -a2r2)x = 0 , ( 20) 

- where c’ = -c - V(0) and V(0) = -29. This equation has a spectrum c’ = 

4a(n + l/2). Th e er ‘g envalue equation then becomes 

-e = -2g+4&TT&i n+i . ( > (21) 

Even for n = 0, we find no positive, i.e., boundstate, solutions to c The case 

for k f 0, and separately N f 1, cannot be done so easily; but even here, we 

-‘find that the quantum fluctuations push the hole out of the minimum into the 

continuum, i.e., E is always negative. The saddle-point approximation is sensitive to 

anharmonic r3 and higher-order terms; especially so here, since our potential goes 

to zero quickly for T > 1. Since these higher-order effects make the approximate 

differential equation harder to solve, perhaps Rayleigh-Ritz variational methods 

are more efficient. 

Variational Methods. The asymptotic behavior of x(r) is obtained by keeping 

the leading powers in V(r) for the two limits r t 0 and 1” + 00. This gives, for 

x(r), the Bessel functions 

x(r) -+ Jo(r&Z) as r -b 0 
(22) 

-+ K,(r&) as r + 00 . 

This is the asymptotic behavior for wavefunctions in a box of finite width a with 

V = -2g for r 5 a and V = 0 for r > a. The eigenvalues in this case are obtained 
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by matching the wavefunctions and their derivatives at r = a. By varying the 

parameter a, an entire set of wavefunctions can be obtained which, in turn, can 
c .- be used as variational functions for our potential. For a variational function r$, we 

--I compute the variational energy by inverting the Schroedinger equation, 

. E vat = 
s d2xKg)2 + ew 

sd2xp * (23) 

In the case of the wavefunctions from the box, we have 4 = Jo(Jzs-Er) + 

cKo( &), where both E and c are determined by the boundary matching con- 

ditions. In the entire range of a and the accompanying wavefunctions, we find 

E 2)ar > 0. Similarly, for Coulomb functions like rPeBar, Gaussian functions like 

- _ .rpemffr2 , hyperbolic functions sech(or), and rational functions like P/(1 + (p~)y)~, 

we always find E,,, > 0. It is peculiar that the system admits zero-energy modes 

but apparently no negative-energy quantum states. The above variational functions 

were able to get arbitrarily close to the zero-mode state through a suitable choice 

of the parameters. Variational methods have the drawback that a small change in 
-. 

the parameter effects the function significantly for all r. A linear combination of a 

complete set is desirable and minimization with respect to the coefficients is often 

-‘ ‘- tractable. Alternatively, exact differential integrators in numerical packages handle 

linear differential equations like this one well. Using an ODE solver based on the 

Gear-stiff method, by varying the eigenvalue in increments of a thousandth, we 

examined the large r behavior of the solutions. An unphysical eigenvalue makes 

the function diverge at large r. Although the program identified the zero-mode 

correctly, no positive 6 solution was found. 

Therefore, using three different methods, we are unable to find any boundstates 
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-1 

for thG soliton-hole problem. Starting from either the relativistic or nonrelativistic 

form for a general coupling g, the essential boundstate equation is the same. A 

soliton is simply a small region of nonzero magnetic flux B(r, t9). Spinless particles, 

i.e., dropping the Pauli term, feel no attractive potential. In the presence of spin- 

coupling, an attractive portion arises which is very sensitive to the coupling g. It 

would seem that the extreme limit of constant magnetic flux everywhere should 

also have boundstates if the soliton problem does. The constant field problem gives 

the well-known Landau levels which start at zero energy, yet have an attractive 

piece for V&f in the presence of the Pauli term. This argument is overly simplistic 

and still does not rule out boundstates for fermions in magnetic fields. We can 

write the s-wave equation for x(r) for s, = 1 in the Coulomb gauge as before, 
_ . 

using the scalar field d(x) as 

x” + 6 + (-e - g2(t7$)2 + gv2qqx = cl . (24) 

- The Coulomb potential in two dimensions is an instructive example for bound- 

states. For V, = -o/r, the system has an infinite number of boundstates with 

energy E = -o/(1 + 2n) (Appendix). If the class of potentials that have bound- 
-‘ ‘- 

states in the s-channel is called [VI, the statement that the two-dimensional mag- 

netic field cannot form boundstates implies that for any v, the nonlinear, inho- 

mogenous second-order differential equation 

g2(&) * (c$) -&TV24 = v , (25) 

has no real solutions. 
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-- 
F‘or the symmetric case v = V(r), we can write p(r) = gd$/dr giving the 

f 
first order equation, p’ + p/r - p2 = -V. Defining p = y + 1/2r, we get y’ - 

y2 = -V + 1/4r2 G p(r). Th’ is is Riccati’s equation and making the substitution 

u = e-J’ Y(~)&) we obtain the linear second-order equation 

d% 
p+pu = 0 . (26) 

The solution of this equation is the zero-mode of the one-dimensional quantum 

problem u” + (E - v)u = 0, w h ere the attractive potential f7 = -p = V - l/4r2. 

If we call the zero-mode ug, the corresponding solution 4 for the original problem 

then becomes 

- _ c$(r) = $jd7’( -$;+$) . (27) 

This is readily integrable and gives 4(r) = (l/g) ln( fi/uo(r)). It is not unrea- 

sonable to expect zero-modes for appropriate choices of V, since by assumption 

V belongs to the class of attractive potentials with boundstates. The solutions to 

- this equation for V, a member of [VI, is very interesting and implies boundstates 

for fermions moving in static magnetic fields in two dimensions. Even if solutions 

are found for some V, our soliton problem would still not be directly addressed. 

The conventional methods do not favor the existence of boundstates, but a proof of 

existence may lie in considering the differential equation for 4. The above analysis 

made simple assumptions of the continuum field theory description of holes and 

solitons. It leads to a rich coupling of spin, charge, angular momentum, and soliton 

quantum numbers; we explicitly demonstrated zero-energy states for the original 

soliton-hole interaction. The prospects for binding beyond the above treatment 

are summarized in Sec. V. 
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.- 
- V. CONCLUSIONS 

f A long wavelength description of spin-waves and fermions is the 2 + 1 QED- 

-1 like Lagrangian with nondynamical A,. Aside from the signs of masses, and 

whether one works in the relativistic or nonrelativistic regime or how many species 

of fermions there are, one always finds attraction of holes to solitons in all channels 

when the Pauli term is present and in the approximation of the soliton as a sta- 

tionary background. The attraction places precise constraints on the signs of the 

fermion charge, its spin, its angular momentum and the soliton winding number. 

Curiously, it is straightforward to prove that zero-modes exist in any background 

where A0 = 0, Ai = &ijdj$. Had boundstates existed, two opposite charge holes of 

-. spin up and spin down would tumble to the lowest eigenstate, provided the bind- 

ing energy thus gained is sufficient to offset the soliton rest energy. Many other 

rich possibilities exist. The boundstate problem was analyzed in the limit of one 

soliton and one hole. Since both the hole and the soliton carry A, charge, the two 

equations of motion become coupled through A,, = (-i/2)(Zt13PZ) + g$y,$. We 

considered the limit where A, is entirely given by the soliton background. To this 

order, boundstates could not be found. Perhaps self-consistent corrections of A, 

through 1c, will modify the potential sufficient to find boundstates. This path was 

not pursued, since the same consistency requires we resolve the soliton equations 

of motion, etc. We showed that the very existence of boundstates in the relativistic 

regime breaks the dilation invariance of the soliton very nicely and gives sizes in 

the range of a few lattice spacings. With the apparent lack of boundstates for 

the soliton background, we considered a general magnetic field parameterized by 

4(r). The existence of s-wave boundstates in this case depends on zero-mode so- 
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f 

lutic& of a new equation with a purely attractive potential energy V(r). Deriving 

the boundstates after finding the zero-modes for interesting choices of V(r) is cur- 

rently under progress. The relation of these new configurations to the soliton one 

is not clear but it may shed light on what the self-consistent potential may be like. 

_ The importance of the Pauli term for binding was discovered in another context 

by Ya. Kogan22 in a system described by charged fermions of mass m interacting 

with a gauge field that obtains a mass M through a Chern-Simons term. Even 

though the two fermions have equal sign charge, the magnetic attraction through 

the Pauli term is stronger than the electric repulsion if M/m > 1. The relevance 

.- 
of this to our own soliton problem requires further work. 

- _ 
It is possible that other indications of a soliton condensate may emerge using 

different methods. The field theory approach taken here was the most convenient 

extension of the nonlinear sigma model to include fermions. Other mean field the- 

ory approaches have been used to describe hole motion in the antiferromagnetic 

background. 23 Some other app roaches begin with the Hubbard t - J model itself 
- 

: ‘- 

and replace bilinear-fermion operators with mean-field c-numbers. The expecta- 

tion value of the operator xijk =< Si . (gj x Sk) > for three noncolinear sites on 

the lattice can often be computed in the mean-field approaches.24 The path inte- 

gral turns s’ into c-number fields and the above expectation value corresponds to 

< &,bcna(si)nb(zi)nc(xk) > using fields na(S) = (-)21+z2 < 3 >z. Going to the 

continuum, we obtain Xijk N *(a2/2) < Eij&abcna&nbdjlZC > evaluated at Zi where 

a is the lattice constant. The sign comes from the orientation of the triangle as 

shown in Fig. 2. This last quantity is just expectation value of the soliton number 

density. The precise relationship of these chiral spin states and flux phases which 
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emerge in the mean-field limits of the Hubbard model to the soliton condensed 

f 
state is only now being studied. For example, the stability of these phases with re- 

spect of quantum corrections would seem to imply that self-consistent boundstate 
-1 

solutions must exist. The presence of a soliton in this lattice picture implies a sum 

- rule C rl Xi,j,k N integer, with 77 = fl, summed over a neighborhood of sites. 

The zero-modes themselves are of great interest and perhaps the boundstate 

problem is a red herring. These modes are localized wavefunctions near the center 

of the soliton. Unfortunately, they do not break the dilation invariance of soli- 

ton size. However, they represent self-consistent solutions to all the equations of 

motion, since for the zero-modes the current &i+ vanishes for i = 1,2, as only 
- 

-‘one component of the two-spinor is nonzero. The A0 modifications through $J+$, 

in turn, do not affect the 2 equations of motion. The energy of the state is just 

the mass of the soliton 2~f. If other variational states give lower energy for the 

lattice with one hole,25 the zero-mode states will not be energetically favorable. 

-. There exist many perturbative calculations of single holes in an antiferromagnet. 

The zero-momentum modes presented here are exact classical solutions in the long 

wavelength limit. Like the work of Shraiman and Siggia, the state of lowest energy 

has a surrounding topological texture. The zero-modes found in this work and 

their relation to the lattice zero-modes found Wen and Zee also deserves careful 

~. reexamination.2” In the above work, we have demonstrated the relevance of the 

long wavelength field theories to understanding the spin-liquid state that could be 

described as the soliton-condensed state. 
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- 
APPENDIX: TWO-DIMENSIONAL COULOMB PROBLEM 

f Here, we solve the Schroedinger equation for a particle moving in the Coulomb 

-. potential V = -cr/ r. Both the relativistic and nonrelativistic form can be reduced 

to 

V2$+(-e2+$)$ = 0 ) 

for boundstate energies -c2. If we expand $(r, 0) = eimex(r), the effective poten- 

tial becomes V,ff = m2/r2 - o/r. Now, writing X(T) = ~l~jc-~~f(r), we get 

- _ . 

where < = 26~. This is the equation for a confluent hypergeometric function and 

convergence for large r requires the coefficient of the f term to be a nonnegative 

integer n. Therefore, the eigenvalues -c2 become 

CY -. -e2 = -( 
1 + 2)ml+ 2n j2 * 

L ’ 
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-- 
- FIGURE CAPTIONS 

c Figure 1. The potentials VN and s-channel zero-modes $N are plotted for 

-1 soliton winding number N with g = 2. 

Figure 2. The two sublattices are distinguished by crosses and dots. Xijk N 

F < Eij&,bcnu8inb8jnc > in triangles A and B, respectively. 
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