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ABSTRACT

Heterotic string models in which the space-time gauge symmetry is realized as
a level k > 2 Kac-Moody algebra on the string world-sheet offer phenomenological
features not present for the level k = 1 case (which includes all heterotic string
models seriously considered to date). In particular, string models with N=l space-

time supersymmetry and/or chiral matter fields can contain massless scalar fields
in the adjoint  (or higher dimensional) representation of the gauge group provided
that k 2 2. Some explicit examples in four dimensions constructed solely from free,
real world-sheet -fermions  are given, contradicting recent would-be no go theorems,

and reopening the possibilities for embedding standard Grand Unified Theories
within string models. The possibilities for more general constructions allowing

higher level Kac-Moody algebras are also briefly discussed.
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1. Introduction

The possibilities for consistent heterotic string models in fewer than ten space-
time dimensions are myriadi’-‘I1 and largely unexplored. Only those classical string

vacua whose underlying two-dimensional conformal field theory is relatively simple

have been studied at all systematically. It is tempting to extrapolate the results

of these cases to determine which general features of space-time physics can arise
in string models, given the stringent constraints on the conformal field theories- -
from which they are derived. One should be suspicious of folklore acquired in this
fashion, however, as it is often misleading.

The present work was largely motivated by a particularly influential example of
such folklore. It has been found within large classes of four-dimensional heterotic

string models that N = 1 space-time supersymmetry and/or chiral fermions do not

coexist with massless scalar fields in the adjoint or higher dimensional represen-
tations of the gauge group Since typical Grand Unified Theories rely on adjoint
or higher dimensional Higgs fields to break the unified gauge group to the Stan;
dard modelt121 this places a major practical constraint on string phenomenology.
Either the gauge group must be broken at the compactification scale (effectively
the Planck scale) or a non-standard Higgs breaking must be employed. Symmetry

breaking via Wilson lines in Calabi-Yau vacua 111 is an example of the first pos-

-

sibility; flipped SU(S)@U(  1)[13’ is one of the few known examples of the second.

Standard GUTs, as well as phenomena such as SU(2) weak matter triplets, are

apparently excluded from string theories if this empirical result is in fact a general

property of string vacua.

However, as we will demonstrate with explicit examples below, this is not the
case. String models with N=l space-time supersymmetry, and/or chiral matter
fields, which contain massless scalar fields in the adjoint  or higher dimensional

representations of the gauge group are indeed possible provided that the gauge
group is realized as a level k 2 2 Kac-Moody algebra on the string world-sheet.

These features are incompatible only in heterotic string models which contain only
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k = 1 Kac-Moody algebras; however, this class includes all of the string models

seriously considered to date. Restricting oneself to free bosons ‘3A or, equivalently,
I4951complex fermions, on the string world-sheet, only k = 1 Kac-Moody algebras can

be realized. Likewise, compactifications of the ten-dimensional heterotic string on
Calabi-Yau manifolds”’ or symmetric orbifolds,[” or those constructed by employing

symmetric combinations of N=2 minimal models:“’naturally give level 1 subgroups
of the original level 1 Es @J Es [14’group. This is the source of the empirical result
given above.

String models with higher level Kac-Moody algebras can be realized, however,
with free real world-sheet t5~151fermions. This construction has not been exploited in
the past because the gauge group in such models is generally realized in rather in-
tricate fashion. In fact this possibility was completely overlooked in the suggested
proof, given in ref. [16], that N=l supersymmetry and chiral fermions are incom-
patible with massless adjoint  scalar fields in heterotic strings constructed from free

fermions. The explicit counter-examples given below are constructed within this
framework. Despite being difficult to analyze, the possibilities prove to be rick
and numerous. Furthermore, if we can overcome the technical problem of finding
general modular invariants for collections of minimal models and/or Kac-Moody
characters, it will almost certainly prove possible to construct an even larger class

of string models containing higher level Kac-Moody algebras which cannot be re-

alized with free fermions.-

The format of this paper is the following. In section 2, we review and collect
together some necessary facts about Kac-Moody algebras and their appearance in
heterotic string theory. In particular we discuss why higher level Kac-Moody alge-
bras are technically difficult’to achieve in heterotic string models with our present
methods, and demonstrate why massless adjoint scalar fields and chiral fermions

cannot coexist if the gauge group is realized purely at level 1. In section 3, explicit
examples of heterotic string models in four dimensions are presented which contain

higher level Kac-Moody symmetries. These include models with phenomenolog-

ically interesting GUT gauge groups, N=l supersymmetry, chiral fermions and
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massless adjoint  scalar fields. The examples are presented starting with the sim-
plest and progressing to ever more sophisticated and realistic constructions. The

emphasis is on exploring possibilities; no attempt is made to reproduce detailed
phenomenology. The fermionic spin-structure construction employed in generating
these examples is briefly reviewed in the appendix, with emphasis given to the par-
ticular subtleties involved in using real, rather than complex, fermions. In section
4, the possibilities and prospects for constructing more general classes of heterotic
string theories in which the gauge group is realized as a higher level Kac-Moody al-
gebra are briefly surveyed. The chief points and results presented are summarized
in section 5.

2. Kac-Moody Algebras in Heterotic String Models

Let us begin by recalling some basic facts about Kac-Moody algebras; for
details and derivations see, e.g., ref. [17]. In a heterotic string model, the vertex
operator for a gauge boson (for simple group .G, momentum p, and polarization <,)

is a primary field of conformal dimension (l/2,1) of the form,

V” =  ~P~P(~)Ja(z)eip’x  ; pPpP =  pPC, =  0  . (24

Xp is the string coordinate, $p is a dimension (l/2,0) Ramond-Neveu-Schwarz
fermion and J” is a dimension (0,l) field which necessarily satisfies the OPE of a
Kac-Moody generator,

Ja(z)Jb(w) = (z lw)2 kSab + . (24

fa” are the structure constants for the group G normalized so that fabc fdbc =
&Sad = 2LPd, where CA is, by definition, the quadratic Casimir of the adjoint

representation of the group G, and i is the dual Coxeter number (listed in table
1 for the simple Lie algebras). With this normalization k is a positive integer, the
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level of the Kac-Moody algebra. Thus space-time gauge fields imply the existence

of a Kac-Moody algebra on the string world-sheet and, in particular, all states
in the theory necessarily fall into representations of this algebra. For fixed level
k only a finite number of these representations are unitary and-may appear in a
sensible string model; specifically those satisfying,

rant(G)
k 2 C nimi , (2.3)

- _ i=l

where n; are the Dynkin labels of the highest weight of the representation, and m;
are integers (sometimes called co-marks) listed in table 1 for the simple Lie groups.
The conformal dimension of the primary field corresponding to the highest weight
representation r is,

h, =
G

2k+CA ’ (2.4)

where C, is the quadratic Casimir of r, CA that for the adjoint.  These invariants are.L 1m
most extensively tabulated in ref. [18] . F inally, the contribution to the Virasoro

central charge from the level k Kac-Moody algebra is,

c = kdim(G)
k+i . (2.5)

In essentially all heterotic string models studied to date, the space-time gauge
group is realized as a level 1 Kac-Moody algebra on the string world-sheet. The

reasons for this are practical rather than fundamental ones. Generally, the chief

technical difficulty involved in constructing any string model is insuring modular
invariance of the loop amplitudes. The simplest modular invariants involving Kac-
Moody characters, and in many cases the only ones which have been written down,

are left-right (i.e., antiholomorphic-holomorphic) symmetric. These are fine for

constructing bosonic strings on group manifolds~lsl but inapplicable for construct-

ing heterotic string models, for the same reason that the standard model cannot
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fit within the type II string’201: Any component of the world-sheet supersymmet-
ric half of a four-dimensional string model must be world-sheet supersymmetric
yet contribute central charge 9 or less, while any super Kac-Moody algebra large
enough to contain the standard model contributes at least c = 10.

Systematically constructing asymmetric modular invariants is difficult and has
so far proved possible only for collections of free world-sheet fields. These do not
lead most naturally to higher level Kac-Moody algebras, however. Consider, for
example, representing all of the internal degrees of freedom of the bosonic half of
a heterotic string model in D space-time dimensions with 26-D free world-sheet
bosons & (to saturate the necessary central charge, c =26-D). The dimension 1
holomorphic  operators &#? each generate a U(1) Kac-Moody algebra, so the rank
of the gauge group is at least 26-D. It follows from (2.5) and table 1 that the rank
of G cannot exceed the central charge of the corresponding Kac-Moody algebra,
and the two are equal only for the simply laced algebras with k = 1. Thus heterotic
string models constructed from free world-sheet bosons (or, equivalently, complex
fermions) [3-71 include only simply laced k = -1 Kac-Moody algebras regardless of
the momentum lattice chosen to define the theory. This includes the original ^
Es @ Es string in ten dimensions!141 Furthermore, compactifications of this model,
whether on Calabi-Yau manifolds:” left-right symmetric orbifolds[21 or using left-

[Qlright symmetric combinations of N=2 minimal models together with free bosons,
all naturally inherit level 1 subgroups of this level 1 Es @ Es. On the other hand,-

it is possible to construct asymmetric modular invariants including higher level

Kac-Moody algebras by using free real fermions, as we will see in section 3. There
are many subtleties involved, however, and one would not likely arrive at the

necessary constructions without having the particular goal of achieving higher level

Kac-Moody algebras in mind.

The problem with limiting our attention to heterotic string models with level 1
gauge groups is that the possible unitary highest weight representations of a level
1 Kac-Moody algebra are quite limited in number and size as can be seen from
eqn. (2.3) and table 1. Considering likely grand unified groups, only four unitary
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representations appear at level 1 for S0(4n+2) (the singlet, spinor, conjugate spinor

and vector), N representations for SU(N), and three representations for E6 (the
-

singlet, 27 and 27). These include the necessary representations for matter fields,
but not all of the representations for scalars that we might like. In particular
the known mechanisms for breaking Es, SO(l0) or SU(5) down to the standard
model require Higgses in the adjoint representation (or representations of even
higher dimension) tl*’ but the adjoint  highest weight representation is not among
the unitary ones for any of the level 1 Kac-Moody algebras.

There seems at first to be a way out of this particular difficulty: the Kac-Moody
currents themselves transform in the adjoint representation and we might use them
to construct vertex operators for massless adjoint scalar fields. Unfortunately this
proves to be incompatible with the presence of chiral fermions and, as a practical
matter, N=l space-time supersymmetry. The kernel of this argument has appeared
in many guises before; here we paraphrase observations originally made in ref. [20]

in the context of generalized type II theories. Consider the only possible form for
the vertex operator of a massless adjoint scalar field in a four-dimensional heterotic
string if the gauge group is level 1,

V”scalar =  O(z)Ja(z)  . (2.6)

J” is one of the Kac-Moody currents. For the state represented by this operator

to be a massless scalar in space-time, 0 must be an anti-holomorphic dimension

(l/2,0) f i e l d  h  hw ic in its OPE’s and behavior under GSO projections is indistin-
guishable from an additional RNS fermion. Thus the space-time spinor degrees of

freedom, which are governed by the structure of the world-sheet supersymmetric
half of the heterotic string, fall into representations of the five-dimensional Lorentz
group, SO(4,l). D ecomposed into SO(3,l) ps inors these always give rise to non-
chiral pairs. Thus the presence of adjoint scalars in the form (2.6) necessarily
precludes the presence of chiral fermions.

This argument does not apriori rule out the presence of N=l supersymmetry,
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since an N=l supersymmetric theory in five dimensions will, upon compactifica-

tion of one coordinate, produce a four-dimensional theory with N=l supersymme-
try and adjoint  scalar fields. Within the simple compactifications and free field

constructions which have been considered to date, however, it appears impossible
to construct a string theory in five dimensions with just N=l supersymmetry. In
any case these theories would be of no phenomenological interest, being non-chiral,
and such possibilities will not concern us further here.

3. Examples

3.1. REAL FERMION CONSTRUCTION

In the spin-structure construction of heterotic string models[4’5’151  all internal
degrees of freedom of the string are represented by free fermions. Three pieces

of input are required to define any given model: 1) the form of the fermionic
realization of the supercurrent for the supersymmetric half of the h&erotic  string;
2) a set Of vectors, {Vi}, whose linear combinations define the allowed boundary
conditions for all of the fermions; 3) parameters, k;j, which specify in part which

world-sheet states appear as physical fields in space-time and which are projected

out of the spectrum. These three inputs must be specified consistent with each

other and with the constraints of modular invariance and a physically sensible

operator interpretation (including correct space-time statistics).

The details and derivation of the solution to the required constraints is amply
covered in the original literature. These results, tailored to the specific case of
interest here, namely four-dimensional heterotic strings built from real fermions,
are summarized in the appendix. Some practical guidelines for constructing mod-
els with desirable features are also given. One subtlety of the real fermion case

bears special mention here, however, as it figures directly in some of the models

we give in the following, and has not been sorted out completely in the published

literature. The real fermion case is more intricate than the complex one largely
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because, in contrast to the latter case, the formal fermion number operators which
appear in the analysis need not all commute with one another. In addition, while
complex fermion determinants have been explicitly evaluated on multi-loop Rie-
mann surfaces and their behavior under modular transformations determined, the
analogous results for real fermions can only be inferred by taking a square root-
which results in a sign ambiguity. Both of these subtleties disappear in the real
fermion case if we demand that the non-vanishing components common to any
fmr boundary condition vectors are even in number. At one time this “quartic”
constraint was believed necessary for a consistent theory at both the one loop and
multi-loop levels; [5”1  however, a more careful ana1ysisn5’ showed that at the tree

and one-loop level a lesser constraint- that the number of nonvanishing compo-
nents common to any three vectors is even- is sufficient. Furthermore it has been
proved (more recently) that the crossing symmetry of all four-point amplitudes on
the plane, and modular invariance of all one-point one-loop amplitudes, are enough
to insure multi-loop modular invariance in any conformal field theory!” Thus in
the real fermion construction the “cubic” constraint on boundary condition vectors
is sufficient for consistency. The additional freedom gained in relaxing the quartic
constraint will prove useful in constructing some of the models we present here.

3.2. SIMPLE SU(2) LEVEL 2 EXAMPLES

The simplest example of a higher level Kac-Moody algebra is SU(2) level 2,
which can be realized with three real fermions, $i. The currents, necessarily with
conformal dimension 1, are the three non-vanishing bilinears, $;$j. The SU(2) M
SO(3) symmetry is just that of rotations in the three-dimensional fermion space.
That the algebra has k = 2 can be determined by explicitly computing the OPE,

eqn.(2.2), or, more easily, by noting that c = 3/2. SU(2) level 2 has three unitary
representations (c.f. eqn. (2.3)) the singlet, doublet, and triplet (which is the
adjoint). The corresponding primary fields in the three fermion theory are the

identity, graaa3 (the product of the three spin fields), and $i, respectively, with
conformal dimensions 0, 3/16,  and l/2 in agreement with eqn. (2.4). Mixed
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operators such as gr+z are not present as they would break the symmetry of the
$i’S.

While SU(2) 1eve1  2 is a rather trivial example, it already proves sufficient
to illustrate some of the chief differences between level k = 1 and k > 1 Kac-
Moody algebras in string theory. In particular there are two distinct realizations
for the adjoint  in SU(2) 1eve1 2 but not for level 1 (for which only the singlet

and doublet are unitary highest weight representations). In a string model we
can use the fermion bilinears to construct the gauge boson vertex operators and
the individual $i to construct vertex operators for adjoint  scalar fields, thereby
side stepping the arguments given in the previous section that adjoint  scalar fields
whose vertex operators are constructed from the currents are incompatible with
N=l supersymmetry and/or chiral fermions. Simple counterexamples within the
spin-structure construction of string models are easily written down. For example
consider the model generated by the set of vectors,

vo =((~)2(~~~)” 1 ($)44)
--v1 =((;)2(;oo)6  1 (o)44)

v2 =((o)2(~~o)4(o~~)2  1 (;)4(o)40)
v3 =((o)2( g0)( +o;)(o;;)2(  $;o)2 1 ( ;)30$(o)3g) .

1*

(3.1) -

With the [SiY(2)16 form of the supercurrent, Vr is the unique choice (up to re-
ordering components) which can contribute gravitinos and hence space-time su-
persymmetry. V2 serves the dual purpose of cutting the supersymmetry from
N=4 to N=2, and the gauge group from SO(44) to SO(4)@SO(40).  V3 breaks
the symmetry down finally to N=l supersymmetry and SU(2)@SO(39),  the SU(2)

realized, as desired, at level 2. The choice of parameters kij fixing the physical

state projections has no real effect on the massless states in this model so we leave

them unspecified. The underlying conformal field theory for the bosonic half of
this heterotic string model can be viewed as a correlated combination of SU(2)
level 2 and SO( 39) 1 eve1 1 Kac-Moody representations together with a pair of Ising
models.
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All of the massless bosons in the space-time spectrum in this simple model
arise from the 0 sector (i.e., the vector with all components 0 corresponding to the
fully Neveu-Schwarz sector), while the VI sector contributes all the accompany-
ing super-partners. In addition to the SU(2)@SO(39)  gauge bosbns, the massless
bosonic spectrum includes two sets of scalars transforming as (1,l) and (3,39) of

SU(2)@SO(39)  and four sets each of scalars in the representations (1,39) and (3,l).

As desired, massless scalars in the adjoint of SU(2) 1 eve1  2 peacefully coexist with

the N=l space-time supersymmetry. The vertex operators for these states are

built, as required, from the highest weight adjoint  primary field of SU(2) level 2
(the $; and not the currents $i$j); the additional conformal dimension of l/2

required to make the overall vertex operator for a massless state dimension 1 is
supplied by either the primary field for the vector representation of SO(39),  or
the fermion in one of the Ising models. This is typical of such constructions: the
adjoint  highest weight representation for higher level Kac-Moody  algebras has con-
formal dimension less than_1  (unlike the currents) and so something must be added
to it to construct the vertex operator for a massless state. This additional piecg
may transform non-trivially under some other factor of the gauge group, but this
doesn’t have to be the case.

Neither SU(2) nor SO(39) admits chiral representations. It is easy enough,
however, to construct a model which does contain chiral matter along with a level

2 SU(2) algebra. Consider the vectors,-

(3.2)

Vu and VI are as before. The other three vectors were written down with the
following goals in mind: to reduce the space-time supersymmetry from N=4 to
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N=l, produce a gauge group including SU(4)@SU(2)@SU(2)  with at least one
SU (2) realized at level 2, introduce chiral fermions (under the SU( 4))) and introduce
massless scalar fields in the adjoint  of SU(2)*.  In fact, the gauge bosons arise
entirely from the 0 sector and generate the group SU(4) @ sU(2)  @ SiY(2) @
[S0(7)]2  @ SO(4)  @ SO( 14); v 1 contributes the single gravitino required for N=l

supersymmetry provided we choose kol = k2l + k3l + kql modulo 1 (otherwise

N=O); the sectors V2 and Vs contribute two sets each of Pati-Salam  like “quarks”
and I‘anti-quarks” in the group representations (4,2,1,8,1,1,1)  and (4,1,2,1,8,1,1)
respectively; and the 0 sector includes a host of massless scalar fields including
ones transforming as (1,1,3,1,‘1,4,1), (1,3,1,1,1,4,1)  and (1,3,3,1,1,1,1),  i.e., in the
adjoint  of the SU(2)‘s.

Other vectors can be added to the set (3.2) to break the large horizontal sym-

metry and reduce the number of chiral matter families to make the spectrum look

more realistic, but models such as this one generally suffer from a more fundamen-
tal problem if we try to treat them seriously for phenomenology. The relation of
the gauge couplings to the fundamental string-coupling at the Planck scale depends
on the level of the Kac-Moody algebra!“] Thus if different pieces of the standard
model gauge group are realized at much different levels, k, as in the model above, it
will almost certainly prove impossible to get the correct value for sin20w from the
running of the gauge coupling constants. Nonetheless, the simple model defined

by (3.2) provides an existence proof that features such as N=l supersymmetry,-
chiral fermions, massless adjoint  scalars and weak matter triplets can be present
simultaneously in a heterotic string model if (and only if) some of the gauge group

is realized as a higher level Kac-Moody algebra.

* This  model was constructed  in response  to a query  of T. Banks.
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3.3. &3 LEVEL 2 AND SUBGROUPS

SU(2) (being isomorphic to SO(3)) is a rather special algebra, and affine SU(2)

at level 2 represents the only higher level Kac-Moody algebra whose currents may

be realized so trivially in terms of fermion bilinears. One might well worry that

the success of the constructions given above relies entirely on this fact and can’t be

extended to more interesting groups, but this is not the case. One interesting and

non-trivial example of a heterotic string model whose gauge group is realized via a

higher level Kac-Moody algebra has, in fact, already been studied in the literature

(and is the only such example to the best of our knowledge). Of the eight known

consistent string models in ten flat space-time dimensions, seven have rank 16

gauge groups and can be realized solely in terms of free world-sheet bosons!231  The

eighth has gauge group a single Es realized at level k = 2, and was first explicitly

constructed from free real world-sheet [241fermions. We will adapt this construction

here to produce four-dimensional models with various subgroups of Es, all at level._
2, appearing as the gauge groups.

Consulting eqns. (2.3), (2.4), and (2 .5)  ti is not surprising that Es level 2

can be fermionized. Three unitary representations appear, the singlet, adjoint  and

dimension 3875 with conformal dimensions 0, 15/16,  and 3/2 respectively, and the

central charge ia31/2. In the ten-dimensional model the Es level 2 appears together

with a single Ising model (c = l/2) to make up the c = 16 of the bosonic half of the

heterotic string. A different grouping of the Es level 2 and Ising characters leads

to an enhanced symmetry - & @ Es level 1. Saying the same thing in reverse,

the Ising model can be obtained from the coset construction Eil) @ E,(l) c2). The/E,
ten-dimensional model can thus also be obtained by modding the Es @ Es model

by the symmetry interchanging the two E~‘s, leaving behind only the diagonal

subgroup, Et3 level 2, and the single Ising model from the coset P3251construction.

Consider now the following vectors generating a four-dimensional heterotic
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string,

vo =((g2(+g6  1 ($)44)
Vl =((g2($ooy 1 (o)44)
V2 =((o)20  1 ($“(o)15(o)13)
v3 =((q20 I (~)8(o)8(t)8(o)7(o)13)
v4 =((Q20 I (~)4(o)4(~)4(o)4(~)4(o)4(3)4(o)3(o)13)

Vn and Vr take their familiar values. V2 through Vs, apart from some appended
zeros, are borrowed directly from the ten-dimensional construction and give rise to
the Es level 2 gauge bosons. V7 and Vs serve to break the space-time supersym-.- .v
metry to N=l, and the former, combined with V2 through V6, provide massless
scalars which will be in the adjoint  of Es.

As we noted previously in section 2, systems of complex fermions can be

bosonized and only give rise to level 1 Kac-Moody algebras. A necessary require-
ment, then, to achieve a higher level algebra within the present construction is

to choose sets of boundary conditions which prevent the real fermions from being
consistently paired up in any way to form complex ones. This is accomplished by
V2 through V6 in (3.3) in quite symmetric fashion for the first 32 fermions on
the right hand side. The first 31 of these give the fermionized Es level 2 (recall

c = 31/2).

In the simplest string models constructed from free world-sheet fermions, all
of the gauge bosons appear in the 0 (that is the fully Neveu-Schwarz) sector. In
contrast, in the model generated by (3.3) the only gauge bosons arising from the 0

sector are those for 0(4)@0(8) from the last 12 fermions, which play no role in the
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present discussion. All of the other massless vector boson states in this sector are
projected out by the constraints generated by V2 through Vs. On the other hand,

the operators creating the ground state of any linear combination of V2 through
V6 from the Neveu-Schwarz vacuum have conformal dimensions (b,l) (i.e., those of
Kac-Moody currents) and so can give rise to gauge bosons. Consider first the sector
V2. The product of 16 individual Ramond ground states is 256 fold degenerate, but
the vectors Vo,V3,V4,V5, and V6 generate 5 independent constraints, each cutting

this space in half, leaving 8 states surviving these projections. Finally, checking the
constraints generated by Vr, V7 and Vs, we find that the sector V2 contributes 8
gauge bosons to the spectrumif and only if ko2 = k72 and ICI2 = kg2 = 0. The other

30 nonzero  sectors generated by V2 through V6 are entirely analogous. Assume
for the moment that kij = 0 for any i if J’ = 2,3,4,5,6  (note that klj = 0 are the
necessary and sufficient choices for N=l supersymmetry in this model). Then we
have a total of 31 sectors, each contributing 8 gauge bosons, to make a total of 248
- just the number required for Es.

Generally, knowing the number of gauge bosons is insufficient to’determine the
gauge group. In the present case, however, we also know that the Kac-Moody the-

ory underlying the gauge group contributes central charge 31/2 or less. Consulting

eqn. (2.5), table 1 and the dimensions of the simple Lie algebras, one finds, after

a little effort, that E8 level 1 or level 2 are the only possibilities. To determine
at which level the Es is realized we need only check the other Es representations-

appearing in the model. At level 1 only the Es currents and their descendents
appear; at level 2 we have in addition the adjoint  and dimension 3875 representa-
tions. It is easy to see that the 31 sectors obtained from adding V7 to all nonzero

combinations of V2 through V6 are (for the bosonic half of the string) mirror im-
ages of the 31 sectors considered above, and thus contribute states in the adjoint

of Es, realized at level 2. These states have conformal dimensions 15/16 coming

from the first 31 fermions (which form the Es), and l/16 from the spin field of the
32nd  fermion. Given the form of the left hand side of V7 these states are massless
space-time scalars (in fact there are four families of them); if the left hand side
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of V7 were 0 these would provide instead an additional 248 gauge bosons which,

mixed with the 248 above, would generate Es @ E8 level 1.

What other operators transforming non-trivially under Eg level 2 are included
in the model we have constructed? In the 0 sector all states with either 1 or

2 excitations of the 31 fermions forming the Eg level 2 are projected out of the
spectrum; however, some fermion trilinears are allowed. A careful examination

of the constraints shows that we may pick any two fermions and then the third
is fixed, for a total of 31.30/6=155 dimension 3/2 operators. In any of the 31

sectors from the nonzero  combinations of V2 through V6 we may excite any of
the 15 fermions in the first 31 with Neveu-Schwarz boundary conditions, to again
get dimension 3/2 operators, in this case a total of 31.15.8=3720. Adding to those
above gives the expected multiplet of 3875 dimension 3/2 operators. Note that the
analogous operators in the sectors giving rise to the adjoint  scalars are projected

out of the spectrum - and rightly so for they would represent states of Et3 level 2

Kac-Moody algebra with dimension 23/16, which do not exist.

Es is not a terribly interesting group for low energy phenomenology, but many

of its subgroups are. We could try to construct these groups, realized as higher

level Kac-Moody algebras, directly within the spin structure construction. It is

in many ways easier, however, to generate them as subgroups of Eg by modifying

the construction just given. One simple possibility has already suggested itself.

Namely, if we take, say, k86 = l/2 then the sector V6 (and in fact all of the sectors

Vg+ any combination of V2 through Vg) will no longer contribute any gauge

bosons. Only a subset of the previous gauge bosons are still present, numbering

15*8=120. These must form the adjoint representation of some subgroup of Es.

The unique Es subgroup of dimension 120 is SO(16). Furthermore, it must be

realized at level 2, since a subalgebra of a level k Kac-Moody algebra always has

level k or greater and the available central charge is not consistent with SO(16) at
level k > 2.

The same effect of reducing Es to SO(16) is also achieved by taking k76 =

16



ko6 + l/2, or by modifying V6 (e.g., by changing the last 8 zeros on the right hand
side to 1/2’s)  so that the associated conformal dimension is no longer (0,l). In
any of these approaches the sectors V6+. . . no longer contribute gauge bosons,
while the projections in the sectors represented by any combination of V2 through
V5 remain unchanged. Applying the same trick twice ,e.g., to V5 and V6, only 7
sectors still contribute gauge bosons, breaking SO(16) to a subgroup of dimension

7.8=56. Given the symmetry of the vectors in (3.3) it seems likely that this group is

SQ(8)@0(8). Unlike the case above, however, simple counting arguments (and the

knowledge that we are dealing with a subgroup of SO(16)) are no longer sufficient to
rule out other possibilities (such as SO( ll)@U( 1)) and uniquely specify the group.
In principle this model is completely specified; we could calculate all of the three
point couplings and thereby determine the gauge group. In practice, however, the
difficulty in determining the gauge group and group quantum numbers of other
physical states is a severe limitation of the real fermion construction. We will
present one way around this difficulty in the following section.

There is another distinct way to break the &, gauge group of (3.3). We can

add additional vectors which project out some, but not all, of the gauge bosons
in any of the sectors generated by V2 through VS. The new sectors added in this
process can also contribute massless states transforming non-trivially under the
new gauge group. As an example let us replace V7 and Vs in (3.3) with the three

v e c t o r s ,-

vr, =((o)2(ooo)2(o~;)4  1 ($)32(o)‘2)

vg =((~)2(~oo)2(oo;)4  1 (o)‘6(~)8(o)20)

vg =((~)2(o~o)2(&)(oo~)(~oo)(o~o)  1 (o)20(~)8(o)4(~)2(o)10)  .

(3.4)

Vk differs from V7 only by its left hand side, and again, combined with V2 through
V6 will provide massless adjoint scalar fields. The left hand sides of Vi and Vg

serve to break the supersymmetry to N=l which survives provided that kT1 = 0.

The right hand sides of Vg and Vg break the Es gauge group. The result depends

on the kij’s and one must be careful about the precise definition of the projection
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operators (see the appendix) as the results in different sectors are correlated with
each other. We only give the briefest sketch of the results here. Consider first the
effect of VL without including Vg. In each of the sectors Vl,Vz, and Vl+V2 the
new constraint either permits the 8 gauge bosons present before-or projects them
all out. Depending on the choices for kij there are two distinct possibilities. These

three sectors together contribute either 24 gauge bosons or only 8. In each of the
28 remaining sectors contributing gauge bosons the new constraint is independent
of_those  present before and so cuts the number of massless vector states in half.
The two possible totals, then, are 120 or 136 corresponding to the E8 subgroups
SO(16) or E&SU(2) both realized as level 2 Kac-Moody algebras.

Now include the constraints generated by Vg. In 24 of the sectors the num-
ber of gauge bosons is again cut in half to 2 each. Six of the remaining sectors
can contribute either 0 or 4 gauge bosons, and VI contributes 0 or 8. The re-

sults from the different sectors are correlated so particular attention to the rel-

ative minus signs and operator orderings are required. The distinct possibilities
are E&SU(2) breaking to groups of dimensions 80 (EC @ U( 1) @ U(1)) and 7,2
(SO(l2)@SU(2)@SU(2))  and SO(16) to dimensions 72 (SO(l2)@SU(2)@SU(2)),
64 (U(8)), and 56 (SO(S)@SO(S)  and/or SO(ll)@U(l)).  These groups can be fur-
ther broken down by the first mechanism given above, e.g., choosing k76 = ko6 +1/2

removes all the gauge bosons from the sectors involving VS. This reduces the 80

gauge bosons of E6@U(l)@U( l), for example, to 48, which can only be the sub-
groui SO(lO)@[U(l)]“,  again at level 2.

We could proceed to examine further paths for breaking our original Es level 2
model to ever smaller groups, e.g., by modifying Vk and Vg or some of V2 through
V6 or by adding other vectors to this set. We have taken this exercise far enough
already, however, for our present purposes. Namely we have seen that many gauge
groups, including phenomenologically interesting ones such as Es and SO( lo), can
be realized as higher level Kac-Moody algebras in heterotic string models even
within the narrow confines of models constructed solely from world-sheet fermions.

As promised, features such as N=l supersymmetry and massless adjoint  scalar
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fields peacefully coexist within these models. To progress much further we need

to address the shortcomings of the constructions given so far. In ten dimensions
the Es level 2 model is the unique heterotic string (at least within the known
examples) with gauge group realized at higher level. In four dimensions this is
not the case. We borrowed the very symmetric and tight construction required in
ten dimensions for the four-dimensional example (3.3) mainly as a trick to identify
the gauge groups by virtue of their being Es subgroups. For larger groups such
aS&, however, this construction is much too confining. (With some additional

-
effort one can show, for example, that 27’s and 27’s of Es always pair up in these
constructions.) On the other’hand, for smaller groups the possibilities open up,
but our ability to identify the gauge group and representations of the various states
in the spectrum decreases.

3.4. TOWARDS REALISTIC MODELS: AN SO(10) LEVEL 2 EXAMPLE

In a string model constructed from complex fermions there is never any diffi-
culty in unambiguously determining the gauge group and gauge quantum numbers.
of all of the states in the spectrum. In this case the rank of the group is equal to
the number of complex fermions making up the bosonic half of the heterotic string

tand we can choose the operators $i$; as the generators of the Cartan subalgebra

of the group. The set of fermion charges for the physical states are then in direct
correspondence with the weight lattice of the group so that all the group represen--

tations may be systematically read off. It is this fact that has allowed practical
generation and analysis of such models by computer!“’

To obtain higher level Kac-Moody algebras we cannot restrict ourselves to
complex fermions. In fact we must practically avoid them, since if part of the
gauge group is realized with complex fermions then it is at level 1 and a level 1

subgroup implies that the entire group is at level 1. There is an exception to this
general rule, however. In the abelian  group U(1) there are no structure constants

to set the normalization of the current (c.f. eqn. (2.2)) and so the level of a U(1)

Mac-Moody algebra has no meaning. Thus the possibility exists that even for a
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higher level Kac-Moody algebra we can represent the generators of the Cartan
subalgebra (which is just a product of U(l)‘s) by tcomplex fermion bilinears nisi .

If this is the case the group representations of physical states can be read off from
the collection of fermion charges as before, without any ambiguity.

For ease in comparing with the level 1 realization we will consider higher level
SO(10) as an explicit example. Of the popular grand unified groups, SO(10) is
the simplest to realize (at level 1) in terms of free fermions; the currents are just
the non-vanishing fermion bilinears which can be built from a set of 5 complex
fermions. In the space of fermion U(1) h gc ar es normalized so that fermions and(

antifermions have charges 1 and -1 and the two Ramond ground states have charges

&l/2),  the root vectors are permutations of (&l, fl, O,O, 0). In particular a set of
simple roots is,

(1, -l,O,O, 01, (071,  -170, o>, (070, 1, -1, O), (O,O, 0, 1, l>, (O,O, 071, -1) (3.5)

Our immediate goal is to find an alternative embedding of the root vectors of.*
SO( lo), in particular one which does not arise from complex fermion bilinears.

We can take arbitrary boundary conditions for complex fermions, but for sim-
plicity let us confine ourselves to periodic and antiperiodic ones. In this case we

can uniformly employ the real fermion formulation summarized in the appendix

for all of the degrees of freedom of the string. First note the following. In the
level 1 realization above the root vectors all have length squared 2 (corresponding
to conformal dimension 1). Suppose we construct a representation in terms of the
fermions such that the root vectors (with fermion charges normalized as above)
have length squared 1. We could rescale the U(1) generators by fi to make the

root vectors of length squared 2 as before, but at a cost of doubling the most sin-

gular term in the OPE of any of these U(1) generators with itself. In other words,

the Kac-Moody algebra would be realized at k = 2 (c.f. (2.2)).

With this in mind, promising choices for the root vectors are some permutations
of (*l,o,o,o,o) and (&$,&f, *f, &i,O). It is not difficult to see, however, that
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within this five-dimensional space these vectors by themselves are insufficient to

reproduce the SO( 10) root space (scaled down by a factor of l/2 from that given
above). Adding a sixth complex fermion makes the construction possible, though.
A suitable basis of simple roots, ordered the same as those in (3.5), is given by,

What we are representing is in fact SO(lO)@U(l).  The sum of the last two U(1)
factors is the extra U( 1); the d,ffi erence is the fifth element of the Cartan subalgebra

of SO(l0).

In order to embed this construction within a four-dimensional string model
we must insure that the roots are part of dimension (0,l) operators and that no
o t h e r  (0,l) po erators appear which mix with these, especially ones which would
extend the Cartan subalgebra. It is perhaps easiest for explanatory purposes to
write down a set of boundary condition vectors which does the required job and.L 1*
then motivate this particular choice. Consider then,

vo =((g”(;;$ 1 (;)44)
Vl =(($)2($oo)6 1 (o)44)

v2 =((Q20 I (t)8(o)4(s)8(o)24)
- -A73 =((0)3a 1 (o)‘6(~)8(o)20)

v4 =((q20 I (f)2(o)4(3)8(o)2(~)2(0)2(9)2(0)2(~)2018)
v5 =-((~)2(~oo)2(o~o)4  1 (f)4(o)4(~)2(o)2~o~o~o~o~o~o~o(~)3(0)15)
vfj =((~)2(o~o)2(~oo)2(oo~)2  1 (o)8(;)4(o)17($)4(o)11)
v7 =((o)2(ooo)2(~o~)4  1 (;)8(o)36)  .

P-7)

The root space spanned by (3.6) is meant to be embedded within the first 12
real fermions of the right hand side of (3.7). The boundary conditions are such
that they may be grouped in pairs and so these fermions could equally well be
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replaced by 6 complex ones. Of the original 66 fermion bilinears formed from these

fermions (which generate SO(12)) all but 6, generating [U(1)16,  are projected out
of the physical spectrum. The boundary conditions for these first 12 fermions are
chosen to reproduce the desired SO( 10) group quantum numbers. For example all
of the boundary conditions which are required to attempt to reproduce the root
space spanned by (3.6) are provided by linear combinations of V:!,V3, and Vq;

the components other than the first 12 on the right are chosen so that the states

with-these desired quantum numbers will have conformal dimensions (0,l). The
vertex operators for these states will consist of either a fermion or 8 spin operators
from the first 12 fermions (giving conformal dimension l/2) together with 8 spin
operators from the next 14 fermions (giving the remaining dimension l/2). We
must also eliminate any dimension (0,l) states from these sectors which are not
in the SO(lO)@U(l)  root space. In the sector V3, for example, we only want

states with one of the first 8 fermions on the right excited so V7 is added for the
purpose of singling these components out. The boundary conditions for the 14
fermions after the first 12 insure that they may not be consistently paired up in

any way, thus eliminating undesired fermion bilinears which could mix with the

SO( lO)@U( 1) gauge bosons.

The specific forms of V5, Vfj, and V7 were chosen with four other goals in
-

mind. First we want massless fermions transforming as 16’s or 16’s of SO(10).
T-he -highest weight for these representations have Dynkin labels (that is twice

the inner product with the simple roots as normalized in (3.6)) of (O,O,O,l,O) and

(O,O,O,O,l).  T hese correspond to weight vectors in our chosen basis of simple roots

of the form ($,~,O,O,~~,O).  V5 provides just the required boundary conditions to

embed this weight vector within a massless (i.e., dimension (l/2,1))  fermion state.

In addition we would like these states to be chiral.  V6 is chosen so that its nonzero
components overlap with those of V5 only for the two space-time components on
the left and the ninth and tenth fermions (corresponding to the U(1) charge in

SO(10) distinguishing 16’s from 16’s) on the right. Thus the constraint from V6
on the states in sector V5 will correlate the space-time helicity  with the group

22



quantum numbers making chiral states possible. A massless scalar field in the
adjoint  of SO(l0) is another feature on our list. The Dynkin label is (O,l,O,O,O)

corresponding to the highest weight vector (l,O,O,O,O,O)  in the basis (3.6). This can
arise from the sector V2+V7.  Finally, the left hand sides of V5, Vg, and V7 are

such that the supersymmetry is reduced to N=l.

After making a list of desired features and finding embeddings for the roots and

weights which achieve them, it was relatively quick and straight forward to write
down the set of vectors (3.7) which plausibly realize these goals. It is considerably

more lengthy and tedious (but ultimately necessary) to examine the model in

some detail to insure that choices for the kij’s exist which make all of the desired

projections compatible. In addition we must check that no linear combinations of

Vo through V7 provide massless states which are unpleasant surprises. We will
sketch the results for (3.7), which prove to be quite satisfactory.

The sector 0 contributes the 6 U(1) gau eg bosons of the Cartan subalgebra of

SO( lO)@U( 1) and in addition generators of SU(2)@SO(4)@SO(ll).~  The SU(2) is,

realized at level 2. In the summary of the model below we will ignore those states
which are singlets under SO(l0). Checking the V1 sector we have N=l space-time

supersymmetry if k2l = k31 = kql = 0 and k51 + Icy1 = ko1, otherwise N=O. The
sector V3 contributes 8 gauge bosons corresponding to exciting one of the first 8

fermions on the right hand side if k73 = l/2 and k63 = 0. Provided in addition that
kS2 i 0 the sectors V2 and V2+V3 contribute 8 gauge bosons each. Together with

the 8 above and the first 4 U(l)‘s these generate an SO(8) subgroup of our eventual

SO(lO), as can be seen explicitly from their U(1) hc arges. The sectors Vq, V4+V2,

v4+v3, and V4+V2+V3 each contribute 4 more gauge bosons to complete the
adjoint  of SO(lO)@U(l). If k64 = l/2 then the simple roots are precisely in the

basis given in (3.6). If k64 = 0 then the group is the same but now the sum of the
final two U(1) ‘s is in the Cartan subalgebra of SO( 10) and the difference is the left

over U(1).

The 8 sectors Vg+{V2,V3,V4} i.e., V5 plus any combinations of V2, V3 and
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V4, contribute four families of massless chiral fermions in the SO(lO)@SU(Z)@
SO(4)@SO(ll) representation (16,2,1,1). Whether the space-time left handed

fermions are 16’s or 16’s depends on the value of k65. The 8 sectors VT+{V~,V~,
Vq} contribute four families of massless scalar fields in the adjoint-of  SO( lO)@U( l),
and some additional scalars in the representation (lO,l,l,l).  The O+{V2,V3, V4}

sectors together also contribute scalars in these representations. In both cases the
adjoint  is realized in a different way from the SO(10) currents. For example in the
latter case, the states in the Cartan subalgebra of the adjoint  representation arise
from the V3 sector for the scalars but the 0 sector for the Kac-Moody currents.
The 8 sectors Vg+{V2,Vs,V4’}  and the 8 sectors obtained by adding V3 to these,
both contribute massless fermions in the representations (10,1,2,1). The only other
sectors contributing massless states are obtained by adding VI to those considered
above. Not surprisingly, these give the super-partners of the states from those

sectors.

The vectors in (3.7) can be modified somewhat or new vectors added without
destroying the features we have built into the-model. We will effect only one smaH
improvement here, breaking the “horizontal” symmetry group SU(2) and reducing
the number of chiral families of SO(l0). Add the vector,

v8 = ((o)2(~~o)(~o~)3(ooo)2  1 (o)27(;)50(~)3(o)8) W)

to the set (3.7). This has th ree significant effects on the model discussed above.

First-the SU(2)@SO(4)@SO(ll)  fac or in the gauge group is broken to U( l)@SU(2)t

@SU(2)@SO(S).  Second the number of chiral fermion states found in the sectors
considered above is cut in half to four families of (16,1,1,1)  of SO(lO)@SU(2)@SU(2)
@ SO(8). Finally, the a ‘oint scalars from the O+{V2,Vs,V4} sectors are projecteddj
out, while two of the four copies of adjoint scalars from the V7+{V2,V3,V4}  sec-
tors remain.

To summarize: The model given by (3.7) and (3.8) includes gauge group SO( 10)

realized as a level 2 Kac-Moody algebra, N=l space-time supersymmetry, 4 chiral

families of SO(l0) and massless scalar fields in the adjoint  of SO(10).
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4. Further Possibilities

The examples of the previous section represent first attempts at embedding

higher level Kac-Moody algebras within heterotic string models. The approach
taken was neither exhaustive nor very systematic so the possibilities for such models
remain largely unexplored. A brief mention of the approaches which might prove
useful in this endeavor is in order.

- - First consider the fermionic constructions of the previous section. At this stage

even the question of which gauge groups may be realized and at what levels re-
mains unanswered except that the possibilities are many. Note that the theorem of

ref. [26] concerning which Kac-Moody currents can be realized in terms of fermion
bilinears is not relevant for our purposes here. First, because the currents need

not be realized as bilinears (as we have seen) and second because finding a repre-
sentation of the currents is a far cry from finding a complete, modular invariant
theory. It would be extremely useful if we had powerful and systematic methods
for discerning the group structure of the most general real fermion.constructions,

This would greatly enlarge the practical possibilities for model building. In the
meantime much more can be done with the trick used for the SO(l0) model above,

namely representing the Cartan subalgebra with complex fermions. In particular,

arbitrary boundary conditions can be chosen for the complex fermions, allowing
for a broader range of roots and weights to be realized. Note that while we focused

-
on the spinor and adjoint  representations in the examples above, massless states
in other representations (e.g., 54 or 126 of SO(10))  should be equally possible to
realize.

-

We chose the fermionic construction for the examples of section 3 principally

because the explicit operator representation available for free fermions allows us to
systematically construct asymmetric modular invariants and successfully address

the issues of crossing symmetry of amplitudes and multi-loop modular invariance.

Another possibility which shares some of these advantages is constructing heterotic
string models as asymmetric orbifolds!” Higher level Kac-Moody algebras can cer-
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tainly be achieved in this fashion. For example, modding out a level 1 group G@G

by the outer automorphism interchanging the two G’s leaves the diagonal sub-

group, G at level 2. Presumably these include some models which can’t be realized
with fermions. On the other hand multi-loop modular invariance is not guaran-
teed and is difficult to analyze within this construction. In addition, insuring that
an asymmetric twist can be made consistent with one-loop modular invariance in

general requires a detailed knowledge of the effect of the twist on the particular

la&tic-e realization of the model we start with. For phenomenologically interesting

cases the models we wish to twist asymmetrically are already quite intricate, which

makes this construction awkward to apply in practice. Perhaps the “twisted bo-

son” formalism of ref. [lo] will prove a more systematic way of constructing these
models .*

Ideally the most general and in some sense transparent possibility would be
to construct heterotic string models directly from tensor products of Kac-Moody

characters at different levels, perhaps together with tensor products of assorted
.L

minimal models. We know from experience that an enormous and varied collectio;

of consistent models can be obtained from tensor products of Ising models (i.e.,

free fermions) of which only a tiny and rather uninteresting subset are based on

left-right symmetric modular invariants. It is reasonable to expect proportionally

richer possibilities for left-right asymmetric tensor products of Kac-Moody char-
acters and minimal models. In these latter cases, however, we lack an explicit

operator representation (the analog of free fermions) and so have not succeeded to
date in systematically constructing consistent theories. Some new methods must

be developed before systematic construction of such models becomes practical. To

cite one possibility currently under investigation: To some extent it is possible to

* Note: In the second paper of ref. [lo] the authors  claim to have  constructed  a nonsupersym-
metric model with chiral fermions and  massless adjoint scalar fields. As the gauge group
appears  to be at level  1 and, moreover,  the adjoint scalars  are built from the Kac-Moody
currents  themselves,  this contradicts the general arguments  given  in sect. 2. We suspect
that there is some problem with this model but have  not familiarized ourselves  sufficiently
with the formalism  to locate it.
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address the questions of crossing symmetry and modular invariance (at least at the
one loop level) just in terms of the most readily accessible quantities in Kac-Moody
theories or minimal models, that is the conformal dimensions and fusion rules. Ap-
propriately matching up these quantities for the holomorphic  and antiholomorphic
theories being sewn together it is possible, with only modest additional informa-
tion, to construct non-trivial asymmetric modular invariantsr7’ though not as yet

in any systematic fashion.
- -

5. Summary and Conclusions

The most important problem in superstring theory, if we wish to treat it seri-
ously as a theory of everything, is the identification of the underlying principles of
string dynamics which perhaps pick one vacuum state- that in which we live-
from out of the multitude of classical string vacua which we know to exist. Given
this situation, constructing particular new string models is of use only if they incor-

porate considerably different low energy phenomenology than the classes of models

previously studied, or if they teach us something about the general properties of
string vacua and the space in which string dynamics operates.

The constructions we have given here satisfy both of these criteria. Heterotic
string models in which the gauge group is realized as a higher level (Ic 2 2) Kac-
Moody algebra-on the string world-sheet can incorporate particles in group rep-
resentations not present if k = 1, thereby opening new possibilities for string

phenomenology. Such models have not appeared in the past for largely techni-
cal reasons- namely the difficulty in insuring modular invariance in left-right

asymmetric constructions not built from free bosons. In the numerous examples
given here, this hurdle was surmounted within a construction employing free real

fermions. The most realistic model presented includes gauge group SO(10) real-

ized at level 2, N=l space-time supersymmetry, four generations of chiral fermions,
and massless scalar fields in the adjoint  of SO(10) which could serve to break the
symmetry spontaneously to the standard model gauge group. The appearance of
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massless adjoint  scalars together with N=l supersymmetry or chiral fermions is not
possible if the gauge group is realized at level 1. Thus heterotic string models in-
corporating higher level Kac-Moody algebras open the possibilities for embedding
standard GUT’s within string models, and remove much of the string motivation
behind models such as flipped SU(S)@U(l) w ic can break to the standard modelh h

without adjoint  Higg’s fields.

It should be emphasized that our main purpose in the present work is not to
promote the virtues of models whose gauge symmetry at the Planck scale is a grand
unified group rather than the standard model one. Indeed the latter case can also be
realized via a higher level Kac-Moody algebra with new phenomenological features
which should be explored. Rather we wish to emphasize the broader point that
the possibilities for string vacua remain largely unexplored and those considered

to date likely do not even constitute a representative sample. In particular, we

should not focus solely on compactifications (i.e., basically left-right symmetric

modifications) of the ten-dimensional heterotic string in trying to deduce general

phenomenological features of string models or in specifying the parameter spadi
for string dynamics. It may turn out, once the necessary technical hurdles are
overcome, that it is left-right asymmetric conformal field theories which are in fact
the basis for the bulk of string vacua.
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APPENDIX

In this appendix we summarize the necessary formulae and results needed

for constructing consistent string models out of free world-sheet fermions. The
focus will be squarely on the case of four-dimensional, heterotic string models in
light-cone gauge, built from free real fermions with an [SU(2)16 symmetric form
for the world-sheet supercurrent. The formalism for more general cases- type

II or bosonic strings, mixed real and complex fermions (with arbitrary boundary-- _
conditions), other forms for the supercurrent, etc.- are all similar and given in
the literature.

The particle content of a string model is most succinctly given by its one-
loop vacuum amplitude. In a mathematically consistent and physically sensible

theory this object must be a modular invariant function of the complex modular
parameter 7 and behave like a physical partition function. In the present case the
general solution for the internal degrees of freedom can be written,

.*

qT, q = 2 ezp[27ri  C(ojV/ + P,(ki;aj + vi1 -kv; * cxV))j*
(Yj ,Pi=O

(A.1) -

subject to,

Tr[exp(2&(TH,v - ?fiav))ezp(-2ri@V.  Nav)] ,

kij, V;” E (0, i}

kij + kji = :Vi . Vj (mod 1) (A4

kii + t&o + K1 - :Vi * Vi = 0 (mod 1) 64.3)

64

4~I$vj$!  = 0
kl

(mod 1) V i,j,k (A4

The chief inputs defining a given model are Lorentzian vectors, Vi, of dimen-
sions (20,44) which define the boundary conditions on the 20 real fermions in the
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supersymmetric half of the string and 44 real fermions in the bosonic half. The

components of the Vi take values 0 or 3 corresponding to anti-periodic or periodic

boundary conditions, respectively. All dot products involving these vectors are

defined with Lorentzian signature. The set of vectors {Vi} appearing in (A.l) are
chosen to be linearly independent and must include the vector with all components
f, denoted Vo. In addition, the boundary conditions must be chosen consistent

with the world-sheet supersymmetry of the supersymmetric half of the heterotic
string. For the purposes of this work, the [SU(2)]6 symmetric realization of the

world-sheet supercurrent in terms of fermions proves by far the most useful in that
it permits the most freedom in choosing different periodic and anti-periodic bound-
ary conditions. To be consistent with this form of the supercurrent all of the Vi’s

must satisfy the “triplet” constraint14’51,  i.e., be of the form,

(aa(A1B1C~)(A2&C2).  . . (Ad3sCs) 1 . . . . . .)
(A-5)

with -Ai+Bi+C;=a (mod 1) .

The sum over different values for the oj in (A.l) gives all sets of boundary con-

ditions around the closed string generated by the linear combinations of {Vi}. This

splits the partition function into different sectors labeled by the vectors crV, with

Hamiltonians H,v for the bosonic half of the string, BTLuv for the supersymmetric
half,. and a vector of number operators, Nav, for the 64 fermions. The overbar
indicates that only the fractional part of the linear combinations, CYV E C; o;Vi,

of components is kept in defining aV. The sum over different values of the /3i
generates all sets of boundary conditions ,BV around the other non-contractible

loop of the world-sheet torus. This serves to project some of the world-sheet states
out of the physical spectrum. The precise projections depend on the values cho-

sen for the set of parameters kij, and the definition of the exponential of fermion

number operators appearing in (A.l). The latter is straight forward except for the

presence of fermion zero modes for which the exponential of the number operator

is replaced by a product of zero mode operators, y”, which, properly normalized,
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satisfy the commutation relations of gamma matrices. A consistent and techni-
cally convenient definition is ‘15’ (NL, denotes the vector of number operators for

the non-zero modes),

e-h@V.N,v _ rcyVe-2xiPV.Nhv
PV

j

g; - (i)Fy”y” . . .y”’ with Zr < 22 < . . . I, and Vjk = VP = i .a

(A.6)

The states surviving the projections in (A.l) are then the ones satisfying,

[Vi. NL, + i(l- I’:“)] 1 phys) = (x kijaj  + V;’ - SVi *X) 1 P~IJS) (mod 1).
.i

(A.7)
The massless physical states - which are the only relevant ones for low energy
phenomenology- are those whose vertex operators have conformal dimensions

($,l) in addition to satisfying (A.7). The operators creating the ground state of the

aV sector from the 0 sector (i.e., the Neveu-Schwarz sector, which has dimensions
(0,O)) have conformal dimensions (3 C~~l(~z)2, i ~~~21(av”)2).  Each Neveu-

Schwarz  fermion contributes conformal dimension 3.-

-

Before discussing practical considerations of string model building a few words
about multi-loop modular invariance are in order. Any modular transformation
on a higher genus Riemann surface can be generated by a sequence of Dehn twists

about the non-contractible loops on the surface. The most general type of Dehn
twist appears already at genus 2 so it is sufficient to consider two-loop modular

invariance. The determinants for complex fermions with arbitrary boundary condi-

tions on higher genus Riemann surfaces are known, along with thier behavior under
modular transformations.[281 Four independent sets of boundary conditions appear
in a two-loop amplitude. If the boundary condition vectors satisfy an additional
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“quartic” constraint,

c gv.$~v’v’ = 02 J kn (mod 1) V i,j, k,n , (A-8)

then any term with fixed boundary conditions contributing to the two-loop ampli-
tude can be expressed in terms of complex fermions and hence its behavior under

modular transformations determined explicitly. Using this fact it has been shown
directly in these cases that the string models constructed according to the equa-

tions above are multi-loop modular invariant!79151  Note also that if (A.8) is satisfied
then all of the operators in eqn.(A.G) commute and so no subtleties arise in the
analysis due to operator ordering.

If eqn.(A.8)  is not satisfied then we can deduce the modular behavior of the
two-loop amplitude from the corresponding complex fermion calculation only up
to a sign, and the number operators defined in eqn.(A.G) for different sectors of

-the theory need not commute. Failure to appreciate these subtleties led at one
time to the conclusion that the quartic constraint (A.8) is required for a consisten%

theoryy’71 but this proves not to be the case. A careful account of the operator

structure showed that eqns.(A.l)-(A.4) are sufficient for one-loop consistency. (151 In

more recent work, Sonoda[211 has shown that in any conformal field theory multi-
loop consistency is guaranteed if all four-point tree amplitudes in the theory are
crossing symmetric, and all one-point one-loop amplitudes behave correctly under
modular transformations. The sufficiency of the constraints (A.2)-(A.4)  for multi-

loop consistency can be infered from this result. Any four-point tree amplitude

within a string model given by eqn. (A.l) involves only three independent bound-

ary condition vectors CYV (the fourth is the sum of the other three) and so it is not
difficult to see that the “cubic” constraint (A.4) is sufficient to guarantee the cross-
ing symmetry of any four-point amplitude. That one-point one-loop amplitudes in
these models behave correctly under modular transformations was implicitly shown
in the analysis of ref. [15]. The modular invariance of the partition function (A.1)
was examined at the operator level, and holds fermion by fermion except for over
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all phases which cancel once all of the fermions are considered together. Treated
simply as a function of 7 all the contributions to the partition function from any
sectors with Ramond fermions identically vanish. Thus to derive nontrivial re-
sults one must in fact consider (A.l) ta an operator level, allowing for operator

insertions which can give a non-vanishing result. In ref. [15] this was achieved (in
slightly roundabout fashion) by considering particular two-loop amplitudes in the
limit where they factor into products of one-point one-loop amplitudes.

- -The practical construction and analysis of string models using the formalism

sketched here is much simpler than the equations given above might imply. Having
already guaranteed modular invariance we need not consider the partition function
any further. In fact, for low energy phenomenology we need only consider the
physical state projection conditions (A.7) for a small subset of the sectors of the
theory- those which can contribute massless states. The most efficient approach

to constructing a model with certain desired features is the following. First, specify
a self consistent set of vectors Vi ignoring the kij’s. Multiplying the constraints
(A.2) and (A.3) by 2 to e iminate the kij dependence we find three simple conditions1
f r o m  (A.2)-(A.4)  h  hw ic must be satisfied in addition to the triplet constraint (A.5):

1) the number of non-zero components (counting left minus right) of each Vi is a
multiple of 8; 2) the number of non-zero components (counting left minus right)
common to any two vectors Vi and Vj is a multiple of 4; and 3) the number of

non-zero components common to any three vectors is a multiple of 2. The first-
condition is necessary for modular invariance under T -+ r + 1 (level matching)
and the other two guarantee that the first condition is satisfied for any linear

combination of the vectors {Vi}.

The vectors Vi are best chosen in two stages. First, include vectors which
generate all sectors of the forms required to produce the specific particles desired.
For example, massless states can arise only from vectors aV with 0 or 8 a’s in the
first 20 components and 0, 8 or 16 4’s in the last 44. The first two components
(Vi’ and Vi”) correspond to the space-time degrees of freedom; the values 0 and 3
indicating space-time bosons and fermions, respectively. The unique sector, up to
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reordering of components, which can contribute space-time gravitinos is,

Vl =  (;$(;oo)6  1 (o)44)  .

Massless vector bosons require vectors whose first 20 components vanish. The form
of these vectors give a good idea of what sort of gauge group can be realized and,
in turn, what sort of vectors should be included to give massless fermions or scalars
inspecific representations. Having chosen vectors which plausibly provide the par-
ticles desired, one should then add vectors (consistent with those already chosen)
which can project out states which we do not want and, at the same time, not con-
tribute unwanted particles in the new sectors added. For example all the gravitinos

but one can be projected out to guarantee N=l space-time supersymmetry, or a
vector can be added which correlates the space-time and gauge degrees of freedom,
thereby permitting chiral representations. The number of sectors grows exponen-

tially with the number of-vectors. Accordingly, a ten or twenty line computer

program to check for self consistency and identify sectors which can contribute
massless states is highly recommended.

After writing down a promising set of vectors {V;} the important sectors must
be considered in some detail to determine if values for the k;j’s exist which give the

desired projections (c.f.,(A.“r)).  The parameters kij for i > j are independent; the

others are fixed by the constraints (A.2) and (A.3). In a given model only a few of

these parameters significantly affect the physical spectrum. The redundancy of the

other kij (many need not be specified at all) is due to the high degree of symmetry in
the fermionic construction.[2” In most cases we can ignore the precise y orderings

in eqn. (A.7) because the resulting minus signs can be absorbed into different
choices for the redundant kij’s. With some practice the important features of even
very complicated models may be determined with a minimal amount of tedious
analysis.
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Table 1. Dynkin  diagrams for the simple Lie algebras. The simple roots are labeled
by the co-marks, m;, used in eqn.(2.3) and h is the dual Coveter number of the

algebra.


