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In our current understanding, a string model, or more precisely a classical
solution to the string equations of motion which may serve as a vacuum for pertur-

bation theory, consists of familiar spacetime machinery (string coordinates, RNS
fermions, reparametrization ghosts, etc.) together with a two-dimensional confor-
ma1  field theory (CFT) which describes  the string’s “internal” degrees of freedom.

The possible choices of CFT’s (and correspondingly string models ) are myriad and
largely unknown, with no prospects for a complete classification in the near future.
Given this situation, it makes sense to examine general properties of CFT’s and
determine if these imply any general features of the space-time physics described
by the string. For example, the existence of certain holomorphic  algebras in a CFT

(Virasoro, Kac-Moody, super-conformal, etc.) are directly related to the existence
of space-time symmetries (gauge, SUSY, etc.). The proof by Dixon, Kaplunovsky
and Vafa that the standard model cannot be embedded within a generalized type
II string ‘1 exemplifies the use of such relations to constrain the possible physics
obtainable in string models.

There are other highly constraining general properties of CFT’swhose  impac6
on space-time physics is much more difficult to determine. In particular a consistent
CFT must have modular invariant amplitudes. It is this requirement, for example,
which restricts the possible gauge groups of the lo-dimensional heterotic string

to only a small handful. The consequences of modular invariance can only be
studied systematically, however, within simple classes of string models, for example-

those constructed out of free world-sheet bosons or fermions, symmetric orbifolds,
symmetric collections of minimal models, etc. This is because one loop modular

invariance involves all of the string states, not just the massless (or small mass)
states of interest for low energy phenomenology. Moreover, it has not proven

possible to implement these conditions at an operator level; thus a complete model
or class of models must be constructed before connections with space-time physics
can really be made.

As an alternative to directly studying modular invariance in the hope of deduc-
ing general properties of string models, I would like to advocate examining another
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necessary and highly constraining requirement of a consistent CFT, that of cross-
ing symmetry (duality) of tree amplitudes. Unlike modular invariance, crossing

symmetry of a given amplitude involves only a subset of the fields in the CFT
and may be analyzed directly at the operator level. A complete treatment requires
more detailed knowledge of a CFT than we would like to assume for finding general
properties of string theories. Instead, I’ll present simple constraints derived from

crossing symmetry which only involve the most immediate quantities of interest in
a- CF.T,  namely the conformal dimensions of the primary fields, and their fusion
rule algebra 2j31 (i.e., the knowledge of which fields couple to which). The deriva-
tion of these relations has been given elsewhere 4l (in pedagogical fashion with

examples and related work); Here I’ll confine myself to presenting the constraints
and briefly discussing their utility and applicability.

Any four-point function of primary fields on the plane, ($r&$s&),  may be
factorized into sums of products of three-point functions in three different ways;
crossing symmetry is the requirement that these three channels give the same
result 21. Diagrammatically we require, - .v

F:jT--(:=2;:)?-(;=?) ?- (2 (l)
3

This-gives rise in particular to the following simpler constraint 4j51,

A4 = N(f: nj) + N(N - 1)/2 - 5d;, + di3 + di,,) ; MEZ>O . (2)
j=l i=l

Here Aj are the dimensions of the external states, di2, df3, di4 the dimensions of
primary fields appearing in the 12, 13 and 14 channels respectively, and N is the
number of primaries (of the full holomorphic algebra of the CFT) which appear
in each of the three channels (crossing symmetry requires that there be the same
number). Knowledge of the fusion rule algebra is implicit in determining which
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primary states appear as intermediates. Fusion rule coefficients, Nijk, 3l which are
> 1, or distinct primaries appearing in a given amplitude which have the same
conformal dimensions modulo integers, both lead to stronger versions of eqn(2)
(see [4] for details). The analogous relations for higher point amplitudes are easily
derived but give no new information beyond the constraints from all nonvanishing

four-point amplitudes in the theory. The less stringent conditions corresponding to

eqn.(2) with M allowed to be any (possibly negative) integer, correspond to those

. found previously by Vafa 61, and can be deduced from the polynomial constraints
of Moore and Seiberg ,71. These approaches, which focus on the modular properties
of amplitudes, quite generally give no information about the integer part of the
conformal dimensions.

The virtue of the relations given in eqn.(2) are their simplicity and dependence

only on the most immediately accessible objects in a CFT, the dimensions and
fusion rules. As such, they prove to be of great practical use for constraining these
quantities in any conformal field theory with a finite number of primary fields ap-

pearing in some four-point amplitudes (the theory need not be restricted to a finit‘E
total number of primary fields in order for eqn.(2) to apply). For example: we know
the dimensions of the primary fields in many CFT’s for which we have only partial
knowledge of the fusion rules. The complete fusion rules can in principle be found
using the differential equations which follow as a consequence of whatever holo-
morphic algebra is present, or by explicitly evaluating the modular transformation

properties of the characters and using Verlinde’s relation 31. In practice, however,

it proves much simpler to apply Vafa’s conditions or their generalizations given

in eqn.(2) for some convenient four-point amplitudes and thereby determine the

allowed fusion rules for the given conformal dimensions. For example, the SU(3)

level 2 WZW model has six primary fields corresponding to the representations
I, 3,3,6,6,8 with dimensions 0, 4/15,  4/15, 2/3, 2/3, 3/5, respectively. Finite
group theory limits the possible fusion rules somewhat, e.g., a 6 and a 6 might
fuse to a 1 and/or 8 as might two 8’s. Demanding crossing symmetry (e.g., in the

form given in eqn.(2))  for the amplitudes (6666) and (8888) one easily finds that
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the only consistent possibility is 6 .6 - I and 8 . 8 - 1+ 8.

To what extent can we employ crossing symmetry to probe the general struc-
ture of string vacua.7 One approach is to solve a class of string models, identify some

interesting general features of this class, and then use constraints such as eqn.(2)

to see to what degree these results can be extended to models constructed from

general CFT’s.  To illustrate, consider the case of four-dimensional heterotic string
models in light cone gauge constructed solely from free world-sheet bosons. The
~-. one loop partition function for the bosonized RNS fermions and internal degrees

of freedom is 81,

Z&T, F) = q-22q-1o c ezp(imQ; -ieQ; +2r;Q.s> .
QE~--S

Here, Q = (QL 1 QR) and S = (1, 0, . . . 0); modular invariance requires that Q2 be

an odd integer and that r-be a Lorentzian, self-dual lattice of dimension (10,22).
The first component of each lattice vector is restricted to take integer or half integex
values (since it represents the two bosonized RNS fermions in the light-cone gauge
in 4-dimensions); by self-duality this is equivalent to 2s E I’.

There are additional constraints on l? from world-sheet supersymmetry , but
for simplicity I’ll consider here only two simple features of these models which

dpn’t depend on these details and which will serve to illustrate possible uses of

eqn.(2).  First note that the existence of a vector in I of the form (0, k 1 k, 0.. .O)

with k2 << 1 gives rise not only to a small mass space-time tensor state but to
an entire tower of such states because all multiples of this vector appear in I.
In other words, within this class of models the existence of a small mass tensor
state necessarily implies decompactification at that energy scale. Second, consider
the effects of including a vector g = (1, a 1 0,. . . 0) E I’ with a2 = 1. This
leads directly to gauge bosons coming from the world-sheet supersymmetric half

of the heterotic string (the space-time vector index is contributed by exciting one

of the string coordinates in the bosonic sector). It also necessarily means that the
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resulting model is non-chiral. A massless fermion of positive helicity arises from

a lattice vector in F of the form f+ = (3/2,  b 1 d) with b2 = 3/4,d2 = 2 and
a. b = H/2 (I’ is integral so g . f+ E 2). Given g, f+ and 2s in I’ all linear
combinations, in particular the vector f- = (l/2, b T a 1 d) are also in I’. But this

vector represents a massless fermion of opposite helicity to f+ with the same gauge
quantum numbers (encoded in d). Thus within this class of models, gauge bosons
from the supersymmetric half of the string imply the absence of chiral fermions.

--Are these results true for general string models? The space-time degrees of
freedom can again be represented by free world-sheet bosons; the internal degrees
of freedom are now replaced by some unspecified CFT. Consider first a model
with a light mass tensor state. This corresponds to a primary field in the CFT,

call it 4, with small conformal dimension, A, << 1. In the free boson case this
implied decompactification because the operator with small conformal dimension,
,ik4 , generates through its OPE’s an entire tower of small dimension states, eink”
(a representing the free boson fields). In a general CFT we need to explore the
possible conformal dimensions appearing in the operator algebra generated by (6:
To do this we can apply eqn.(2) to the four-point function (&@), where 4 is the
conjugate operator to 4. If only a single intermediate state primary appears in

each channel of this amplitude (i.e.,N = 1, & N I,&$ N $2) then eqn.(2) implies

A42 = 4A4. Considering then eqn.(2) for the amplitude (&&&&) for i = 2,3,. . . we
find again an entire tower of states with small dimensions, A,i = i2Aq, indicating-

decompactification. On the other hand, if more than one primary appears in
each channel of (&#&) then eqn.(2) may be satisfied with the dimensions of the
intermediate state primaries all of order 1, so it is possible for 4 to be the only
small dimension field in the theory. Thus in a general string model a small mass
tensor state necessarily implies decompactification if the $4 OPE contains a single
primary field , but otherwise not.

Now consider the second case; Does a gauge boson from the supersymmetric

half of a heterotic string always preclude chiral fermions? This has already been
proved to be the case in ref.[l] using knowledge of the super Kac-Moody algebra

6



generated by the RNS fermions and the dimension (l/2,0) field which gives rise to

the gauge boson. We can prove the same result exactly as we did for the free boson

case above, without using any knowledge of the holomorphic algebra generated by
the fields, by using eqn.(2) to provide all of the information we need about the
operator algebra. The states of momenta a and b are replaced by operators in the
general CFT, a and ,B, with dimensions l/2 and 3/8 respectively. The operator

algebra generated by the analogs of g and f+ again contains the analog of f-, a
fermion of opposite helicity to f+ with the same gauge quantum numbers . In this

case level matching (i.e., modular invariance under 7 + 7 + 1) guarantees that the
internal left moving piece of fi (i.e., the analog of b F a) has conformal dimension

3/8 (mod 1). Applying eqn.(2) to (o&p/?) we can fix the integer piece and find
the dimension to be 3/8, i.e., the fermion is massless, completing the argument as
before. Only a single primary contributes in each channel of the amplitude because
Q: is a holomorphic operator.

The two examples given above, while of only limited interest in their own right,
accurately illustrate the utility and limitations of using the constraints in eqn.(2) td
study the properties of classical string vacua. Since eqn.(2) relates states of different
conformal dimensions it is especially useful for examining small mass scales in string

models, e.g., studying conditions implying decompactification; finding relations

between purely massless states is less direct. As we have seen, in order to apply

eqn.(2) to a given amplitude we need (or must assume) some information about the
number of primary fields appearing in the amplitude. Knowledge of the structure
of an amplitude for either the left or right movers is generally sufficient for this

purpose, since the number of primaries appearing is necessarily the same for the
holomorphic and antiholomorphic parts of any amplitude. Eqn.(2), and crossing

symmetry in general, is particularly powerful for studying holomorphic fields, even
those of large conformal dimension which may generate complicated or unknown

algebras, It is worth recalling that the requirement of crossing symmetry was

used in the original proof that dimension (1,0) fields must gaerate a Kac-Moody
algebra .91
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Finally, let me conclude by stressing a basic property of the crossing symme-

try constraints, including eqn.(2). There is apriori a different constraint for each

nonvanishing four-point amplitude. Even in a complicated theory, some of these
will likely be simple and of practical use. Taken together with other necessary
structures such as world-sheet supersymmetry, some very interesting and uniquely
stringy constraints on space-time physics may result.

--
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