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ABSTRACT
Recent improvements in numerical methods to compute canon-
ical transformations make it feasible to set interesting bounds
on the motion of nonlinear Hamiltonian systems over a finite
interval of time.

INTRODUCTION- -
The existence of invariant surfaces in phase space has a di-

rect bearing on the stability of motion in cases of low dimension,
but only an indirect implication in cases of higher dimension.
In systems with at most four phase-space dimensions, invari-
ant tori permanently confine the motion of a phase-space point.
In higher dimensions, an invariant torus does not divide phase
space into disjoint regions and therefore does not confine orbits.
Since a system with p degrees of freedom having a Hamiltonian
with periodic time dependence has a phase space of dimension
2p+ 1, we are confronted with the latter situation in most prob-
lems of accelerator theory-for instance, in betatron oscillations
in two degrees of freedom.

In the absence of confining surfaces, there can be a slow drift
from one region of phase space to a remote region, the so-called
Arnol’d Diffusion. Nekhoroshev’ derived a lower bound on the
time for the orbit to stay in a prescribed region. The bound
increases exponentially as the nonlinear perturbation strength
tends to zero. Although this may suggest that Arnol’d Diffusion
can be very slow in appropriate circumstances, the Nekhoroshev
theorem does not give useful quantitative information in practi-
cal problems. The perturbation strength has to be ridiculously
small to yield stability times long enough to be interesting.

Nekhoroshev’s argument depends on making a canonical
transformation to new action-angle variables such that the ac-
tions are nearly (but not exactly) constant. The transformation
is c_onstructed by high-order perturbation theory. To analyze its
properties rigorously, one is led to a string of involved and pes-
simistic analytic estimates. This feature is responsible for the
poor quantitative result.

Our proposal is to avoid the pessimistic estimates by com-
puting the canonical transformation numerically, using an accu-
rqte nonperturbative method. We have studied various nonper-
turbative methods, including iterative solution of the Hamilton-
Jacobi equation,2 smooth interpolation of tracking data,3
and a new method based on iterative solution of a functional
equation.4 The latter is particularly efficient, and appears to be
adequate to the task in the case of realistic accelerator models.

The determination of a transformation which makes actions
invariant is equivalent to determination of an invariant torus.

Thus, our goal is to compute approximate invariant tori of high
accuracy. Unlike exact invariant tori, these approximate tori
foliate open regions of phase space; i.e., they form continuous
families, with a member of the family passing through every
point of the region considered. This property has an important
role in both the calculation and the application of approximate
invariant surfaces.

* Work supported by Department of Energy contract DE-AC03-
765300515.

BOUNDING THE MOTION THROUGH
A CHANGE OF VARIABLE

We first show how to bound the original phase-space coor-
dinates in terms of bounds on new coordinates. We work in
canonical polar coordinates (I, a), which is to say the action-
angle coordinates of the unperturbed system. The unperturbed
system is integrable, with Hamiltonian H,,(I,  s). The Hamilto-
nian of the fully perturbed system is

HP, @, 3) = H,(I, s) + V(I,cp, s) , (1)

where s is the time, or, equivalently, arc-length along a closed
reference orbit. Both H, and V are periodic in s with period C.
Bold-faced letters represent vectors.of  dimension p equal to the
number of degrees of freedom. For betatron motion in a lattice
with beta functions p;(s), the Cartesian phase-space coordinates
zi and p, = z: are related to action-angle coordinates by the
equations

Zi = [2Zip,]“’ COS @i ,

P i  = -/21t/&]1’2
1
sin @, 7 4 COS @i 1 (2)

.L , i = 12 ,

where primes denote derivatives with respect to s. The unper-
turbed Hamiltonian for betatron motion is

KlP, s) = ~z,,m . (3)
i=l

We make use of a norm for p-dimensional vectors v defined as

II v II= kIwiI . (4)
I=1

A compatible norm for p x p matrices M is

II M II= s”,p [w 1 .

Both norms satisfy the triangle inequality, and

II Mv IEII M II . II v II .

(5)

In Hamiltonian-Jacobi theory, one considers canonical trans-
formations (I, @) -t (J, Q) induced by a generating func-
tion J . @ + G(J, Q), s), which is periodic in s with
period C. The equations relating old and new variables are

I =  J+Ga(J,  @, s) , (7)
Q = @ + GJ(J, @p, s) , (8)
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where subscripts indicate partial derivatives. Here we empha-
size the transformation of the action variables at a sequence of
homologous values of s, say s = 0, C, 2C,. . . . Since G is peri-
odic in s, we may then suppress reference to s-dependence and
write (7) as

- - I=J+u(J,  @) , (9)

where u(J, @) = Go(J, a’, 0).
We are interested in deviations from initial values under

time evolution, namely,

I, -I, = J, -Jo + 4J,, @a) - u(Jo, @o) ,
s = 0, c, 2c, . . , (10).

‘For an upper bound we add and subtract u(J,, Q,), then apply
the triangle inequality for the norm (4) to obtain

II 1s - 1, IIS It Js -Jo II + II u(Jw @aI - u(Jo> f’s) II
+ (I 4Jo, as) - ~(Jor @o) II

cIIJ
.

To bound the second term on the right-hand side we apply the
mean value theorem and Eq. (6); to bound the third term we
use again the triangle inequality. The result is

11 1s - 10 11 5 (1 + yl tl ‘JJ(J,  @) lib ll?s - Jo Ii

+ 2 “1~ II u(Jo, a) II , (1‘4

where UJ is the p x p Jacobian matrix of u. Here we have
assumed that u has continuous derivatives with respect to J in
the annular region

IJi-Jo,I 5 ]Jsi-Joil, i=l,...,p . (13)

The supremum over J in (12) refers to this region, while the
supremum over Q refers to the interval [0,2n] for each compo-
nent. The region (13) is contained in the generally larger region

IIJ-JoII~lIJ,-JoI1 , (14)

so that (12) also holds if the supremum is taken over region (14).
For the following it is convenient to use (14).

The assumption that u has derivatives with respect to J in
region (13) is not innocuous. If u were the ideal transformation,
such as to make J a constant of the motion, then u would not
have J derivatives at all. Phase space is shot through with reso-
nances of arbitrarily high order, which prevent differentiability.

The closer that u approximates the ideal transformation, the
smaller the region in which u may be differentiable with respect
to J.

Given any AJ, let n be the largest integer such that

(]J,-J,]]s A J ,  s=O,C ,..., nC . (15)

If n is infinite, then for all s = mC, m = O,l,. . . we have the

inequality

II 1s - 10 II I (1 + ,,,-,yyJ,, II w(Jt @) IIW

+ 2 S;P I;u(J,, @I II .

If n is finite, then

II J(n+l)c -Jo II > AJ 7

and therefore

II J(n+,)c - Jnc II+ II Jac - J(n-,)c II +
.  ..+]]Jc-J.]]>AJ ,

which implies that

(n + l),~y~ n II J(,+I)c - Jmc II > AJ9 >

(16)

(17)

(18)

(19)

Thus, the bound (16) will hold for all s = mC with m 5 n,
where n may be infinite, but in any case

n+l >
A J

max,=o,..+ It J(m+l)~ - Jmc II ’ (20)

To complete the argument, we. have to invoke the. specific dy-
namics of the system to find an upper bound SJ for the denom-
inator of (20):

May n II J(m+l)c  - Jmc II 5 6J ., 3 (21)

When such a bound has been found, we shall know that the
system is stable in the sense of Eq. (16) for a number of turns
n, where

We next describe a technique for finding 65.

APPLICATION OF A FUNCTIONAL
EQUATION FOR INVARIANT TORI

The required bound (21) may be calculated from the
Hamilton-Jacobi equation through the methods of Ref. 2. Here
we describe an alternative method, which is more direct and ef-
ficient. It is stated in terms of the time evolution map for a full
turn, s + s + C. We write the map in terms of action-angle
coordinates as follows:

I’ = I + B(1, a) , (23)
‘3’ = @ + A(1, @) (24)

For an integrable system, there is a choice of coordinates such
that B = 0 and A = A(1) is independent of a. For a general sys-
tem, we try to find a change of action variable I 4 J = J(1, ‘P)
such that the new action is nearly (if not exactly) constant in
time. In terms of the new variable, the map is written as
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J’ = J + B(‘)(J, a) , (25)
a’ = @ + A(‘)(J, a) . (26)

We seek to make B(l) as small as possible; in any event, much
less than B. For our purposes, it is not necessary to transform

- the angle variable. There is no harm in the circumstance that
J and cf, do not form a canonical pair.

When Z?(l) is known, a 65 as in Eq. (21) can be found im-
mediately. Recalling the definition of n in Eq. (15), we have

II J(,+I)c - Jmc II = II B(‘)(Jmc,  @I II
I ,,-,s~P<~~ II B(‘)(J, @) II = 6J 30

0 < Q < 2*
~-

for m = 0, 1, . . . , n.
As in the previous section, the change of variable is repre-

sented as in Eq. (9). If the transformation were ideal, making
J an invariant, then Eq. (9) would actually represent an invari-
ant surface in the space of the original variables. At constant
J, it expresses I as a function of ‘P;  i.e., it constitutes an ex-
plicit representation of the invariant torus, with different tori
corresponding to different values of J. Consequently, it is easy
to find an equation that u(J, @) must satisfy in the ideal case.
We merely demand that when (I, @) lies on the surface, so does
its image under the map, (I’, a’). This requirement yields the
functional equation to determine u:

where

-W(u;  J) = 0 , (28)

W(u;  J) = u(a) - u(Q + A(J + u(a), a))
+B(J+u(@), Q) . (29)

Here we have suppressed reference to the J-dependence of u;
the J-dependence is induced through the presence of J as an
explicit parameter in (28).

An approximate solution of (28) yields an approximate in-
variant’surface and a change of variable (9). The function B(l),
expressing through (25) the time evolution of the new variable,
is obtained as the solution of the following equation:

B(‘)+u(B(‘)  + J, @ + A(J + u(J, a), @))
= u(J, @)+B(J+u(J,  a), Q) . (30)

This equation is easily solved for B(l) by Newton’s method, at
each (5, 9). In the lowest approximation,

B(l) sz W . (31)

That is, the order of magnitude of B(l) is given by the residual of
the approximate solution of (28). As we shall see, it is possible to
construct rather accurate approximate solutions of (28), which
yield very small values for B(l). This B(l) may give a 65 in (27)
so small as to yield an interesting lower limit for n through (22).
If B(l) is not sufficiently small, one can repeat the whole process,
applying a functional equation such as (28) for the map (25),
(26) to obtain a second change of variable. The composition of
the two changes of variable would then play the role of (9) in
the discussion of the previous section.

A method for numerical solution of (28) is treated in a forth-
coming paper.5 The idea is to write u(Q) as a truncated Fourier
series in @. The Fourier transform of W in (28) then gives a set
of nonlinear equations for the Fourier coefficients of u, which
can be solved by iteration. Convergence of the iteration suffers
if too many Fourier modes are included. This is an intrinsic fea-
ture of the equation, associated with small divisors. Thus, there
is a technical limit to achievable accuracy in solving (28).

To attain arbitrary accuracy, we take advantage of the fact
that the number of Fourier modes allowed in a convergent iter-
ative solution of (28) increases if B is decreased in magnitude.
A second functional equation, based on the map (25), (26) can
be solved on a larger mode set. In principle, the process can
be repeated indefinitely, so as to produce an infinite sequence of
coordinate transformations and functional equations, the latter
being solved on ever larger mode sets. This sequence is similar
to the sequence employed in Moser’s proof6 of the Twist The-
orem (K. A. M. Theorem for maps of an annulus), but conver-
gence will be much faster in our case, since we solve the func-
tional equations nonperturbatively rather than in lowest-order
perturbation theory.

Each functional equation has an approximate solution
u(J, a), which is defined and differentiable with respect to ac-
tion in a domain II J -Jo II < AJ, but AJ shrinks as the num-
ber of Fourier modes in the approximate solution is increased.
To set a large lower bound for n as in (22), we depend on 65 de-
creasing more rapidly than A J as successive coordinate changes
are carried out.

NUMERICAL REALIZATION OF
THE METHOD

--To assure ourselves that the above proposal is within reason,
we tried it first for betatron motion in one degree of freedom, _
in a lattice consisting of four sextupoles. The lattice is one cell
of the Berkeley Advanced Light Source (ALS), an example in.
which the computation of invariant surfaces has proved to be
relatively difficult because of its strong sextupoles. In a report?
for the previous ICFA Beam Dynamics Workshop, we treated
this example through solution of the Hamilton-Jacobi equation
by the shooting method. Extending the computer program used
for that work, we have obtained long-term bounds on the motion
in a region of substantial nonlinearity. We refer the reader to
Ref. 2 for information about the lattice and the method for
solving the Hamilton-Jacobi equation.

As an example, we consider betatron motion in’the horizon-
tal plane, and solve the Hamilton-Jacobi equation for u(J,, @)
at J., = 10m6 meters, which corresponds to s-disp1acement.s
about 20% of those at the dynamic aperture as estimated from
short-term tracking (1000 turns or so). At this value of Jo, the
variation of u(Jo, 9) with @ (sometimes called the “smearn) is
about f 7% of Jo, the average of u being zero. We ask for a
lower bound on the number of turns n such that IZ, - Z,] does
not vary by more than an additional 7% of J; i.e., we choose
AJ in (16) so that

14 - Ll < 3 S;P Iu(Jo, @)I . (32)

This choice of allowed range is reasonable, since we conjecture
that u is actually close to a true invariant surface; in fact, an
orbit from tracking lies close to the surface for 1000 turns, the
maximum discrepancy at s = 0, C, . . . , 1000 C being AZ/J, x
1.6 x 10m6.  If u were an exact invariant surface, we would have
IZS - Z,l 5 2 sup IuI. If Z,, is any point on the surface



Z = Jo + u(J,, O), we find that (32) will be satisfied for at least
n turns where

n = 2.4 x 10’ . (33)

The length of the lattice is 16.4 meters, so that this corresponds
to motion for 1.3 seconds.
- It might be argued that this is an example in a J-dimensional
phase space (l-1/2 degrees of freedom), so that the motion
should actually be stable, being confined by a K.A.M.. surface.
One should remember, however, that it would be impossible to
prove the existence of the surface, since the K.A.M. proof fails
for the strong nonlinearities of this example. Thus, the result
(33) can be considered the best information currently available
for the example studied.

We regard the value (33) as quite satisfactory, in view of the
fact that we have carried out only one canonical transformation.
-it is certain that a second transformation will provide a larger
lower bound for n, by several orders of magnitude. Moreover,
with a second transformation we can work at larger amplitudes,
close to the estimated dynamic aperture.

For betatron motion in two degrees of freedom, we have ap-
plied the method of Sec. 3. We have solved (28) by the Fourier
method, using Newton’s iteration to solve the nonlinear equa-
tion for the Fourier coefficients of u. For the map functions, A
and B, we call a symplectic tracking code, tracking for one turn
at each required value of the arguments of the functions. This is
more efficient and more accurate than using an explicit formula
for the map (for instance a polynomial-Fourier representation,
as in Ref. 7), unless the lattice is fairly long.

To the present time, we have obtained the new map function
B(‘) only in the lowest approximation (31), so that the results
quoted are correct only to a few percent. Full results, including
the construction of a second coordinate change and a second
map function B(*l, should be available in the near future. We
report results for the same ALS lattice that was discussed above,
taking the same initial amplitude for s-motion and one-half that
much for y-motion:

Jo1 = lO+n, Jo2 =  5. IO-‘r-n . (34)

Calculation of u(JO,  @) shows that the y-motion induces a little
more variation in Zi than we had before, almost 11% rather than
7% of J,l. We find

sup (ur(Jo,  0)l = 0.107~10-6m  ,
0

sup Iu2(J0,  @)I = 0.0567. 10-6rn ,
a

(35)

in other words, about 11% smear in each coordinate. As in
Eq. (32), we look for a lower bound on n such that

II 1s -b II < 3 s;~ II u(Jo, @) II , (36)

‘again with I, being any point on the surface I = J, + u(JO,  @).
Applying (22) and (27) in the approximation (31), we find that
(36) will be satisfied for at least n turns, where

n  e l.8.105 . (37)

As expected, the results for two degrees of freedom are not
yet as impressive as for one. The equations are more difficult to

solve, perhaps because the small divisors have a stronger effect.
Again, we are confident of obtaining much better results after
a second change of coordinates. Fortunately, the coordinate
changes are much easier to implement in the method of Sec. 3
than in the canonical Hamilton-Jacobi formalism.

The approximate invariant surface 1 = J, + u(Jor  a) that
yielded the result (37) agrees rather well with tracking. In track-
ing for 1000 turns, and checking discrepancy with the surface at
every 100 turns, we found

t1 <  1.1. lo-‘, c* <  2 . 2 .  1o-7 (38)

with

(39)

where (I?‘, @lr) are coordinates from tracking, and I = J, +
u(JO, Qtr) is the corresponding point on the surface. Of course,
much more accurate invariant surfaces will be produced after a
second transformation.

CONCLUSION

Preliminary results baaed on one change of coordinates show
that interesting bounds on betatron motion in two degrees of
freedom can be anticipated. Refinement of the method through
successive coordinate changes should allow one to establish sta-
bility for much longer times than can be established by track-
ing, and with better control of numerical error. The program is
much facilitated by a new scheme for computation of approxi-
mate invariant surfaces and associated coordinate changes. The
scheme, based on iterative solution of a functional equation, is
so compact and efficient as to be feasible (in two degrees of free-
dom) for realistic models of large accelerators. The extension to ^
three degrees of freedom is probably possible, but has not yet
been explored.

Finally, we should mention that the required computer codes
are rather short. The codes are not written for a specific dy-
namics; they call a tracking code for the specific dynamics, so
that the user can apply any tracking code suited to the problem
at hand.
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