PRODUCTION OF $Q^2 \overline{Q}^2$ **STATES**^{*}

BING AN LI**

Stanford Linear Accelerator Center Stanford University, Stanford, CA 94309

ABSTRACT

In this talk, the productions of $Q^2 \overline{Q}^2$ states in two-photon collision and J/ψ radiative decays are discussed.

1. Introduction. The spectrum of low-lying hadrons is richer in the mass range of 1-2 GeV. Besides the $Q^2 \overline{Q}^2$ mesons, some new types of hadrons, like glueballs and hybrids, are predicted theoretically. It is learned from the MIT bag model¹ that among the $Q^2 \overline{Q}^2$ mesons, some decay to vector meson pairs dominantly and their masses are just about the threshold of corresponding vector meson pairs. These $Q^2 \overline{Q}^2$ mesons might be observed as mass bumps.

The wave functions of some $Q^2 \overline{Q}^2$ states can be projected to a color-singlet/color-singlet meson pair and a color-octet/color-octet meson pair. The recoupling coefficients for 0^+ $Q^2 \overline{Q}^2$ states are the following (Jaffe's notations are used):

> Invited talk presented at the Tau-Charm Factory Workshop, Stanford, CA, May 23-27, 1989.

^{*} Work supported by U.S. Department of Energy contracts DE-AC03-76SF00515; NSP-RII-8610671; and the Research Committee of the University of Kentucky.

^{**} On leave from the Department of Physics and Astronomy, University of Kentucky; permanent address: Graduate School, University of Science and Technology of China.

	P P	VV	<u>P · P</u>	Y-Y
9	0.743	-0.041	-0.169	0.646
36	0.644	0.177	0.407	0.623
9'	-0.177	0.644	0.623	0.407
36*	0.041	0.743	-0.643	-0.169

For $2^+ Q^2 \overline{Q}^2$ states, the recoupling coeficients are:

	VV	$\underline{\mathbf{V}}\cdot\underline{\mathbf{V}}$
9	$\sqrt{\frac{2}{3}}$	$-\frac{1}{\sqrt{3}}$
36	$\frac{1}{\sqrt{3}}$	$\sqrt{\frac{2}{3}}$

According to the MIT bag model, the relative angular momenta of these states are *s*-waves. From these coefficients, the 0^+ (9⁺, 36^+) and 2^+ (9, 36) states decay to vector pairs dominantly through the fall-apart mechanism.

On the other hand, according to the VDM, these states can be produced in two-photon collisions (Fig. 1). Also, due to the fact that there are color-octet-vector/color-octet-vector $(\underline{V} \cdot \underline{V})$ components in these states, we expect these states can be produced via two hard gluon channels in the mechanism, which is analogous to VDM^2 (Fig. 2). It is known from perturbative QCD that the J/ψ radia tive decay provides such a two-gluon channel; therefore, the productions of these $Q^2\overline{Q}^2$ states are predicted in J/ψ radiative decays.

2. $Q^2 \overline{Q}^2$ Production in $\gamma \gamma$ Collision. Under the mechanism of VDM, the $Q^2 \overline{Q}^2$ states which decay to two-vector mesons dominantly can be produced in two-photon collisions (Fig. 1). Therefore, we can search for these $Q^2 \overline{Q}^2$ states in the processes $77 \rightarrow VV'$.

 $\underline{\gamma\gamma \rightarrow \rho^0 \rho^0}$ and $\rho^+ \rho^-$. The experimental data³ show large **enhancement** around the threshold of **pp** in the cross section of $77 \rightarrow \rho^0 \rho^0$. Other **observations**,⁴ however, reveal large **suppression** in $77 \rightarrow \rho^+ \rho^-$ around the $\rho\rho$ threshold. There are many attempts to explain these results; however, only the scheme of $Q^2 \overline{Q}^2$ (Refs. 5, 6) survives. In the scheme of $Q^2 \overline{Q}^2$, there are three 0^+ and three $2^+ Q^2 \overline{Q}^2$ around the $\rho\rho$ threshold which contribute

to $\gamma\gamma \to pp$. For 0^+ or $2^+ Q^2 \overline{Q}^2$ states, there are two isoscalars and one isotensor $Q^2 \overline{Q}^2$. In the picture of $Q^2 \overline{Q}^2$, there is a constructive interference between the isoscalar and isotensor amplitudes in the reaction $\gamma\gamma \to \rho^0 \rho^0$. Consequently, a large cross section for $\gamma\gamma \to \rho^0 \rho^0$ is obtained. For the reaction $\gamma\gamma \to \rho^+\rho^-$, such interference is destructive; thus, the cross 'section for $\gamma\gamma \to \rho^+\rho^-$ is smaller in comparison to $\gamma\gamma \to \rho^0\rho^0$. As a matter of fact, it is easy to obtain a 100 nb cross section for $\gamma\gamma \to \rho^0\rho^0$ at peak without any new parameter in the picture of $Q^2 \overline{Q}^2$ states.

On the other hand, the TASSO Collaboration has found that for the reaction $\gamma \gamma \rightarrow \rho^0 \rho^0$, 0^+ is-dominant as $W_{\gamma\gamma} < 1.8$ GeV, and 2^+ is dominant as $W_{\gamma\gamma} > 1.8$ GeV. This result is consistent with the measurement of TPC/2 γ . These results are consistent with the $Q^2 \overline{Q}^2$ mechanism (Fig. 3).

 $\underline{\gamma\gamma \to \rho^0 \omega}$. In the same sense, the cross section of $\gamma\gamma \to \rho^0 \omega$ can be explained by the $Q^2 \overline{Q}^2$ model (Fig. 4).⁷

 $\gamma\gamma \to K^*\overline{K^*}, \rho^0\phi, \omega\phi$. Observation' of the reaction $\gamma\gamma \to K^{*+}K^{*-}$ in the 1.7-2.7-GeV region with a peak value of about 50 nb at about 1.9 GeV has been reported. The structure in the channel $\overset{*}{K}{}^0K^0$ is observed⁹ to be smaller than the $K^{*+}K^{*-}$ channel by a factor of $7.8 \pm 3.1 \pm 2.0$. The ARGUS mean upper limit⁹ on the $\gamma\gamma \to \rho^0\phi$ cross section is 1.0 nb in the range of $W_{\gamma\gamma}$ between 1.8 and 2.2 GeV. The corresponding upper limit from TPC/2 γ (Ref. 10) is about 6 nb in the $W_{\gamma\gamma}$ range of 2-2.5 GeV. The upper limit of the $\gamma\gamma \to \omega\phi$ cross section given by ARGUS" is 1.7 nb in the range of $W_{\gamma\gamma}$ between 1.9 and 2.5 GeV.

In the picture of $Q^2 \overline{Q}^2$ states, there are two isoscalars and two isovectors which contribute to 77 $\rightarrow K^* \overline{K}^*$. Among these four $Q^2 \overline{Q}^2$, the two isovectors $Q^2 \overline{Q}^2$ contribute to 77 $\rightarrow \rho^0 \phi$ and the two isoscalars contribute to 77 $\rightarrow \omega \phi$. Without introducing the mixings between the two $Q^2 \overline{Q}^2$ states with the same isospin, the $Q^2 \overline{Q}^2$ picture^{5,6} predicted very small cross sections for both $K^{*+}K^{*-}$ and $K^* K^0$ channels and very large cross sections for 77 $\rightarrow \rho^0 \phi$.⁶ On the other hand, there have been other theoretical **attempts**^{12,13} to predict the $K^* \overline{K}^*$ productions in 77 collisions, but they are all confronted with difficulties in explaining the data. In our recent paper,¹⁴ it is pointed out that the predicted small $K^*\overline{K}^*$ cross sections in the picture of $Q^2\overline{Q}^2$ are due to the destructive interferences between two isoscalar states and also two isovector states. Since, in the MIT bag model calculation, all the $2^+ Q^2\overline{Q}^2$ which decay to $K^*\overline{K}^*$, $\rho^0\phi$, and $\omega\phi$ dominantly essentially degenerate at 1.95 GeV, the slightest perturbation will cause them to mix **pairwise** in the channels. We **introduce** the mixing mechanism to explore its consequences.

After introducing the mixings, constructive interference is found for $\gamma\gamma \to K^{*+}K^{*-}$ betwen the isoscalar and isovector amplitudes, and this interference yields a large cross section for $\gamma\gamma \to K^{*+}K^{*-}$ around 1.9 GeV. Whereas destructive interference between these two amplitudes is found for the reaction $\gamma\gamma \to K^{*0}\overline{K}^{*0}$, this interference suppresses the cross section of $\gamma\gamma \to K^{*0}\overline{K}^{*0}$. The charged-to-neutral $K^*\overline{K}^*$ ratio is predicted to be about 4, which is compatible with the experimental measurement (Figs. 5, 6). By using the same mechanism, the amplitude of $\gamma\gamma \to \rho^0\phi$ is diminished. Consequently, the calculated cross section of this reaction is smaller than the original calculation by one order-of-magnitude. The mean value of the cross section in the range of $W_{\gamma\gamma}$ between 1.8 GeV to 2.2 GeV is 1.45 nb, which is compatible with the upper limits set by ARGUS and TPC/2 γ . As in the earlier calculation, we still obtain a small cross section for $\gamma\gamma \to \omega\phi$. The mean value of the cross section in the range of $W_{\gamma\gamma}$ between 1.9 GeV and 2.5 GeV is about 0.34 nb, which is below the upper limit set by ARGUS.

3. $J/\psi \rightarrow \gamma + VV'$. It is analogous to the VDM that a gluon can couple to a color octet vector quark pair; thus, we expect these $Q^2 \overline{Q}^2$ states having larger $\underline{V} \cdot \underline{V}$ components can be produced in two hard gluon channels easily. Under this picture, these $Q^2 \overline{Q}^2$ states can be produced in J/ψ radiative decays in the processes $J/\psi \rightarrow \gamma + VV'$ via the mechanism shown in Fig. 7. By using this mechanism, we compute the decay rates of $J/\psi \rightarrow \gamma \rho \rho, \gamma \omega \omega, \gamma K^* \overline{K}^*$, and $\gamma \phi \phi$.¹⁵

$$B\left(J/\psi \to \gamma \left(Q^2 \overline{Q}^2\right)_{2^+} \to \gamma \rho \rho\right) = 3 \times (0.8\text{-}1.4) \times 10^{-4}$$
$$B\left(J/\psi \to \gamma \left(Q^2 \overline{Q}^2\right)_{2^+} \to \gamma \omega \omega\right) = (0.8\text{-}1.4) \times 10^{-4}$$
$$B\left(J/\psi \to \gamma \left(Q^2 \overline{Q}^2\right)_{2^+} \to \gamma \phi \phi\right) = 0.7 \times 10^{-6}$$
$$B\left(J/\psi \to \gamma \left(Q^2 \overline{Q}^2\right)_{2^+} \to \gamma K^* \overline{K}^*\right) = (2.3\text{-}3.0) \times 10^{-5}$$

4. <u>Conclusions</u>. The $Q^2 \overline{Q}^2$ picture describes the reactions $\gamma \gamma \to VV'$ very well. In order to verify the existence of these $Q^2 \overline{Q}^2$ states, it is important to search for them via a two-gluon channel; J/ψ radiative decays provide good opportunities for that. Due to the smallness of the decay rate of $J/\psi \to \gamma (Q^2 \overline{Q}^2)_{2^+} \to \gamma VV'$, an e^+e^- collider with very high luminosity will be of significant assistance.

ACKNOWLEDGMENT

I wouldlike to thank the Theory Group of SLAC for their hospitality.

REFERENCES

- 1. R. L. Jaffe, Phys. Rev. D15 (1977) 281.
- 2. B. A. Li and K. F. Liu, Phys. Rev. D28 (1983) 1636.
- TASSO Collaboration, R. Brandelik et al., *Phys. Lett.* 97B (1980) 448; TASSO Collaboration, M. Althoff et al., *Z. Phys.* C16 (1982) 13; Mark II Collaboration, D. L. Burke et al., *Phys. Lett.* 103B (1981) 153; CELLO Collaboration, H. J. Behrend et al., *Z. Phys.* C21 (1984) 205; PLUTO Collaboration, Ch. Berger et al., *Z. Phys.* C38 (1988) 521; TPC/2γ Collaboration, H. Aihara et al., *Phys. Rev.* D37 (1988) 28.
- JADE Collaboration, presented by H. Kolanoski, Proc. of the 5th Int. Workshop on 77 Interaction, Aachen (1983); CELLO Collaboration, H. J. Behrend et al., DESY 88-185.
 - B. A. Li and K. F. Liu, *Phys. Lett.* **118B** (1982) 435, and *Erratum*, 124B (1982) 550; *Phys. Rev. Lett.* **51** (1983) 1510; *Phys. Rev.* **D30** (1984) 613.
 - N. N. Achasov, S. A. Devyanin, and G. N. Shestakov, *Phys. Lett.* 108B (1982) 134;
 Z. Phys. C16 (1982) 55; *Z. Phys.* C27 (1985) 99.
 - 7. M. T. Ronan, LBL-26415 (December 1988).
 - 8. ARGUS Collaboration, DESY 88-084 (June 1988).
 - 9. ARGUS Collaboration, H. Albrecht et al., Phys. Lett. 198B (1987) 255.
- 10. TPC/ 2γ Collaboration, H. Aihara et al., Phys. Rev. D37 (1988) '28.
- 11. ARGUS Collaboration, H. Albrecht et al., Phys. Lett. 210B (1988) 273.
- 12. S. J. Brodsky, G. Kopp, and P. M. Zerwas, Phys. Rev. Lett. 58 (1987) 443.
- 13. N. Achasov, V. Karnakov, and G. Shestakov, Novosibirsk, TPH-No. 32 (1987) 159.
- 14. B. A. Li and K. F. Liu, University of Kentucky, UK/89-02.
- 15. B. A. Li, Q. X. Shen, H. Yu, and K. F. Liu, Phys. Rev. D32 (1985) 308.

FIGURE CAPTIONS

- 1. Diagram for the reaction 77 $\rightarrow VV'$ with $Q^2 \overline{Q}^2$ states as the intermediate states.
- 2. Diagram for the reaction gg $\rightarrow VV'$ with $Q^2\overline{Q}^2$ states as the intermediate states.
- 3. The calculated $Q^2 \overline{Q}^2$ contributions to the $77 \rightarrow \rho^0 \rho^0$ cross section (solid curve) and the $77 \rightarrow \rho^+ \rho^-$ cross section (dashed curve) in comparison with the experimental data.
- 4. Cross section of $77 \rightarrow \omega \pi^+ \pi^-$. The fitted curve was obtained from a four-quark model prescription.
- 5. Cross section for $77 \rightarrow K^{*+}K^{*-}$.
 - 6. Cross sections for 77 $\rightarrow K^{*0}\overline{K}^{*0}$ and $\rho^0\phi$.
 - 7. Diagram for $J/\psi \rightarrow \gamma V V'$ with $Q^2 \overline{Q}^2$ states as the intermediate states.

Fig. 1

enter -

Fig. 2

Fig. 3

Fig. 4

Fig. 6

-- --

.

Fig. 7