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1. Introduction 

This talk is based on joint work with W. Fischler and J. Po1chinski.l 

Recent work on quantum gravity 2-5 h as d emonstrated fairly convincingly that 

creation and annihilation of microscopic baby universes leads to no observable loss 

of quantum coherence.6 Instead, the effect of these topological fluctuations is to 

turn the coupling parameters relevant to physics in a macroscopic universe into a 

peculiar kind of dynamical variables governed by a probability distribution. In a 

further development, Coleman4 found that the probability to find the cosmolog- 

ical constant equal to zero is 1. Coleman’s theory relies on the Euclidean path 

integral quantization of gravity which, at present, is only a formal technique. The 

unboundedness of the action 

(14 

makes it difficult to interpret the Euclidean path integral of quantum gravity. In 

particular, Coleman’s mechanism for the vanishing of the cosmological constant 

relies heavily on the apparent instability with respect to nucleating arbitrarily 

large numbers of the Euclidean four-spheres each contributing -2/3X to the action 

(A = 16G2A/9). U n or unately, the same instability seems to lead to a catastrophic f t 

number of macroscopically or even cosmically large wormholes in spacetime: (Res- 

olutions of this problem have been proposed in Ref. 8, but were strongly criticized 

in Ref. 9.) 

On the other hand, there are mathematical prescriptions which eliminate the 

instabilities. Consider, for example, the path integral over conformally flat geome- 

tries of spherical topology: gij = d2S;j. This set includes Coleman’s networks of 

wormhole-connected spherical universes. The Euclidean path integral for Einstein 

gravity reduces to 

/b#dexp (/d4x (&@V)” - A44)) (l-2) 

Clearly, this expression is formal due to the unconventional sign of the kinetic term 
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for 4. With the Gibb ons-Hawking-Perry conformal rotation lo 4 + i4, it is defined 

to be 

/kGlexp (--Id42 (&@W2+W4)) (1.3) 

This is just the Euclidean path integral for the stable d4 theory (we assume that 

the cosmological constant is positive).* Such a procedure may define a consistent 

quantum theory of gravity, but it surely eliminates the divergences as X j 0 which 

drive Coleman’s mechanism. 

Other prescriptions rotate the contour about the Euclidean saddle point or ap- 

proximate saddle points associated with wormhole-connected four-spheres. In this 

case a careful analysis of the modes of fluctuation 
11 reveals a prefactor iDm2 in 

front of the Baum-Coleman-Hawking amplitude exp(2/3X) 12J3’4 associated with 

each four-sphere. The result is, once again, not favorable: in 4 dimensions (D = 4) 

thp marvelous exp(exp(2/3X)) b ecomes a disappointing exp( - exp( 2/3X)). Evi- 

dently, the Euclidean path integral is so ill-defined that it can be imaginatively 

used to produce vastly different answers. For these reasons it seems necessary to 

provide a different formulation of the theory of topological fluctuations. 

In this paper we present a Hilbert space analysis of topology change in a 

minisuperspace model of quantum gravity. This model is quite simple to work 

with, but is rich enough to include any number of universes with spherical spatial 

geometry. We will find that, under some rather general assumptions, the average 

number of large universes is O(exp(2/3X)). In view of the known bound X 5 

lo-“‘, the average number of universes is 2 101olzo. This is the origin of the 

name googolplexust We will show that all these universes are cold, empty and 

uninteresting. Their presence, much like the presence of the infrared photons in 

QED, makes no effect on any of the observable probabilities. In fact, in contrast 

A- This is not a conventional theory since it must be regulated in a conformally invariant way. 
t This term, coined by L. Susskind, is a fusion of two words. The googolplex is the largest 

finite integer with a special name. It is equal to 101oloo. Plexus means a network. (Websters 
New Collegiate Dictionary.) 
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with Coleman’s result, we will find that the a priori probability for the cosmological 

constant is a smooth function, with no enhancement of either the Baum-Hawking 

or Coleman type. 

The Coleman double exponential does occur, but in the form exp (-,2/3x). 

Furthermore, it does not have the interpretation of a probability for X but rather 

a transition amplitude from the state of the googolplexus to the out-vacuum, i. e., 

it is the amplitude to create no universes. The exp(2/3X) universes are rather like 

the soft photons emitted in electrodynamics and the factor exp (-e2i3’) is the 

analogue of the soft photon factor which suppresses transitions to exclusive states 

with a finite number of soft photons. 

The same assumptions on the state of the googolplexus that produce 

O(exp(2/3X)) cold empty universes, typically lead to no enhancement in the num- 

ber of warm, liveable universes as X + 0. We will show that there is a class of 

states which contain few cold universes but O(exp(2/3X)) warm ones. It is not yet 

clear whether a theory based on such states is sensible. 

2. Third Quantization in Minisuperspace 

In this section we consider the path integral in a minisuperspace model of quan- 

tum gravity. This model includes the spatially spherical geometries with metric 

ds2 = g(-dT2 + a2(T)df$) (24 

where da: is the metric of a unit three-sphere. We also include a number of 

spatially constant matter fields &(r). The E ins ein-Hilbert t action with matter 

couplings reduces to 

T 

-ait2 + a + a3 

0 
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where X = 16G2A/9. Th is action defines a hamiltonian 

H = i 
{ 

9 
-f - a + a3(X + V(q$;)) + am3rf 

1 
P-3) 

which is the generator of translations in the parameter time 7. Due to general 

covariance of the theory, the hamiltonian must annihilate the physical states. This 

defines the Wheeler-De Witt equation for the wave function of the universe @(a, 4;) 

I 

d d a-P-$- _ .-2 
82 

da Lhx j@ - a2 + a4(X + V(h)) 
1 

@(a, q$) = 0 (2.4) 
8 

where the uncertainty in p is a part of the operator ordering ambiguities inherent 

in the hamiltonian of Eq. (2.3). Sometimes Eq. (2.4) is regarded as gravity’s 

Schroedinger equation, but it is obviously more like gravity’s Klein-Gordon equa- 

tion. Indeed many authors, beginning with De Wittt4 have noted the similarity 

between the scale factor a and time. In l+l dimensions the correspondence is pre- 
15 

cise. As in the case of the Klein-Gordon equation, the lack of a positive definite 

probability density makes the one-universe theory hard to interpret. In any case, 

we are not after formulating such a theory here. Instead, we are interested in pro- 

cesses where the number of spatially connected components of geometry changes. 

A convenient formalism involves a Hilbert space for universes. With this in mind, 
16-21 

we will carry out “third quantization” of the Wheeler-De Witt equation, which 

is a step analogous to second quantization of the Klein-Gordon equation. We will 

therefore consider a quantum field theory of the Wheeler-De Witt equation with 

a playing the role of time and @ being the quantum field. First we will con- 

sider a theory without topology changing processes. Subsequently, we will include 

wormholes. One of the goals is to build a theory whose Feynman diagrams resem- 

ble Coleman’s wormhole-connected bubbles. We will find that this theory has a 

natural probability interpretation which is quite different from the interpretation 

suggested by Coleman. Surprisingly, although this theory has a graph structure 

similar to Coleman’s, the graphs do not compute the probabilities we measure. 

5 



To simplify the discussion, we will first ignore the scalar fields 4; and return to 

consider their effects in Section 4. Also, we will adopt the operator ordering in the 

Wheeler-De Witt Eq. (2.4) h h w ic corresponds to p = -2. Then it is convenient to 

think of u3 = V as the argument of the Wheeler-De Witt wave function: 

( 
d2 -- 

W2 
& +; 

> 
qv> = 0 P-5) 

Although our results will not depend much on the choice of p, the advantage 

of this prescription is that the potential on the left side approaches a constant 

for large V. If we think of V as time and Q(V) as a real coordinate, then Eq. 

(2.5) is just th e c assical equation for a harmonic oscillator with a spring constant 1 

which varies with time. In fact, the oscillator is upside down for V < X3i2 but 

becomes an ordinary harmonic oscillator with frequency wg = d/3 as V + co. As 

eqlained above, it is natural to think of Q(V) as a O+l dimensional Klein-Gordon 

field. In practical terms, third quantization of the minisuperspace Wheeler-De Witt 

equation amounts to solution of the time-dependent harmonic oscillator problem 

defined by Eq. (2.5). T o make this analogy yet more explicit, we change notation 

and replace Q(V) with X(t). The third-quantized lagrangian is 

L = ; A2 - ; w2(t)X2 - Jxqt) (2.6) 

For reasons that will be explained later, we have included a S-function source at 

t = 0. The time-evolution is generated by the hamiltonian 

H = ; P2 + ; w2(t)X2 + JXS(t) P-7) 

We emphasize that X(t) is not an ordinary oscillator variable: it creates or an- 

nihilates entire universes with spatial volume t. t plays the role of time in a new 

space-the googolplexus -where particles are universes. In order to introduce 
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universe creation and annihilation operators, we expand 

X(t) = f(t)a + f*(t)u+ (2.8) 

where f and f* are the incoming and outgoing solutions of the Wheeler-De Witt 

equation. The conjugate momentum is 

P(t) = f(t)u + f*(t)u+ (2.9) 

From the canonical commutation relations it follows that [a, CL+] = 1 if the Wron- 

skian 

ff* - f*f = -i (2.10) 

This fixes the normalization of f: 

f(t ---f m) = (2wo)-u”e-“w+“) (2.11) 

We will also fix the phase 6 by requiring that 

h(O) = 0 (2.12) 

where f(t) = fl(t) + ifz(t). A nice property of the hamiltonian in Eq. (2.7) is that 

it loses its explicit time dependence as t + 00: 

H(t - co) = ; wo{u, u+} 

The ground state at late times is simply the oscillator vacuum 

(2.13) 

a 1 out >= 0 (2.14) 

The quanta of the theory can now be cleanly identified: ut and a create and 

annihilate the out-universes. 
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The key question is what determines Q(X, t), the Schroedinger wave function 

of the googolplexus . The minisuperspace formulation has a peculiar feature that 

negative time is physically meaningless (t refers to the volume of S-space). There- 

fore, it is sensible to assume that \-l is determined near t = 0 by a smooth match 

on to short distance physics. Since the Planck scale physics is almost completely 

insensitive to the value of X, this assumption implies that the boundary condition 

at t = 0 has no strong dependence on X. We will consider a few such choices of 

the state of the googolplexus. One of them, which we denote by 1 i >, will be 

motivated by the assumption of symmetry under t + -t. This suggests that 

i(t = O)l i >= qt = O)l i >= 0 (2.15) 

or, in other words, 

Q[r;(X,O) = const (2.16) 

A general wave function consistent with our assumption is initially a wave packet 

of width w, which has no singular dependence on X. For illustration, we will work 

with Gaussians 

K&,(X, t = 0) = (---g4exP (-5) I (2.17) 

We will see that some of our results are insensitive to the precise nature of the 

boundary conditions imposed at small t, as long as these boundary conditions 

have no fine-tuned dependence on X. However, for the purposes of comparing our 

theory with Coleman’s, it will be necessary to fine tune the physics near t = 0. 

Alternatively, one can think of this fine-tuning in terms of imposing “generic” 

boundary conditions at large t. We will discuss the possible implications of this 

rather counter-intuitive procedure in Section 4. 

In order to carry out comparison with Coleman’s results, we need to calculate 

the dependence of the path integral on J and X for an arbitrary state of the 
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googolplexus 1 in >. If we set J = 0, then the path integral over all X(t) for t > 0 

is just the transition amplitude between the in-state and the out-vacuum 

J [DX(t)]2 Lw L(J=o)dt =< out 1 in > (2.18) 

- 

This path integral can be thought of as the exponential of the vacuum graph 

which represents a sum over minisuperspace geometries with the topology of a 

torus. There are no toroidal solutions of Rij = 8nGAgij. Therefore, on semiclas- 

sical grounds Coleman did not expect the sum over tori to have an exponential 

dependence on l/X. In Coleman’s approach, the crucial geometries have spherical 

topology. In order to introduce spheres into our model, it is necessary to turn 

on the source J. Treating the source term as a perturbation, the path integral 

is exactly given by the sum of graphs shown in Fig. 1. Each line represents a 

a n.+ n n+ . . . w v - z 
tb) A- 
4-99 J J J 6335Al 

Figure 1. a) The sum of Feynman diagrams representing the exponential of Eq. 
(22). The vertical axis is the scale factor a, the horizontal is parameter time r. Each 
line represents G(O,O), the sum over all paths from a = 0 back to a = 0. b) G(O,O) is a 
sum over minisuperspace geometries with the topology of a sphere. 

universe which is created by the source with zero radius, propagates, shrinks back 

to zero size and is annihilated by the source. In other words, each line stands for 

a sum over geometries of spherical topology. In analogy with Coleman’s sum over 
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To see this, we note Euclidean bubbles, the sum of graphs in Fig. 1 exponentiates. 

that 

2 = 
J 

[Dx(t)]e”&m L(J)dt = e-t J2GW) < out in > (2.19) 

where 

(-,(tl t2) = < Out 1T(X(t1)X(t2))1 in ’ 
, < out I in > 

If we specialize to I in >= ) i >, then 

G(tl < ta) = ?fi(tl> f(h) 

(2.20) 

(2.21) 

As expected, G(tl, t2) is an outgoing wave as a function of the bigger argument t2 

and also satisfies 

-&G(tl = 0, t2) = 0 (2.22) 

Let us examine in more detail the factor -3 J2G(0,0) associated with each line 

in Fig. 1. Naively it appears that for agreement with Coleman’s analysis G(O,O) 

must be - exp(2/3X). It is easy to see that this is not generally the case in 

our model. First, the real part of f(t) satisfies jr(O) = 0. Since the boundary 

condition is specified at t = 0, the generic behavior of fr is to increase exponentially 

with t until it enters the oscillatory region t > .Xm3i2, where it must oscillate 

with the amplitude fixed by Eq. (2.11). Standard WKB techniques indicate that 

fl(0) - exp(-1/3X). On th e contrary, the imaginary part off, fz(t), which is out 

of phase with fl(t) in the oscillatory region, exponentially grows toward t = 0. In 

the WKB approximation, f2(0) N exp(l/3X). As a result, 

G(O,O) N A + iB (2.23) 

where A is O(exp(-2/3X)) and B is O(1). It seems that there is an immediate 

disagreement with Coleman’s analysis. However, as explained in Ref. 22, there is 
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no disagreement. In the first-quantized theory, specified by Eq. (2.2)) G(O,O) is 

the path integral over all trajectories o(r) with a(O) = a(T) = 0 integrated over 7’. 

If one performs the Euclidean continuation by sending r + ir, then the resulting 

Euclidean action 
T 

J dT(ck2 + a - Xu3) (2.24) 

0 

is not bounded from below. Within this ill-defined Euclidean path integration, how 

would one “approximate” G(0, O)? In the spirit of Coleman’s theory, we need to 

sum over all the Euclidean stationary paths, including those with multiple bounces 

off the point a = 0. (The bounces occur because the problem is defined on the 

half-line a > 0.) Therefore, we include all the trajectories of the form 

u(7) = $1 sin(fir)I (2.25) 

wit-h duration T = nr/fi (see Fig. 2). Geometrically, these are simply linear 

A 
a 

0 + - + - +*a* ) 

4-09 z 
6335A2 

Figure 2. The euclidean trajectories of the form a(~) = Isin(&r)l/fi, with 
0 < 7 < na/fi, that need to be included in the semiclassical approximation for G(0, 0). 
The reflections off the point a = 0 are the minisuperspace wormholes that attach to the 
north and south poles of the large four-spheres. 

chains of n four-spheres glued at their poles. The action of each four-sphere is 

Il.= -2/3X. Th e saddle point “approximation” to G(O,O) is then 

W, 0) 
M  e2/3x + pe4/3x + p2e6’3A + . . . = 

,2/3x 

1 - pe2f3X 
M -1. + ace-2/3A 

p ) P-26) 
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where we have, of course, used an analytically continued definition of the geometric 

sum. The relative factor of p in the subsequent bounces depends on the boundary 

conditions at a = 0. Semiclassically, p N eVsw where S, is the Euclidean wormhole 

action which typically has only weak dependence on A. The agreement between Eq. 

(2.26) and Eq. (2.23) is quite detailed. The formal sum over bounces of Eq. (2.26) 

is capable of reproducing even the exponentially suppressed term O(exp(-2/3X)) 

in Eq. (2.23). I nc usion 1 of the multiple bounces is therefore crucial to obtaining 

the correct normalization of the Green function G(0, t) from the Euclidean saddle 

point analysis. It comes as a bit of a surprise that the minisuperspace model 

contains a certain subset of wormhole configurations in Coleman’s sense. Due to 

the asymmetry of the model, we have inadvertently included the wormholes that 

can couple to the north and the south poles of the four-spheres. Thus, each line 

in Fig. 1 generally corresponds not just to one four-sphere but to a geometric 

sum over linear chains of four-spheres. Is there a way to turn off these wormholes 

biilt into a generic minisuperspace model ? If we succeed in turning them off by 

effectively setting p = 0 in Eq. (2.26)) th en each propagator in Fig. 1 would be 

associated with just one four-sphere and would carry a factor e 2/3X . 

The answer to the above question is positive. The minisuperspace wormholes 

can be turned off by a careful tuning of either the boundary conditions or the 

spring constant w2(t) near t = O.* For instance, if we make the oscillator spring 

in this region sufficiently attractive.(say, by adding to w2(t) a term N b(t)), then 

we can fine tune fr (t) t o b ecome exponentially decreasing with t and simultane- 

ously maintain the boundary condition (2.12). The precise requirement on w2 (t) 

is that the Wheeler-De Witt equation have a zero-energy bound state when X = 0, 

provided the wave function satisfies boundary condition (2.12). Then, for small X 

there exists a metastable state with lifetime O(exp(2/3X)). Since fl(t) is normal- 

ized to oscillate with amplitude (2~0)~ ‘I2 at large t then, in the fine-tuned case, 

jr(O) N exp(l/SX). Substituting this into Eq. (2.21), we find G(O,O) N exp(2/3X). 

* The precise form of the Wheeler-De Witt equation is uncertain in this region due to the 
lack of knowledge of short-distance behavior of quantum gravity. 
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If we compare this result with Eq. (2.26), we find agreement provided we set 

~1 = exp(---SW) - exp(-2/3X). S omehow we have succeeded in making the minisu- 

perspace wormholes very costly. At the expense of fine-tuning w2(t) in the unknown 

microscopic region near t = 0, we have constructed a minisuperspace model which 

is free of wormholes defined in Coleman’s sense. This special adjustment is prob- 

ably not a true fine-tuning of physical parameters but a procedure necessary to 

remove the asymmetry built into a generic minisuperspace model. Without this 

adjustment the model would have picked two special points on each stationary 

Euclidean geometry (the two poles of the four-sphere), and would have contained 

wormholes that can attach to these special points. Now that these asymmetri- 

cally coupled wormholes have been removed, we can add by hand wormholes that 

can create contacts between arbitrary pairs of points, such as those considered by 

ColemanP This will be done in Section 3. 

_ We now offer a somewhat different, perhaps simpler prescription for turning 

off the asymmetric wormholes contained in the minisuperspace models. For that 

purpose, we need to elucidate the crucial difference between the fine-tuned case and 

the general case. Let us solve for the shape of the Schroedinger wave function of the 

out-vacuum Qout(X, t) at early times. By integrating the Schroedinger equation 

backwards in time, we obtain 

(2.27) 

where 

..m 
Q!(t) = -“f*(q (2.28) 

Without fine-tuning, Re{cu(O)} is O(exp(-2/3X)) while Im{cw(O)} is O(1). This 

means that Q?\IloUt(X, 0) is an oscillating function with a broad envelope. The spe- 

cial property of the fine-tuned case is that Im{cr(O)} is O(exp(-2/3X)) and the 

oscillations are eliminated. In fact, in the limit X + 0, QIl,,t(X, 0) becomes flat and 

therefore indistinguishable from Q;(X) 0). Strictly speaking, we are only interested 
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in this limiting situation: only in the limit X + 0, where four-spheres are in- 

finitely large, can we make a clean separation between two bubbles connected by a 

wormhole, and one deformed bubble. Working with very small A, we will therefore 

replace the boundary condition of Eq. (2.16) with the boundary condition 

%&(X, 0) = %d(X, 0) (2.29) 

which is exponentially close to it. Thus, the requirement of the absence of worm- 

holes can be fulfilled by choosing the wave function of the googolplexus at t = 0 

which evolves into the ground state at late times, and leads to no production of de 

Sitter universes. In the Heisenberg picture, this choice is simply 

- 
1 in >= I out > (2.30) 

This leads to 

G(W) = f(O)f*(O) - exd2/3$ (2.31) 

in agreement with the claim that the asymmetric wormholes have been turned off. 

Perhaps, it is no coincidence that, in the absence of a source of small geometries, 

a suppression of the number of large universes amounts to a suppression of worm- 

holes. The process of production of a pair of large universes can be pictured as a 

wormhole geometry where the radius of the universe first contracts to a Planckian 

value and then reexpands. 

Let us now compare the sum of disconnected diagrams of Fig. 1 with Coleman’s 

sum over disconnected four-spheres. Substituting Eq. (2.31) into Eq. (2.19)) we 

find the path integral to be 

z( J, A) = e-f J2f(o).f*(o) (2.32) 

where f(O)f*(O) - exp(2/3X). Th us, we have reproduced Coleman’s double expo- 

nential with one important change: each bubble carries a minus sign in addition to 
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the large factor exp(2/3X). In th e 1 imit X + 0 this leads to an enormous suppres- 

sion of the path integral instead of enhancement. The origin of this suppression 

lies in the fact that the average number N of outgoing universes produced by the 

action of the current J diverges in the limit X + 0: 

N =< out IeiJx(o)utue-iJx(o)l out >= J2 f(O)f*(O) (2.33) 

It -is also easy to see that the de Sitter universes produced by the current are Poisson 

distributed. The path integral 2 with no insertions measures the amplitude to 

produce no universes in the final state. The Poisson distribution implies 

1212 = eeN (2.34) 

in-agreement with Eqs. (2.32) and (2.33). Th e entire situation is similar to QED 

with a time dependent external current, which is well known to produce a diver- 

gent number of soft photons. The exponential factor in the amplitude (2.32) to 

produce no out-going universes is analogous to the infinite suppression of exclusive 

amplitudes, in which no infrared photons are emitted. The analogy with QED 

suggests the following probability interpretation: since we cannot detect the other 

universes, we are interested in inclusive probabilities, which are in no way sen- 

sitive to the infrared divergences. We will postpone a detailed discussion of the 

probability interpretation until Section 4. 

3. Topology Change In Minisuperspace. 

In order to complete our construction, we now include topology changing pro- 

cesses in our third-quantized model. This will have the effect of turning some of 

the disconnected diagrams of Fig. 1 into diagrams connected by wormhole lines. 

Following the method of Refs. 2, 3, 4, 18, 22, 23, we introduce into the action a 
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variable cy, which is essentially the field for universes of Planckian size: 

- 

S=;a2+jdt{;k2+; (&-y)X2-JXb(t)} . (3.1) 
0 

The role of (Y is to create contact between arbitrary pairs of points on the macro- 

scopic universes. Th is is accomplished through a repeated application of the in- 

teraction vertex, which describes creation of a baby universe by a macroscopic 

universe. Since the scale factor is time, this interaction is non-local. In order to 

construct a hamiltonian treatment, we will make the action local in time by for- 

mally promoting (Y into a function of t, and by introducing a lagrange multiplier 

P(t): 

,,y= ;a’+?dt{;22+; (-&- ‘+;+))X’- JXG(t)+@(t)h(t)} 

0 

(3.2) 
The argument in the first term is arbitrary since there is a constraint & = 0. The 

fields (Y and ,B are a pair of conjugate variables. Therefore, the wave functions 

can be taken to be functions of X and Q, with initial conditions of the form 

*in(X) cy, t = 0). Since ir = 0 is obeyed as an operator equation, the Hilbert space 

breaks up into sectors labeled by cr which is independent of time. Specifically, a 

general state of the googolplexus can be expanded in a complete set of states with 

definite values of AZ 

19 >= J dc&‘y2F~(a)p;Cy > Ia! > . (3.3) 
The Schroedinger wave function corresponding to 19; a > evolves in time according 

to the hamiltonian with a shifted cosmological constant X,ff = X + go. F*(a) in 

Eq. (3.3) is the weighting function for different o-sectors, which is completely 

determined by the boundary condition at t = 0. Thus, it is natural to assume that 
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FQ is a smooth function. In general, the out-state is 

lout >= J daFo,t(c+ut;~ > IQ > (3.4) 
where lout; (x > is the out-vacuum in each o-sector and F,,t(a) is assumed to 

be smooth. Then the path integral, which is the transition amplitude from the 

in-state to the out-state, is given by 

J daefr i”2F,f,t(a)F;,(cy)Z(X + ga). (3.5) 

2(X + ga) =< out; alin; a > (3.6) 

is to be computed in a theory with a shifted cosmological constant X + go. This 

expression closely resembles the wormhole summation formula of Refs. 2-4. If, as 

Coleman claimed: Z(X) N exp(exp(2/3X)), then the path integral is dominated by 

the value of o such that the observed cosmological constant is zero. Recall that, 

after setting 

in>=e -=w)I out > * P-7) 

we have found Z(X) N exp(- exp(2/3X)), which- differs by a crucial sign from 

Coleman’s result! It could then appear that the zero of the cosmological constant 

is strongly suppressed. Before we jump to such a drastic conclusion, however, we 

need to analyze perhaps the most confusing issue of quantum gravity: the issue 

of probability interpretation. As we will argue in the next section, the probability 

interpretation suggested by the third quantization is quite different from the lore 

of the Euclidean quantum gravity. 

* There is no discrepancy with Eq. (2.30). We have simply absorbed the effects of the source 
at early times into the definition of the in-state. 

t In 4 dimensions our sign agrees with the sign found by Polchinski (Ref. 11). 
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4. The Probability Interpretation. 

As shown by Coleman2’4 and Giddings and Stromingera the magical effect of 

the wormhole sum is to introduce integration over coupling constants into the path 

integral. Coleman went further and interpreted the weight in the integration as 

the a priori probability distribution for the coupling constantsP This formed the 

basis for his claim that the observed cosmological constant is zero in the wormhole 

theory. Implicit in these arguments is the assumption, first advocated by Hawking, 

that the Euclidean path integral with insertions computes expectation values in 

quantum gravity. We will see, however, that this assumption does not generally 

hold in the theory of the googolplexus. 

Our methods rely on thinking of the scale factor as the time in the third- 

quantized dynamics. Then, as demonstrated by Eq. (2.7), the third-quantized 

hamiltonian has explicit time dependence. In such a theory, the path integral with 

operator insertion 0; is a transition matrix element of the from 

< Out 1Oij in > (4.1) 

On the other hand, the expectation value of Oi in a state of the googolplexus 1 in > 

is given by 

< in IOil in > P-2) 

which cannot in general be calculated using conventional path integrals. For in- 

stance, the probability distribution for the cosmological constant is given by 

co 

PUeff) = 9 
J 

Lx 

-KJ 
I ( 
9i, XT x x eff - 9 ,t=O)/1 =glP,, (AefiA”)I’ (4*3) 

which, by assumption, is a smooth function. The infrared factor 2(X,,,) which 

strongly depends on the cosmological constant does not appear in Eq. (4.3). The 
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wormhole calculus, which is intimately connected with the third-quantized Feyn- 

man rules, is not suited for the calculation of a priori probabilities. Instead, the 

calculation of a priori probabilities bears a close analogy to the calculation of in- 

clusive cross-sections in QED. On the other hand, Coleman’s definition appears 

to be related to exclusive cross-sections, which are well-known to contain large 

infrared suppression factors. In fact, the properties of p(X,,,) in Eq. (4.3), the a 

priori probability for the cosmological constant, depend entirely on the unknown 

mechanisms of quantum gravity at Planck scale. Coleman’s precognition, which 

provides the connection between the Planckian and cosmic physics, is absent from 

our model. 

Equations (4.1) and (4.2) show that the path integral computes the expectation 

values only if I in >= I out >. This corresponds to setting J = 0 in Eq. (3.7). 

However, as explained above, this state of the googolplexus leads to no sharp peaks 

in-the probability distribution, just like almost any other state. 

Where does the example of the previous section fit in this discussion? There, 

in order to introduce a diagrammatic structure into the path integral we worked 

with the state of Eq. (3.7). As evidenced by Eq. (2.33), this state contains 

a large number of de Sitter universes with X + 0 (from here on we drop the 

subscript on X,ff). As a result, the path integral, which is the amplitude to 

produce no outgoing quanta, is strongly suppressed. On the other hand, the a 

priori probability distribution for the cosmological constant in such a googolplexus, 

obtained by substituting Eq. (3.7) into Eq. (4.3), displays no sharp suppression 

or enhancement of any value. 

If the coupling constants we measure are actually distributed according to 

the a priori probabilities defined by Eq. (4.2), then our conclusions can not be 

more disappointing. From the point of view of a low-energy observer, wormholes 

seem to turn all the fundamental parameters into random variables. However, 

we should not be hasty to accept this unpleasant state of affairs. Probability 

interpretation is one of the most confusing issues in quantum gravity. Our definition 
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of a priori probabilities is perfectly reasonable from the point of view of an outside 

observer who can watch entire universes being created and destroyed. But how 

does the world appear to US, the observers confined to one universe? An analogous 

hypothetical question concerns the meaning of probabilities observed by an electron 

participating in a scattering process. Within a second-quantized framework such 

a question is confusing and may not have a unique answer. 

One interesting modification of the definition of probabilities was proposed in 

Ref. 19. There it was suggested that we observe the a priori probabilities weighted 

by the number of created de Sitter universes. This number is infrared-sensitive and 

seems to offer a new possibility for solution of the cosmological constant problem. 

To show this we come back to the example considered in Section 2. If the in-state is 

taken to be of the form (3.7), then th e source J produces a large number of quanta 

at late times. According to Eq. (2.33), this number is 0(exp(2/3X)) as X + 0. If 

this number is included in the weighting of probabilities for different values of the 

cosmological constant, then we find a single exponential peak at X = 0+, similar 

to the peak of the Baum-Hawking approach.12’13 This peak actually occurs for a 

broad class of the wave functions of the googolplexus, provided that some “generic” 

boundary conditions are specified at early times. The reason is quite simple. Before 

t = Xm3i2 the h armonic oscillator is upside-down, and the wave packet spreads. As 

a result, at late times the wave function is in a highly excited state and contains 

a large number of quanta, which rapidly grows with a decreasing X. For instance, 

consider the gaussian boundary conditions of Eq. (2.17). Calculating the number 

of quanta at late times as a function of the width w, we find* 

N(w) =< w I,+ al w >= 
W2 

&l.f(W + ,IfP)l” - f (44 

We see that, without any fine tuning near t = 0, N(w) N exp(2/3X). (This was 

first pointed out by Rubakov.lg) The crucial question is whether it is justified to 

* From here on we set J = 0. Turning on the source does not modify any of the conclusions. 
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identify the number of produced de Sitter universes with the probability to find a 

given value of A? We believe that the answer is negative. In order to explain our 

point of view, it is necessary to add some matter content to our model. 

The simplest model which contains some of the crucial features includes one 

periodic scalar field 4, which is an angle ranging from 0 to 27r. If the field has 

no potential, then the problem splits into sectors labeled by the discrete values of 

the momentum conjugate to 4. The third-quantized Wheeler-De Witt field can be 

expanded as 

X(t, 4) = 2 (P f#ak + Cik’ f,*(+t,) 
k-ccl 

where fk is an incoming solution of 

d2 k2 
gT+i$- & + p 

> 
.w> = 0 

(4.5) 

(4.6) 

For a value of [El << A, this equation has two classical solutions: a Friedmann- 

Robert son- Walker (FRW) universe, which starts from a singularity, expands to 

a maximum volume e lkj3i2, and recontracts to a singularity; and a de Sitter 

universe of minimum volume x Xm3j2. For lkl > & the barrier separating the 

FRW and de Sitter regions disappears, and there is only one classical solution: a 

universe expanding forever. 

We will assume that, in this toy model, a universe similar to ours is described 

by a FRW solution with 

1 << lkl << & (4.7) 

In other words, we assume that our universe has a small positive spatial curvature 

which will eventually force it to recontract. We will further suppose that the 

probabilities we observe must be weighted by the average number of the universes 

contained in the googolplexus, which resemble our universe. Then it is clearly 

wrong to count the de Sitter universes which contain virtually no heat. (The 
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energy of the scalar field is negligible in the de Sitter region t > X-3/2 provided 

condition (4.7) is satisfied.) 

Our goal, instead, will be to count the FRW universes with a given large value 

of k when the cosmological constant is so small that the condition (4.7) holds. The 

discussion of boundary conditions for a given value of k only concerns the oscillators 

ak and ai and reduces to the quantum mechanical system of Section 2. As we have 

found, a generic boundary condition imposed at t = 0 leads to production of 

O(exp(2/3X)) d e 1 S’tt er universes. However, as we argued, this number should not 

be included in the definition of the probabilities measured by us. In order to count 

the FRW universes, we introduce their creation and annihilation operators through 

X(t, 4) = g (eikd hk(t)bk + emit4 h;(t)bL) 
k-cm 

(4.8) 

where 

hk(t) + &%exp(-iklogt), t-+0 (4.9) 

Generic boundary conditions at t = 0 do not lead to a sharp dependence of the 

number of FRW universes on X, since the Schroedinger evolution at early times 

is very weakly sensitive to X. As explained in Section 2, it seems natural to im- 

pose boundary conditions at t = 0 in order to mimic the short-distance effects 

of quantum gravity. Unfortunately, such boundary conditions do not lead to a 

semiclassical solution of the cosmological constant problem. 

Much more interesting results follow if, as in the example of Section 2, we 

impose boundary conditions at late times, such as in Eq. (2.30). If condition (4.7) 

holds, then there is a thick barrier separating the de Sitter region from the FRW 

region. As shown in Eqs. (2.27) and (2.28), th e wave function which tends to the 

ground state gaussian at late times must be a wave packet of width N exp(2/3X) 

at early times. Such a state contains O(exp(2/3X)) FRW universes! The same 

conclusion follows if the wave function at late times is not in the ground state, but 
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in any finitely excited state. Thus, if we work with generic boundary conditions 

specified at late times, we find that the number of FRW universes which reach 

some specified maximum volume V,,, is O(exp(2/3X)) as X + 0. This sharp 

peak is relevant if we weigh the probability for X by the number of universes which 

are similar to ours. Such a theory may offer new prospects for solution of the 

cosmological constant problem. 
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