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1. Introduction 

In this paper we establish a connection between open string theory and the 

Caldeira-Leggett model of dissipative quantum mechanics, evaluated at a delocal- 

ization critical point. This reduces the problem of finding non-trivial open string 

ground states (magnetic monopoles, for instance) to the problem of finding gauge 

potentials in which the long time quantum motion of a non-relativistic charged 

particle subject to dissipation manifests scaling behavior. Since very little seems 

to be known about the latter problem, this mapping unfortunately does not solve 

any string theory problems directly. It does however provide new insights into the 

structure of both the open string ground state problem and dissipative quantum 

~- mechanics and suggests new lines of attack which may eventually prove fruitful. 
- At the very least it is amusing and chastening to discover that a significant string 

theory problem is identical to a problem studied in conventional condensed matter - -_- 
physics. 

In order to keep the exposition compact we will assume that the reader is 

aquainted with both the essentials.of the Caldeira-Leggett approach to dissipative 

quantum mechanics [1,2,3,4] and the boundary state approach to the physics of 

open strings [5,6,7,8]. We reproduce the essential formulae in Sections 2 and 3 and 

the reader who is familiar with either of the two subjects should have no difficulty 

in following our arguments. In Section 4 we discuss reparametrization symme- 

try which plays an important role in the analysis of these theories. In Section 5 

we illustrate our ideas by considering some simple dissipative quantum systems 

that are relevant to string theory applications. Section 6 contains discussion and 

suggestions for further work. 
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2. Dissipative Quantum Mechanics 
c 

-. 
Let us begin by summarizing the formulation of dissipative quantum mechanics. 

The quantum mechanics of a non-relativistic particle subject to a quite general 

force is described by the standard Euclidean path integral 

.??QM = [Dx(t)] e-SgMtX1 

J 

with 

SQM[X] = /dt {~Mk2+V(X)}+i/dtA,,(X)kP. (24 

The coordinates Xp parametrize D-dimensional Euclidean space, V(X) is the 

scalar potential and APL(X) is the gauge vector potential. The gauge interaction 

is through a Wilson line factor and, if the gauge group is non-abelian, this factor --_- 
must be generalized to the trace of a path-ordered exponential. 

If the quantum variable, X”, is in some sense macroscopic (a good example 

is the trapped magnetic flux in a Josephson junction) there will typically exist an 

infinite collection of degrees of freedom to which Xp is at least weakly coupled 

and which give rise to dissipative effects on the motion of Xfi. The details of 

the interaction with the environment are often unknown but in the classical limit, 

dissipation can be described by simply adding a friction term such as -qXp (where 

77 is a phenomenological dissipation constant) to the equation of motion for Xp. 

It is then natural to ask whether there is a correspondingly simple and universal 

way to express the quantum effects of weak dissipation. A practical motivation for 

this question is to assess whether coherent quantum effects, such as tunneling, can 

really be observed in macroscopic quantum systems. 

Caldeira and Leggett [l] add ressed this problem via the following simple model: 

In addition to the system (2.1) described by the coordinates Xp, let there be a 

bath of harmonic oscillators, qa, with a distribution of frequencies, w,. Let them 
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be coupled linearly to the coordinate Xp with coupling strengths C,. These simple 
- 

C .- assumptions are justified when any single degree of freedom of the environment is 

only weakly perturbed by the system. The bath of oscillators then describes the 
-. 

excitations around the equilibrium configuration of the environment. This is often 

the case and these models are applicable to a variety of dissipative problems (in 

particular weak coupling to each mode in the environment does not imply weak 

dissipation in the system) [ 11. 

If the distribution of oscillator parameters satisfies the functional condition 

c g qw-wa) = 7 
cr (Y (2.2) 

it turns out that, when the oscillator coordinates are “integrated out” of the classi- 
- -. Cal-equations of motion for X p, they supply the canonical -qXp friction term. By 

scaling the oscillator coupling strengths, the friction constant 7 can be adjusted 

to any desired value. One can study more general dissipative systems than the 

linear friction considered here (for example a term proportional to X2 could be 

_ _ - - included) by generalizing the spectral density (2.2) of the oscillator bath. We will 

see, however, that it is the case of linear dissipation which is relevant in the context 

of open string theory. 

: -- The quantum mechanics of this coupled system is described by a Euclidean 

path integral over the X” and the oscillator coordinates qO. Since the dependence 

of the action on the qcu is only quadratic, they can be explicitly integrated out of 

the quantum mechanical path integral just as they could be eliminated from the 

classical equations of motion. The result is a new path integral over the Xp alone, 

in which the net quantum mechanical effect of friction is contained in a non-local 

term whose strength is set by the classical friction constant 7: 

Z& = [jTX(t)] ,-sQ[xl-s~[xl 
J 
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where 

J 
O” & dt’ (X(t)-X(t’))2 

(t-t’)2 * (2.3) 
.-. --oo 

The q-term is non-local and consequently it is difficult to extract from the path in- 

tegral the interesting qualitative physics, such as the long time behavior of Green’s 

functions. We will come back to this in Section 5. For the moment we note that 

if the original path integral is taken over paths periodic in t with period ,B, as one 

does to compute the thermal partition function, the only effect is to change SV to 

P fx 

S{[X] = 2 dt dt’ 
s s 

(m-w’))2 
(t-t’)2 

0 --oo 

- -._- =- 
4P2 J 

& &/ (X(t)-x(t’))2 

0 
sin2 (;(t-t')) * 

(2.4) 

The first equality is a direct transcription of the periodicity condition and the 

second follows from a well known summation formula. 

3. Boundary State Formalism for Open Strings 

Somewhat surprisingly, the same path integral allows one to study non-trivial 

ground states of the open string. The connection comes through the operator ap- 

proach to calculating the Polyakov path integral on worldsheets with complicated 

topology. In this approach, states in the closed string Hilbert space are associated 

with basic worldsheet topological fixtures (boundaries and handles) and, just as a 

complicated worldsheet is constructed by gluing together such fixtures, the corre- 

sponding path integral is obtained by taking inner products of the states associated 

with the fixtures. 

The simplest topological fixture on a worldsheet is a single connected boundary. 

It can only appear in a theory with open strings. In this Section we review how 
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the associated boundary state is constructed. A detailed treatment can be found - 
c in [7] and [S] so we will be brief. 

-. 

empty spacetime, where the boundary 

on the worldsheet fields: 

It is easy to obtain the boundary state, ]B), for strings propagating in flat 

just imposes the usual Neumann condition 

(We have chosen cylindrical coordinates on the worldsheet near the boundary, 

which is placed at T = 0.) 
.- 

- If we make the usual closed string mode expansion of the fields, 

d”(c, 7) = qp - 2ipPL7 + i C k [ake-mr-ima + G.e-mr+ima] 
m#O 

(34 

we can see that the Neumann condition reduces to the following set of conditions 

on the left- and right-moving oscillators and on the zero modes: 

pp =o, 

cPm+&~=O, VmfO. 

Taking into account the oscillator commutation relations 

bL cry = [ti&, 2 J = m L+n,o 6’“” , 

bL qJ =o . 

(3.2) 

(3.3) 

and defining the CY~ and G, with n > 0 as annihilation operators and those with 

n < 0 as creation operators, we can see that the state which satisfies the operator 
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form of the boundary conditions is: 

IB) 
co 1 

free = exp{ - C Lo-m * G-m> IO) , 
m=l 

(3.4) 

where IO) is the SL(2, C) invariant vacuum of the closed string, 

pfi IO) = 0 ; crk IO) = ii& IO) = 0 ) Vm>O. 

By sandwiching a closed string propagator between two such states one can, for 

example, construct the Polyakov path integral on the cylinder. 

- 

Now suppose that, instead of having a string propagating in flat empty space- 

time, we want to consider a situation in which some spacetime degrees of freedom 

Z3he open string are excited. In the Polyakov path integral one accounts for open 

string spacetime background fields by including worldsheet interactions localized at 

worldsheet boundaries. The canonical example is the Wilson line factor associated 

with spacetime background gauge.fields. In the presence of boundary interactions, 

the worldsheet fields no longer satisfy simple linear boundary conditions and simple 

operator arguments of the kind presented above do not suffice to construct the in- 

teracting boundary state. Fortunately, a perturbatively well-defined path integral 

: -- algorithm for obtaining IB) exists. 

In [7] it is shown how the boundary state in an arbitrary spacetime gauge field is 

formally given in terms of a path integral for a certain one-dimensional field theory. 

This is obtained by viewing the string as an infinite collection of oscillators and 

solving the boundary conditions using elementary properties of simple harmonic 

oscillator quantum mechanics. The result is 

IB) = exp (5 io-m*&-m, / [DX’(s)] tr Pexp [-Sreg-SO-SA-Sls] IO) , 
m=l 

(3.5) 
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where 

c 
2* 2x r (x(s)-x(s’))2 So[Xl= &/g/g 

0 0 
sin2(Z.$) ’ 

2* 

SA[X] = ; / 2 A,(X(s)) dxdl(s’ 

0 

2x 

&m = s g 44 * X(4 7 
0 

&(s) = fJ i (2, emims + cPm eims) , 
m=l 

2s 

SW&q = - J 
0 

(3.6) 

-3%~ path integral is over scalar fields Xp(s) defined on Sr, parametrized by s E 

: -- 

[0,27r], corresponding to the boundary. There should ultimately be nothing special 

about choosing the parameter length of the boundary equal to 2n. This path 

integral describes an interacting one-dimensional field theory with a non-local but 

scale-invariant kinetic term, So, and an interaction term, SA, of power counting 

dimension one. Perturbation theory in SA is therefore renormalizable, not finite. 

Strictly speaking we need a regulator term, of dimension greater than one, to 

render the path integral finite and that is the role of Sreg (which is also just the 

standard non-relativistic quantum mechanical kinetic term). Eventually we must 

remove the regulator by taking the limit M -+ 0 and removing divergences by 

renormalization counterterms. 

The non-local kinetic term is quite peculiar. It has the above simple form only 

if the worldsheet fields have no interactions on the body of the worldsheet. This 

means that as far as closed string fields are concerned we are considering the trivial 

configuration of flat spacetime. Only the open string fields are allowed to have 

spacetime condensates, leading to interactions only on worldsheet boundaries. SA 

weights the path integral with a Wilson line factor based on the chosen spacetime 
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gauge potential, A,. We could, of course, accommodate a non-abelian gauge field - 
c by including the usual path-ordering and gauge trace instructions. More general 

local interaction terms are possible, and in particular, it eventually turns out to be 
^. 

essential to include the dimension zero (super-renormalizable) interaction 

2* 

sv = J g V(X(“)> 
0 

(3.7) 

corresponding to a spacetime condensate of the open string tachyon. 

The role of the linear source term is to turn the path integral into a functional 

of the left- and right-moving closed string creation operators, cr[, and &;1’“-,. Since 
.- they all commute with each other they can be treated as c-numbers. The whole 

functional acts on the oscillator ground state 10) and, when expanded in powers 

-of--the creation operators, yields a state in the closed string Hilbert space. The 

oscillator Gaussian standing in front of the path integral arises naturally enough 

in the careful derivation [7] of the above expressions. In the free case (A, = 0) 

the path integral is Gaussian and can be done explicitly and one can readily verify 

_ _ that the extra Gaussian factor is needed to reproduce the known free boundary 
- - 

state (3.4). 

The net result of all of this is that the path integral for dissipative quantum 

mechanics and the path integral for the open string boundary state are essentially 

identical after appropriate reinterpretations of quantities. The scalar and vector 

potentials in the quantum mechanics problem are interpreted as spacetime tachyon 

and gauge fields in the string problem. The dissipation constant is reinterpreted 

as the inverse of the string Regge trajectory slope (i.e. string tension) by the 

relation 7 = &. We know from study of the string problem that the perturbative 

expansion parameter for this path integral is CY’. This means that we cannot 

expand around the zero dissipation, pure quantum mechanics limit. The mass 

in the standard quantum mechanical kinetic term is interpreted as a cutoff scale 

in the string path integral (Al has worldsheet dimensions of length, so the cutoff 

9 



- 

is removed as A4 + 0). The temperature in the dissipative quantum mechanics - 
e -. corresponds to the parameter length of the boundary in the string case. 

-- 
4. Repsrametrization Invariance 

.- 

- 

To discuss string physics, we must scale the cutoff parameter A4 to zero and 

carry out a renormalization program to deal with the divergences which arise. 

Equivalently, we can say that the string physics is contained in the infrared be- 

havior of the theory with a fixed cutoff scale. If we take the renormalization group 

approach, we will find that the effective interactions, i.e. the vector potential A, 

(marginal) and scalar potential V (relevant), will in general “flow” as we integrate 

out larger and larger distance scales relative to the cutoff. To have a sensible in- 

terpretation as spacetime fields corresponding to a definite solution of the open 

string field equation, they should in fact not flow, which is to say that they should -.- 
sit at a renormalization group fixed point. This is the stringy origin of equations 

of motion for spacetime fields. 

A more precise characterization of the fixed point theory can be extracted 

from some technical string theory considerations: Revert to the particle physics 

point of view and carry out renormalization by scaling the short distance cutoff to 

zero, adding counterterm interactions as needed to keep finite scale physics fixed. 

Let IB,A) be th e resulting boundary state. Its construction depends implicitly 

on a choice of parametrization for the boundary, but in order for IB, A) to be an 

acceptable state to insert into the closed string worldsheet, it must be independent 

of parametrization choice. Technically, this is expressed by requiring that IB, A) 

be annihilated by the combinations of left- and right-moving Virasoro generators 

that generate reparametrizations of the boundary: 

(&i-n) j&A) = 0, (4.1) 

Since the boundary state is a functional of the oscillator creation operators c& 

($,) and since the L, (i,) can be represented as differential operators acting 
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on these variables, (4.1) amounts to a set of reparametrization Ward identities 

“, on the boundary state path integral and its renormalization scheme. Detailed 

examination shows that they include the condition that the vector potential sit at 
-. 

its renormalization group fixed point [8]. N ormally, a renormalization group fixed 

point is associated with global scale invariance (critical point scaling behavior). 

The point we want to make is that in this one-dimensional problem, scaling is 

promoted to a higher symmetry, essentially local reparametrization invariance. 

This is analogous to the appearance of conformal invariance at critical points of 

two-dimensional theories. 

There is a subtlety, however. Despite the fact that the boundary state is 

annihilated by all the worldsheet generators of boundary reparametrizations, it 

turns out that the one-particle-irreducible Green’s functions of the critical one- 

dimensional theory are strictly invariant only under the finite dimensional sub- 

grb~p SL(2,R). In fact th is is a good thing: strict reparametrization invariance 

would require the Green’s functions to be trivial [lo]. This is analogous to the sit- 

uation in two-dimensional conformal field theory where, because of the conformal 

anomaly, Green’s functions are strictly invariant only under SL(2, C), rather than 

the full conformal group. The reason here is not the anomaly (the usual conformal 

anomaly cancels between the left- and right-moving parts of the reparametrization 

generators L,-t-,) but the peculiar properties of the non-local kinetic term. This 

is explained in detail in [8] and we will confine ourselves here to an account of the 

essential physical ideas. 

Let us consider the invariance properties of the various terms in the action 

of the one-dimensional path integral. Under a reparametrization s+t(s) a local 

operator of dimension d transforms as Od(s) = (2)” @a(t). The integral of an 

operator of dimension one is therefore invariant. The coordinate Xfi(s) behaves 

like an operator of dimension zero, and its derivative like an operator of dimension 

one. The vector potential interaction term, SA, is the integral of a dimension one 

operator and therefore strictly reparametrization invariant. The non-relativistic 

kinetic term SYes and the scalar potential term Sv are integrals of a dimension two 
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and a dimension zero operator respectively and therefore not invariant. The regu- 

lator term is irrelevant (dimension greater than one) and should have no influence 

on the physics when the regulator scale is taken to zero. The scalar potential term 

is relevant (perturbative dimension less than one) and must be chosen just right 

so as not to disturb the invariance of SA. The mechanics of doing this are detailed 

in [8] and we will not repeat the arguments here. We simply assert that as far as 

the local terms in the action are concerned, full reparametrization invariance is a 

possible symmetry of the one-dimensional theory. 

The non-local kinetic, or dissipation, term is another matter. We can readily 

show that it is invariant only under a finite dimensional subgroup of the repara- 

metrization group. Consider first the non-local term evaluated on the infinite line 

(the zero temperature case for the dissipative quantum mechanics application): - . 

-- -.- &’ (x(t)-x(t’))2 

(t-t’)2 * 
(4.2) 

-co -co 

Under a reparametrization t”=f(t) the fields transform as ji’(t”)=X(t). The action 

in terms of the transformed fields ‘is easy to obtain 

co ca 

S; = & dt dt’ 
s s (t-t’)2 

-03 -co 

1 lxJ O” I- 
8cr’7r2 J J 

dt” d? 
(x’(i)-X(i’,)” (f(t)-f(t’))2 

(w’)2 (t-t’)2 f’(t) f’(t’) * 
--co -co 

The condition for form invariance under reparametrization is thus 

(t-t’)2 f(t) f’(t’> = (f(t)+))” ’ 

With a bit of arithmetic, one shows that the solution of this equation is 

.f(t> = s 7 ad-b= 1. 

(4.3) 

(44 

(4.5) 

These are nothing but the SL(2, R) mappings of the real line into itself. The 
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infinitesimal generators of the full reparametrization group are 

v,, = tn+l g ) -ca<n<ca 

and the infinitesimal generators of SL(2, R) form the subalgebra 

(4.6) 

{v-l,~O,R} = {-$t-gt2g,. (4.7) 

The invariance of Sno(; under 27-r and Do (translations and global resealing) is fairly 

obvious, while the invariance under 271 is non-trivial. The effect of the non-local 

kinetic term is therefore to reduce the explicit invariance of the n-point functions 

of the critical one-dimensional theory from full reparametrization invariance to 

SL(2,R). A s ex pl ained in [8], this is perfectly consistent with the boundary state 

being invariant under the FUZZ set of boundary reparametrization generators. 

The consequences of SL(2, R) invariance are easy enough to state for two-, 
- 

three- and four-point functions. An SL(2, R) t ransformation is a reparametrization 

so-the transformation properties of operators under SL(2, R) are determined by 

their dimension, d: 

at + b (4.8) 
t”= ~ 

ct+d’ 
ad- bc= 1. 

The question of which dimensions, d, are allowed is a dynamical one and the answer 

depends on the particular theory. It is then rather easy to show that SL(2,R) 

invariance has the following consequences for the first few n-point functions: 

(t1-t,)2d ’ 
c’123 

(t~-t2)~l+~2--d3(t2-t3)d2+d3-dl(t3-tl)d3+dl-d2 ' 

1 (trta)(trt4) 

(ti_tj)di+dj-z (trt3)(t2-t4) 

where d = Ci di and F( ) z is an arbitrary function. Note that if one were to impose 
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invariance under the full reparametrization group the only possible solution would 
- 

* be that all these Green’s functions vanish identically. 

-. For reference, we show how this works for the case where the action is defined 

on a circle (appropriate for finite temperature dissipative quantum mechanics or 

string theory applications). On a periodic interval of length 27r, the non-linear 

term in the action is 

S2” = 1 
121 8a’ 

(4.10) 

Now consider a reparametrization of the interval, e” = f(0). The boundary fields 

transform as scalars, z“(e”) = X“(0) and it easily follows that S$ is form invariant 

-. under (4.8) provided that f(0) is restricted by 
- - .- 

sin2 (f(e>-f(e’> 

2 ) 
= sin2(y) f’(0) f/(0’) . (4.11) 

This condition is satisfied by mappings in the SU(1, 1) subgroup of the Mobius 

transformation group: 

_ az+b 
.Z==--- 

bz+ii’ 
Ial2 - lb12 = 1 . (4.12) 

: -- 
They map the unit circle into itself and if we set .z=eie and z”=eie, (4.12) defines a 

reparametrization of the circle, e”=f(e). So, for th e one-dimensional theory defined 

on the circle, the manifest symmetry of the Green’s functions of the critical theory 

will be SU(1, 1) restricted to the unit circle, which is a three-parameter subgroup 

of the full reparametrization group. 

The points we are trying to make can be summarized as follows: A cutoff 

one-dimensional field theory underlies both the string theory boundary state and 

dissipative quantum mechanics. In the string theory application it is necessary to 

remove the cutoff, or to take the infrared limit, and adjust the couplings so that 

14 



- 

the theory sits at a renormalization group fixed point. In dissipative quantum - 
rc mechanics such fixed points should correspond to points of transition between 

qualitatively different long time behavior (localized vs. delocalized, as we shall 
-. 

see) and are of course of considerable interest. One knows that, when viewed from 

string theory, the infrared, or renormalized, one-dimensional theory manifests an 

enhanced symmetry related to reparametrization invariance. Roughly speaking we 

expect the fixed point to possess the symmetry left unbroken by the marginal terms 

in the action. Marginal local operators leave full reparametrization invariance 

unbroken, but the non-local kinetic term breaks it down to a finite dimensional 

subgroup (SL(2, R) or SU(1, 1)) f o re p arametrizations. Thus the Green’s functions 

of the critical theory, whatever its interpretation, will be explicitly invariant under 

a finite-dimensional subgroup of the reparametrization group (but larger than just 

translations and global resealing). In the string theory application we furthermore 

-must insist that the boundary state be fully reparametrization invariant which 

results in a set of Ward identities for the one-dimensional field theory [8] (with 

the requirement of SL(2, A!) invariance contained as a subset of these symmetry 

conditions). The infinite dimensional symmetry associated with the critical theory 

can perhaps be utilized to directly construct non-trivial fixed point theories in one 

dimension, although since the symmetry is broken at the classical level it is not 

clear to us at present how to proceed. 

: -- The two points we hope eventually to exploit are, first, that string theory 

is identical to critical dissipative quantum mechanics and, second, that such one- 

dimensional critical theories possess an extended symmetry related to reparametri- 

zations. The latter point seems not to have been noticed in the condensed matter 

literature on critical dissipative quantum mechanics. The former connection is 

apparently completely new. 
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5. Mobility, Delocalization and All That - 
e 

-. 

.- 

Our goal is to find interesting examples of the critical points discussed in the 

previous sections. Some small steps in the right direction can be made by consulting 

the condensed matter and string theory literature. In the former, attention has 

focussed on the periodic scalar potential which can describe either an electron (or 

muon) moving in a lattice or the trapped flux in a SQUID. The central issue there 

has been localization: In standard quantum mechanics, no matter how strong the 

periodic potential, because of quantum tunneling, the particle diffuses as if it were 

free on long time scales. The question is whether dissipation can undo this coherent 

quantum effect and produce localized long-time behavior. In the string literature, 

the focus has been on the effects of the vector potential (spacetime gauge field) 

with the scalar potential (open string tachyon) regarded as an ancillary nuisance. 

All that has been achieved is an exact treatment of the gauge field strength case 
- - _- 

plus the evaluation of a few orders in a perturbative expansion in cy’. Larger 

questions of, say, the existence and properties of soliton sectors remain untouched. 

In this section we will collect a few results from the condensed matter literature, 

put them into the more general context we have been discussing and try to draw 

some conclusions for string applications. 

The condensed matter literature defines a useful quantitative measure of local- 

ization called mobility. Consider our one-dimensional theory defined on the open 

line and define 

K(t) = ((x(t)-x(o))2) = J $ tr S(w) (l- coswt) (5.1) 

where S(w) is the frequency-space propagator and the trace is over coordinate- 

space indices. If the long-time behavior of this quantity is bounded by a constant, 

the particle is localized; if it grows without limit, the particle is delocalized. In the 

condensed matter literature, logarithmic growth, obviously a transition between 

the two extremes, is regarded as the sign of critical behavior and the numerical 

value of the critical mobility is defined as the coefficient of the logarithm. (Since 
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- the conditions for a fixed point include Ward identities for all n-point functions, we 

c should perhaps bear in mind that things could be more complicated.) It is instruc- 

tive to compute the mobility in a constant homogeneous abelian electromagnetic 
-. 

field, an exactly soluble example of considerable importance in string theory. 

In a convenient gauge, the interaction term for this theory has the simple form 

SA = 
J 

dt ;FpvXpT?’ . (5-2) 

The other terms in the action are also simple quadratics and can easily be Fourier 

transformed to yield the frequency-space inverse propagator: 

s;;(w) = (Mw2++I)&u - w&u . 

-!hx first term comes from the standard kinetic term (regulator), the second from 

the non-local kinetic term and the third from the gauge potential. Both the non- 

local kinetic and the gauge terms scale as the first power of w, as is appropriate 

for dimension-one operators. The non-local kinetic term is distinguished from the 

local operators by its non-analytic behavior (via the absolute value instruction) _ _ _~ _ 
at w = 0. This non-analyticity, as we shall see, has a critical effect on long-time 

behavior. The explicit expression for K(t) is 

: -- A-(t) = m dw J F (l- coswt) tr { 
1 

Mw2+rj [WI +wF > 
--CO 

O3 dw J 1 = E (I- coswt) tr { 
Mw+q+F 

+ l 1 Mw+q-F 
0 

O3 dw 
D 

= 
J 

&-p- 
0 

where ifa are the eigenvalues of the field strength matrix and D is the spacetime 

dimension. F or g eneric values of the parameters, it is easy to estimate that as 
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t-00 

-. 

D 
T 

A-(t) + 4 1ogt c 2 rl 
?r a=l rl + fit * 

In the limit 7 -+ 0, we can evaluate K(t) exactly, with the result 

Iqt)lv=o = 5 f (l-e-fat’M) . 
a=1 a 

In the further limit that Fpy is turned off, we have 

W) IP,@ = g t * 

(5*5) 

(5.6) 

(5.7) 

The interpretation of these results is simple. For q=F=O, we recover the 
- _- 
standard quantum mechanics of a free massive particle whose coordinate undergoes 

Brownian motion (K(t) + t). This is delocalized behavior. For q=O but Fpy#O 

we are dealing with the standard quantum mechanics of a particle in a constant 

magnetic field. We of course expect the particle to be stuck in a particular Landau 

orbit and to manifest localized behavior. In fact, we find K(t) -+ cord., with 

the value of the constant essentially given by the size of a Landau orbit. In the 

generic case , K(t) grows logarithmically with a coefficient (the mobility) which 

depends on the non-zero values of 7 and Fpv. Roughly speaking, the coupling to 

the bath of oscillators (dissipation) causes the particle to wander slowly among the 

Landau orbits. In addition, we know from other string theory work [7], that the 

boundary state built on a constant Abelian gauge field strength satisfies all the 

reparametrization invariance Ward identities. This guarantees that the underlying 

one-dimensional field theory is at a critical point and verifies that logarithmic 

growth of K(t) is characteristic of the transition between localized and delocalized 

behavior. It is easy to see that operator n-point functions of the theory satisfy 

the requirements of SL(2, R) invariance, albeit in a rather trivial way. Since the 

action is quadratic, only the connected two-point function is non-zero. As usual, 
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Xp does not have a well-defined dimension, but Xfi behaves like a dimension-one 

t operator. By taking derivatives of K(t), we see that 

--. 
(mm) N $ (5.8) 

which is just what is required by SL(2, R) invariance for dimension-one operators. 

Another example which has been studied rather thoroughly, this time in the 

condensed matter context, is that of dissipative quantum mechanics in the presence 

of a periodic scalar potential. In string language, this is the problem of open strings 

in the presence of a periodic open string tachyon background, but no gauge field. In 

the absence of dissipation, quantum tunneling makes all states delocalized and the 

question is whether sufficiently strong dissipation creates localized states. (Note 

that this is more or less the inverse of the story for the background gauge field where 

the standard quantum-mechanical problem had localized states and arbitrarily 

small dissipation caused delocalization.). Since the potential is not quadratic, the 

problem is not exactly soluble and approximations must be made. Several authors 

[2,3,4] have studied this problem, all concluding that there is indeed a localization 

transition. We will briefly summarize the renormalization group argument of Fisher 

and Zwerger [4] and try to show how it fits into the more general context we have 

been developing. 

To be precise, we wish to study the problem defined by the Euclidean action 

SO + Sr with 

03 
so =-& J 

dtdt/ (X(t)-x(t’))2 ” a & k(t)2 

(t-t’)2 + T-, J 7 
--oo 
co 

Sl =v 
J 

X(4 dt cos(27r-) , 
x0 

W) 

For simplicity, we imagine here that X has only one component. It is convenient 
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to write So in momentum-space form: - 
a 

so =; 
J 

g F+)12 S&J) 7 
-. 

SA Jp A+??, (5.10) 

AXE 
7=x’ &=4x” 

ikfx; * 

The constant y is a dimensionless measure of dissipation and A is a large cutoff 

frequency. It is simplest to replace Szl by S-l = &]w] and instead cut off all 

frequency integrals at A. The renormalization group transformation amounts to 

replacing A by a smaller cutoff ~1 by integrating out modes with frequency p<w<h 

at the price of changing the parameters V and y. The approximation consists in 

only including diagrams that are first-order in V in the integrating-out process. 

The calculation is summarized in Figure 1. The propagators are coincident-point ---_- 
two-point functions including only the integrated-out frequencies and have the 

value G = t log(A/p). Tl ie resulting flow equation for V is 

v, = v*(pG = v* (!p’ . (5.11) 

In this approximation, and probably in an exact treatment [3], y does not flow 

[4]. If y<l, VP scales to zero in the infrared limit, the neglect of higher powers 

of V is justified and the physics at long time scales is surely delocalized. On the 

other hand if y>l, VP grows in the infrared limit, the neglect of higher powers of 

V is not justified and some totally different infrared fixed point, which we are not 

in a position to describe, but which probably corresponds to localized behavior, 

will be reached. The value y=l would appear to be a critical point (indeed, in 

this approximation, a critical line, since V can take any value) for delocalization. 

This is in some respects a familiar story: potentials with a short enough spacetime 

period (y<l) are irrelevant (scaling dimension < 1) while potentials with long 

enough period (r>l) are relevant and potentials with a critical period (y=l) are 

marginal. 
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According to what we have said earlier, the Green’s functions of the critical 
- 

e theory should possess explicit SL(2, R) invariance. More precisely, they should 

satisfy an infinite set of Ward identities which guarantee that the string boundary 
-. 

state built on this theory is strictly reparametrization invariant. To show this 

is actually quite a challenging problem as, unlike in the critical theory based on 

constant background gauge field strength, there are nontrivial interactions and 

nontrivial higher-point Green’s functions. A possible strategy for analysing this 

question relies on the fact that, at the critical value of y, the interaction term is of 

dimension one and should be equivalent to a fermion bilinear of the &,!J type by the 

usual bosonization argument. In fermionic language the action would be quadratic 

and therefore exactly soluble. This is essentially the tack taken by Guinea et.aZ. 

[3]. They evaluate the mobility two-point function K(t) and show that it behaves 

logarithmically, just as we found for the constant gauge field strength case, with a 

- mobility coefficient which depends on the potential strength V in a simple way. For 

the reasons outlined above, this is consistent with SL(2, R) invariance at the two- 

point function level. We are trying to extend this argument to a demonstration that 

the boundary state for this critical. theory satisfies the full set of reparametrization 

invariance Ward identities. We will report our results elsewhere. In the Appendix 

we will show, using the techniques of [8], that these Ward identities are indeed 

satisfied at the level of approximation of the renormalization group calculation 

of [4]. 

6. Discussion 

Although we have hardly given a proof, we think we have offered significant ev- 

idence that open string theory and dissipative quantum mechanics at an infrared 

fixed point are essentially the same subject. The search for such infrared fixed 

points is a condensed matter problem with a fairly lengthy history and a modest 

record of success. The string theory connection implies that the dissipative quan- 

tum mechanics fixed point theory possesses a high degree of symmetry (beyond the 
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expected scale and translation invariance) inherited eventually from the conformal 
- 

c invariance of string theory. One might hope that symmetry considerations would 

permit the direct construction of nontrivial fixed point theories, much as conformal 
-. 

invariance permits the construction in two dimensions of the c<l discrete series 

and its relatives. At the moment, we have no concrete proposals along these lines, 

but a clearer understanding of the symmetry properties of a theory must make it 

easier to study its solutions. 

The string theory connection also points out the importance of studying the 

dissipative quantum mechanics problem in the presence of gauge vector poten- 

tials. The reason, of course, is that in the string interpretation of this system, the 

vector potential corresponds to spacetime gauge fields while the scalar potential 

corresponds to spacetime (open string) tachyon fields. A fixed point theory with 

nontrivial values of the potentials corresponds to a classical ground state of the 
- - _- open string field theory with the corresponding spacetime distribution of gauge 

_ - - -- 

and tachyon fields. While one could look for states with only the tachyon field 

excited, our main interest is in theories with a nontrivial spacetime distribution of 

gauge fields and a monopole or instanton interpretation. In particular, one would 

like to know whether string field theory possesses topological charge sectors, and, 

if so, whether there exists something like a Bogomolny bound for the action in 

a given sector. (The latter question is particularly interesting since, contrary to 

ordinary field theory, there is no universal analytic form for the action of a given 

configuration.) Little or nothing is currently known about these issues and we hope 

that this paper will help to stimulate research in the right directions. 

Acknowledgements: We thank D. Hadden for helpful discussions and for reading 

the manuscript. 
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APPENDIX - 
c 

Ward Identity for Periodic Scalar Potential 
-. 

As an exercise, we will evaluate the full set of reparametrization invariance 

Ward identities, as defined in [8], f or a theory whose interactions come from a 

scalar potential only. The Ward identities are calculated to first order in the scalar 

potential but diagrams with any number of loops are included. This is the order of 

approximation used by Fisher and Zwerger in their approximate construction [4] 

of the renormalization group fixed point for this theory. We find that the scalar 

potential must be periodic for the Ward identities to hold, with the same period 

as required by the renormalization group argument. Thus, at the fixed point, 

an infinite number of generators are conserved, a fact that would not have been 
- . apparent from the renormalization group argument alone. We do the calculation 

in a pedestrian way with a naive cutoff to give an instructive example of how ---.- 
regulation and renormalization are dealt with. This should be a useful amplification 

of [S], where we used special methods which don’t work, for instance, for fermions 

or for higher loop orders. The diagrammatic approach described here should be 

applicable in all cases (though it may be unpleasant to work out explicitly). 
_ - - - 

The reparametrization Ward identities derived in [8] are 

n-l n-l 

: -- O = br- C +m(n-m) dma$n-m- C $m(n-m) ,,-iyE_-n + ina:‘:- 
m=l m=l 0’ Q n’ 

where P is the effective action, W is the connected generating functional and 

6, denotes a variation under an infinitesimal reparametrization by fn(s)=ieins. 

According to (A.l) th e effective action is not required to be reparametrization 

invariant (the naive result). The situation is complicated by the fact that the 

symmetry is broken at the classical level and the Ward identity expresses this 

broken invariance. The second and third terms in (A.l) give the instruction to 

subtract off the explicit variation of the classical kinetic term and all diagrams with 

that variation inserted. Finally the last term in (A.l) comes from the response of 
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the zero mode projection to the reparametrization. (These matters are discussed 
- 

f in more detail in [S].) 

We will explicitly calculate the terms in (A.l) to first order in the scalar poten- 

tial strength, V, using a perturbative background field expansion. The interaction 

vertices are obtained by Taylor expanding V(X) around the background value of 

the field X: 

J g V(X) = J &V(q!)+w) 
=@ v(~)+~$mw + 3 s g V,V,V(q+) 7P7r” + . . . . 64.2) 

The non-local kinetic term defines our propagator. A little manipulation of the 
- - .- 

expression in (3.6) 11 a ows us to read off the inverse propagator, Ho, in momentum 

space, 

So[X] = 3 
s 

g g XL+) (E yp’““) Xi+‘) . (A.3 
-CO 

_ - -~ - 
The variation of So under a reparametrization by fn(s) can be expressed in terms 

of Ho in a simple way 

&So[X] = -$ ne m(n-m) Xm * X,-m 
m=l 

1 
2 

s 

ds ds' = _- 
Z;; 2a x"(s)[~(fn(s)Ho(s-s'))-HO(S-S')fn(s~)~]X~(S') . 

(A4 

A key observation is that the diagrams which contribute to the third term in the 

Ward identity (A.l) are obtained by inserting the operator in the square brackets 

in (A.4) into the 1PI diagrams in P. (An insertion of SfHo = $fnHo--Hofn& on 

a leg of an N loop 1PI diagram effectively cuts that leg open to give an (N-l) loop 

contribution to the propagator $$, precisely of the form found in (A.l).) 
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Before proceeding to an explicit evaluation of diagrams we must specify a 
- 

f regulator. Rather than use the nonrelativistic kinetic term suggested in the body 

of the paper, we find it more convenient for calculations to define a regulated 
..- 

propagator Gh by cutting off the high frequency mode contributions in the following 

way [ll]: 

G;(S) = c -!f!- eims-imk 
m#O Iml 

=- a’ log(1 - 2e-’ cos s + ee2’) . 

(A.9 

Note that the propagator does not involve the zero frequency mode and that for 

finite cutoff it is not the exact inverse of Ho: 

. J m#O 
- -_- sinh c 

= cash c - cos(s-s’) 
-1 

= A,(s-s’) - 1 

--+ 27rS(s-s’) - 1 as E -+ 0 . 

(A.6) 

In the limit, modulo the effect of the zero mode, we get a delta function as we 

should. 

Now we are ready to analyze the Ward identity diagrams. The first term in 

(A.l) is the response of I’[d] t o an infinitesimal reparametrization. We are working 

only to first order in V so all propagators have to be contracted on a single vertex 

and the N loop contribution to r is given by a single “daisy dia.gram” with N petals, 

as shown in Figure 2. The vertex comes from the background field expansion of 

V(X) at order 2N and the Feynman rules give for this diagram 

b=-&I g cr”;V(d(s)) [WO)lN . (A-7) 

From the one-dimensional point of view dyV(q5) is a scalar field so the reparamet- 
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- 
rization variation of rN is simply 

SfrN = & 
s 

ii f’(s) flV@(s)) [Go(O)] N . (A*% 

The second term in the Ward identity (A.l) p recisely cancels the explicit vari- 

ation of the kinetic term in the tree-level effective action (but not the tree-level 

variation of the scalar interaction term). 

The N loop contribution to the third term in (A.l) is represented by a daisy 

diagram with an insertion of the operator SfHo on one petal, see Figure 3. There 

are N petals to choose from so the diagram takes the value 

DN = 2~$!1)! 
J 

&$%~“v($(s)) [GO(O)] “-‘G~(s-s’)S~HO(S’-s”)Go(s’‘-s) . =qkip s $f$$ t~~V(d(s)) [Go(O)] N-1 
- - _- 

x 2 $G(s-~‘)f(~‘)Ho(s’-~“)Go(s”-s). 
(A.9) 

We have to remember that Ho and Go are not exact inverses. There is a residual 

constant term in (A.6) d ue to the zero mode and A, is only an approximation to 

the delta function for finite cutoff. Introducing some shorthand notation 

g(s) = [Go(O)1 N-1 q NV($qs)) 
: -- 

we can write 

DN = 24N-9 / 
ds ds’ 
2X 2* d4.w) (Ab-4 - 1) &ws-4 * (A.lO) 

Consider first the piece of this containing the constant part of GoHo 

Z-N-‘&)! J 
&$ g(s)f(s’) iGo(s-s’) 

J 

(A.ll) 

= 2N-‘TN-1)! $$g(s)Go(s-s’)f’(s’) . 

This cancels against the (N-l) loop contribution to the last term in the Ward 

26 



- 

- 

identity (A.l). Th a can be seen as follows. First note that t 

d2W 
in 8x0 * da-, = - s 

2 f;(s) d .6w 
wo W) 

(A.12) 

where o!(s) is the linear source in (3.6). By definition & is the sum of all 

connected graphs with one external source removed. In terms of the 1PI functional 

and to first order in V that means daisy diagrams with one open ended external 

leg. The & operation acts on the vertex and simply increases the number of 

target space derivatives on V(4) by one. The (N-l) loop contribution to (A.12) is 

therefore given by the diagram shown in Figure 4. It takes the value 

2N-1(tN-l)! s g&‘(s) Ga(s-s’)nNV(qh(s)) [Go(O)] N-1 

. 
which precisely cancels against (A. 11). 

- - _- 
The remaining contribution from (A.lO) is 

2N-1tN-I)! s # g(s)f(s’) A(s-s’) $Go(s-s’) . 

(A.13) 

Since A, approximates the delta function we can evaluate $Go for small values of 

its argument. To leading order in c, we may therefore make the replacements 

A(4 + : -- 
&Go(s) + - 

26 
e2+s2 ’ 
2&s 

(A.15) 

e2+s2 * 

Writing s+=i(s+s’) and s-=s-s’ we obtain after some simple manipulations 

2N-$L)! / 2 f’(s+Ms+) J g (c2$ >2 + Ok> 

- 

n 

-+ 2”-&--1)! / g f’(s) g(s) * 
(A.16) 

The N loop contribution to the Ward identity is given by the sum of (A.8) and 

(A.16). The perturbation series (to first order in V) can be neatly summed up if 
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- 
we combine the N loop contribution to (A.16) with the (N-l) loop piece of (A.8). 

c (The one-loop diagram with a SfHo insertion is paired with the tree-level variation 

of the effective action, and so on.) Then the Ward identity for a reparametrization 
-. 

by f(s) is written 

N=O 

& [Go(O)] N 1 F$ f’(s) $J (l+~‘n) V(W) 
(A.17) 

= 
J 

i$ f’(s) e- log(l-e-E)a’O 
(1scq V@(s)) ’ 

This must hold for any choice of f( ) h h s w ic im p oses the condition that V($) be 

periodic, with the same period as required by the simple renormalization group 

calculation of Fisher and Zwerger [4], w ic we reproduced in Section 5. The point h h 
. we wish to make here is that the fixed point theory satisfies the Ward identities of 

-an+nfinite-parameter symmetry group, not just global scale invariance (at least to 

the approximation we have been able to calculate). 

FIGURE CAPTIONS 

1) These diagrams summarize a renormalization group calculation for DQM in 

a periodic potential when we neglect contributions beyond first order in V. 

2) Working only to first order in V the N-loop contribution to the effective 

action is given by a single daisy diagram. 

3) The reparametrization Ward identity receives a contribution from diagrams 

with the operator SfHo = $f,,Ho--Hofil$ inserted on a leg. 

4) This diagram represents the last term in the Ward identity (A.l) which comes 

from the explicit breaking of reparametrization invariance due to the zero 

mode projection. 
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