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1. Introduction 

The strange quark plays a peculiar role in hadronic physics, being neither heavy nor 

- light. Its mass is comparable to AQ~D, the scale of the strong interactions, a,nd so one 
?!. might expect virtual strange quarks to be important in the structure of nucleons. The 

non-relativistic quark model (NRQM) t e 11 -. s us differently though: it suggests 1) that the 

strange quark is relatively light, since flavor SU(3) seems to be a pretty good symmetry; 

and 2) that nonetheless the strange quark plays no role in the nucleon since it is not a 

valence quark. Furthermore, deep inelastic scattering experiments seem to show that the 

strange quark content of the nucleon is small in that regime. 

There are, however, several recent experimental results which indicate that at least 

two different matrix elements in the proton involving strange quarks are not small at all. 

One is (P~~Y~LYS~P), measured in both vp elastic scattering [l] [2] and in deep inelastic pp 

scattering [3]. Th e other is (N]ss]N), d e t ermined indirectly from the measurement in TN 

scattering of 
. 

c TN z fii(Nliiu + ddlN) N 45 - GOMeV, (1.1) 

where fi is the average u and d quark mass ‘. (For a review see [5]; the value of c,N is 

somewhat controversial, and the reader should also see [6].) 

If one assumes that the baryon octet ma,sses are well described in first order pertur- 

bation with respect to current quark masses, then it is simple to extract from (1.1) the 
- -- result 

m,(N]&]N) N 334 f 135MeV (1.2) 

: -- -implying that if the s quark were massless, the proton mass would be only about 600 

MeV! This surprising result is not only of theoretical interest, but has a variety of phe- 

nomenological implications: a large value for the above matrix element implies a low 

critical density for kaon condensation in neutron stars [7] and in heavy ion collisions [s], 

and affects the couplings to matter of higgs bosons [9], axions [lo], and various other dark 

matter candidates [ 111. 

One must conclude that if the experimental determination (1.1) is correct, then the 

NRQM is not. For then either 1) the strange quark does have large matrix element,s in the 

’ There have recently been proposals to measure the vector strange moments of the 
proton, (pISyPsIp), as well. See [4],[1]. 
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nucleon, or else 2) SU(3) is too badly broken in the baryon sector by the strange quark 

mass&o warrant the use of first order perturbation theory in SU(3) breaking. 

The former possibility seems to be the more reasonable, since SU(3) predictions seem 

f 
to be good for the baryons. The success of the Gell-Mann-Okubo (GMO) baryon mass 

relations, which follow from the assumption that second-order perturbation in SU(3) sym- 
-- metry breaking is negligible, is usually considered an indication that m, can be treated 

as small. Furthermore, SU(3) apparently works well for mesons. Finally, there seems to 

be no reason why the underlying QCD theory would suppress the appearence of virtual 

s quarks. The objection that deep inelastic scattering experiments tell us that strange 

matrix elements in the nucleon are small is questionable, since these experiments only 

measure moments of currents, and not (N].?s]N)~. 

An apparently bizarre alternative has been offered by Jaffe [13]. He has performed 

a chiral bag calculation that suggests that indeed, SU(3) is badly broken by the strange 

quark mass; but that the results from the Gell-Mann-Oakes-Renner (GMOR) analysis 

_ of baryon masses (e.g., linear perturbation in the quark masses) are still valid because . 
the symmetry breaking -though nonlinear in the quark masses- remains prima.rily in 

the octet channel. This sounds unlikely since one would expect that if SU(3) symmetry 

breaking depended nonlinearly on the quark masses, then it would be strong in the 10, 
- 
10, 27, etc. channels as well. One would therefore expect to see deviations from the Gell- 

Mann-Okubo formula (which works to about 10 MeV), p resumably on the scale of the 

N - C splitting. We will argue, however, that large-N, reasoning alone suggests that the 

deviations from the GM0 mass rela,tions should be on the scale of the A - C (hyperfine) 

splitting, and not on the scale of the N - C (hyp ercharge) splitting. While this does not 

explain why the GM0 relations hold to 10 MeV, the numerical serendipity required to 

achieve the GM0 predictions may be less than expected. 

Abstracting from the specific model considered by Jaffe, his work suggests that nature 

may work in the following way. The strange quark mass is too large for the first order 

perturbation theory in m, to be a good approximation. The GM0 mass relations nev- 

ertheless hold for a reason different from the perturbative argument, or simply due to a 

numerical coincidence. In order to accumulate evidence in favor or against this possibility, 

we need another model where various baryon masses can be calculated as functions of 172,. 

2 For a recent discussion of nucleon structure functions and strangeness content, see 

WI 
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In this paper we use the rigid rotator approach to Skyrmions as a toy model in 

whichthe necessary questions can be posed. We manipulate it into a form where its 

similarity with the NRQM is quite apparent. Furthermore, we calculate various quark 
- 

c model parameters in terms of the parameters of the chiral lagrangian. Our semicla.ssical 

“derivation” of the valence quark model from the chiral lagrangian may shed some new 
-. 

light on the relation between the Skyrme and quark models and, possibly, on the success 

of the NRQM. 

.- 

We will demonstrate that first-order perturbative inclusion of m, is likely to break 

down badly in the Skyrme model. This does not quite constitute an argument in favor of 

Jaffe’s scenario. The problem is that the SU(3) rigid rotator model is too crude to provide 

a satisfactory fit to baryon masses. We hope to convince the reader that a chiral model 

which yields a better agreement with phenomenology, such as the bound state approach to 

strangeness, may provide a good testing ground for Jaffe’s hypothesis as well as for other 

interesting questions related to strangeness. Since the calculations there are significantly 

more laborious, we limit ourselves here to a cruder but simpler rigid rotator model. 

Specifically, we consider the general chiral Lagrangian for the pseud0sca.la.r mesons, 

which follows from QCD with N, colors and three flavors of quarks. The symmetry break- 

ing &Ects due to the current masses of the quarks are parametrized by m2/h2, ml< being 

the kaon mass and A some mass scale. N 1 GeV. Thus SU(3) violating effects in the pseu- 

doscalar meson sector are 2 25%-so that SU(3) is a pretty good symmetry in the meson 

sector. 

We then consider the quantized solitons of this theory with the conventiona. inter- 

pretation as the baryons of the underlying QCD theory for a large number of colors, N,. 

We find that SU(3) b rea in e ec s in the baryon sector are not simply parametrized by k g ff t 

inz7/h2, as in the meson sector. In addition to the effects parametrized by n221,-/A2, there 

are also deviations from SU(3) for the baryons that are analytic functions of 7721\z/Mi, 

where MO is a parameter that can be determined in any particular soliton model. Alo may 

be much smaller than the symmetry breaking scale A in the meson sector, in which case 

SU(3) should b e a much worse symmetry for baryons than for mesons. In fa,ct, the usual 

SU(3) Skyrme model truncated at four derivatives yields n/r, N 245 MeV! Nevertheless, 

we find that even for MO < ml<, SU(3) may still look 1 k i e a pretty good symmetry in the 

baryon sector. In particular, the mass formula one derives is similar to that in the NRQM 

with the j’. 7 interactions between quarks[l4]. 
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The treatment of SU(3) sky rmions presented in this paper is a simplified version of 

the b_onnd state approach to strangeness [15], [16]. 0 ur simplification allows us to study 

the dependence of (N]ss]N) on m, (for m, comparable with MO) without having to deal 

I 
with the infinite number of kaon modes. One advantage of both our analysis and the bound 

state approach is that one can see explicitly how the Skyrme model is able to replicate the 
-: results of the quark model. We find a collective excitation that carries all of the quantum 

numbers of the strange quark and possesses a mass identifiable with the constituent mass 

of the “naive” strange quark. The dependence of the constituent strange quark mass on 

the bare strange quark mass is calculable in closed form. We believe that the pictures 

presented here and in the bound state approach to strangeness [15], help to shed light 

on the success of the NRQM, and go beyond the motivating problem of calculating the 

(N(.%s]N) matrix element. 

The organization of the paper is as follows. In sec. 2 we discuss the calc&tion 

of (N]ss]N) in the SU(3) rigid rotator model with m, = 0, and demonstra,te why it is 

_ desirable to consider the large N, limit. In sec. 3 we carry out a systematic expansion 

-in powers of l/N, and show that a non-zero strange quark mass can be easily included 

non-perturbatively. The discussion of quantum numbers of the resultant states clarifies the 

connection with the NRQM picture. In sec. 4 we show that our mass formula resembles - 
the NRQM mass formula. Agreement with the data places tight constraints on the values 

of all the parameters and seems to rule out the rigid rotator model as a quantitative 

- model for baryons. This exercise also shows why the bound state model works better. In - 
sec. 5 we calculate (N]ss]N) as a function of m, and show that it exhibits significa,nt 

non-linearities. In the Discussion we further compare the rigid rotator and the bound 

state treatments of Skyrmions. Two appendices discuss the calcula.tion and a.pplication of -. ._ 
various Clebsch-Gordon coefficients for the baryon representations in the large-N, QCD. 

2. (Nj%lN) in the Rigid Rotator at m, = 0 and Large N, 

To calculate (N ]SS ] N) one needs a dynamical model of nucleon wavefunctions. In this 

paper we investigate the Skyrme model, which allows virtual QCD degrees of freedom to 

play a large role in the proton, while at the same time sharing many of the group theoretical 

successes of the quark model. 

In this section we address the N, dependence of (N]ss]N) while keeping m, = 0. We 

do this by revisiting the calculation of (N ]ss]N) p er ormed f by Donoghue and Nappi [ 171 
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(DN). They used the standard SU(3)fravor Skyrme model wave function for the nucleons 

[18], u9] with th e number of colors N, = 3 and with m, = 0. For the operator ss they 

took 

2 Ss N Tr X (U - 1) + /L.C. (2.1) 

-- where X=diag(O,O,l) and 

u = e2inaTalf 7 f E fn = 93 MeV, (2.2) 

where r/r, denotes the pseudoscalar octet field, and the T” are SU(3) generators with 

Tr T,Tb = $S,,. In the rigid rotator model one includes field configurations 

U(Z,t) = d(t)U@)dt(t) , A E SU(3) , (2.3) 

where Uo is the hedgehog 

. 
U@) = e~w~~r’, (2.4) 

wit.hJ$) determined by the equations of motion. Quantization of this model reduces to 

the quantum mechanics of the collective coordinate A. In (2.1) U enters as (U - 1) in order 

- - 

- 
to subtract out the vacuum contribution to (ss). The result that Donoghue and Nappi 

found was: 
Pww) 

R= (Nluu+dd+~slN) = f 
(2.5) 

This answer is independent of the shape function F(r). However, it is not “model inde- 

pendent” in the sense that is sometimes used in the Skyrme model literature, which is 

usually reserved for the results whose validity depends on the rapid convergence of the 

1 /N, expansion. What we will do now is repeat the DN calculation at arbitrary NC and 

show that, as far as the calculation of R is concerned, the large N, approximation (on 

which the semiclassical quantization of the Skyrme model relies) is invalid at N, = 3. 

To calculate R for arbitrary N, we make use of the results of Manohar [19]. He 

shows that the matrix element of an operator OFi (belonging to SU(3)fl,,,, x SU(2),,;, 

representations {R, a} and {J, m} respectively) in a baryon state /Pa’; J’m’) ma.y be 

expressed in terms of SU(3) Clebsch-Gordon coefficients as: 

(fi?u’;fm’I@~IR’u’?m’) = pRJ f T 1 f,‘) (f f’ 1 f,‘) . 
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The charges b, b’ satisfy 

- 
b={I=J, 13=-m, Y=O} 

- b’ = (I = J’, 13 = -m’, Y = N,/3} , 
(2.7) 

‘c, 
and P.R J is the reduced matrix element 

PRJ = (VolQRJIUo) . (2.8) 

The product of C-G coefficients in eq. (2.6) is summed over all possible contractions (e.g., 

the D and F contractions of 8 x 8 --+ 8 ). 

Our first observation is that for any quark flavor 4, the operator qq has J = 0 and 

belongs to the SU(3) p re resentation R = 1 $ 8. Since R is reducible, one would expect 

there to be two independent reduced matrix elements p, rendering the ratio (2.5) dependent 

not only on the shape function F(r), b u a so on the exact realization of tjq in the chiral t 1 

Lagrangian. Interestingly enough, this is not so. The operator must be realized in the 

-chiral Lagrangian as 

q-G -+ O(l,l) x Tr X0(,,,) + h.c. (2.9) 

where the O’s are operators built out of (U - 1) and spatial derivatives of U, transforming a.s - 
a singlet and a (3,3) under chiral SU(3) x SU(3). T ime derivatives bring in inverse powers 

of N, and are ignored at this point. Since (Uo - 1) is nonzero only in the SU(2) x SU(2) 

block, l(Uo - 1) and Ts(Uo - 1) are simply related by a factor of m; thus the reduced 
~. - 

matrix elements for singlet and octet operators are likewise related: 

pi = J12 Pa . (2.10) 

Since diag(O,O,l)=(l - 1/12 Ta)/3, we may now write the ratio R of eq. (2.5) as 

E=i[l-& (; if / :,‘I (2.11) 

where the nucleons are in the representation R of SU(3). For N, = (212 + l), R is an 

(n + l)(n + 3) d imensional representation with one upper index and n symmetrized lower 

indices. In the appendix we show how to work out the C-G coefficient for this representa- 

tion. Our result is: 
2(Nc + 4) 

Iz= (Nc+3)(&+7) 

6 
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This agrees with the DN result (2.5) for N, = 3 but also shows that their result is not 

“modek independent”. It does not follow from keeping only the leading term in the semi- 

classical expansion. In fact, eq. (2.5) 1 re ies on the precise definition of (N ]SS] N) in eq. 

(2.1) and on summing all powers of l/N,. 0 ne may check that another definition, such as 

QXq N Tr X (U - 1) (1 + A2d,UPUt) + h.c. (2.13) 

changes the coefficient of l/N: in the expansion of R. This is due to the presence of 

time derivatives in the new definition of SS. The only term in eq. (2.12) that seems to be 

reliable at this stage is the coefficient of l/N,. Keeping only this leading term, we would 

find ‘R = 2/3 for N, = 3, i.e., that s quarks have larger matrix elements in the nucleon 

than u or d quarks. In fact, though, simple large-N, QCD considerations indicate that the 

coefficient of the lea.ding term in R found in the Skyrme model cannot be trusted either. 

In agreement with eq. (2.12), QCD p re ic s suppression of the strange sea and a value d t 

of R - l/N,. However, to determine the coefficient, one needs to sum an infinite cla.ss of 

-diagrams. This is not expected to yield anything as simple as the coefficient 2 in eq. (2.12). 

In-th&kyrme model, this leading coefficient is shifted once the meson loop diagrams are 

included in the calculation of R. We proceed with the understanding that by ignoring the 

effects of virtual meson loops, we are working with a toy model. Nevertheless, we shall see 

that an interesting qualitative picture of the strange quark emerges, if not a, quantitative 

one. 

3. Quantization of the Rigid Rotator at in, # 0 and Large N, 

In the absence of first-principles QCD calculations of baryon masses as functions of 172,, 

one is typically forced to make some dynamical assumptions. A traditional assumption 

is that these masses do not develop significant non-linearities as m, is hypothetically 

turned on from zero to its physical value. Then the effect of m, on the baryon ma,sses 

can be calculated in first-order perturbation theory. This is the justification for the DN 

calculation of R, using the unperturbed SU(3) rotator wavefunctions, described in the 

previous section. Unfortunately, it has become clear that, at least as far as baryon masses 

go, the first-order perturbative treatment of SU(3) breaking fails badly in the Skyrme 

model [19][20] [21]. Th is suggests that non-linearities may be important and one should 

try to do better than first-order perturbation theory. 
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Yabu [22] h as p resented a calculation of R in the context of the Yabu-Ando SU(3) rigid 

rota&r solution [23]. Th is calculation demonstrates the presence of some non-linearity in 

the evolution of R with m, at N, = 3. Yabu’s calculation provides a way to extrapolate the 
- 

DN result to non-zero m,. However, as explained in the previous section, such calculations . 
are not truly “model independent” because they regard all terms in the l/NC series on 

-. an equal footing. Actually, the calculations of R are not exceptions in this respect: they 

highlight a general problem encountered in the quantization of the 3-flavor Skyrme model. 

It is well known that, in the 2-flavor case, the same quantum numbers I = J = n+ l/2 arise 

for all odd N,, i. e., we can pass to a large N, without altering the quantum numbers of the 

low-lying baryons. The situation is more complicated in the S-flavor case. There the size of 

the low-lying SU(3) p re resentations grows with increasing N,. Thus, if one wishes to work 

explicitly with the octet and the decuplet of baryons, one is forced to consider N, = 3 only. 

This procedure, which has been used by many authors, has an obvious flaw: one camlot 

pass to a large N, where the semiclassical approximation is manifestly justified. In fact, 

as shown in the example of sec. 2, the calculations relying on this procedure implicitly 
. 
sum up all powers of l/N,. The answers may come out significantly different from those 

o~t$iiEd by retaining only the leading power. Clearly, a lot more has to be done if we wish 

to study, among other things, the validity of the semiclassical expansion at N, = 3. - 
With this motivation, we approach the problem from a different angle. We work with 

a variable N, and identify the coefficients of the leading terms in the l/N, expa,nsion. 

We believe that this is the method most closely analogous to the one adopted in the 2- 
- -- 

flavor Skyrme model. Furthermore, our procedure sheds some new light on the comiection 

between the Skyrme model and the NRQM. In fact, to 0(1/N,) we obtain a mass formula 

identical in form to the mass formula found in the large-N, NRQM. It is satisfying that 

the dependence of the baryon masses on m, is explicitly calculable to this order. We are 

not disturbed by the fact that the size of the SU(3) re resentation depends on the number p 

of colors. We may simply imagine fixing N, = 3 at the end of the calculation to recover 

the conventional baryon quantum numbers. Also, as shown in the appendices, even at 

large N, it may be convenient to identify a subset of the lowest representa.tion, which is a 

natural large-N, analogue of the octet. 

Let us now set up a formalism suitable for a systematic l/NC expansion in the 3-flavor 

case. The basic observation is the following. If we focus on baryons of fixed strangeness and 

increase N,, then their relative strangeness content is c( l/N,, i. e., they only devia.te a little 

into the strange directions of the collective coordinate space. Perturbation theory in these 
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deviations allows us to construct l/NC expansions for various baryon observables, with 

the dspendence on m, calculable analytically. In this section we discuss this qua,ntiza,tion 

procedure, and address the calculation of (N ISSIN) in sec. 5. 

c, 
We begin by reviewing the power counting of chiral perturbation theory, following 

references [24] and [25]. Th e chiral Lagrangian has two dimensionful scales in it: f, 
-. defined in (2.2); and A, the scale of the pion momentum expansion. A should not be 

confused with AQID. For example, the chiral Lagrangian derived as a low energy limit of 

a linear a-model will be an expansion in a/m,: in this case A = m,,. Georgi and Manohar 

argue that A 2 4rf, and in fact A E 1 GeV seems to work well in the real world [26]. 

Symmetry breaking due to the quark mass matrix M is taken into account by insertions 

of pMlA2, where ,u has dimensions of mass; consistent with M’s transformation property 

as a (3,3) under SU(3) x SU(3). The Lagrangian then takes the form 

. 

,C=A2f2 XJ! U,Ut,;,g 
> 

{ Tr 8UaUt + g (Tr pMU + h.c.) + . . . =---- 
(34 

-- _- 
where i consists of all operators consistent with SU(3) x SU(3), with coefficients of O(1). 

The.matrix U is defined in (2.2). Note that pm, N rn;<, ml< being the kaon mass, so 

one expects second order SU(3) y s mmetry breaking effects to be down from first order by 

rn;</A2 141 25%. I nc u 1 d ing the effects of anomalies is accomplished by a,dding the usual 

- ~- Wess-Zumino term to the action [27]. 

We now suppose that the full equations of motion have a soliton solution UO of the form 

(2.4). Derrick’s theorem implies that higher derivative terms in L must be responsible for 

: _- stabilizing Uo, which means that d/A = O(l) w h en acting on Uo, and one cannot apriori 

justify truncating ,C at any finite number of derivatives. To quantize the configurations of 

eq. (2.3)) one expands ,C to second order in At A, and integrates over spa.ce to a.rrive at 

an effective lagrangian for A. In the absence of quark masses one finds [28] 

L(m, = 0) = - 2Qe (Tr TidtA)? - 2@& (Tr TadtA)2 
i=l. a=4 

- fiNC(Tr TadtA) . 
(3.2) 

Both R and @ are spatial integrals of some function of derivatives of Uo, derivable fom the 

full Lagrangian, and are both 0; f2/A3 = O(N,). The N - a splitting depends only on a. 
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When we add a nonzero strange quark mass, we will see that the mass splittings within 

the o-&et depend only on Cp. The term with the explicit NC dependence a.rises from the 

Wess-Zumino term. 

f The SU(3) multiplet containing the particle we will identify with the proton contains 

baryons with up to (NC + 1)/2 strange quarks. This means that the wave function of the -. 
proton will extend only 0(1/N,) into the strange directions of SU(3), in a sense which we 

_ will make precise below. This motivates us to write 

4) = WW) , with 

A@) E SW) 7 

S(t) E exp [2ik,(t)T,/f] , a = 4.. .7 . 

(3.3) 

We then expand perturbatively in the SU(3)/SU(2) x U(1) coordinates, since the proton 

wavefunction resides almost entirely in SU(2): 
. 

--- -_-- S(t) N 1 + 2i(lc . T/f) - 2(k . T/f)” . . . (3.4) 

and arrive at a simple quadratic Lagrangian for a “kaon” doublet: 

LIc(m, = 0) = 4@I;’ I< + i: t’ 
( 

Ii 4-J t h - It K 
> 

, 
- 

(3.5) 
Ix- E & (::I:::) * 

The reason for doing this expansion is that now we may easily take into account the 

effects of nonzero m,. We set pM= diag( 0, 0, pm,) in (3.1). Note that MU, = UOM = M. 

It is simple then to extend (3.5) to nonzero m,. We find 

LK = 4@I;‘fk + i$ (Ii?iIi - IktI<) - rm$I{tj{ + o(clm,/A’) 

f2 r 0; p = O(N,) 
(3.6) 

The reader will recognize that this Lagrangian is the same as for a charged particle 

in two dimensions, with a perpendicular magnetic field and a centra,l harmonic restoring 
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force. The magnetic field strength is CJ(N,). Thus for either large N, or large m,, we will 

find (_N-llTi~h’]N) < 1 and our expansion in powers of K will be validated 3. 

The Hamiltonian derived from (3.6) is 
- 

N2 
H = --$ltII + i$IIbi- - IhI) + (& + rrr&KtK (3.7) 

where IIt is the canonical conjugate of K. In order to diagonalize the Hamiltonian, it is 

convenient to transform to the basis of creation and annihilation operators: 

I{ = & (1, ($2)-1’4(U+bt) 

IL-;& 1+ ( ($2)1’4(at - b) ) 
(3.8) 

where a and b are doublets, and the parameter A& is defined as 

. M; E N,2/16W. (3.9) 

Note that MO has the dimensions of mass, and is O(l) as far as N, counting goes. This 

transformation brings the Hamiltonian to the diagonal form 

H = ${a,at} + &+{b#} (3.10) 

- 
~~ where 

(3.11) 

The eigenstates form a Fock space 

InsI n3) = (at)""(bt)"L/O) (3.12) 

3 Much has been said about how quantizing the Skyrmion with a Wess-Zumino term 
is analogous to quantizing the motion of a particle around a magnetic (hypercharge) 
monopole [28], [29]. By expanding in K to quadratic order, we are approximating 
SU(3)/SU(2) x U(1) by t wo flat surfaces, parameterized by KS and I<‘, with a nor- 
mal magnetic field. Therefore we find an infinite number of Landau levels in the planes 
rather than a finite set of quantized states on a compact surface. So long a,s we stick to 
Landau levels of small radius ((Kt K) << l)- or equivalently, to baryons with negative 

strangeness << NC-this is a good approximation. 
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with n,,ng_ integers. As is easily surmised, the state In,, ns) looks as if it contains n, s- 

quark-and n, S-quarks. This identification will be made more precise in the next section. 

The states with n, # 0 correspond to the exotic states found in the Skyrme model, which 
- 

f are usually presumed unstable. In the bound state approach to strangeness [15], which 

has more degrees of freedom than the rigid rotator, these states are indeed unsta.ble. Note 
.-- 

that even in the W(3) 1 imit m, + 0, it costs energy to produce a state with an S, but not 

to replace a u or a d with an s-quark. 

So far we have constructed baryon states which are eigenstates of strange-ness but 

carry no definite isospin or angular momentum. In order to identify the eigenstates of I 

and J, it is necessary to excite the SU(2) collective coordinate A(t). For each va,lue of 

strangeness, we will be able to construct a tower of narrowly split states of increasing spin 

and isospin. 

The lagrangian depends on A(t) only through the angular velocity &; defined by 

AtA = i&iTi; (3.13) . 

where ri are the Pauli matrices. Since the soliton moment of inertia 0 is O(N,), the 

angular velocities of the low-lying rotational excitations are 0(1/N,). Thus, in addition 

to rotation in KtK space with angular velocity of order 1, the soliton undergoes a slow 

rigid rotation in isospace. The 0(1/N;) correction to the lagrangian LJ,- of eq. (3.6) is 

SLK = iQ(&i)2 + i(r;(2@ - fl)(kt~;IC - ICbiI?) - ~N~&;IC’T;IC (3.14) 

The Hamiltonian obtained from LK + SLK through the standard canonical procedure can 
: .- 

be expanded in powers of l/NC as 

H = Ho + HI + 0(1/N:) (3.15) 

Ho is the O(1) h amiltonianof eq. (3.7). A s s h own in the previous section, this Hamiltonian 

is diagonal in the basis of Fock states of eq. (3.12). S ince the full Hamiltonian H ca.nnot 

be solved exactly, our goal is to determine the energy levels correct to 0(1/N,). To this 

end, we will use first order perturbation theory in 

fud - ;(IIt% - I%%lII) (3.16) 
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where fud is the momentum conjugate to a’. Our notation is intended to remind the reader 

that,ifi the quark language yud is the net angular momentum of the u and d quarks. In 

the soliton model fud is the generator of the right rotations on the collective coordinate 
.- 

A. It measures the angular momentum of XI(A), the collective coordinate component of 

the wave function. The wave functions can be written as sums of products of the form 

Ins, ndxr(A). (3.17) 

XI(A) are the wave functions defined on the SU(2) g rou manifold which were extensively p 

- discussed in ref. [30]. Th e index I labels the spin-isospin representation. In order to 

identify the wave functions which correspond to various excitations of the total spin a.nd 

isospin, we need to construct the i and Joperators. 

First, let us consider the transformation properties of K and A. Under spatial rota- 

tions Uo -+ RUoR-’ , where R is an SU(2) matrix. This transformation acts on I< and 

_ A as K + K’K and A + AR. Using Noether’s theorem, we find the total angular 

momentum to be 

f= Jld + fs, (3.18) 

where 

x = &&a - baJ) (3.19) 

Thus, fs is the contribution of the strange excitations to the angular momentum. Eq. 

(3.19) shows that each unit of strangeness carries half a unit of angular momentum. Re- 

membering that the creation operators are two-component objects, we can decompose the 

Fock states In,, n,) into irreducible representations of J:. Then the irreducible represen- 

tations of f can be constructed as sums of products of the form (3.17) using the familiar 

addition of angular momenta. 

Further restriction on the baryon wave functions comes from the fact that they must 

carry definite total isospin. This restriction is particularly easy to implement. Since A’ 

does not transform under isorotations, isospin only acts on XI(A): f = fud. In other 

words, the subscript I of the collective coordinate component of the wave function is t,he 

total isospin. It follows that each unit of strangeness behaves as an object with no isospin 

and half a unit of spin. These are the familiar spin-isospin quantum numbers of a strange 

quark. 

13 



Further constraint on quantum numbers follows from the fact that all SU(2) rotator 

wave-functions x1( A) satisfy the I = J,d rule, with I taking on either integral or ha.lf- 

integral values. Witten has shown [27] that, if NC is odd, the baryon must have half-integral 

spin. In our model, this leads to the following rule: states with even strangeness carry 

half-integral isospin, while states with odd strangeness carry integral isospin. This rule 

leads to the observed baryon quantum numbers. 

For example, labeling the states as In,, n3) 11, J), we see that 

IN) = IWI~, f) 7 
IN = lwl;, ;, 7 
IA) = IL WA 0) 7 (3.20) 

IV = [lLO>ll, l&+ ) 

P”> = [ll,o)ll,l)lJ~~ ) 

and so forth. 
. 

4..---Mass Formulae and the Gell-Mann-Okubo Relation 

A-nonzero strange quark mass breaks SU(3) down to SU(2) x U(1). Thus the most 

general form for an effective hamiltonian describing the masses of the N, A, C and E fields 

may be expressed as 

H = ~1 + a2Y + a3 [I(1 + 1) - iy2] + a4y2. (4.1) 

Empirically, al = 1116MeV, a2 = -190MeV, a3 = 38MeV, a4 = -1lMeV As shown 

in Appendix B, the leading NC-dependences of the coefficients are al - NC, ~22 N 1, 
: .- 

a3 - u4 - l/N,. Thus large-N, reasoning can explain why Ia31 << Ia21 and la4 1 < 1~12 1, but 

it does not by itself explain why Ia41 < 1~31. Th e usual extra ingredient is that, in first 

order perturbation theory in m,, one finds that a4 is zero, and the GM0 formula. results. If 

first order perturbation theory is a poor approximation to nature, then the GM0 relations 

may simply be due to a numerical coincidence. Our large-N, argument shows that this 

coincidence may not be as drastic as one might have expected. 

A mass formula similar to (4.1) f o 11 ows in the NRQM with magnetic moment interac- 

tions between quarks. There the Hamiltonian is taken to be 

H=mo+mllSI+m2 c .Ti.j7E+m2CC~i-j+I+m2EC j+I .&. . (44 
i<k i,I I<K 
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where the small indices refer to the light quarks and the capital indices - to the strange 

quarks: mo is O(N,) b ecause a baryon contains N, valence quarks. ml is the difference 

between the constituent masses of the strange and the light quarks, which is 0( 1). m2, 
- 

f 
the strength of the phenomenological magnetic moment interaction, is 0(1/N,). In the 

NRQM such interactions are suggested by one gluon exchange calculations [14]. In eq. 

(4.2)) the SU(3) y s mmetric values are ml = 0 and c = c = 1. As we will see, there are 

significant empirical deviations from the SU(3) symmetry. Eq. (4.2) can be manipulated 

into 

H=mb+m;Y+y cJ(J+l)+(l-c)[T(I+l)-$Y2]+ ‘+cqm2’ Y2 (4.3) 

From the point of view of eq. (4.3), the GM0 mass relations are successful if 

l+C-2c~O. (4.4) 

_ Of course, there are other tighter constraints on the values of these parameters which . 
follow from further empirical data. In fact, eq. (4.3) p rovides a good fit to the ma.sses 

of all the octet and decuplet baryons with rnb z 1062MeV, rn\ z -192MeV, m2 M 213 

MeV, G M .67, CM .27 [31]. 

This fit shows how far c and c deviate from their SU(3) symmetric values. To some 

extent, the fit makes the conventional explanation of the GM0 relations suspect: if first 
- ~~ order perturbation in m, changes c by 70 %, then why are we allowed to ignore higher order 

perturbations ? Perha.ps, there exists a class of models with appreciable non-linearities 

which manage to yield output parameters close to the empirical. How well does our rigid 

: .- rotator treatment do in this respect? 

First of all, it is not hard to derive a mass formula of the form (4.3) in our approach. 

In order to calculate the values of m2 and c, it is sufficient to evaluate the expectation 

._ values of HI from eq. (3.16) in the baryon states constructed in sec. 3. This simple 

calculation yields m2 = l/0 and 

4Rw- 
c=l- 

8@w- + N, ’ (4.5) 

HI does not include the full l/NC correction to the masses: the terms quartic in I<, which 

we have so far omitted, are also 0(1/N,-). Th e incorporate the straage quark - stra,nge y 

quark magnetic moment interactions. Thus, the calculation of C is a somewhat painful 
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exercise involving the expansion to fourth order in K. Its result will be reported elsewhere. 

We C&G, however, compare the results for other parameters with their empirical values. In 

the model stabilized by the 4-derivative Skyrme term, R M l? = 53.5 and @ M 19.5 in units 
- 

5. 
of f11em3. With the values fir = 64.5MeV and e = 5.45 from the 2-flavor fit of ref. [30], 

we find w- z 248MeV, rn2 E 196MeV and c M .25. Although our input parameters may 
-. be far from the best fit in the 3-flavor case, the drastic discrepancy in the calculated value 

of c is indicative of the breakdown of the rigid rotator treatment reported in other papers 

- [19], [20], [21]. Th e c being far from its empirical value leads to the incorrect relative 

splittings between A, C, and C*. Perhaps, our results shed some new light on why the 

rigid rotator approximation does not work well, and which modifications may lead to a 

better agreement with the data. For instance, the bound state approach to strangeness 

also leads to a baryon mass formula of type (4.3), b u with a value of c much closer to t 

the empirical. This is due to a treatment of SU(3) b reaking which goes beyond the rigid 

rotator approximation. 

5. (NlsslN) in the Rigid Rotator at m, # 0 

As discussed in the introduction, the measurement of C,N can be related to 

LlMi/bm,, which in turn can be related to (N I.&IN) Im, =o. The question of interest 

is whether the nucleon mass depends .linearly on m, all the way up to the aactual value of 

m,. In this section we show that, in our toy model, the mass of the nucleon-and hence - -- 
~~ (NlsslN)- y t ma na urally depend non-linearly on m,. 

We have seen in sec. 3 how to construct the quantum states of low strangeness at 

non-zero strange quark mass. The fluctuating K modes contribute zero-point energy to all 
: .- of the states. Thus the mass of the nucleon will depend on m,, even though the nucleon 

state has n, = n,- = 0. According to eq. (3.10), th is strange quark contribution is simply 

(5.1) 

The ratio R of eq. (2.5) is also easily extracted from this model. To the lea.ding order in 

l/N,, it is found to be 

R = (Op?-qO) = $ 
CJG&Z 

(5.2) 

Note that this result agrees with the large NC value (2.12) for m, = 0, as it should. 
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We must take care interpreting this result. First of all, there is the problem of the finite 

renortialization of the Skyrmion mass due to meson loops, which we ignore. Secondly, we 

must remember that + and MO are parameters that may be expanded in a power series in 

f pm,/h2 N mi./A2. Thus the form of (5.2) is only meaningful if MO evaluated at m, = 0 is 

-. significantly smaller than A 21 1 Gev. In fact, this condition is met in the usual treatment 

of the Skyrme model, where the only higher derivative interaction included is the so-called 

Skyrme term. In this case, using the input parameters displayed in sec. 4, we find 

MO z 245 MeV. , (5.3) 

implying 
‘R(mI,- = 495MeV) M o 45 

R(mK = 0) . ’ (5.4) 

_ If N, is large, then (Nl.?slN) < (NluulN), in which case (5.4) tells us that 

(NlsslN)(mK = 495MeV) M o 45 
(NI.?slN)(ml,- = 0) ’ ’ (5.5) 

- 

This ratio is a measure of deviation of the nucleon wave function from its SU(3) symmetric 

limit. Can we relate it to any existing data? 

If one believes in the parton model, then (Nl.?slN) is a measure of the number of ss 

pairs in the sea. SU(3) y s mmetry dictates that with mK = 0 , this number is equal to the 

number of uu pairs in the sea. Assuming that the number of Uu pairs does not depend 

on m-, eq. (5.5)indicates that, at the actual value rnK = 495MeV, the number of the ss 

pairs in the sea is about 0.45 times the number of the uu pairs in the sea. According to 

some experiments, this number is indeed found to be close to i [32]. However, the result 

should be taken with a grain of salt since it is not a direct experimental measurement, but 

is interpreted in the context of the parton model. Also, it isn’t clear that the measurements 

may be sensibly extrapolated to zero momentum transfer. The experimental result should 

simply be taken as suggestive that the quark sea in the nucleon may significantly break 

SU(3) at zero momentum tra.nsfer, and that the non-linearity exhibited in (5.2) could be 

real. 
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6. Discussion 

We would now like to compare our treatment of the SU(3) symmetry breaking with 

.- other approaches found in the literature. The simple model considered above is a variant 

To of the SU(3) rigid rotator quantization. The novel feature is that the SU(3) rotations 

are factored into two parts: the ones that rotate the SU(2) soliton into the “stra.nge -. 
directions” (S(t) in eq. (3.3))) and the ones that do not (A(t) in eq. (3.3)). As expla.ined 

above, the expansion about S(t) = 1 p rovides us with a simple way of performing the 

l/N, expansion both in the case of unbroken SU(3) and when arbitrary strange quark 

mass is included. Thus, we have developed an approximation to the large-NC analogue of 

Yabu and Ando’s solution [23] of the SU(3) rigid rotator at N, = 3. Our method may 

prove useful both because of its simplicity and also because the semic1assica.l qua,ntiza,tion 

is only strictly correct in the large-N, limit. Let us point out that all approa.ches based on 

the rigid SU(3) t t ro a or have a common defficiency once the kaon mass term is included: 

the rotations in the “strange directions” become only approximate collective coordinates. 

- Strictly speaking, as the soliton rotates into strange directions, it also has a tendency to 

deform. For a sufficiently large m, this effect is significant. Further, we might want to 

study strange deformations which are not smoothly connected to the rigid rotations. With 

these ideas in mind, ref. [15] d eveloped a treatment of general strange fluctua.tions about 

the basic SU(2) 1 y s i rmion based on the parametrization 

- u = Jim, Jcr, (64 

If N, or m, is large, the expansion of the lagrangian to second order in I< is a good 

approximation. Then the problem reduces to motion of kaons in the background of the _ .- 
SU(2) skyrmion. In ref. [15] t i was shown that the interactions between the kaons and 

solitons are such that there exist bound states. These bound states carry both baryon 

number and strangeness and can be naturally identified with hyperons. 

The simpler model presented in the previous sections is roughly the bound sta.te model 

where all the modes except for one kaon and one anti-kaon mode are ignored. Even the 

modes that are taken into account are treated approximately. This leads to a drastic 

simplification but also creates some distortions. Let us explain this in more detail. First, 

our toy model makes it easy to understand why the bound states exist. Consider the 

S = -1 mode energy as a function of ml<-. Eq. (3.11) states that rnliv -w- is grea.ter than 

zero and is an increa.sing function of mEi-. Thus the baryon with one S = -1 quantum 
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cannot decay into a kaon and a non-strange baryon. It is easy to show that w- provides 

an uDer bound on the lowest S = -1 mode energy in the bound state a,pproa.ch: in 

the language of the ka.on bound states, the rigid rotator approximation restricts the kaon 
- 

c, profile function to be that of the zero mode 

-. k(r) N sin(F(r)/2) WI 

If we allow the kaon profile function to adjust itself with increasing mK, a.s we do in the 

bound state approach, the mode energy can only decrease. The radial function of this 

lowest 7’ = l/2, L = 1 mode is, therefore, smoothly connected to the zero mode of the 

112, = 0 problem. 

The previous paragraph makes it clear that the S = -1 excitation in the rigid rotator 

model of the previous sections is at least a rea.sonable qualitative approximation to a simi1a.r 

excitation in the bound state approach, where it is created by populating the lowest bound 

mode. Unfortunately, this connection does not exist for the exotic S = 1 mode. Even in 

the approximation of eq. (3.11), w+ > mK. This means that the S = 1 states are unstable -- --_ 
and, in a treatment more complete than the rigid rotator model, will decay into mesons 

and nucleons. Therefore, in the bound state approach their profile functions oscillate at 

large r and do not resemble the profile of eq. (6.2). Th us, the rigid rotator approximation 

does not treat these modes correctly. All of this suggests that the bound state approach 

is a better tool for studying such questions as the strange matrix elements in the proton. 

However, one has to pay the price of doing much more complicated calculations taking 

into account the infinity of kaon normal modes. Some work in this direction has already 

been performed [33]. 

In spite of the differences listed above, the basic assumption of the bound sta,te a.p- 

preach is the same as in our rigid rotator treatment. Namely, the presence of significa.nt 

non-linearities in the dependence of observables on m, is not necessarily in conflict with 

the successes of the SU(3) ph enomenology. Although much more work is needed to sub- 

stantiate this, the limited phenomenological success of the bound state approach [16][34] 

raises the speculation that this assumption may be realized in nature. 

We wish to thank Andrew Cohen, Howard Georgi, Aneesh Manoha.r, -41111 Nelson, 

Stephen Sharpe and Leona,rd Susskind for useful conversations. 
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Appendix A. Clebsch-Gordon Coefficients for Large N, 

Iii this Appendix we briefly illustrate the calculation of the D a.nd F Clebsch-Gordon 

.- coefficients for the couplings of the spin i baryons to an octet operator, for 
s. 

NC E (2v+ 1) (A-1) .-. 

We follow the treatment by A. Manohar [35]; see also [36]. 

For arbitrary V, the SU(3) re p resentation R containing the nucleons may be repre- 

sented by the tensor LJa,,,,,, with v symmetric lower indices. We normalize B so that a23 

with contracted indices weights each baryon equally. It is easy to see that this represen- 

tation contains states with the same hypercharge and isospin quantum numbers as the 

N, C, A, and E we have for N, = 3, provided we normalize hypercharge so that the up 

quark carries Y = l/N,. One finds: 

. P= 

n= 

c+ = 
- 

c- = 

co = 

A= 

E -0 = 

@333... 
B2333... 
Jv@233... 

m2133... 

&m@l33 :- B2233...) 

bJ(4+2vNB’,33... + B2233 . . . - 2B3333...) 

m(B3323... - 2/3B2223... - 1/30:23...) Y 

: -- where in each case “. ..” stands for v - 3 indices equal to “3”. 

Following Manohar, we now define 

h!& = @-b’ (T&$&.b, 

N, = ~;bz-.bu&,z,~,b, (T& , 

(A4 

(A.3) 

where the T, are SU(3) g enerators. The F and D clebsch’s may then be calculated from 

8 R 1 R 
1 QBIBE’ = gF (Ma - z&) , 

8 R 1 R 
> CfBIBD 

= 90 (zjk + N,) . 

(A4 
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“B”is a particular baryon given in (A.2). Th e p arameters QF and gD are most easily fixed 

by normalizing the branching ratios of the proton in both the D and F channels; x is then 

chosen to make the two channels orthogonal. One finds 

Y(t/ + 8)” 
gL = 3(Y + 2)2(v + 4) 

+ 2 P 7) = 
(v+S> . 

P.5) 

We are only interested in the baryon couplings to Ta, which can now be simply cal- 

culated from the above relations. Defining the following shorthand for the clebsch’s: 

. 

and 

F(B; NC) 3 8 R 1 R 
> qBtB,. 

D(B; NC) s 8 R 1 R 
> qBIBD’ 

we find 

F(N; NC) = & 
C 

F-(X; NC) = $$ 
c 

3(A; NC) = $$ 

N: - 6 
W;Nc)= Nc+3, 

D(N;N,) = --.-.?.- ___ 
NC - 1 

Nc +3 J N, + 7 

2(X - 9) 
‘D(C’Nc)=-(N,-1)(NC+3) 2;; J 

- D(R; NC) = 
6 

Nc -I- 3 

D(E:; NC) = 

Eq. (2.12) follows directly. 

(7N, - 15) 
(NC - l>(Nc + 3) 

(A-6) 

(A? 

(A4 
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For our discussion of the Gell-Mann-Okubo formula, it is useful to express (A.7) and 

(A.8Lin terms of the 4 x 4 matrices 1, Y, i2, Y2 acting on the N, C, A, and E fields: 

W’%) =A [(Nc - 3)1+ 3Y] 
f c 

-. 
D(Nc)=(N,-l;N,+3) 

(A4 

x [3(Nc - 1)1- (N, + 3)(p - $Y”) - (N, - 3)y] 

where Y is normalized to unity for the nucleon. 

- - 

: 

Appendix B. GMOR Analysis and the GM0 formula for Large N, 

If SU(3) is only slightly broken by the strange quark mass, then we can follow Gell- 

Mann-Oakes-Renner and do first order perturbation in SU(3) breaking. This lets one 

write the contribution to the mass of baryon B from the strange qua.rk a.s 

AiM~/m, = C + F (B.1) 

with’C, F, and D being undetermined numbers. Restricting ourselves to the eight particles 

in the representation R with the same quantum numbers as the N, = 3 octet, eq. (A.9) 

lets us rewrite this as 

AA!l~/m, = all + a2Y + a3(i2 - +Y”) (B.2) 

which leads to the usual Gell-Mann-Okubo mass relation for the baryons for any va.lue of 

N,. Expressing the a; in terms of D, F, and C is made straight forward by eq. (A.9). 

The coefficients D, F, and C are readily calculated in the Skyrme model , in terms 

of the single reduced matrix element ~1 and the C-G coefficients from the spin part of the 

wavefunction, by means of equations (2.6) and (2.10). One finds 

F = -pl 

D = -p1 

P.3) 



- 
f 

We do not bother to write down here the values for the a;, but simply note tha.t one 

finds-the generic large-N, prediction 

al = o(K) 

cl2 = O(1) 

a3 = 0(1/N,) . 

P-4) 

_ Perhaps, the large-N, reasoning can be invoked to explain why the hyperfine splitting (us) 

is a few times smaller than the hypercharge splitting (a~). 

- -. - 
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