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Abstract: Producing, accelerating and colliding very high power, 
.L. low e&ttance beams for long periods is a formidable problem in 

real-time control. As energy has grown exponentially in time so’ 
has the complexity of the machines and their control systems. 
Similar growth rates have occurred in many areas e.g. improved 
integrated circuits have been paid for with comparable increases 
in complexity. However, in this case, reliability, capability and 
cost have improved due to reduced size, high production and 
increased integration which allow various kinds of feedback. In 
contrast, most large complex systems(LCS) are perceived to lack 
such possibilities because only one copy is made. Neural nets, as 
a metaphor for LCS, suggest ways to circumvent such limitations. 
It is argued that they are logically equivalent to multi-loop feed- 
back/forward control of faulty systems. While complimentary 
to AI, they mesh nicely with characteristics desired for real-time 
systems. Such issues are considered, examples given and possi- 

_ bilities discussed. 

IT. Ir?troduction 
A recent workshop[l] agreed on three major concerns for real-time 
Systems:-time&iability and environment in this order. If high 
performance and reliability are defined by meeting the needs of 
.the specific problem environment, neural nets(NN) appear ideal 
on all points. The growing importance of real-time computing 
and control makes this a good area for exploration. A specific 
concern is the growing size and complexity of the systems that 
have to be supported. This worsens time response and reliability 
and makes a more ill-defined problem environment which makes 

- cor$rol more complicated and hard to verify. As a result, systems 
become increasingly unresponsive and ‘user unfriendly’. 

Since this is a common problem, new concepts, hardware and 
software seem necessary. We compare AI and NN which are com- 
plementary in many respects. NN finds rules for LCS rather than 
follows models which might be too simple or rigid or too detailed 

’ -and complicated for the time scales involved. Where AI is syn- 
onymous with environments that are knowable a pviori, adaptive 
learning in unknown, incomplete or noisy environments is the do- 
main of NN, which can learn and improve or modify rules in a 

I natural way when the knowledge domain increases or changes. A 
--corollary: it can find more efficient i.e. faster and less complex 

control schemes. 
Science and its machines have been a major force pushing the 

limits of both computing and control. Various von Neumann 
bottlenecks, in precisely the areas of concern here, have occurred 
repeatedly from his first justifications[2] for the ‘von Neumann 
computer’ to the present. His architecture was to: “revolution- 
ize the purely mathematical approach to...nonlinear differential 
equations...extencl quantum theory to systems of more particles 
and more degrees of frcedom...and remove many bottlenecks in 
the computing approach to ordinary and electron optics.” Such 
computers use central processors operating sequentially via pro- 
gram counters on stored data and instructions. However, von 
Neumann was also aware of alternatives like NN that combine 
processor and memory in a Turing-equivalent machine that could 
make real-time systems more efficient and reliable(3). 
*Funded by U.S. Department of Energy contract DGAC03-7GSF00515. 

l,.l Growth of Complexity 
Size and complexity are two important environmental factors 
that strongly influence time and reliability. Figure 1 considers 
complexity for two very different size scales - the growth in the 
number of transistors per IC and the average radius of electron 
storage rings in mm(4]. The assumption is that the number of 
elements per unit length stays roughly constant. Only Intel p’s 
are shown beginning with the first one - the 4-bit i4004 that 
was used in calculators. The i80486 is 2-4 times faster than the 
is0386 for about 2.5 times the cost but includes RISC features, 
memory management functions and a math coprocessor. 

The control system for the Large Electron-Positron ring LEP 
at CERN utilizes more than 20 workstations and PC’s as user 
interfaces in their CCR with another 50 for process control and 
some 2000 micros for local equipment control. One can make 
a case that these large systems require a network of many local 
aa well as centrally located control points to be able to run i.e. 
that there is a correlation between the curves of Fig. 1. The laree 
Superconducting Super Coll ider(SSC) proposed recently is about 
three times larger and intrinsically more complex than LEP. 

Our goal is a method that is computable, consistent and decid- 
able i.e. capable of computation, comparison and optimization. 
However, lattice calculations for LCS such as SSC provide no 
guarantees of important parameters even at the level of single 

” 

particle dynamics. That LCS are often indeterminant implies 
only that the design and control are inseparable because feed- 
back, when fast enough, clean enough and based on a sufficiently 
accurate time history, can subvert such effects. This is why we 
repeatedly link computation and control and why one needs new 
technology that integrates data acquisition, analysis and control 
in a reaLtime, Turing-equivalent machine. 
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Fig. 1: Complexity, as measured by the number of elements, 
versus time for Intel microprocessors and electron storage 
rings labelled by their various acronyms. 
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2. Background/History Lessons 3. Relation Between AI and NN 
The acronym NN criginated from simple models of the neuron 
and its connectivity in the central nervous system. They were 
demonstrated to be capable of complete propositional logic[5] and 
equivalent to any finite state Turing machine. Thus they provide 
an-alternative means of computing to the von Neumann machine. 

Z It’s applicability to parallel processing machines and their pro- 
gramming has produced the acronym PDP(Paralle1 Distributed 
Processing)[6] -- which helps in territorial disputes between some 
neurophysiologists and computer scientists. 

Because it involves certain aspects difficult to formulate or 
conceptualize, NN has produced a number of diverse approaches 
and ‘spinoffs’ each of which has its own machinery e.g. spin 
models based on statistical mechanics consider neurons as quasi- 
particles or microscopic, magnetic moments. Some prefer the 
broad group called cellular automata where the cell and its in- 
teractions can be quite simple. Many of these approaches are 
remote from real neurons and many are not exactly soluble by 
present methods except through significant simplifications e.g. 
nearest neighbor interactions within structures like strings that 
make this well defined. They provide interesting insights into 
collective effects like phase transitions and offer the possibility of 
‘solving’ incredibly complex problems in real-time via their basic, 
pfrysics-like architectures. 

The growth of complexity has many implications. Experts may 
become more specialized so they individually support less and less 
of the total system and are also more vulnerable to it. This may 
explain the remarkable interdisciplinary interest in NN. Beyond 
this comes the time and difficulty of implementing expert or other 
algorithmic systems as well as the problems that arise when the 
underlying systems or data change. One suspects that these are 
symptoms of more significant underlying problems. First, there 
may not be experts for some subsystems and in particular for the 
complete LCS. Second, the experts may not know or be willing to 
admit how they actually accomplish certain jobs e.g. it may be by 
heuristic search but whatever it is, it is their method. This leads 
to a more fundamental problem. The ‘expert’ is himself a unique 
neural net that may be difficult to reconcile with other NN e.g. 
experts or interrogators. In particular, it may require another NN 
to properly simulate it via training rather than software. When 
Bertrand Russell said: “Reason is the proper means to an end” 
he did not mean that all ends should be achieved by deductive 
means but rather that only proper means are rational[9]. 

However, it is useful to recall that Turing-Church hypothesize 
that programmable simulations of any physically realizable pro- 
cess are po&&le_o~ly with unlimited space and time[7]. If one 
makes the plausible assumption that the simulation will generally 
proceed at a slower pace than the actual process, then simplifi- 
cations are. necessary and these may be gross when structured 
programs are used for real-time applications. Thus, while non- 
analytic methods may seem abhorrent, the alternative of oversim- 
plified models must also be questioned because it is inconsistent 
with the basic hypothesis or definition of simulation. 
-IIt would be nice to have a simple, lucid image but this may 
require a far more complete understanding, progressing through 

.successive levels from the atomic or molecular to the subcell/ 
chromosome, single cell and many cell domain. It will probably 
reveal new concepts along the way. Here we assume a uniform, 
parallel architecture based on locally interacting cells which all 
produce small but finite time delays of equal length and explore 
some of the time and reliability consequences e.g. the time dis- 
persion, the gain and loss of synchronization and dependence of 
excitation on distance. Feedback can provide clock cycles with 
“programmable’ delays and interrupts in such schemes. 

The availability of the PC together with minimal needs for 
application specific software makes NN very attractive for data 
intensive problems. Physics differs only superficially from other 
fields in that its methods are more direct, simpler and thus con- 
trollable and quantifiable in time and scale. However, as its ma- 
chines (systems) get bigger and more complex, they get harder 
to design and control so the situations become more analogous. 
Modeling permits a variety of ideas and interrelationships to be 
evaluated in comparatively short times using NN in conjunction 
with available databases. This modeling includes studies on NN 
because any parallel network architecture can be simulated on 
the von Neumann architecture - given time and memory. 

Many distinctions have been made between AI and NN e.g. 
the rather ironic one that NN is not a branch of AI. Seymour 
Papert has described them as two distinct offsprings of cybernet- 
ics with AI being the more productive and popular. While they 
both share the common goal of simulating intelligent behavior 
their means are very different. The historical development is an 
interesting story which explains the clear but controversial dis- 
tinctions. Many are directly related to the available ‘hardware’ 
i.e. the brain and the conventional digital computer(CC). Some 
distinctions which seem valid - at least for now, can be repre- 
sented as follows: 

Serial Parallel 

Minsky and Papert have just reissued Perceptrons[S] with an 
historical prologue some twenty years after its first appearance 
with some remarks worth pondering: “One reason why progress 
hasbeen so slow in this field is that researchers unfamiliar with its 
history have continued to make many of the same mistakes that 
others have made before them. Some readers may be shocked 
to hear it said that little of significance has happened in this 
field (since publication almost twenty years ago).” While this 
may seem harsh, consider how little basic hardware has been 
developed since von Neumann’s preamble to his 1952 paper[3]: 
“The subject-matter, as the title suggests, is the role of error in 
logics, or in the physical implementation of logics - in automata- 
synthesis. Error is viewed, therefore, not as an extraneous and 
misdirected or misdirecting accident, but as an essential part of 
the process under consideration - its importance in the synthesis 
of automata being fully comparable to that of the factor which is 
normally considered, the intended and correct logical structure.” 

Software 
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Figure 2: Very Schematic Comparison Between AI and NN. 

One easily diagnoses a split personality here with many apparent 
complimentary aspects such as graphic/numeric, visual/verbal 
and macroscopic/microscopic conflicts. Minsky and Papert argue 
‘against such symbolist/connectionist dialectics in a new prologue 
to Perceptrons[8]. However, they mention localized/distributed 
as well as heirarchical/heterarchical. While such ‘broad divisions 
make no sense’ to them, one can argue that they do exist and 
run so deep as to be worth studying in their own right[l6]. 
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4. Parallelism, Connectivity and Feedback 
It is important to make clear distinctions between such features. 
One can have a highly parallel system with no connectivity and a 
highly connected system with no feedback. Further, all of them 
are_supposed to improve the robustness of a computer or control 

= system. For instance, adaptive control, considered in its broad- 
- est sense, is supposed to extend the bandwidth of conventional 

linear control and deal with changing, uncertain environments in 
-:a timely, reliable way. This means providing parallel acquisition, 

analysis and control which implies both connectivity and multi- 
loop feedback. Currently, there is a growing degree of parallelism 
but very restricted connectivity and feedback. As a result, most 
artificial topologies don’t correspond at all closely to real NN i.e. 
they neither simulate nor model them for reasons as indicated in 
Fig. 2. Indeed, the brain is truly different from a conventional 
computer in these respects. 

“Every medical student is aware that information is transmit- 
ted in the central nervous system through a succession of neurons, 
one after another”[lO]. Also, everybody knows they have about 
10” neurons - give or take and that their ‘switching times’ are 
10-c seconds or so. An immediate question is why a large com- 
puter with cycle times of order lo-’ seconds and 10’ transistors 
cs’t do even easy pattern recognition and associated learning 
in comparable times? This is where connectivity and von Neu- 
mann bottlenecks enter. While computers may have a billion 
transistors, only a percent or so are busy at any time because 
of the memoryfpracessor bottleneck. This worsens as systems 
grow larger or get more data intensive(cellular automata simu- 
lations, I/O bottlenecks, etc.). But it is parallel acquisition and 
processing of the non-trivial type that makes the difference. 

4.1 Importance of Connectivity - The ‘Rule of 100’ 
Neurons fire in xl ms and ‘decisions’ take about 100 steps e.g. 
response times take xl00 ms[ll] for perception, analysis and 
&ponse. If we cease functioning due to loss of decision capacity 
e.g. control of various functions, then for 10” neurons in the 
brain and a loss rate of %3x lo3 per day(2 per minute) we have 
a life expectancy of 100 years assuming very high connectivity. 
Assuming more initial neurons allows more units of 100 with 
differing roles and locations. Thus, while we may not use our 
neurons effectively we definitely don’t have more than enough! 

4.2 Graph Theory Representation - Undirected Graphs 
A connected graph G is composed of sets of links and vertices 

I {fZ, V} which can be characterized by the number of vertices {no 
each having e legs. The links or edges are the axons or dendrites 
and the vertices are the cell body or computation unit. The total 
number of links is 2N = ze. ne. In a real neuron, the number of 
links per vertex can be as high as lo4 - lo5 which implies very 
high connectivity. The number of loops is: 

L(G) = 1+ f C(e - 2)~ . I 
This is the number of possible feedback loops that don’t include 
nested loops. Connectivity is defined by the minimum cardinal- 
ity of either the set of nodes K(G) which separate a graph into 
subgraphs or set of links X(G) which separate a node from the 
graph. These integers are a measure of a graph’s node and link 
vulnerability so we want to make them as large as practicable. 
Complexity can be taken as the minimum cardinality of vertices 
s(G) connecting input/output terminals e.g. the shortest path. 
Reliability relates to the number of such paths or spanning trees 
while cost can be taken as proportional to a combination of the 
total number of links and nodes[lb]. 

3 

4.3 Reliability 
A particularly useful expression(l21 for the reliability of a graph 
G was given in the context of electronic networks: 

R(G)=piR(G*i)+(l-pi)R(G-i) (2) 

where i is any link and pi its reliability. G*i and G-i are graphs 
with i contracted and deleted. Full dots in Fig. 3 are ‘terminals’ 
that must communicate and R is the probability of doing so: 

nl=2; 
722=4; pi=O.9 

-cl- 

R=0.750513 
n3=2; 

(A) 

nl=2; 
n3=G; pi=O.9 

-aI?- 

R=0.790630 
n4=l; 

63) 
n1=2; 
n3=4; p;=o.9 
n4=2; 
ns=l; 

R=OSOS04S 

Figure 3: Some Complicated Series-Parallel Graphs. 

Such graphs can represent any number of possibilities e.g. the 
accelerator complex we want to control or one of its subsystems. 
The gmphs in Fig. 3 are dominated by their serial links which 
could represent ion sources(easily made redundant) or the two 
opposing linacs of a linear collider. Here we use them as highly 
linearized versions of NN. All of these graphs have low connec- 
tivity and gain little in reliability for significant increases in cost. 
Figure 4 shows a graph with similar x’s as Fig. 3 but with higher 
reliabilities. The amplitude of the leading order term in the poly- 
nomial for R(G) gives the number of different spanning trees hav- 
ing the same complexity x(G). For x = 5 in Fig’s 3A&B this is 
2 and for the output terminal in the upper righthand corner of 
Fig. 4 it is 10. 

---a- R=0.972593 

n2=4; 
ns=6; pi=099 
n4=2; 

---e--c R=0.9S313S 

--.-+ R=0.984435 

--.- R=0.976011 

Figure 4: Reliability versus Output Terminal for a 3x4 Net. 

One can make such graphs arbitrarily reliable but not perfect. 
Many are impressed with anything that fails once in every lo6 
trys but in LCS this is often inadequate e.g. it’s only about a 
second’s worth of turns in the storage rings of Fig. 1 or 1 ms’s 
operation of a high-speed IC element in a mainframe. 

5. Computation and Control with Neural Nets 
What should one use for an artificial neuron and how should 
they be connected to make NN[13]? A McCulloch-Pitts formal 
neuron[5] can be represented by Rosenblatt perceptrons[l4] or 
Widrow/Hoff adaptive linear neurons (Adalines)[l5]. In Fig. 5 
there are outputs 5;=1,2 from the axons of two neurons in the 
preceding layer which feed synapses wij and the cell through den- 
drites. This input is called a link and the cell body, which does 
the computation and sends it out on axon j according to some 
transform or activation function fi, is a node. This is the sim- 
plest example of a learning element from which more complex 
NN or automatons can be constructed. Any Boolean function 
and any computation can be done with a net of such elements. 



They often have an adjustable bias for fixing thresholds that 
is equivalent to a weight w with fixed input. Such neurons are 
often combined i.c& sequential, layered, feedforward nets without 
self-excitation loops or feedback i.e. wj, = wji = 0. The number 
of states are finite and usually discrete with binary values (0,l) 
or-@i) but they can also be analog functions - especially when 

f they’re software neurons and nets on PCs. The output yj is the 
weighted, linear sum of inputs: 

-: yj(t+l) = fj(xi) = Cw;jxi(t) + bj . (3) 
The weights wij (connectivity matrix) of a net fix the couplings 

between the j-th neuron and a preceding one i with their different 
layers distinguished by z and y. Weights and states(e.g. &l) are 
the knowledge base. Weights occur on inputs because of possible 
ambiguities and the assumed feedforward or directed character 
of the graph. When fj is a step function yj + sgn(yj). 

Xl 

yj = Cwijxi + bj 

-Figure 5: Two-Input, One-Output Feedforward Perceptron. 

A classic test for such a device is whether it can solve the XOR 
problem[S, 61. To obtain all 2’” possibilities for n inputs, it is 
necessary to-hayenonlinear inputs 01% hidden neurons e.g. Fig. 6 
‘shows how an AND neuron, embedded in a single hidden layer, 
functions to give XOR. In this way we can compute any Boolean 
function, do binary arithmetic or any computation. 

The Back Propagation Method [S] has a representational or 
input layer for conditioning and fanout, some hidden layers and 
an output or decisional layer. There is no feedback, which would 
make the graph cyclic, nor l inkage sideways. For a monotonically 
increasing function like Fermi-Dirac for activation, the weights 
can be adjusted by a gradient method[6] that generally finds so- 

-1utions given enough neurons. 
Weights Weights 

-Inputs 
d -. 

--0 

-0 

Figure 6: Schematic, General Neural Net (for XOR). 

Although Back-Propagation tends to be slow[6] and often hard to 
understand physically when not set up carefully, it is easy to use 
and appears capable of computing any function with OJZ !ridden 
layer(l71. However, as indicated in Sect. 4.1, real neural systems 
take about 100 steps for many complex, real-time tasks and it is 
hard to see how they could learn in this way. 

The Hopfield model[ld] is easy to understand physically with 
wij a symmetric matrix i.e. the Hebb learning algorithm[6] seems 
natural and more importantly, a Lyapunov function exists which 
guarantees that all attractors in the difference equations [3] are 
fixed points so that stable, associative memory is possible. Ex- 
tension to adaptive control follows from models such as two-layer, 
bidirectional associative memory[l9] e.g. from Eq. [3] 

5‘ = ‘-3:; + 2 Wij2/j(t) + Qfi 

ij = -F/j + Cwijxi(t) + bj (4) 

These are ordinary, linear differential equations until one imposes 
a step function or sigmoid on the sum(as done above) or on the 
individual activations ui. In all cases they retain stable control 
properties as shown by Cohen and Grossberg[20] for fairly general 
nonlinear equations: 

f4 = ai(ui)[Pi(ui) + CWijbj(uj)] (5) 

where cy, p and 6 are nonlinear functions of a node’s activation ui 
and c5 is a monotonically increasing function for stability. These 
are the dynamical equations for updating the activation and the 
learning rule can be written in various ways related to Hebb’s 
algorithm as: 

Ljij = Wij + F(Wij, Ui, Uj) (6) 
The Maxwell-Lorentz control problem for electron optics in- 

volves nonlinear equations where the EM fields are the control 
elements and the particle parameters are the training variables 
for feedback and optimization. Writing the Lorentz equation in 
spatial components gives six simultaneous, first-order equations 
with the substitutions 2 = u, c = ~1, 2 = w : 

ti = k(E, - +I + B,v - B,w) 
ti = k(Ey - +J + B,w - B,u) (7) 

ti = k(E, - ?w + Byu - B,v) 
l? and l? are the fields, Ic = q/-p is the charge-to-mass ratio 
(energy dependent with stochastic variations) and 4 = k/E. 
These are all local functions of the position Y. 

To solve such equations, the initial values of x,y,z,u,v,w and 
the energy are necessary as well as the field functions. ‘The com- 
puter solution, throughout the region of interest, can be used as 
reference for comparison to feedback measurements in the least 
squares optimization step of the control cycle[21]. Also, general 
purpose magnets are available for control purposes[22]. 

Unfortunately, the Eq’s. [7] don’t quite match Eq’s. [4] or 
[5]. The weight matrix is not symmetric. However, reducing 
the problem to one dimension e.g. by transforming to cylindri- 
cal coordinates for a betatron(or storage ring) provides sufficient 
conditions for a stable fixed point without violating Maxwell’s 
equations. We can use the two layer BAM of Eq. [4] for turn-to- 
turn simulation which is stable in the linear approximation i.e. 
once trained the ring can, at least in principle, remember how to 
operate. The question is how to extend and relate this approach 
to control e.g. add realistic perturbations. 

The differential equations for betatron oscillations from Eq.[7] 
have a number of control applications: 

ii + cY*Cji + IC((Ii) = F(t) . (8) 
Ii is the focusing (possibly nonlinear), F some externally a.pplied 
forces and og 0: + is assumed to vary slowly. F can be a Fourier 
series to cancel global error harmonics or a noise source which 
mirrors one measured with the beam. The subscript specifies 
bunch number or measurements around the ring for least squares. 

With 4 = p and H, the time independent Hamiltonian for the 
undamped, conservative system one has: 

aH0 
4i=api ; j; = -2 - cY*pi + F(t) . (9) 

We can add various types of stochastic effects to the equations 
and study their effect on stability and emittance and how to 
minimize them. Without such effects, the time evolution is well 
defined and we can set the system up and study perturbations to 
the regions of attraction with damping strength (Y, nonlinearities 
in I< and convergence of different learning algorithms and how 
they influence feedback. Multibunch intera.ction and corrective 
feedback studies are a natural extension with a rich spectrum of 
a.ttractors and strategies to populate them. 



6. Some Possibilities References 

I have used ‘Turing-machine’ to mean any machine capable of 
general computittion rather than a generic, serial, programming 
approach to computation. NN offer the possibility of fast, reli- 
able, real-time Turing machines that combine computation and 

Z 
control needed for increasingly complex environments. Today, 
they are usually multiple layers with sequential fanout and feed- 
fofward that are sparsely connected and may not adjust weights 

--or change the numbers of layers or neurons because they use 
only fixed logic or have been trained for speed and reliability. 
These are deterministic, pattern recognition and mapping prob- 
lems based on associative memory models for noisy data. Au- 
tonomous controllers can function in this way with incomplete or 
mixed information as in complex hybrids involving logic as well as 
analog and digital inputs. They can also change naturally when 
the problem changes due to bad input channels or new ones. 
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