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ABSTRACT 

Classical vacua of the heterotic string corresponding to c = 9, N = (2,2) 

superconformal theories on the world sheet yield low-energy effective field theories 

with N = 1 space-time supersymmetry in four dimensions, gauge group EC @ Es, 

several families of 27 and 27 matter fields, and moduli fields. String theory relates 

matter fields to moduli; in this article we relate the kinetic terms in the effective 

Lagrangian for both moduli and matter fields to the 273 and z3 Yukawa couplings. 

Geometrically, we recover the result (obtained previously via the type II superstring 

and N = 2 supergravity) that moduli space is a direct product of two Mahler 

manifolds of restricted type, spanned by the moduli related respectively to the 27 

and 27 matter fields. The holomorphic functions of the moduli genera,ting the’ 

two restricted Kahler metrics also determine the Yukawa couplings of the matter 

fields. We derive explicit formulaa for the metric for the matter fields in terms of the 

metric for the corresponding moduli; the two metrics are not identical to each other. 

The precise relation between moduli and matter metrics takes a slightly different 

form on subspaces of the moduli space where the unbroken gauge symmetry is 

enhanced beyond Es @ E8 ; this phenomenon is illustrated using the examples of 

(2,2) orbifolds and tensor products of minimal N = 2 theories. 

. 
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1. Introduction 

Heterotic string theoryL1’ - a candidate theory of all fundamental particle 

interactions - has a huge set .of classical vacuum states, including many four- 

dimensional vacua whose features allow them to serve as starting points for real- 

istic phenomenology. The first vacua of this kind having chiral fermions in four 

space-time dimensions were constructed from the ten-dimensional heterotic string 

by compactifying six of the ten dimensions into a Calabi-Yau manifold!] The 

four-dimensional physics of the Calabi-Yau vacua is characterized by N = 1 su- 

persymmetry, EC @ Eg gauge group and matter fields that form several 27 or 27 

families of the EG . Subsequently, many other heterotic string vacua were con- 

structed that share these features. In all such vacua the six dimensions which are 

compactified in the Calabi-Yau case are generalized to an “internal” N = (2,2) 

superconformal theory on the world sheet which has Virasoro anomaly c = (9,Y)f 

Besides Calabi-Yau compactifications, known examples of the (2,2) vacua include 

(2,2) orbifolds[31 and tensor products of minimal N=2 modelsL4’ or of other exactly 

solvable N=2 superconformal theories!’ It appears quite possible that all (2,2)’ 

vacua with spacetime supersymmetry and Es @ Es gauge symmetry are compact- 

ifications on (possibly singular) Calabi-Yau manifolds[4’61; however, the analysis in 

the present paper does not rely on this remarkable connection. 

The (2,2) vacua are only a small subset of the classical vacua of the heterotic 

string. The heterotic string itself only requires N = (0,l) superconformal invari- 

ance of the world-sheet theory describing internal degrees of freedom:” although 

N = (0,2) is needed if a vacuum is to exhibit space-time supersymmetry!” The 

low-energy features of the (0,2) vacua, such as the unbroken gauge group and the 

spectrum of massless particles, vary widely from one (0,2) vacuum to another, mak- 

ing it very likely that some of these vacua lead to viable phenomenology. However, 

at the present time, the phenomenological prospects for certain (2,2) vacua (or 

-k Actually, the internal theory repla.ces both the six compact dimensions a.nd the six left- 
moving world-sheet fermions that are affected by imbedding of the spin connection into the 

IN gauge group. 
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rather minor modifications of them via a Hosotani-Witten-type mechanism”]) ap- 

pear to be at least as good as for the (0,2) vacua studied to date!g1 The (2,2) vacua 

are much less diverse than the (0,2) vacua, and in fact they share many common 

features. The subject of this article is the low-energy behavior common to all the 

(272) vacua. 

For a given vacuum state of the string theory, physics at energies well below 

the Planck scale can be described by an effective low-energy field theory. To define 

a field theory one needs to list all the fields and describe the effective Lagrangian; 

with this information, all other quantities are computable, at least in principle. In 

particular, we can map out all the neighboring vacua by studying flat directions 

in the effective potential, and for each vacuum state we can compute scattering 

amplitudes for various multi-particle processes. In the state-of-the-art string theory 

one can list all light particles that appear in the spectrum of any particular vacuum 

state, but one cannot directly obtain an effective Lagrangian for the low-energy 

limit of the theory. Instead, we shall foll ow the so-called S-matrix approach (see 

for example ref. [lo]): 0 ne constructs an effective field theory that yields the same 

scattering amplitudes as the full string theory does in the low-energy limitt Since 

the subject of this article is not a particular vacuum state of the heterotic string 

but the whole class of the (2,2) vacua, we shall derive some universal relations 

between various string amplitudes valid for all members of this class and require 

that the effective low-energy field theory obeys the same relations between the 

same amplitudes. This will impose severe constraints on the low-energy effective 

Lagrangian; these constraints are the main results of this article. 

The S-matrix approach can be carried out to an arbitrary order in perturbation 

theory. In this article we shall limit ourselves to the classical effective field theory 

in space time and compute all scattering amplitudes at the tree level. For the 

string this means that the world sheet is always a complex sphere. However, the 

t In ref. [ll] this a.pproach was ca.rried out to order O(Q”) for some specific four-dimensional 
vacua. 
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two dimensional conformal field theories on the world sheet will be fully quantized, 

with no semi-classical or perturbative approximations, and all correlation functions 

of various world-sheet operators that appear in this article are exact. Note that 

while for most two-dimensional quantum field theories we do not have explicit 

expressions for the various exact correlators, we may still have exact Ward identities 

relating those correlators to each other; in this article, we shall use heavily the Ward 

identities of the left-moving N = 2 supersymmetry of the “internal” world-sheet 

. theory. 

The fields of an effective low-energy theory describing any classical (2,2) vac- 

uum include the gravitational sector (graviton, dilaton and axion, plus superpart- 

ners), the Es @ Es gauge multiplets, and a set of chiral superfields forming the 

27 or 27 representations of Es - matter fields. Moreover, the (2,2) world-sheet 

supersymmetry implies that for each 27 or 27 supermultiplet of matter fields there 

is an additional Es singlet superfield whose scalar potential is flat!12’13’141 Conse- 

quently, vacuum expectation values of (the scalar components of) these singlets 

are completely unconstrained, resulting in a multi-parameter family of (2,2) vacua;, 

for this reason these fields are called moduli. From the world-sheet point of view 

the flat potential for moduli scalars means that the associated vertex operators 

are exactly marginal, i.e. their /?-functions vanish to all orders and even beyond 

perturbation theory. 

The possible form of effective field theories describing (2,2) vacua is constrained 

by four-dimensional supersymmetry. N = 1 supergravity theories are character- 

ized by two analytic functions of scalar fields, the superpotential T/T/ and the Kahler 

function K (sometimes called the Kahler potential)!151 Cubic terms (Yukawa cou- 

plings) [161 as well as other, non-renormalizable, terms P71 . m the superpotential have 

been calculated in many special cases. On the other hand, the Kahler function Ir’ 

has been much less investigated, though it is also of considerable phenomenological 

interest: Iir determines the kinetic terms in the effective Lagrangian of moduli and 

matter fields which are needed to obtain the physical normalization of the Yukawa 

couplings. Furthermore, Ir’ enters the scalar potential and thereby influences possi- 
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ble supersymmetry breaking mechanisms. The Kahler function li’, and its relation 

to the superpotential, will be the focus of this article. 

The Kahler function has previously been computed in some special cases. For 

Calabi-Yau compactifications, the moduli fields can be divided into two sets: de- 

formations of the complex structure, which correspond to harmonic (1,2) forms 

on the Calabi-Yau manifold and which accompany the 27 matter fields; and de- 

formations of the Kahler class, which correspond to the (1,l) forms and which 

accompany the 27 matter fields. In the limit that the Calabi-Yau manifold is large 

enough to use ten-dimensional field theory, the metric for the (1,l) moduli fields 

reduces to the metric on the space of (1,l) f orms which is controlled by the same 

topological constants of the Calabi-Yau manifold that determine the 273 Yukawa 

“” couplings. Similarly, the metric for the (1,2) moduli in the field theory limit 

can be expressed in terms of the f13 Yukawa couplings, although these Yukawa 

couplings are not ‘ls~lQ1 constants. The metrics for both moduli and matter fields 

arising from the untwisted sector of an orbifold can be obtained by simply trun- 

cating the ten-dimensional effective field theory. tzol Th e result of this procedure 

actually holds for orbifolds of arbitrary size; this can be verified by using the sym- 
WI metries of the string generating functional for scattering amplitudes, or by using 

Zamolodchikov’s conformal-field-theoretic formula for the metric!z2’231 

A different and more general approach can be used for the moduli sector of the 

effective field theory. The N = (2,2) su p erconformal theory which defines a clas- 

sical vacuum of the heterotic string also defines a classical vacuum of the type II 
w,241 superstring. In the latter case the effective four-dimensional theory is N = 2 

supersymmetric, which severely restricts the form of the effective Lagrangian for 

the moduli.[25-271 In particular, the moduli space is a direct product of two Kahler 

spaces P4271 ; in the Calabi-Yau case these two spaces are spanned by (1 ,l) and (1,2) 

moduli respectively. The two spa.ces are of restricted type, which means that they 

are each determined by a holomorphic function of the respective moduli. The sa.me 

holomorphic function controls kinetic terms in the effective Lagrangian of the vec- 

tor fields coming from the Ramond-Ramond sector of the type II superstringIz7] 
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and couplings of those vector fields to the moduli scalars. In ref. [28] it was argued 

that these type II couplings are the same as the 273 and 27” Yukawa couplings 

in the corresponding (2,2) vacuum of the heterotic string, and hence that the cu- 

bic superpotential for matter fields is determined by the same two holomorphic 

functions that determine the Kahler function for the moduli. However, there are 

several subtleties in making precise the correspondence between the two holomor- 

phic functions and the superpotential; for example, space-time supersymmetry is 

local, and in locally supersymmetric theories Yukawa couplings take a different 

form then in the globally supersymmetric case treated in ref. [28]. 

We shall show in this article that the above general results can be obtained 

entirely within the heterotic string, without invoking the type II superstring or 

N = 2 supergravity in space-time. We rederive the splitting of the Kahler function 

of the moduli into a sum of two functions, 1(1 and K2 , each depending only on 

the moduli related to, respectively, 27 or 27 matter fields; we also verify that li’r 

and I<2 are each of restricted type. In the process we find out that the metrics for 

the 27 and 27 matter fields differ from the metrics for the corresponding moduli: 

(For any particular (2,2) vacuum this difference can always be eliminated by a field 

redefinition; what we mean is that no holomorphic field redefinition would result 

in metrics for moduli and matter fields that are equal to each other for all vacuum 

expectation values of the moduli fields.) This difference between the moduli and 

matter metrics - which has not been obtained from the type II superstring (and 

probably cannot be obtained that way) - plays a key role in deriving precise rela- 

tions between moduli and matter couplings. In particular, relations between 1C1,2 

and the superpotential which were argued for in ref. [28] now become consistent 

with local space-time supersymmetry. 

The main body of this article is organized as follows: Section 2 is an overview 

of the light fields characteristic of the (2,2) vacua from both space-time and world- 

sheet points of view. Section 3 is devoted to the S-matrix approach to low energy 

physics. First, we relate the low-energy limits of various four-particle scattering 

amplitudes to the Kahler function and the superpotential of the effective field 
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theory. Next, we use the left-moving superconformal symmetry of the world-sheet 

theory to relate scattering amplitudes that involve moduli scalars to amplitudes 

involving matter fields. Imposing these relations on the field-theoretical a,mplitudes 

we establish several constraints‘on the geometry of the field space; in particular, 

the Kahler function of the moduli fields must decompose into lill + li’2 and the 

metric for matter fields obeys differential equations that can be integrated in terms 

of li’r and K2. Moreover, we derive equations that relate 1<r to the 273 Yukawa 

couplings and Ii; to the 27” couplings. Solving these equations we find that all the 

273 (z3) couplings can be expressed in terms of derivatives of a single holomorphic 

function .Fr (32) of the appropriate moduli; Kahler functions Kr,2 of the (1,l) and 

(1,2) moduli spaces have restricted type and are determined by the same .Fr,a that 

determine the Yukawa couplings. In section 4 we consider the effects on Ir’ of 

enlarging the unbroken gauge group beyond Es @ Es. (Such extra gauge factors 

occur in almost all exactly solvable (2,2) vacua that have been discussed to date.) 

We find that the equations relating the superpotential to the Kahler function of 

the moduli fields remain unchanged, but the equations for the metric of the matter. 

fields have to be modified. In section 5 we summarize our results and discuss 

their implications. The article also has three appendices: Appendix A contains an 

alternative derivation of stringy constraints on the moduli-dependence of the 273 

and 27” terms in the superpotential; Appendix B exhibits a coordinate system in 

which these terms can be expressed as derivatives of .Fr and F2; and Appendix C 

gives the precise relation between the scattering of moduli scalars in the heterotic 

string and in the type II superstring. 

8 



2. Light Scalar Fields and their Vertex Operators 

2.1. LOW-ENERGY EFFECTIVE FIELD THEORY. 

The goal of this article is to describe the low-energy behavior of the heterotic 

string in terms of an effective field theory. The general form of an effective La- 

grangian for the light bosons is 

where G and R are the determinant and the scalar curvature of the space-time 

metric G;j while SAB is the metric on the space of scalar fields $A, 4’. Other 

notations in eq. (2.1) are as follows: I/($, 4) is th (a) e scalar potential, Fiij are gauge 

field strengths, 27; are gauge-covariant derivatives with respect to space-time co- 

ordinates x2, and ‘. . .’ stand for the axion coupling to FF and terms with more 

than two space-time derivatives. All string vacua we are interested in possess 

unbroken N = 1 supersymmetry in four dimensions, so the effective low-energy 

theory should be consistent with N = 1 supergravity too. Therefore all fermionic 

terms in the effective Lagrangian are related to the bosonic terms, and the bosonic 

Lagrangian (2.1) itself has to obey several constraints. First, the scalar metric 

gAB(#, I$) should be Kahler, i.e., expressible in terms of a single real analytic func- 

tion K of complex scalar fields $A and their hermitian conjugates 4”: 

Second, the scalar potential V($, 4) should have a special form 

(2.3) 
where W(d) is a holomorphic function of 4 and Q(“) are the (hermitian) genera- 

tors of the gauge group. ( See ref. [15, 291 for a derivation of eq. (2.3), and for the 
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fermionic terms in the N = 1 supergravity action.) The two terms in the poten- 

tial (2.3) are often called the F-term and the D-term, after the common nota,tions 

for the auxiliary fields in scalar and gauge supermultiplets which give rise to them. 

Finally, if the gauge coupling e 2 depends on the scalar fields, then em2 should be 

a harmonic function, i.e., the real part of a holomorphic function f($A), and the 

imaginary part of the same f(4) controls the coupling of axions to F~!‘“’ If the 

gauge group is a direct product of several subgroups, then there may be a separate 

f(4) for each gauge coupling.* 

In a general N = 1 supergravity the Kahler function 1i’(4, $), the superpoten- 

tial W($) and the gauge couplings e2 = l/Ref(4) are completely arbitrary and 

independent of each other. However, in all classical vacua of the heterotic string all 

gauge couplings are equal to each otherL3” and are controlled by a single scalar field 

- the four-dimensional dilaton; in space-time supersymmetric vacua the dilaton is 

the real part of the dilaton/axion complex field D and ee2 = ReD!311 This article 

is concerned with I( and I/T/; we shall show how they are related to each other in 

effective theories describing the (2,2) vacua. 

- 

In a generic (2,2) vacuum of the heterotic string the gauge group is EG @ Es (the 

Es component is pure gauge) and the massless scalars can be listed as follows: the 

dilaton/axion field D; several genera.tions of matter fields A” and Ab that transform 

as 27 and 27 under Es (in our notations we shall always label the 27 matter fields 

with indices taken from the beginning of the greek alphabet while indices from the 

middle of the greek alphabet will always refer to the 27 matter fields); a.nd several 

moduli fields MA whose expectation values parametrize families of related (2,2) 

vacua. Non-generic (2,2) vacua may present us with additional gauge fields and/or 

additional scalars that are Es singlets but are not moduli!21 (That is, expectation 

values of these singlets must vanish in all (2,2) vacua of the heterotic string; from 

the low-energy point of view, non-zero VEVs of non-moduli singlets usually lead to 

‘9 
* Actually, even for a simple non-abelian gauge group one can have fca)(b)(4) transforming 

as a symmetric square of the adjoint representation of the gauge group instead of a single 
gauge-invariant f($)F”’ 
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positive values of the scalar potential). For example, there is an extra SU(3) gauge 

group in the case of the 23 orbifoldr’ and there are 224 extra scalar Es-singlets in 

the case of the Calabi-Yau threefold defined as a particular quintic surface in CP4!“’ 

In this article our concern is not with a particular (2,2) vacuum of the heterotic 

string, but with entire families of such vacua that can be continuously transformed 

into each other by changing expectation values of the moduli fields. In moduli 

spaces describing such families of (2,2) vacua, gauge groups bigger than & appear 

. only at some isolated points or on some lower-dimensional submanifolds. We shall 

discuss such submanifolds in section 4; in this and the following section we shall 

concentrate on generic neighborhoods in the moduli space. The case of massless 

singlets that are not moduli is more complicated; at present it is controversial 

whether such singlets can stay massless throughout the entire moduli space. [4,331 In 

this article we shall allow for existence of those singlets, but will not pay them any 

more attention than we must. 

Ideally, we would like to survey the entire field space of an effective field theory 

corresponding to a family of the (2,2) vacua of the heterotic string. Unfortunately, 

our state-of-the-art string technology is limited to scattering amplitudes that in- 

volve a finite number of particles in the spectrum of a string vacuum state. This 

limits our survey to the moduli space and its infinitesimal neighborhood in the 

field space. For points in the moduli space the superpotential vanishes together 

with its first and second derivatives with respect to all massless fields; hence, using 

& invariance, We Can write 

T/T/ = 5 TV,py (ill) A”APAY + f Wx,&M) AXApA” + O(AaApB) + O(B3) + . . - , 

(2.4) 
where B stand for the & singlet fields that are not moduli but nevertheless remain 

massless throughout the moduli space, and ‘a * a’ refer to superpotential terms that 

are of quartic or higher order in matter fields. The coefficients W,p, and I/l/xfiV are 

the 273 and f13 Yukawa couplings and are of obvious phenomenological interest. 

At this point we allow them to be arbitrary holomorphic functions of the moduli 
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MA, but later we shall see that the moduli-dependence of the Yukawa couplings is 

constrained. In the same spirit, we can write the Kahler function I< a.s 

- 
K = 2 log@ +D) + k(M,M) 

+ G,/&kf,?@) AOz” + G,$U,?@ APT 

-(Y---- + O(BB) + O(A”AC”) + O(A Ap) 
P-5) 

+ terms involving higher powers of the matter fields. 

Here I? is the Kahler function of the moduli space, which is itself a Kahler manifold 

with metric gAB = I;‘,AB ( here and henceforth capital latin indices are reserved 

for the moduli fields). On the moduli space, the metrics for the 27 and 27 matter 

fields are given by the moduli-dependent matrices G,p and Glly; away from the 

moduli space, the situation becomes more complicated and different kinds of fields 

start mixing with each other. 

Given formulae (2.4) and (2.5), we can write an explicit expression for the scalar 

potential of the matter fields: 

V = ; c (G,ii zp Qca) A” + GpLP 2” Q’“’ Afi)’ (2.6) 
(a) 

+ exp(K2@ 
D + -is 

+ O(lAl” [RI”) + O(lB14) + ... 1 
where ‘. . a’ stand for terms of higher than quartic order in matter fields. Here 

(A”Ab)m denotes the part of the product of A” and AD that transforms as a 27 

under Es (A”AP transforms as 27x 27 = 27+351+351'), etc. The fourth term in 
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(2.6) (the third F-term) is controlled by Yukawa couplings of the type BA”Ap and 

is absent in theories that do not have massless non-moduli singlets B. Fortunately, 

even when this term is present, it does not affect the scattering amplitudes that 

we will use for relating I?, GAP and GPfi to the Yukawa couplings W,,, and 

W/W 7 so we do not need an explicit expression for the XaP,pfi. Note that because 

D + D z 2ReD = 2/e2, the entire scalar potential (2.6) is proportional to the 

gauge coupling e2. 

2.2. VERTEX OPERATORS FOR MODULI AND MATTER FIELDS. 

This article is concerned with classical vacua of the heterotic string that can be 

obtained by adjoining a c = (9,9), N = (2,2) su erconformally inva.riant theory p 

on the world sheet to the four N = (0,l) f ree world-sheet superfields tha.t are 

responsible for the four-dimensional space-time and to the left-moving SO( lo)@& 

Kac-Moody algebra that is responsible for most of the gauge group. N = (2,2) 

superconformal theories are characterized by having two N = 2 super-Virasoro, 

algebras - one left-moving, one right-moving - each generated by a Virasoro 

operator 7’~) an abelian current J and a conjugate pair of fermionic operators ?$ 

of conformal weight h = g and J-charges q = fl. We shall assume that all primary 

Neveu-Schwarz fields of either algebra have integral J-charges; this is required for 

the right-moving N = 2 superalgebra to lead to N = 1 supersymmetry in space- 

timei7] and for the left-moving N = 2 superalgebra to lead to the enlargement of the 

gauge group from SO( 10) to EG . The left-moving superalgebra is also responsible 

for the existence of moduli fields and their relation to the matter fields; this algebra 

is going to be our main tool. 

A general multiplet of the N = 2 superalgebra has four components, but there 

are also chiral multiplets that have only two components; lower components of 

chiral multiplets sa.tisfy 2h = 191. Of particular interest to us a.re chiral multiplets 

of the left-moving algebra whose lower components 9* have h = i aad (I = fl; 

upper components Q * of these multiplets are marginal (have h = 1) and neutral 
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(4 = 0). The singular terms in the operator product expansions of the superalgebra 

generators with 9* and (D* can be summarized in the following formulE: 

l/.2 
Q?w. Q*(Z) = (w _ 42 Q*(Z) + 

1 -as*(z) + * * * ) 
W-Z 

kz 
T~(w).a?*(z) = ; g + **a, 

( > 

J(w). Q*(z) = &8*(z) + . . * ) 

J(w) * a*(z) = 0 + * * - ) 

2T;(w)*9*(4 = 0 + "') 

(2.7) 

where ‘+ . .’ stand for terms that are not singular when (w - z) -+ 0. FormulE (2.7) 

disregard all right-moving quantum numbers of the operators Q* and a*, even 

their %-dependence. This is justified by complete commutativity of the left-moving 

and right-moving superalgebras. 

The operators Q* are important because they appear in vertices of the 27 and 

the 27 matter fields. To be precise, matter fields that belong to decuplets of the 

SO(10) C EG have vertices of the form 

27 fields A$ - iXi(z)- Q~(z,z) , a = l,...,Nr , 

27 fields Ai t-f iXI'(z).9/,(z,.Z) , p = l,...,N:, 

anti-27 fields 2: w = iP(z) . xi?, ) 

anti-27 fields zi +-+ = iP(,) . Qf ) 

(2.V 

where 2; is the SO(10) vector index and A@( ) z are free left-moving fermions tha.t 

generate the SO( 10) Kac-Moody algebra - the SO(l0) Kac-Moody currents are 

iXjXp^ for p,q E 10, p < q. This Kac-Moody algebra is enlarged to EG by adding 
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to it the left-moving current J - which generates the U(1) subgroup of & that 

commutes with the SO(l0) - and also the 16 + 16 Ramond sector operators that 

are products of the SO(10) p s inors with the h = $, q = i$ operators obtained 
1341 

. 

from the unit operator via spectral flow in the N = 2, c = 9 superalgebra. 

Spectral flow also relates vertex operators of the 27 fields that transform as 16 + 1 

under SO( 10) to the KU+ operators and relates vertex operators of the 16+ 1 E 27 

fields to the Q-. Notice that vertex operators of both A” and A@ involve QzIs 

since both types of fields transform as 27’s under E6; however, the right-moving 

structure of operators qI,+ and llrf is quite different, corresponding to the fact that 

Sz makes a holomorphic scalar field in space-time whereas Xl!; makes an anti- 

holomorphic field - carrying a barred index. The same is true for the operators 

Qi and S,. 

Space-time fields are dual to the world-sheet fields in the sense that a linear 

redefinition of the former results in the inverse redefinition of the latter; this ac- 

counts for the lowered indices Q, p, 6, ,!i in (2.8). L’k 1 ewise, integrated correlation 

functions of vertices give Green’s functions of space-time fields with the external 

legs truncated and therefore they also carry lowered indices. For example, the 

two-point functions of the matter vertices yield the Zamolodchikov metric[221 for 

the matter fields: 

The X’s anticommute with B* and (X$(z) . Xi($)) = S@i(z - z/)-r; therefore, the 
_ matter metrics G,p and GPii can be obtained from two-vertex correlators (Q’Q-) 

via 

( 
QZ(z, 5) * y&z’, 2’) 

> 
= Gap . (z - z’)-l(z - 2’)-2, 

(@Jz, z) . \Ir;(z’, 5’)) = G,, . (z - z’)-l(z - ,‘)-;?. 
(2.10) 

Note that the Zamolodchikov metrics for the matter fields obtained from eqs. (2.9) 

or (2.10) are the same G,p and GPD that appear in the Lagrangian of the low-energy 
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effective field theory via eq. (2.5): Th is is a necessary condition for the effective 

theory to reproduce the correct residues of massless poles in string scattering am- 

plitudes. (One can see this explicitly for the four-particle amplitudes presented in 

the next section, by factorizing’them on the graviton poles.) In the effective field 

theory, matrices G,p and G,, explicitly depend on the moduli fields; in the string 

formulae (2.10), this dependence is implicit: Each set of vacuum expectation values 

of the moduli fields corresponds to a specific vacuum state of the heterotic string, 

and the correlators in (2.10) are evaluated for that particular vacuum state. . 

Now consider the operators Q *. They are marginal and neutral, which makes 

them vertex operators for ma.ssless scalars that are Eg singlets!4’13’141 Moreover, 

a* are upper components of N = 2 supermultiplets and hence can be added to 

the world-sheet Lagrangian without breaking the left-moving N = 2 superalgebra. 

From the space-time point of view this means that scalar fields associated with 

a* are not just massless singlets but moduli - fields that can have arbitrary 

vacuum expectation values without breaking the (2,2) structure of the vacuum 

and therefore without generating a potential (see refs. [13,14] for proofs of this 

assertion). As with the matter vertices, moduli vertices are dual to moduli fields, 

but since the moduli space is non-linear, this duality is local: Given a (2,2) vacuum 

and a corresponding point on the moduli space, moduli vertices are dual to &WA 

and dQA; from the differential geometry point of view this means that the moduli 

vertices are co-vectors on the moduli space. For a general coordinate system on 

the moduli space we thus have vertices for holomorphic moduli fields that are 

some linear combinations of the vertices @$ and CD;, and similarly for the anti- 

- holomorphic moduli: 

(2.11) 

The Uz , etc., are moduli-dependent matrices, but from the world-sheet point of 

view they are c-numbers and not operators. The two-dimensional operators (a$, 
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etc., here are fixed by the current algebra (2.7) in terms of Sz, etc., which appear 

in the vertex operators for the four-dimensional fields A" and Afi via eqs. (2.8). 

For any particular point in the moduli space we can find local coordinates A4a 

and A4p that trivialize the U matrices at that point; unfortunately, it is generally 

impossible to simultaneously trivialize the U matrices everywhere in the moduli 

space, or even in a finite piece of the moduli space. However, we shall prove in the 

next section that one can define separate sets of fields A4” and A4m such that the 

matrix elements Uh, U/, ug and ui in eqs. (2.11) all vanish in a finite patch. 

In the case of a Calabi-Yau compactification A4’ and A4m are respectively (1,l) 

moduli and (1,2) moduli; for the (2,2) vacua that are not obviously related to the 

Calabi-Yau manifolds A4’ are simply the moduli related to the 27 matter fields 

while Aim are the moduli related to the 27's. To simplify the terminology, we shall 

refer to these two types of moduli as (1,l) moduli and (1,2) moduli regardless of 

whether the (2,2) vacuum under consideration has anything to do with Calabi-Yau 

manifolds. In a basis that distinguishes between the two types of moduli fields 

moduli vertex operators are given by: 

(1,l) moduli A4” H Ut . fD$ , a = l,...,Nl, 

(1,2) moduli A4m tt UE . @i , m = 1,...,N2, 
-- -- 

anti-(1,l) moduli A4’ t-f U% . @D, , a = l,...,N1, 
(2.12) 

-- 
anti-(1,2) moduli Aim tf ig . Qf , m = 1,...,N2. 

In our nota.tions we shall distinguish (1,l) and (1,2) moduli from each other by 

labelling the former with lower case indices taken from the beginning of the latin 

alphabet while reserving the middle of the alphabet for the latter; capital latin 

indices will refer to moduli fields of either kind, i.e., an A4A can be either an A4’ 

or an A4”. 

With these conventions, all string amplitudes involving moduli fields carry U 

factors; in particular, the metric for the (1,l) moduli fields is given by: 

(2.13) 
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Now, using the current algebra (2.7) we can show that 

ZZ 
f ( 

2 S,‘(z, 2) .2TF(w) . qrl, 2)) (2.14) 
?r 

2’ 

Hence, in view of eq. (2.10), 

(2.15) 

Similarly, the metric for the (1,2) moduli is given by 

-- 
gmc = UgG,,UX. (2.16) 

Equations (2.15) and (2.16) are examples of string-derived relations between dif- 

ferent terms in the effective Lagrangian of the light scalars - in this case, kinetic 

terms for the moduli and for the matter fields. To make full use of these equations 

one obviously needs to know the U matrices; we shall compute them in the next 

section. 

Now consider the matrix elements of the moduli metric g&j that mix the (1,l) 

and the (1,2) moduli: 

gu, -- 

I.2 - 2q4 
= LpY; * (@,+(z, 2) . @(z’, 2’)) 

(2.17) -- 
1 u$!J; x 2 (“T;(w) . Q&Z). @;f(z’,Z’)) = 0 

because the operator product of Ti (w) and a+(~‘) has no singularity at w t z’; 

g,h also vanishes for similar reasons. But the moduli space is a Kahler manifold, 
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A  

so  g u e  =  I? ,uc  a n d  g m 6  =  I(,,,; h e n c e , b lock-d iagona l iza t ion  o f th e  m o d u li m e tric 

impl ies  th a t 
-- -- 

k - (MA,,l/l”)  7  Ir’@ f”,~ a )  +  &(hfm,kfm) (2 .1 8 )  

. 

( u p  to  a  h a r m o n i c  fu n c tio n  th a t d o e s  n o t a ffect th e  m e tric).* It i m m e d i a tely fo l lows 

f rom e q . (2 .1 8 )  th a t th e  m o d u li space  is a  direct  p r o d u c t o f two s e p a r a te  spaces  fo r  

th e  (1 ,l) m o d u li a n d  fo r  th e  (1 ,2 )  m o d u li, i.e ., th e  m e tric fo r  th e  fo r m e r  d o e s  n o t 

d e p e n d  o n  th e  latter a n d  vice versa.  N o te  h o w e v e r  th a t th is  a r g u m e n t on ly  p roves  

th a t th e  m o d u li space  is a  direct  p r o d u c t as  a  m e tric space  p rov ided  it is a  direct  

p r o d u c t as  a  (complex)  d i f ferent iable m a n ifo ld,  i.e ., p rov ided  o n e  c a n  consistent ly 

d e fin e  s e p a r a te  comp lex  fie lds  A 4 ’ a n d  A 4 m  fo r  th e  two k inds o f m o d u li, a n d  w e  

h a v e n ’t yet p r o v e d  th a t th is  is possib le.  Fo r  th e  typ e  II superst r ing,  th e  m o d u li 

space  o f a  (2 ,2 )  v a c u u m  h a s  to  d e c o m p o s e  into a  p r o d u c t o f two subspaces  b e c a u s e  

th e  e ffect ive l ow-energy  th e o r y  h a s  N  =  2  space- t ime s u p e r s y m m e try (  (1 ,l) a n d  

(1 ,2 )  m o d u li scalars b e l o n g  to  di f ferent typ e s  o f N  =  2  s u p e r m u l tip le ts) !241 This  

resul t  app l ies  to  th e  h e te r o tic str ing as  wel l  s ince b o th  str ing theor ies  y ie ld th e  s a m e  

m o d u li fo r  th e  s a m e  (2 ,2 )  v a c u u m  (see  A p p e n d i x  C  fo r  prec ise  re la t ions b e tween  

m o d u li o f th e  two str ing theor ies) .  H o w e v e r , o n e  shou ld  n o t n e e d  th e  N  =  2  

fou r -d imens iona l  s u p e r s y m m e try to  p r o v e  th e  m o d u li space  d e c o m p o s i tio n  fo r  th e  

h e te r o tic str ing, a n d  w e  shal l  g ive  such  a  p r o o f in  th e  n e x t sect ion. 

A-  This a rgumen t  a lso exp la ins  why  the d i la ton/ax ion f ield D  appears  in  (2.5)  a ,11  by  itself: 
T h e  str ing or ig in  of this f ield differs f rom any  others  mass less scalar  f ields in  the theory,  
a n d  for any  vacuum state of the heterot ic str ing there a re  n o  m e tric terms that mix  the D  
with o ther  scalars. 
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3. Reconstructing Geometry from String Amplitudes 

3.1. SCATTERING AMPLITUDES IN FIELD THEORY. 

. 

In this section we shall follow the S-matrix program of ref. [lo] that was out- 

lined in the introduction to this article. Specifically, we shall compute four-particle 

scattering amplitudes that involve moduli and/or matter scalars. From the string 

theory point of view these amplitudes are related to each other through the current 

algebra (2.7). On the other hand, in field theory these amplitudes are controlled 

by seemingly unrelated terms in the effective Lagrangian. Specifically, four-moduli 

scattering amplitudes are controlled by the Riemann curvature of the moduli space, 

amplitudes involving two moduli and two matter fields are controlled by the mod- 

uli dependence of the metric for the matter fields, and amplitudes involving four 

matter fields are dominated by the gauge and Yukawa interactions. 

Let us begin with the scattering of moduli. Having no potential and no gauge 

couplings, moduli fields interact with each other via sigma-model couplings that 

are present whenever the moduli space is not flat. The Feynman rules of the sigma 

model provide for four tree-level diagrams contributing to a four-point function: 

Tiir 
- 
All 

(3.1) 
For a sigma model with a IGhler metric, vertices are given by the derivatives of K 

times the square of the total 4-momentum of the lines incoming to the vertex. (In- 

coming lines correspond to holomorphic fields, outgoing lines to anti-holomorphic 

fields.) Due to these kinematic factors, the last two diagrams in (3.1) vanish on 
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the mass shell, while the combined effect of the first two diagrams is 

. 6F 
A,(MA,MB,SC,XT”) = i~k,ABco + isk,AB~.~* 

s 
isI?,FcD = iSRAcBD. 

(3.2) 
Heres E -(lcr+Icz) 2 is one of the three Mandelstam kinematic variables; the other 

two variables are t G -(lcr + Jz~)~ and u z -(kr + ,&s)~. Note that in a Ghler 

geometry the Riemann tensor obeys RA~BD = RB~AD in addition to the other 

symmetries under index permutations. 

Besides sigma-model interactions, gravity also contributes to the scattering of 

moduli particles. A four-moduli amplitude gets contributions from the t-channel 

and the u-channel exchanges of a graviton: 

(3.3) 

which together yield 

(the s-channel exchange does not contribute since gAB = 0). No other interactions 

present in the effective Lagrangian (2.1) contribute to the tree-level scattering of 

moduli scalars. Thus we can summarize the field theory amplitude for the four- 

moduli sca.ttering amplitude as 

Note that the right hand side of this formula depends solely on the geometry of the 

moduli space. Hence a string expression for the four-moduli scattering amplitude 
- 

becomes a differential equation for k(M, M). 
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Next consider a scattering amplitude that involves two moduli and two matter 

scalars. Since the 27 and 27 matter fields remain exactly massless for all values 

of the moduli, the scalar potential does not contribute to tree-level scattering 

amplitudes that involve only two matter scalars. Similarly, gauge interactions do 

not contribute to amplitudes involving only two charged particles. Thus the only 

interactions in (2.1) that contribute to the two-moduli two-matter amplitude are 

gravity and the two-derivative interactions due to moduli-dependence of the matter 

metric: 

M A 

=X+It+H 
- 
M 

Therefore, 

where 

are mixed components of the Riemann tensor for the whole field space. Again, given 

a string expression for the two-moduli two-matter-fields amplitude, formulaz (3.6) 

become differential equations for the matter metrics G,p and G,, . 

Finally, consider scattering processes that involve four matter fields and no 

moduli. Among the matter fields, two must transform as the 27 of E6 while 

the other two transform as the 27; there are three Es-invariant ways to contract 

the gauge indices of these fields. For the sake of notational simplicity we shall 
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not use Es-invariant amplitudes; instead, we shall restrict our attention to the 

case when all four external fields belong to decuplets of the SO(l0) c &j; all 

other amplitudes can be reconstructed from these by the J!& invariance. Several 

kinds of interactions contribute to scattering of four matter fields, but at low 

energies two effects dominate the amplitude: gauge scattering and contact four- 

scalar interactions due to quartic terms in the scalar potential (2.6): 

=).-(+ky(+~ +O@“). 

-A (3-S) 
Assuming the gauge group is exactly f?6 (no “accidentally” massless gauge bosons), 

the gauge scattering amplitudes are: 

where the factors i come from the ratio between the coupling constants for the 

SO( 10) and the U(1) subg * rou IS 1 of &; we normalize these couplings according to 

the convention that for the SO(10) generators &(“I, trio (Q(“)Qch)) = 26(“)(b). 

Contact interactions due to the D-terms in the scalar potential (2.6) contribute 

to the scattering amplitudes expressions that are identical to eqs. (3.9), except that 

the kinematical factors 7 and % are absent. Finally, contact interactions due 
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to the F-terms in (2.6) contribute 

(3.10) 

. Note that in the low-energy limit both gauge and potential contributions behave 

like O(1) under uniform resealing of all 4-momenta. All other interactions, such 

as quartic terms in the IGihler function, or effects of moduli exchanges, or gravity, 

etc., contribute terms that in the low-energy limit decrease like O(lc2) or faster. 

Hence, as far as the effective field theory is concerned, the scattering amplitudes 

for four matter fields are: 

_ 
+ exp(r;“k) . W+ GPu WopI/ . @S”’ + 0(X:“) ; 

(3.11) 
we have used 2/(D + 0) = e2 and s + t + u = 0 in deriving these formulz. 
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3.2. STRING RELATIONS BETWEEN SCATTERING AMPLITUDES. 

At this point we know which scattering amplitudes we need in order to recon- 

struct the kinetic terms in the low-energy effective Lagrangian, so let us compute 

them. Let us begin with the string amplitude A(M”,A~,A~,Md). There is only 

one Es-invariant amplitude of this kind, so without loss of generality we can choose 

the matter particles to belong to SO(l0) decuplets; thus we have 

(3.12) 

Here J is the Jacobian for using S&(C) t o fi x zr, z2,.23 and is independent of ~4, 

and E(zj, ~j) is the correlation function of the exponentials e i&Tl;, .x appearing 

in the vertex operators evaluated at non-zero momenta kj ; an explicit expression 

for E in terms of z;j z Z; - zj is given by 

Beyond the eiak,.x factors, heterotic vertex operators @* and B* themselves 

depend on the momenta. However, this dependence only affects the right-moving 

degrees of freedom and completely commutes with the left-moving N = 2 super- 

algebra; since it is the left-moving superalgebra that we are going to use here, we 

can safely ignore the momentum dependence of @* and Q*. 
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Now, let us apply the current algebra (2.7) to the correlator that appears in 

eq. (3.12). Using the operator product expansion of !Z’i with \Ir+, we can write 

where [ is an arbitrary complex number, @F is a short-hand notation for a$ (zr ,~r ), 
. etc., and the contour of integration circles zr but not the other vertices. The same 

contour can be reinterpreted as circling (in the opposite direction) .22,23, zq and 

00 instead of zr; however, the integrand has no singularity at z3 (the operator 

product of TF( ) w with SC is non-singular at w --+ .23), and the single pole at 

w -+ z2 can be cancelled by choosing [ = ~2. The integral around infinity also 

vanishes: since the conformal dimension of TF is $, the correlator is O(,we3) at 

w + oo and the leading term in the integrand of (3.14) behaves like wm2. Hence, 

the only contribution to the contour integral comes from the singularity at ‘w -+ 24 

that yields 

dw w - z2 -~ 
2ni 21 - 22 

24 

and the integral on the right hand side of eq. (3.12) can be rewritten as 

- s 
,iZ;,a.~.~(~(u:.~:.Y;.~,)) 

C 

(3.15) 

(3.16) 

CA/4 c&/4 ___ - 
212234 214 223 

Here the factor @i/,23 comes from and the second expression follows 

from the first via integration by parts (we use eq. (3.13) and s + t + u = 0). 
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Next consider the amplitude A(A*, AD, AT, x8). Choosing all four matter par- 

ticles to belong to the decuplets of the SO(lO), we have 

A(A&,A$il;,~f) = lJ12 
.I 

d2r4E+!;4;4;4q . 
) ( 

Xf.X;+X~ 
> 

. 

C 
(3.17) 

All we need now is an explicit expression for the correlator of the gauge fermions: 

If we now compare the right hand sides of eqs. (3.16) and (3.17), it becomes ap- 

parent that 

(3.19) 

(no sum over the SO(l0) vector indices I; # 4). Formula (3.19) is the first of several 

relations between various string amplitudes that we shall use as constraints on the 

low-energy effective field theory. 

There are other two-moduli two-matter-fields amplitudes: The two moduli 

fields may be of the (1,2) type rather than the (1,l) type as in eq. (3.19), and the 

two matter fields may be 27’s rather than 27’s. All these amplitudes involve world- 

sheet correlators of the type (@+ . 9+ . Q- . a-), where a+ is either Qz or Qf , 

Qrs is either Q$ or Qi, etc. In the arguments leading to formula (3.19) we relied 

on the left-moving current algebra (2.7), which is not affected by the right-moving 

quantum numbers that distinguish between the 27 and anti-z matter fields or 

between (1,l) and anti-( 1,2) moduli. Hence, the very same arguments (modulo 
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permutations of particles) also yield 

-- 
A(Mk,A;,x;,%‘) = $U;U;. (uA(A;,A$$,q) - tA(A;,Af,~;,~;)) ; 

A(M’,A;,z;,$) = $U;D$ (uA(A;,A$$&) - tA(A;,A;;~;,@) ; 
-- -~ 

A(M”,A;,?$,M”) = $J;U;. (sA(A;,A;,$,q) - tA(A;,A;,ilf,A;)) 

(3.20) 

(again, no sum over I; # 6). 

On the other hand, amplitudes that involve one (1,l) modulus and one (1,2) 

modulus (and two matter fields) vanish identically since they involve the vanishing 

correlators (@+Q+Q-Q+) and (V!P+Q-a-). Th ese two correlators are complex 

conjugates of each other, so it is sufficient to verify that 

( cq.q;.q,.gj+ dw w - z2 
4 - ___ * (“!&+u) . q. xu;. q-. a$) = 0: 

27ri z1 - 22 
21 

(3.21) 

The first equality here is exactly analogous to eq. (3.14), and the contour integral is 

evaluated in exactly the same way; however, the operator product of 5$(w) and Qf 

has no singularity when PU + zq , and the integral vanishes. This a.rgument a,ssures 

the vanishing of “mixed” amplitudes A(M”, Ap, A’,%“) and A(A4”, AX, AC”, m”) 

(and their complex conjugates) and completes the coverage of all four-particle 

amplitudes involving one modulus, one matter field, one anti-matter field and one 

anti-modulus.* 

Now consider a four-( l,l)- moduli scattering amplitude 

Using the current algebra (2.7) we ca.n write @;t as a contour integra.1 of 2TF(w) 

around XPt and then pull the contour of integration from the back of the complex 

* These a.re the only two-moduli two-matter-fields amplitudes that we will need in this arti- 
cle. Among other amplitudes, d(A", AX, z’, zfi) and its complex conjugate obey equa- 
tions similar to eqs. (3.19) and (3.20), while all the remaining two-moduli two-matter-fields 
amplitudes vanish identically. 
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sphere so it runs around z2,3,4 instead of zr . But the integral of 25!‘F (w) around a 

a+(z) vanishes while the integral around a a-(z) yields a a,@-, so we obtain 

(3.23) 

Retracing the steps that led us from eq. (3.12) to eq. (3.16), we can express the 

correlators on the right hand side of (3.23) in terms of Q* only; this gives us 

qq.q”.q.q~ . 
a2 

(3.24) 

When computing a tree-level four-particle string a.mplitude such as (3.22), 

we keep locations of three vertices fixed and integrate over the fourth. Because 

of SL2( C) invariance’351 the integrand is exactly the same regardless of which of 

21,2,3,4 is used as an integration variable; the only difference is that the Jacobian 

J depends on the other three vertex locations. Hence, if the integrand has the 

form A . aB/dzj, j = 1,2,3,4, we can choose zj to be the integration variable 

and integrate by parts, then keep the new integrand but integrate over 2; with 

i # j. This technique allows integration by parts over any of the 21,2,3,4 regardless 

of which 2; is the integration variable. Thus, after we substitute (3.24) into (3.22), 

we can integra.te by parts over both 23 and zq, and the integral on the right ha.nd 

side of eq. (3.22) becomes 

s dzz4 E . (QT . Q; . Qj; . Q- . (&t/4)2 
4 )( (a’s/4) + (a’s/4)2 + _ (&L/4)2 

212234 214223 213224 
C 

)- 
(3.25) 

It remains to compare (3.23) t o re tl f our-matter-fields amplitudes (3.17); this yields: 

(3.26) 

d2 U2 
+ 16 A(A;,Af,x;,x;) 1 

(no sum over 1; # i). 
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Finally, consider other four-moduli scattering amplitudes. Given two types 

of holomorphic moduli, there are nine types of amplitudes that involve two holo- 

morphic and two anti-holomorphic moduli fields. Three types of amplitudes are 

related to world-sheet correlators (@+a+@-@-); these amplitudes, to the order 

in cr’ necessary for this article, are summarized in the following formuk 

d(M",M",xm,z") = $U;Uf~~~e -d(A;,A;,T?;,z;) + O(Q'~~~). 

(3.27) 

(The first equation here is eq. (3.26). Th e second equation substitutes xfi, A&, 

7rjp and AX for Mb, @, A@ and AT, respectively, and can be proven by exa,ctly 

the same arguments as (3.26); we have interchanged particles 2 and 3 for future 

convenience. The third equation substitutes in addition z”, Al’, p and A” for 

M”, x’, A” a.nd z’, respectively, and interchanges pa.rticles 1 and 4.) 

The other six four-moduli amplitudes are related to correlators (@+@+a+@+) 

and (@+Q+@+@-) (and th eir hermitian conjugates) that vanish identica.lly. In- 

deed, 

since the operator product of TF and @+ has no singularity, and 

where the last equality is just eq. (3.21). 
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3.3. RIEMANN TENSOR, MODULI SPACE DECOMPOSITION AND METRIC FOR 

THE MATTER FIELDS. 

Having established several string relations between various four-particle scat- 

tering amplitudes, let us use these relations to describe the geometry of the field 

. 

space. We begin with the Riemann tensor of the moduli space, which is related 

by formula (3.5) to the scattering amplitudes for four moduli fields. Our string 

formulae for these amplitudes distinguish between the (1,l) moduli and the (1,2) 

moduli, so we shall compute the components of the Riemann tensor in a basis that 

respects this distinction. (Local bases of this kind exist for all points of the moduli 

space regardless of whether these bases are consistent with a global coordinate sys- 

tem.) In such a basis, all components of RAcB~ except RaFbd, Rkrnlll and Rae,,- 
(and components related to these by index permutations) must vanish because of 

the vanishing of the corresponding 

too. To see this, let us substitute 

formula in (3.27); the result is 

string amplitudes. Moreover, R,,,,- vanishes 

the second formula in (3.11) into the second 

Here the second equation follows from the first because of eqs. (2.15) and (2.16) 

and because in the heterotic string theory gauge and gravitational couplings are 

related to each other via a’e2 = 2~ . 2111 In view of formulaz (3.5) and (2.17), eq. (3.30) 

implies that R,,,,- = 0. 

Now consider the holonomy group of the moduli space. The restricted holon- 

omy group of a Riemannian manifold is generated by parallel transport along 

contractible loops in that manifold, and the associated Lie algebra is generated by 

components of the Riemann tensor viewed as matrices in the first two indices of R. 
We have just seen that for the moduli space the only non-vanishing components of 

the Riemann tensor are R,,b,- and RI;,~, , so the restricted holonomy group of the 

moduli space must be contained in U(N1) @I U(N2). But there is a theorem valid 
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for any Riemannian geometry that says that if the (restricted) holonomy group of 

a manifold decomposes into a direct product of commuting subgroups, then the 

manifold is (locally) a direct product of several submanifolds.[361 In our case, this 

means that there are independent moduli spaces for the (1,l) moduli and the (1,2) 

moduli; both of these spaces are IGhler, and the full moduli space is their direct 

product (hence (2.18)*). Note that only a local basis is needed to evaluate the 

restricted holonomy group. Therefore, in contrast to our argument at the end of 

section 2, this time the possibility of parametrizing the moduli space with separate 

(14 and W> moduli fields is not assumed but proved. 

Having verified that the moduli space is a direct product of separate moduli 

spaces for the (1,l) moduli and the (1,2) moduli, we would like to study the geom- 

etry of each component. Riemann tensors h&b,- and Rkmlii for the (1,l) and (1,2) 

moduli spaces can be obtained from formulaz (3.5), (3.27) and (3.11). After some 

algebra that uses eqs. (2.15), (2.16) and a’e2 = 2~‘, we obtain 

-$R,aj = ga?gbd i- gad&c - eXp(K21;'). (wUUU)abe gef(wUUU)fcd, 

(3.31) 

where (wuuu),b, is a short-hand notation for WapJ~U,"U~, etc. Unfortunately, 

equations (3.31) cannot be solved for the moduli metrics g,b and g,% until we 

know the U matrices that appear in these equations. To compute the U matrices 

we need additional equations relating moduli and matter metrics; such equations 

are provided by string formulaz (3.19), (3.20) and d( M", Ap, 27, ?@) = . . . = 0 

for scattering amplitudes that involve both moduli and matter fields. Combining 

these formula with eqs. (3.6) and (3.11) we arrive at the following expressions for 

* Actually, the statement that the moduli space decomposes refers to its metric rather tha.n to 
its Ghler function l?. This decomposition implies eq. (2.18) only after a Ghler transform -- 
that changes I? by a harmonic function A(M) + h(M) that does not affect the metric 
(A(M) is a holomorphic function of both M” and M”). In N = 1 supergravity, a Ghler 
transform that is accompanied by resealing the superpotential by the holomorphic factor 
exp(-GA(M)) is unobservable, so through the rest of this article we shall assume tha.t 
eq. (2.18) holds exactly (i.e., without extra harmonic terms). 
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the RpTA~ components of the Riemann tensor of the whole field space: 

(3.32) 

components RXCLA~ obey similar equations. 

In order to simplify formulaz (3.32) as equations for the matrix U E {Uz}, we 

raise the first index of the Riemann tensor and rewrite eqs. (3.7), (3.2) and (2.15) 

in a matrix form: 

RyLm = [RcD]$ = [& (G-l . tYDG)];, 

RYm E [RcD]‘$ = [& (g-’ . +jg)]‘$, 

Qa,$ = klab = [uGu+]ai * 

In these notations, comparing eqs. (3.32) and (3.31) yields 

ac (u+g-‘u * dS, ( u-l& >> = u+ dc (g-l 9 t$)g) u+-l 
+ ~il&j(li2 - Kl) x 1. 

(3.33) 

This equation may look cumbersome, but it is rather easy to solve; the general 

solution is given by 

Ur(M,a) = V:(M) .exp(g (ICI - K2)), (3.34) 

where V(M) is an arbitrary matrix-valued holomorphic function of the moduli 

fields M” and AP. Similarly, 

- 
Ug(M, AJ) = VI(M). exp (g (K2 -IQ). (3.35) 
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The arbitrariness of V(M) is not an artifact of using insufficient information 

to fully determine the U matrices, but a consequence of independent choices of 

coordinate systems for the moduli and for the matter fields. We are free to make a 

linear redefinition of the matter fields A*, and the coefficients of this transformation 

can be mod&-dependent as long as they are holomorphic functions of the moduli 

fields. (Non-holomorphic field redefinitions are inconsistent with the manifestly 

complex IGhler geometry (2.2) we have used throughout this article.) Thus the 
- - 

UF( M, M) and UK (M, Al) are determined only up to holomorphic matrix-valued 

factors; obviously, V$ (M) and Vg( M) are precisely such factors. Since apart from 

these factors the U matrices are proportional to unit matrices, there is a natural 

choice of matter fields A” = (Vvl)EAa and Am = (V-‘)yAp that eliminates the 

V’s; henceforth we shall a.lways make this choice of fields and use the same indices 

for both moduli and matter fields (as long as we are not discussing components of 

the Riemann tensor that involve both kinds of fields). With this convention, we 

can write explicit formulae expressing metric matrices for the matter fields in terms 

of the metrics and Kahler functions for the moduli: 

Ga6 = g,h - exp 

Gm, = gma*exp (; (I<1 - I&)) . 

(3.36) 

It is important to notice that in contrast to gab and gma, G,, and G,, depend on 

both types of mod& 

Formulae (3.31) now become explicit equations relating the Mahler geometry 

of the moduli space to the Yukawa couplings of the matter fields: 

- 
-$ R,,,J = gaC gbd $ gadgbc - eXp(2K21cl) . Wabe gef Wfcd 7 

5 &mln = g/cm slii + gl;ii glm - exp(2K2 I(2) . Wkl; giJWj7,fi . 
(3.37) 

Note that non-trivial I/ factors are essential for the consistency of eqs. (3.37): 

Because the moduli spaces for the (1,l) and the (1,2) moduli are completely in- 

dependent of one another, a consistent equation for the Riemann curvature of the 
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(1,l) moduli space cannot involve Ii’2, which depends on the (1,2) moduli (and 

vice versa). Both eqs. (3.31) contain the factor eK2’ = eKZK1 . eKzl’* which depends 

on both kinds of moduli, and it is the U factors (3.34) and (3.35) that turn it 

into the e2K21il factor appearing.in the first eq. (3.37) and the e2K21’2 factor in the 

second equation. The U factors also make eqs. (3.37) invariant with respect to 

Il’ahler transforms of the two moduli spaces: Kr H li’r - Al (Ma) - Kl (Ma) and 

Ii’:! H A’2 - A2(Mm) -x2(Mfi). Under th ese transforms the U factors correspond- 

ing~ to V E 1 make the matter fields A” and A” rescale with factors e *$(A1 -A*), so 

the Yukawa couplings transform as WabC H e2’**l Wabc and Wl,, H e” ?K2 A* Wlm,; 

these are precisely the transformations that leave eqs. (3.37) invariant. 

3.4. YUKAWA COUPLINGS AND METRIC FOR MODULI FIELDS. 

There are two ways to look at eqs. (3.37): as differential equations for the 

Kahler functions 11’1,~ in terms of the Yukawa couplings Wabc and l/r/,,, , or as 

algebraic equations for the Yukawa couplings in terms of the Kahler functions and 

their derivatives. From the latter point of view the fact that the moduli space is 

a direct product immediately implies that Wabe - the 273 Yukawa couplings - 

should depend only on the (1,l) moduli Ma and not on the (1,2) moduli Mm, while 

Wk-i - the Z3 Yukawa couplings - should depend only on the (1,2) moduli.* 

Using more direct string arguments, Distler and Greene1371 proved that this is 

indeed the case. Less immediate constraints imposed by eqs. (3.37) on the Yukawa 

couplings follow from the Bianchi identity for the Riemann tensor: v,R,,b~ = 

vaReCbd, where V is the covariant derivative operator. Since the metric tensor is 
- 

covariantly constant, and W is anti-holomorphic, eqs. (3.37) imply 

= vb (e2621’1 Wad) , 

= Vi (e2nzh72 Wk,,,) . 
(3.38) 

* Yukawa couplings we are discussing here are unnormalized cubic terms in the superpotential. 
Normalized Yukawa couplings also depend on the matter fields’ metric, a.nd eq. (3.36) tells 
us that normalized 273 couplings do depend on the (1,2) moduli, but this dependence is 
limited to a common resealing of all 2’73 couplings. The same holds for the v3 couplings 
and (1,l) moduli. 
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Like the result of Distler and Greene, these equations can be obtained either from 

eqs. (3.37) or from direct string arguments; in Appendix A we shall give a stringy 

proof of eqs. (3.38). 

The significance of (3.38) is as an integrability condition: In Kahler geometry, 

covariant derivatives with holomorphic indices commute with each other, and the 

integrability condition for a vector field X, to be a gradient of a scalar is thus 

vu&, = vbx,. (A& is a vector field on the moduli space, not in space-time.) 

Similarly, if a symmetric tensor field Xal...a, obeys vbXal...a,, = v7,1Xbaz...a, (i.e., 

~bXay.a, is symmetric with respect to all its n + 1 indices), then Xal...a, = 

v,, * . . V,,X for some scalar field X! Once we have set V E 1, W&-(M’) and 

T/r/l,,(AP) become symmetric tensors on the respective moduli spaces; hence, 

eqs. (3.38) are integrability conditions for having 

where 21,~ are some scalar functions of the respective moduli. (The factors .3 
and e2Kz&,2 are introduced for future convenience.) Note that the functions 21~ 

are invariant under reparametrizations of the respective moduli spaces, but they 

are not holomorphic; the requirement that formulE (3.39) should yield Yukawa 

couplings that are holomorphic functions of the moduli is a non-trivial constraint 

on the 21,~. We can write this constraint in a generally covariant form, but we do 

not know how to solve it in a general coordinate system. Nevertheless, we shall 

prove in Appendix B that one can make a holomorphic redefinition of moduli fields 

and a Kahler transform that together will reduce eqs. (3.39) to 

(3.40) 

where 31,~ are holomorphic functions of the appropriate moduli fields. Unlike the 

1 These integrability conditions are local, i.e., are sufficient only on simply-connected mani- 
folds. However, in this article we ignore all topological complications and limit ourselves to 
simply-connected pieces of the moduli space. 

36 



21,~ that are non-holomorphic but invariant under field redefinitions, the 31,~ are 

holomorphic but are tied to a particular coordinate system, and even when there 

are several coordinate systems for which eqs. (3.40) hold, each system will have 

its own 3’s. Similarly, eqs. (3.39) are invariant under Kahler transforms provided 

21,~ transform like the Yukawa couplings W& and T/T/I,, - 21,~ t--+ e2K2A1~2Zr,2 

- but eqs. (3.40) are valid only for a particular Kahler choice of Ii’r.2 . 

Now let us go back to eqs. (3.37) and treat them as differential equations for the 

KAhler functions Kr,2 of the two moduli spaces. Given the Yukawa couplings, the 

solution to each of these equations is unique up to a holomorphic field redefinition 

and a K&ler transform. To see that, let us expand 1Cr into a power series in A4” and 

Ad”; analyticity of 1Cr assures us that this is always possible. The leading operator 

in the differential equation for 1Cr is 8,&&a,; hence all terms in the expansion of 

1Tr that are at least quadratic in both holomorphic and anti-holomorphic fields are 

completely determined by terms that carry lower powers of AP and/or p. On 

the other hand, all terms that are purely holomorphic or purely anti-holomorphic 

can be arbitrarily changed by Kahler transforms and the terms that are linear 

in either Ada or p are freely changeable by holomorphic redefinitions of moduli 

fields. In particular, for any Kahler manifold we can write its Kahler function 

in the form li’ = C, Alup + 0(Ad2B2) ( we call this form of lr’ “11010-normal” 

for reasons that will be explained in Appendix B); once we do it for the (1,l) 

moduli space, eq. (3.37) completely determines all terms in Ir’r . In Appendix B 

we shall see that for holo-normal 1Cr,2 one can always write formulze (3.40) for 

the Yukawa couplings. Therefore, both the geometry of the (1,l) moduli space and 

the 273 Yukawa couplings are completely determined by eq. (3.37) in terms of a 

single holomorphic function 31 of the (1,1) moduli. Similarly, the geometry of the 

(1,2) moduli space and the m3 Yukawa couplings are determined by a holomorphic 

function 32 of the (l,2) moduli. 

We do not have explicit formulae for holo-normal solutions of eqs. (3.37). How- 

ever, the so-called restricted Kahler manifolds familiar from the supergravity liter- 

ature [25’26’381 have IGihler functions that a.re not holo-normal but nevertheless obey 
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eqs. (3.37) for Y k u awa couplings given by formula (3.40). Explicit formulz for 

these K&hler functions are given by: 

K 1,2 = -K -2 log 52 , (3.41) 

-- -- 
where Yl(AP, Al’) = =&a,31 + &71) . (Mu + Ma) - 2(31 + 71) 

a==1 

. -- -- 
and Y2(Mm,Mrn) = 5 (am32 + 8aF2) . (Mm + Mm) - 2(3x + 72) ; 

m=l 

verifying that these are indeed solutions to eqs. (3.37) is a straightforward but 

very tedious exercise. Notice that formula (3.41) are not generally covariant; this 

is related to the fact that the 31,~ are only defined for some special coordinate 

systems and transform non-trivially when we go from one such coordinate system 

to another.* 

In the supergravity context restricted Kahler manifolds appear as manifolds 

spanned by scalar fields belonging to vector multiplets of a four-dimensional N = 2 

supergravity theory. Heterotic string vacua that are only N = 1 supersymmetric in 

four dimensions a priori need not have anything to do with the N = 2 supergravity. 

However, the moduli of the (2,2) vacua are special since they also appear in the 

same vacua of the type II [14,241 superstring, and whereas the scattering amplitudes 

of moduli in the two string theories are not identical, they do agree to order O(k2); 
a proof of this assertion is given in Appendix C. Therefore, the KAhler functions 

of the moduli are the same in heterotic, type IIA and type IIB superstrings; this 

* Comparing F’s describing the same manifold in different coordinate systems may be facili- 
tated by having explicit formulae for both Kr,s and 21,s - the covariant generators of the 
Yukawa couplings. An explicit formula for 21 can be written as: 

a ab 

a similar formula holds for Zs. Verifying that these formulae for 21,s are consistent with 
eqs. (3.39) and with Yukawa couplings given by W&c = FI,abe and WI,, = &,lmn is 
another straightforward but tedious exercise. 
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fact was used in ref. [27] t o s h ow that Kr and K2 are of restricted type, i.e. given 

by eq. (3.41) f or some holomorphic functions 31 and 32. In ref. [28] it was argued 

that in addition the 273 and z3 Yukawa couplings are given by third derivatives of 

the holomorphic functions 31,~; .however, such a statement is meaningless without 

a choice of coordinate system for both the matter fields and the moduli. Our 

results, eqs. (3.40) and (3.41), h s ow that there is a coordinate system in which this 

statement is correct. 

4. (2,2) Vacua with Enhanced Gauge Symmetry 

4.1. EFFECT OF ENLARGED GAUGE GROUP ON METRICS FOR MODULI AND 

MATTER FIELDS. 

So far in this paper we have explicitly assumed that the gauge group is & @ Es. 

However, it is well known that at special points or subspaces of moduli space the 

low-energy gauge group is H @ E6 @I Es; in such a subspace otherwise massive 

gauge bosons become massless and generate H. The majority of exactly solvable 

N = (2,2), c = 9 models constructed to date have this property, for example 

orbifolds’31 and Gepner’s models!41 In this subsection we investigate how additional 

massless gauge bosons affect our previous results. The heterotic string relations 

(3.19), (3.20), and (3.27) b e t ween various scattering amplitudes remain unaltered 

in the presence of H. However, extra gauge bosons do affect the four-matter-fields 

amplitudes on the right-hand sides of these equations, and we shall see that this 

modifies formulz (3.36) for th e matter-field metric. Also, many string amplitudes 

vanish due to conservation of charges with respect to H, which results in a splitting 

of the moduli space into different charge sectors, analogous to, and in addition to, 

the splitting into (1,l) forms and (1,2) f orms. Later in this section, we shall apply 

these results to orbifolds and calculate the metrics of moduli and matter fields 

coming from both untwisted and twisted sectors of an orbifold, as functions of 

the untwisted moduli. Then we shall perform an analogous calculation for one of 

Gepner’s models, or more precisely for some subspaces of the moduli space that 
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pass through the point described by Gepner’s model, and that also have enhanced 

gauge symmetry. 

For simplicity we assume that the extra gauge group is abelian* - H = U(l)n. 

Let us choose a basis for the 27 fields Aa and 27 fields Ap in which they have 

definite U(l)n- h g c ar es, which we shall denote by Qt’ and Qf’, (a) = 1, . . . , n. 

The effects of extra gauge bosons on the various four-matter-fields amplitudes 

turn out to be very similar to the effects of the U(1) gauge boson in Es that 

commutes with SO(l0) - both are exchanged in exactly the same SO( lo)-singlet 

channels. For this reason, it proves to be very convenient to treat the extra U( 1)” 

factors on an equal footing with the U(1) c EC and have all n + 1 U( 1) currents 

canonically normalized. For the U(1) in &, which is generated by the current 

J of the N = 2 superconformal algebra, this means that we calculate charges 

with respect to J, 3 &J rather than J; in particular, the U(1) charge of the 

components of a 27 (27) that transform as a 10 of SO(10) is now $5 (-A). 

Let us define an (n + l)- vector of charges for the 10 fields in a 27 or 27, where the 

(0) component carries the U(1) C & charge: 

&a = {Qt’&,=, , where Qi”’ = +-$ for a 27 7 Qi”’ = -1 for a 27. 
J;i 

(4.1) 

Since we can now distinguish 27’s from 27’s by their charge, in this section we 

shall not make any further distinction between them, and shall henceforth denote 

both types of matter fields by Greek indices from the beginning of the alphabet, 

A”, Ap, etc.. Similarly, both (1,l) and (1,2) moduli shall be denoted by Ma, J4b, 

etc.. All the equations derived in this section will be valid for fields of either type 

once the appropriate charges are substituted. 

In explicit models with extra gauge symmetry, the fields 7’: do not have definite 

-k The generalization to a nonabelian group is a bit subtler because gauge representation 
indices on ma.tter fields can be related via U matrices to global indices on moduli, and vice 
versa. 
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H-charges! and therefore neither do most of the moduli AP, since their vertices 

are obtained from vertices of Aa by taking the operator product with 7’:. In fact, 

those moduli that are not completely neutral under H must be linear combinations 

of fields with different H-charges, because flatness of the scalar potential for the 

moduli requires that the D-term for each generator of H cancels. Moduli fields 

that are completely neutral with respect to H span the H-preserving subspace of 

the moduli space, and shall be denoted by N A. The remaining moduli are charged 

under H and are denoted Cd. In this section capital indices will be reserved for 

neutral moduli - of either (1,l) or (1,2) type - while lower-case indices will 

be used for both charged and neutral moduli. In the orbifold examples we shall 

discuss below, the enhanced gauge symmetry is H = U(1)2 and is present only 

in the orbifold limit; the neutral and charged moduli are from the untwisted and 

twisted sectors respectively. 

Throughout the subspace of enhanced gauge symmetry the charged fields Cd 

must have vanishing vacuum expectation values. Thus to study this subspace we 

expand the effective Lagrangian into powers of C” and ??” and retain only the’ 

lowest relevant terms in this expansion, just as we did before with respect to the 

matter fields. As far as the Kahler function li’ is concerned, this means that we 

confine our attention to the Kahler function for the neutral fields NA alone, plus the 

NA-dependence of the metrics for the cha.rged moduli and for all the matter fields. 

H-charge conservation in the effective field theory requires the matter-field metric 

G,p (and all its derivatives with respect to NA and x”) to be block diagonal, 

mixing only fields with the same H-charge: 

G,p = R,~,D = 0 unless Qcy = Qp . 

We would like to argue that the metric for both charged and neutral moduli, 

t This assertion can be proved by reductio ad absurdurn: Suppose T$ do have definite charges 
ztq with respect to a I<a.c-moody current J’ that generates part of H. Then, at z H w we 
have J’(r) . T,(w) = &T,(w) + O(1) = ST,‘(z) + O(l), which implies that $J’(t) 
and T:(z) belong to the same left-moving N = 2 supermultiplet. But the only Kac-Moody 
current in the same supermulti,plet with TFf is J, which generates the U(1) inside & rather 
than a part of H. 

41 



. 

gab, has the same block-diagonal structure as the matter-field metric G,p - in 

terms of the H-charges &a = Qp of the associated matter fields, not the charges 

of the moduli themselves. As discussed in section 2, for any particular point in the 

neutral moduli space one can trivialize the U-matrices that relate gag to G,, in 

eqs. (2.15); the question is again how much of the trivialization can be maintained 

over a finite patch of the neutral moduli space. We shall see that the block-diagonal 

structure of 9,s can indeed be maintained; in essence, this result is just a refinement 

of the block-diagonal structure of g,b with respect to (1,l) versus (1,2) moduli, and 

is proved in the same way. 

To proceed further we need to study how the scattering amplitudes that are 

related to each other by (3.19), (3.20) and (3.27) receive additional field theory 

contributions due to exchanges of H gauge bosons. Since our inquiry is limited to 

the dependence of the various metrics on the neutral moduli only, all amplitudes 

on the left-hand sides of (3.19), (3.20) and (3.27) wi contain at least two neutral 11 

moduli, and thus will be unaffected by the presence of extra gauge bosons. On 

the other hand, the amplitudes on the right-hand sides - for four matter fields 

all transforming as the 10 of SO(l0) - do get contributions from H gauge boson 

exchange (and from the associated D-terms). In fact, the n extra U(1) gauge 

bosons are exchanged between these matter fields precisely when the U(1) gauge 

boson in & (also an SO(10) singlet) is exchanged. The only difference is a factor 

Qt’Qp’ for the (cx)“~ gauge boson, replacing Qf’Q/,O’ = j~i for the U(1) C J!& 

gauge boson. (The sign is plus if A” and Ap are both 27’s or both 27’s, and is 

minus if one is a 27 and one a 27.) Hence the only correction needed for the three 

field theory amplitudes (3.11) is to make the respective replacements 

$ ++ Qct - Qp ; 
-- ; ,-+ Qo. Qx ; (4.3) 

; H &I(. . Qx . 

The corrections (4.3) d o not affect amplitudes on the right-hand side of equa- 

tions (3.27), and therefore formulE (3.31) for the Riemann tensor of the mod- 

uli space still hold. However, some of the amplitudes on the right-hand sides of 
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eqs. (3.19) and (3.20) are affected, with the result that eqs. (3.32) for RpTA~ now 

become (using also (3.31)) 

Here QA is the charge vector of the matter field associated with the modulus 

NA (recall that NA itself is neutral) and RbEA~ is given by eq. (3.31). Cha.rge 

conservation under all n + 1 U(1) factors - eq. (4.2) - when combined with 

formula (4.4) t e 11 s us that, unless the moduli fields Mb and MC accompany matter 

fields Ap and AY with the same H-charges Qp = Qr, we must have RbEA~ = 0 

for all neutral moduli NA and ND. For the case when moduli Nb and NC are 

themselves neutral, this immediately implies that the restricted holonomy group 

of the space of H-preserving moduli decomposes into a product of commuting 

subgroups. Consequentlyj”“’ the H-preserving subspace of the moduli space is 

locally a direct product of smaller-dimension subspaces; each of the latter subspaces 

is spanned by all the neutral moduli NA that accompany matter fields with a given 

U( l)“+l charge-vector QA. In terms of the IGhler function this is expressed by 

-- K(N,N) = c Kq(Nq, Nq), 
Q 

(4.5) 

where q labels the different charge sectors (not just individual fields). Note that if 

we ignore all but the (0) component of the charge-vector Qa, then there are just two 

different charge sectors, one containing all the (1,l) moduli and the other containing 

all the (1,2) moduli; then eq. (4.5) just reproduces the (1,1)/(1,2) splitting (cf. 

eq. (2.18)). 

At this point we can solve eq. (4.4) along the lines of our solution to eqs. (3.32). 

We find 

U,“(N,F) = V,“(N) eexp (flc’ QN. Qqliq), (4.6) 

with an implicit sum over all charge sectors q for the neutral moduli. Clearly, we 

can set the V matrices equal to 1 as before. Then the matter-field metric takes 
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the form 

G,, = ga6 . exp (-K~ &a * QqKq) . (4.7) 

This equation can be thought of as giving the matter-field metric in terms of the 

moduli metric, but it also shows that the moduli metric has the same block-diagonal 

structure as the matter-field metric, 

g,b = 0 unless &a = Qp . (4.8) 

As we will see later in the section, this property can be an aid in solving for 

the moduli metric on subspaces of enhanced gauge symmetry. Notice that in the 

absence of extra gauge bosons formu& (4.7) reduce to formulz (3.36): For n = 0, 

Q (y,P = z!I-$ and C, QqKq = &. (ICI - I(2). 

Next consider the effect of H-charge conservation on the Yukawa couplings. 

We must have 

wapr = 0 unless Qa + Qp + Qr = (+fi, 0,. . . , 0). W) 

The &a in the zeroth component of this equation enforces & invariance on the 

cubic couplings, requiring that they be either 273 or 27” couplings (cf. eq. (4.1)) 

which gives the Qp’ charges); the reason for this total U(1) C & charge being 

&fi rather than zero is our convention of measuring charges of all matter fields 

as if they were 10's of SO(lO), while in the actual 273 or f13 couplings only two 

of the fields are decuplets and the third is an SO(l0) singlet. 

From eqs. (4.9) and (4.6) we see that all effects of extra gauge bosons on 

the U-matrices cancel out of the products (wUUU)& and (WUUU)l,, , which 

allows us to proceed from eqs. (3.31) to eqs. (3.37) exactly as before, without 

any modifications. Naturally, the subsequent derivation of formula (3.40) aad 

(3.41) also goes through exactly a.s before. The only difference is that eqs. (4.9) 

impose powerful constraints on the form of Fl,2; we shall exploit these constraints 

later in this section. To summarize, we have just shown that in a subspace of the 
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moduli space where an extra gauge group H appears, the metric for the moduli NA 

spanning the subspace is given in terms of holomorphic functions Fl,z(N) by the 

same formula as before. In addition the subspace has a direct product structure; 

each factor in the product is spinned by all the moduli that are accompanied by 

matter fields with a fixed H-charge. Finally, the matter-field metric is expressed 

in terms of the moduli metric by a different relation than before. 

4-2. ORBIFOLD EXAMPLES. 

Abelian (2,2) orbifolds provide a nice application of our results. They are 

constructed by twisting some six-dimensional torus by a “point group” P of SO(6) 

rotations that are symmetries of the torus, i.e. that act crystallographically on 

the corresponding lattice. To preserve exactly N = 1 spacetime supersymmetry, 

P should lie in an SU( 3) subgroup of SO(6), and should act nontrivia.lly on all 

three complex planes of the torus. To get a (2,2) orbifold of the heterotic string, 

each SU(3) rotation of the six-dimensional torus is accompanied by the identical 

gauge transformation in a standard SU(3) subg rou o one of the two Es factors, p f 

namely the SU(3) app earing in the decomposition Es > & @ SU(3). Hence, the 

four-dimensional gauge group is enlarged beyond & @ Es and contains also the 

subgroup H of the SU(3) that commutes with P. If P is abelian, II can be U(l)“, 

SU(2) X U(1) (if P = 24 or 26)) or SU(3) (if P = 23). For simplicity we restrict 

ourselves here to the case H = U(1)2. 

The orbifold model has various moduli coming both from the untwisted sector 

and from the twisted sectors. The untwisted (1,l) moduli correspond to changing 

the radii of the torus, and the untwisted (1,2) moduli to changing its complex 

structure, while preserving the torus’s symmetry under P. The extra gauge group 

H is present for a.ny choice of radius (or complex structure), so the untwisted 

moduli must be neutral under H and can be denoted by NA.* If H = U( 1)2, 

* Actually, H can be enlarged even further at special radii where the tor0ida.l compactifica- 
tions themselves lead to four-dimensional gauge groups larger than E8 @J E8 !‘I We won’t 
consider those special radii here. 
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then it is easy to see that there are exactly three untwisted (1,l) moduli, with the 

following vertex operators: 

---T untwisted (1,l) moduli NA .H @f; = 8,Xi * &X , A = i = 1,2,3, (4.10) 

where the three complex scalar fields Xi parametrize the torus. In addition there 

may be up to three untwisted (1,2) moduli, depending on the choice of P, although 

usually there are none. Here we shall compute the NA-dependence of the metrics 

for .the untwisted and twisted (1,l) moduli and 27’s while ignoring untwisted and 

twisted (1,2) moduli and 27’s, and the dependence of the above metrics on the 

untwisted (1,2) moduli[21’401; it is entirely straightforward to treat them too using 

the same approach. 

In order to a.pply our formula (4.7) for th e matter-field metric to the orbifold 

case, we need to know the charges of the matter fields, which in turn relies on how 

the N = 2 superconformal algebra and the extra ICJ(~)~ currents are represented in 

the conformal field theory. In terms of Xa and its superpartner $“, one has 

2T; = -&4,X2, 
i=l 

3 

25 = C$ -’ . &Xi, (4.11) 
i=l 

3 3 

J = 1 Ji E c $i. $“. 
i=l i=l 

The extra U(1)2 currents are the two linear combinations of the J” that are or- 

thogonal to J = C Ji, for example &(J’ - J”) and -&(J’ + J2 - 2J3). However, 

it is more convenient to use the basis J1, J2, J3 for the three charges; in this basis 

eq. (4.9) becomes 

tifabc = 0 unless Qm+Qp+Qr = (l,l,l). (4.12) 

The three currents Ji can be bosonized: Ji = idHi, Gi = eiH’, t,S” = emiH’; this is 

useful for finding the charges of twisted matter fields. 
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The vertex operators for the three untwisted 27 fields that accompany the 

untwisted moduli in (4.10) use the h = 3, Q = 1 lower component fields 

-7 Q;=$&X, A=i=1,2,3. (4.13) 

The U(1)3 charges are clearly 

&I = (LO, 01, Q2 = (0, LO), Q3 = (ho, 1). (4.14) 

Vertex operators for twisted 27’s use the lower components of twist superfields, 

which have the form 

8+ - tw - o. s = g. eimH1eivzH2,iv3H3. (4.15) 

Here CF and s are respectively bosonic and fermionic twist fields with dimensions 

iCvi(l-qi) and fC7:; th e vi are the angles (divided by 2~) through which the 

three complex planes are rotated in the given twisted sector, 0 5 vi < 1. To get 

the correct dimension h = a for lilt+,, one requires 71 + 772 + 73 = 1. The U(1)3 

charges of KU&, are easily read off the second equation in (4.15): 

Qtw = (ql,q2,73), 0 I7]i < 1, 71 + r/2 + 73 = 1. (4.16) 

The orbifold can have many twisted sectors, each characterized by a different set of 

rotation angles (qr,rja, r/3) and hence by different U(1)3 charges, but the charges of 

all the 27’s in a given twisted sector are the same. Also, by applying Ti as given 

in eq. (4.11) to !P& given in (4.15) t o obtain the vertices for the twisted moduli, 

one can check that those moduli are indeed charged under H. 

Now we are ready to calculate the various metrics (in the orbifold limit), start- 

ing with the Mahler function for the three untwisted (1,l) moduli NA. We begin 
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by noting that the charges &a for the three associated 27 fields are all unequal 

(cf. eq. (4.14)). H ence the moduli space is a direct product, and 

Ir’(N,N) = K1(N1,$) + K2(N2,nT”) + IC3(N3,F3). (4.17) 

The superscript on Ir’ labels the different charge sectors as in eq. (4.5); each sector 

happens to contain only one field in this case. The curvature equation (3.37) 

ca.n now be applied to each field NA separately. Since the only nonzero Yukawa 

coupling involving at least two untwisted 27's is IV123 (as can be seen just from 

H-charge conservation, eq. (4.12)), the term in (3.37) involving WAA~ vanishes, 

leaving 

&&j = 2fC2 gAAgA/j, A = 1,2,3. (4.18) 

Thus each untwisted modulus spans a one-dimensional Kahler manifold of constant 

Riemannian curvature; that space is SU(1, l)/U(l)1411 whose Kihler function is 

given by 

I@ = -p log(N” + zA). (4.19) 

(up to field redefinitions and IGhler transforms). The full untwisted moduli space 

is (SU( 1, l)/U( 1))3, with metric 

9AB = K -2 6&j * (NA + +)-2 , A,B = 1,2,3. (4.20) 

This space is a restricted Kahler manifold - the total untwisted IGhler function 

(4.5) can be written as 

K(N,N) = -c2 logY(N,N), where Y(N,N) = i (NA + EA) (4.21) 
A=1 

is derived from the holomorphic function P” F(N) = N1N2N3.* The result (4.21) 

-k The constant-curvature metric on (SU( 1, l)/U( 1))3 is often written as gAB = K-’ ~5~8 .( l- 
iVANA)-’ (no sum on A), which differs from formula (4.20) by a holomorphic redefinition 
of untwisted moduli fields NA. The Kahler function that generates this metric - li’ = 
-~-~log~~(l-h’~??) -d oes not appear to be of the restricted type. We chose to define 
fields NA in a way that leads to formula (4.21) precisely to show that (SU(1, 1)/U(1))3 is 
a restricted IGhler manifold. 
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has previously been obtained via several different approaches - by truncating the 

N = 1 supergravity Lagrangian in ten dimensions~201 by using the symmetries of 

the orbifold S-matrix generating functionalrl’ by direct computationl231 and by 

combining the N = 2 supergravity/type II approach with a Peccei-Quinn symme- 

try!“’ From eq. (3.40) we see that the one nonvanishing untwisted 273 term in 

the superpotential must be a constant, IV123 = t~~~dld283.F = rcm3. This is an 

example of the strong consistency constraints on the solutions of (3.37) when the 

matter fields carry charge under an extra gauge symmetry. 

The metric gde(N,N) for the twisted (1,l) moduli Cd can also be obtained 

by integrating (3.37). Th ere are two types of twisted moduli to consider. The 

first type is accompanied by a 27 field with charge Qs = (qr,q2, ~3) with all three 

7; > 0. In this case eqs. (4.16) and (4.12) show that WA& = 0 for any choice of 

(1,l) index 2. Thus eq. (3.37) again simplifies, to 

RdaAB = Ic. 
2 

g,JB gd, > (A, B = 1,2,3; d, e are twisted indices). (4.22) 

Using formula (4.20), eq. (4.22) can be integrated to give 

ii’de = Ic. -2 &e . b (NA + xA)-‘. (4.23) 
A=1 

Another way to get this result is by expanding F in powers of Cd[421: 

J= = N1N2N3 + $x(Cd)2 + .a.. 
d 

(4.24) 

The key point is that because M/Ad& = 0, the O((Cd)‘) term in F must be inde- 

pendent of NA. (It can then be put into the above form by a linear transformation 

of the C’s.) From this J-- one obtains 

II’(N,C) = - K210gY(N,C), Y(N,C) = Y(N) + CdC” + ... , (4.25) 

which in turn gives eq. (4.23). 0 ne can also easily calculate the O(C2c2) terms 

in K(N, C) in this way, using formulae (3.37) and known expressions’431 for the 

Yukawa couplings of three twisted 27 fields, though we will not do so here. 
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The second type of twisted moduli is accompanied by a 27 field where one of 

the q’s in (4.16) vanishes, say r/3 = 0, so that the 27 charges are Qs = (71, l-71,0). 

Now there can be nonzero Yukawa couplings of the form W3d#, where Q3 = (0, 0,l) 

and Q&l = (1 - 71, qr,O). The .W3d# will complicate eq. (4.22) when A, B = 3. 

However, all twisted mod& Cd of this type actually preserve one of the two extra 

U(l)‘s, namely the U(1) generated by J’ + J2 - 2J3: Cd is a linear conbination 

of two fields with charge vectors (-VI, 71, 0) and (1 - ~1, -1 + ~1, 0), which are 

both orthogonal to J’ + J2 - 2J 3. . Furthermore, under this extra U(1) the charge 

($1) of the 27 fields accompanying N1, N2 and Cd differs from the charge (-2) 

of the 27 accompanying N3. Thus we can use the extra U(1) preserved by the 

Cd to argue that the IGhler function K( N1, N2, Cd) is independent of N3. In 

particular, g& is independent of N3, so we need only study RdeAB for A, B = 1,2. 

But for A, B = 1,2 the Yukawa couplings W,Jd# do vanish, so eq. (4.22) holds, and 

integration of it with respect to N1 and N2 gives 

Sde = K -2 Sde. fi (NA + +)--l 

A=1 

(4.26) 

in place of formula (4.23). 

Finally, we use eq. (4.7) to compute the matter metrics. For the three untwisted 

27 fields, with U(1)3 charges given by (4.14), and using also the IGhler functions 

from (4.19), we get 

GAB = g,JB - exp( --K2KA) = K-~ SAB. (NA -l- pA)-l . A,B = 1,2,3 (4.27) 

This result agrees with ref. [20] - the latter result for K(NA, AA) is obtained by 

truncating ten-dimensional supergravity and is valid to all orders in the 27 fields; 

our result only gives the O(A”) t erms. For the twisted 27 fields, the charges are 
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given by (4.16) and the twisted moduli metrics by eqs. (4.23) and (4.26), yielding 

A=1 

= tc2 S& x 
nizl(NA + xA)““-‘, if all r]A > 0 ; 

nizl(NA + XA)9A-1, if r/3 = 0. 

(4.28) 

4.3. TENSOR PRODUCT EXAMPLES. 

Another application of our results is to the exactly solvable versions of Calabi- 

Yau compactifications discussed by Gepnerr’ which are constructed by taking the 

tensor product of a number of minimal c < 3, N = 2 superconformal theories. Each 

component theory has its own U(1) current Ji, and so the tensor product theory 

has an extra U( 1)” gauge symmetry if there are n + 1 components - the sum of all 

n + 1 currents, J E c; Ji, generates the U(1) contained in &, not an extra U( 1) 

fa,ctor. (In some cases there may be a few additional gauge bosons.) The tensor 

product theory describes a particular point in the moduli space of a Calabi-Yau 

manifold; at that point the four-dimensional gauge symmetry is enhanced. Some 

of the additional gauge bosons may remain massless on subspaces of the moduli 

space that pass through the tensor product point (and have positive dimensions); 

the geometry of such subspaces can be studied along the same lines as the orbifold 

examples just discussed. 

Vertex operators \I, * of the product theory are made of products of world- 

sheet fields of each c; < 3 component. For each component field the U( 1) cha,rge 

Q; and the conformal weight h; obey 2hi 2 14;1, assuming the conventional N = 2 

normalization of the currents, Ji(.z)Jj(w) - sSij . (z - w)-~. Hence, the only way 

to assemble 9* with h G xi h; = f and q G Ci q; = fl is to have qi = f2h; 

for each i; that is, q* are products of lower members of (anti) chiral multiplets of 

each of the n + 1 left-moving N = 2 superalgebras. The U(l)n’l charge vectors 

of matter fields generated by these 8’ can be written as Q = (41,. . . , qn+l). To 
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obtain moduli vertices @* we act with Tz G C; Z’Ti on \zI*; as a result, rnoduli 

are linear combinations of fields with charge vectors 

( Q1,**.,Qi~fl,.:., qn+l) for all i such that q; # 0. (4.29) 

The sign here is ‘-’ for the (1,l) moduli and ‘+’ for the (1,2) moduli; the reason 

why we do not apply Z’Ji to !P* when q; = 0 is that in this case the ith factor in 

8f is the unit operator. Since C; qi = fl, eq. (4.29) verifies that all moduli are 

neutral with respect to J z Ci Ji which generates the U(1) C E6 ; in a,ddition, 

whenever some qi = 0, the modulus is also neutral with respect to the currents 

J” - %J, which are orthogonal to J and hence generate abelian gauge factors 

outside of &. 

If a modulus NA is to be completely neutral with respect to the entire H = 

U(l)“, the charge vector &a of the accompanying matter field should have the form 

(0,. . . ) fl,. . . ) 0) (cf. eqs. (4.14) f or untwisted matter fields in the orbifold case). 

Alas, in any N = 2 world-sheet theory all chiral primary fields have jq[ = 211 5 c/3; 

hence, if all components have ci < 3 then no modulus field is totally neutral and 

the full U(I)” 8 &j @ E 8 enhanced gauge symmetry exists only at the tensor 

product point in the moduli space. On the other hand, subgroups of H generated 

by currents { Ji - $j J}iEl with 111 < n are preserved by the moduli accompanying 

matter fields that have qi = 0 for all i E I. Note however that all 27 (27) fields 

of this kind have the same charges -ci/9 (+ci/9) with respect to all unbroken 

subgroups. Therefore, eq. (4.5) d oes not require that the space of neutral moduli 

factorize into a direct product (except into (1,l) and (1,2) moduli, if the neutral 

- moduli include moduli of both kinds). This behavior is quite different from the 

orbifold examples of the previous subsection. 

As a particular example let us consider the tensor product of five copies of the 

k = 3, c = f element of the c < 3 discrete series[“; this theory leads to 101 27 mat- 

ter fields and one 27 field. The 27 field has U(1)5 charge vector Q = ($,i, $, $, f), 

so the one (1,l) modulus of this (2,2) vacuum breaks all four U( 1) factors outside 

E6 @ Es. Note that a large expectation value of this modulus turns this model of 
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Gepner into a large-radius Calabi-Yau vacuum (with the internal manifold being a 

quintic surface in CP4) which indeed does not have an enlarged gauge group. On 

the other hand, if one of the 101 (1,2) moduli is given an expectation value, it will 

preserve an extra U(1) group in 20 of the 101 cases, an extra U(1)2 in 60 of the 

cases, and an extra U(1) 3 in 20 of the cases; the full H = U(1)4 exists only at the 

tensor product point. This behavior follows from the U(1)5 charges of the matter 

fields which are summarized in the following table: 

one 27 field has charge Q = (& 6, i, 5,;); 

one 27 field has charge Q = (q,+, 2,+, 2); 

20 27 fields have charge Q = (2, +,2, +,O); 

30 27 fields have charge Q = (2.2, +$,O,O); 

30 27 fields have charge Q = (q!,+, +,O, 0); 

20 27 fields have charge Q = (?,p, O,O, 0); 

(4.30) 

all charges here are given modulo permutations of the five components. We would 

also like to know the maximal set of moduli preserving a given subgroup of U(1)4. 

For example, while there are 20 moduli each preserving three extra gauge factors 

(the moduli accompanying 27 fields in the last row of table (4.30)), only two moduli 

preserve the particular U( 1)3 subgroup generated by J1 - $ J, J2 - 3 J and J3 - k J; 

the charges of the two accompanying 27 fields are 

&I = (o,O,O, 2, y), Q2 = (O,O, 0, +,+). (4.31) 

Similarly, the U( 1)2 subgroup generated by e.g. J1 - fJ and J2 - $J persists 

on a subspace of twelve (complex) dimensions, while a forty-dimensional subspace 

preserves the single U( 1) generated by J1 - k J. 

Since the only (1,l) modulus does not preserve the enhanced gauge symmetry, 

let us concentrate on the (1,2) moduli and the 27 matter fields. At the tensor prod- 

uct point, the U(1)4 @I E 6 c ar h g e conservation restricts the D3 Yuka.wa couplings 
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in a manner similar to eq. (4.12) for the 273 couplings in the orbifold case: 

Wabc = 0 unless Qa + Qp + Qr = (2,$, $,2,2). (4.32) 

(Equation (4.32) follows from (4.9) ft a er correcting for the non-canonical normal- 

ization of the currents Ji.) The first three components (plus the sum of the last 

two) of this constraint remain valid on the two-dimensional subspace that pre- 

serves the U(1)3 subgroup discussed above. This information suffices to show that 

WABC = TVA BZ = 0, where A, B, C are indices for the two U( 1)3-neutral fields NA, 

with 27 charges given by eq. (4.31), and z is the index for any of the 99 remaining 

(1,2) moduli C”. The vanishing of these Yukawa couplings means that eq. (3.37) 

for the NA becomes 

RACBij = K2 (SAC gBD + SAD gB& , (4.33) 

with A, B, C, D = 1,2. The neutral moduli space is thus a constant-Riemannian- 

curvature Kahler manifold. Such manifolds are coset spaces; the m-dimensional 

manifold whose Riemann tensor is given by (4.33) is SU(m, l)/(SU(m) @ U(l)):“‘] 

with metric 

K2gAB = SAB 
l-NC& + 

TANB 
(1 - NCNc)2 ’ 

(4.34) 

A,B,C= 1,2 ,..., m.* In the present case m = 2. 

The metric for the 99 charged (1,2) moduli, as a function of N1 and N2, is 

block-diagonal according to the U( 1)3 h c ar g es of the 27’s, as discussed in subsection 

4.1; there are 44 blocks altogether, including the neutral block. Of the 43 charged 

blocks, 19 contain fields C” for which I/T/A,, = 0 for all fields NA and C” (these 19 

blocks happen to contain 63 of the 99 fields). Th e metric for these fields obeys the 

* The spa.ce SU( m, l)l(su(m) @ U(l)) is a restricted K;ihler manifoldLz5’: The holomorphic 
function F(N) = -i(l + C(N’)“) 1 ea s d t o a Kahler function K(N,r) = ~~~~ log(1 - 
NCNc) and metric (4.34). 
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same eq. (4.22) as the metric for the twisted moduli in the orbifold example, and 

the solution here is 

gxg = .K -2 S,, - (1 - NC&)-r . (4.35) 

. 

The metric for the remaining 36 moduli (contained in 24 blocks) is not so eas- 

ily found, because the relevant Yukawa couplings are not forbidden by H-charge 

conservation. As usual, the matter-field metrics are given in terms of the moduli 

metrics by eq. (4.7). 

Similar analysis can be applied to the twelve-dimensional subspace spanned by 

the (1,2) moduli that preserve the U(1)2 group generated by J1 - $J and J2 - ;J. 

As in the previous case, Yukawa couplings of the form WABC and WAB~ all vanish, 

which again means that the neutral subspace - now SU( 12,1)/(SU( 12)@U( 1)) - 

has a constant-curvature metric given by eq. (4.34), with m = 12. The remaining 

89 (1,2) moduli split into 14 blocks according to the U(1)2 charges of the matter 

fields; unfortunately, none of those blocks can be handled as easily as the twisted 

orbifold moduli. 

5. Conclusions 

We would like to conclude this article with a discussion of two particularly 

important classes of (2,2) vacua of the heterotic string: the Calabi-Yau vacua, 

and the vacua in which & is broken via the Hosotani-Witten mechanism. First, 

however, let us briefly summarize our results. This paper focused on the subclass of 

classical four-dimensional vacua of the heterotic string that exhibit N = 1 space- 
- 

time supersymmetry and J!& @ Es gauge group. We derived various identities 

among tree-level string scattering amplitudes of the moduli and the 27 and 27 

matter fields using the left-moving N = 2 superconformal algebra. By demanding 

that the low-energy effective field theory gives rise to the same S-matrix identities, 

we were able to relate various pieces of the effective action to each other. We 

confirmed that the metric for (1 ,l) and (1,2) moduli is locally a direct product of 

two restricted IGhler manifolds, as can also be understood from type II superstring 
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P4271 arguments. Each factor is completely determined by the 273 and 27” terms 

in the superpotential for the corresponding matter fields. W e  also determined 

the metric for the matter fields, which is needed to establish the precise relation 

between the 273 and z3 terms and the modu li metric, as well as to properly 

normalize the physical Yukawa couplings. Unlike the modu li metric, the metric for 

the matter fields depends on both (1,l) and (1,2) modu li. F inally, we showed how 

one can often solve exactly for the modu li and matter-field metrics on subspaces 

. of the modu li space where the four-dimensional gauge group is enhanced beyond 

Es@&. 

Despite our repeated use of the terms “(1,l) modu li” and “(1,2) modu li”, in 

the foregoing we never assumed that the four-dimensional (2,2) vacua described 

Calabi-Yau compactifications of the ten-dimensional heterotic string. On the other 

hand, Calabi-Yau compactifications certainly provide a  large class of (2,2) vacua, 

and recent work [4’61 suggests that they may exhaust the (2,2) vacua with spacetime 

supersymmetry and Es @  Eg gauge symmetry. It is therefore of interest to see 

what implications the general (2,2) results have for the Calabi-Yau case. F irst of 

all, one of the (1,l) modu li of a  Calabi-Yau man ifold represents its overall radius.* 

In the large-radius lim it where this (1,l) modu lus has a  large expectation value, the 

world-sheet theory describing the Calabi-Yau vacuum is a  weakly coupled sigma 

mode l. In this region of the modu li space (often called the “field-theory lim it” as 

well as the large-radius lim it), a  Kaluza-Klein treatment of the ten-dimensional 

effective field theory for the heterotic string provides a  good approximation to 

the four-dimensional effective theory. Expressions for the Yukawa couplings and 

Kahler functions in this approximation are known, and can be checked a.gainst the 

relations between them described in this article. These relations can then be used 

to extend some of the large-radius Calabi-Yau results to smaller radius, as has also 

been pointed out in ref. [as]. 

* We  do not know at present how to identify this modulus in an arbitrary (2,2) vacuum, 
although for many particular exactly solvable (2,2) vacua it is readily identified; such an 
identification in the general case would be an itrnIportant step in establishing that all (2,2) 
vacua are in fact Calabi-Yau compactifications. 
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In the infinite radius limit, the 273 Yukawa coupling are purely topological, i.e. 

they do not depend on any of the moduli, and the (1,l) moduli space appears to be 

a restricted IGihler manifold with a cubic Fl = ~W,~JVMbA~C!18’1g1 For Calabi- 

Yau manifolds of finite size, (some of) the Yukawa couplings receive corrections 

that are non-perturbative in the overall radius[“‘; thus Fr is no longer purely 

cubic, and the metric for the (1,l) moduli receives non-perturbative corrections too. 

(Actually, the corrections are required to be non-perturbative - i.e., exponentially 

suppressed in the large radius limit - only when the manifold is smooth and its 

curvature is everywhere small compared to l/o!.) For Calabi-Yau compactification 

on manifolds that are not large, the field theory limit no longer can be expected to 

provide a good approximation to Fr; nevertheless, even in this case Fr - whatever 

it might be - determines both the metric for the (1,l) moduli and the 273 Yukawa 

couplings ‘281: eqs. (3.40) and (3.41) are valid for all (2,2) vacua. Moreover, since 

Fr(Ma) is a holomorphic function, knowledge of its large-radius limit provides 

some constraints on its overall behavior. 

For the (1,2) moduli the situation is quite different. Neither s3 Yukawa 

couplings nor the metric for the (1,2) moduli depends on any of the (1,l) moduli, 

including the overall radius of the manifold. Therefore, all results obtained in 

the field theory limit for the z3 couplings and for the (1,2) moduli metric[lgl are 

exactly valid for all sizes of the manifold?“’ The precise correspondence between 

the (1,2) moduli metric obtained in ref. [19] and the metric found in this paper can 

be established by introducing homogeneous coordinates on the (1,2) moduli space 

as explained in ref. [45]. 

The difference in the large-radius behaviors of the (1,l) and (1,2) moduli met- 

rics is due to the identification of the overall radius of a manifold as one of its (1,l) 

moduli. (The approximate Peccei-Quinn symmetry for the radius mode also plays a 

role, constraining the form of the radius-dependence of the (1,l) moduli metric.) In 

fact, equations (3.37) for th e curvature of the moduli space in terms of the Yukawa 

couplings are completely symmetric under simultaneous interchange of 27’s a.nd 

27’s, and of (1,l) and (1,2) moduli. This symmetry is related to the ambiguity in 
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the relative sign of the left-moving U(1) current J(z) and the right-moving current 

J(Z): if we change the sign of J(z), then XI!: tf Qi and @i H @‘CL. (Similarly, if 

we change the sign of J(Z) while keeping the sign of J(z), then S$ H Qf , etc.) 

This ambiguity makes it difficult to identify, at a generic point in the moduli space 

of a putative Calabi-Yau compactification, which modes are the (1,l) moduli and 

which the (1,2) moduli. It is conceivable that in some cases both assignments could 

be “correct”; i.e. that the same (2,2) vacuum could be interpreted as compactifi- 

. cation on a Calabi-Yau manifold M with Hodge numbers hl,l = Nl , h1,2 = N2, 

and also on another manifold M’ with hi,, = N2, h\,2 = Nr . At present we have 

no convincing examples of this phenomenon, however. 

The (2,2) vacua we have been discussing are not the most phenomenologically 

promising heterotic string vacua; one generally prefers a smaller four-dimensional 

gauge group than Es. One way to achieve this is to give Planck-scale expectation 

values to certain components of 27’s and 27’s in a (2,2) vacuum, in a way that 

is consistent with the classical string equations of motion and spacetime super- 

symmetry, i.e. that retains a (0,2) superconformal symmetry!2’461 (This has the 

Calabi-Yau interpretation of deforming the vector bundle that describes the em- 

bedding of the spin connection into the gauge group!321) Because the left-moving 

N = 2 algebra is broken in these vacua, the techniques used in this article limit 

one to studying the (0,2) vacua perturbatively in the 27 and 27 expectation val- 

ues, and only up to fourth order with the amplitudes explicitly discussed here. 

(There are of course also N = 2 Ward identities relating higher-point scattering 

amplitudes for moduli and matter fields, which we have not examined in detail but 

which might prove useful in this context.) 

Another mecha.nism of gauge symmetry breaking, which is discrete rather than 

continuous, and which is more amenable to our analysis, is the Hosotani-Witten 

mechanism!” Here a Calabi-Yau manifold M is modded out by a discrete symme- 

try group ‘X, and a set of Wilson lines are chosen for the quotient manifold M/T-t 
- homomorphisms from IFI into EG @ Es. The new four-dimensional gauge group 

is the subgroup of EG @ Es that commutes with this image of X. Note that 3-1 

58 



does not have to act freely on M- in this case M/l-t is singular, and the “Wilson 

line” description is not entirely accurate, but we will use it anyway. The same pro- 

cedure may be applied directly to a (2,2)- su p erconformal world-sheet theory with 

a discrete symmetry (or to a connected family of such (2,2) theories), regardless 

of whether or not there is a Calabi-Yau interpretation of the corresponding string 

vacuum. From the point of view of the conformal field theory, the procedure can 

be described as an orbifold twisti3’ by l-t. (F or a very clear, detailed discussion of 

Wilson lines from the conformal-field-theory perspective, see ref. [47].) . 

As pointed out in ref. [47], the (t wisted) conformal field theory describing 

Wilson lines on M/T-t still possesses N = (2,2) supersymmetry, although the 

charge qua.ntization of the left-moving superalgebra may be spoiled - twisted 

states may have fractional charges with respect to J(z). The spectrum of the 

twisted theory consists of an untwisted sector containing the X-invariant states 

of the original theory, plus various twisted sectors. However, in most cases the 

twisted sectors do not contain any moduli - by which we mean fields of type 

a*, as in eq. (2.12). (Tl le only twisted sectors in which moduli can appear are’ 

those where the twist element h E ‘FI has fixed points and is not accompanied by a 

Wilson line.) Only the moduli preserve the left-moving N = 2 algebra when given 

an expectation value; hence the (2,2) W 1 i son-line vacua are parametrized solely by 

expectation values for the X-invariant moduli of the untwisted theory. By analogy 

with the orbifold examples of section 4.2, we shall denote these untwisted moduli 

by N”. 

We are interested in the Kahler function K(N”) for the Wilson-line theory, plus 

the Na-dependence of the metrics for the various matter fields - any massless su- 

permultiplets transforming nontrivially under the surviving subgroup of Es. Even 

though the twisted sectors do not typically conta.in moduli, they may still contain 

matter fields. (For compactifications on sufficiently large Calabi-Yau manifolds 

this can only happen for twists with fixed pionts.) Because the twisted matter 

fields are not related to any moduli (their vertices are not constructed from fields 

of the type Q*), we cannot say anything in general about their metric. Henceforth 
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we concentrate on the untwisted moduli and matter fields. 

In general, fields in the untwisted sector of a twisted conformal field theory 

(here, the Wilson-line theory on M/T-l) h ave exactly the same scattering ampli- 

tudes at string tree-level as they do in the original, untwisted theory (here, the 

theory on M). Furthermore, it would appear that the vertex operators for the un- 

twisted moduli and matter fields are related to each other exactly as before, using 

the N = 2 algebra and the free fermions Xj for the 10 components of the 27’s and 

3’s (eqs. (2.12), (2.8))) etc. Th en we could apply all of our previous results. The 

only subtlety is that the vertex operator relations are no longer invariant under 

‘H, because the Wilson lines break Es. In other words, some E-invariant matter 

fields are related to ‘Ft-noninvariant moduli, and X-invariant moduli are generally 

related to both ‘H-invariant and E-noninvariant matter fields!301 

For example, we can still calculate the Kahler function li’(N”) for the ‘H- 

invariant moduli in terms of Yukawa couplings using eqs. (3.37); we just have to 

remember that the Yukawa couplings Wabc(N) and Wlmn(N) that appear in these 

equations are for 27’s and 27’s in the untwisted theory, and not all of their 27 Eg 

components will survive the l-t projection. (The corresponding cubic superpotential 

couplings of the surviving Es components may in fact vanish by gauge invariance.) 

Once we have determined 1C( N), * a.nd hence the metric for the X-invariant moduli 

N, we can use eqs. (3.36) to find the metric for the E-invariant matter fields that 

are related to the N. The remaining matter fields are related to ‘H-noninvariant 

moduli, and so to calculate the metric for these matter fields one first calculates 

the metric for ‘H-noninvariant moduli as a function of the N. As with J{(N), this 

can be done in terms of the 273 and p3 couplings in the untwisted theory using 

eqs. (3.37); th e only difference is that more of these Yukawa couplings come into 

Pl”Y- 

Thus our general results for (2,2) vacua with Es @ Es gauge symmetry also 

* A potential additional (technical) subtlety is that it may not be possible to solve (3.37) 
using the restricted IGhler ansa.tz (3.41) for K(N), b asically because there is no guarantee 
that the fields M” appearing in (3.41) have to be eigenstates of the action of ‘H. 
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provide useful information about metrics in the more realistic vacua with Wilson 

lines. Grea,ter use of this information can be made in specific models by taking 

advantage of various discrete and enhanced gauge symmetries; work along these 

lines is in progress. 
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APPENDIX A 

This appendix contains an alternative derivation of eqs. (3.38) and of the in- 

dependence of the 273 superpotential terms from the (1,2) moduli and of the m3 

terms from the (1,l) moduli!71 This time we do not make any use of the Riemann 

tensor; instead, we consider scattering amplitudes A(A4’1, . . . , AJAn, A@, AY, A6) 

and A(iVA1, . . . , A/lAn,AX,Ap,A”) th a involve three matter superfields and sev- t 

eral moduli superfields, all of the same chirality. In terms of ordinary fields, two 

of the n + 3 fields involved are fermions while the other n + 1 fields are scalars; by 

supersymmetry, it does not matter which two fields are fermionic. Naively, these 

amplitudes are proportional to derivatives of the Yukawa couplings; however, in 

general coordinate systems, the correct field-theoretical expressions are: 

(A4 
We shall derive eqs. (A.l) 1 a t er in this appendix. Before we do that, we shall show 

that in string theory the amplitudes on the left hand side of eqs. (A.l) either vanish 

or are totally symmetric in all their n + 3 indices. 

Let us start with the case of three 27 matter fields and n (1,l) moduli. The 
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heterotic string amplitude for this process is given by 

A( A”‘, A”*, Aa3, AP* , . . . , APnt3 ) = Ua”,” . . . U;n;; x (A-2) 

X lJ(zl,2,3)/2 
.I 

d2.24 * * - d2 z,+3 E(z;, ,%i).((iXS+)l . (ix@):! . Q[13- . @z . . . . . @z+3) , 

C” 

where (iXQ+) 1 is a short hand notation for iX(.q)S&(q,.&), etc. The operator 

ST- here - i.e *, \I’&-(z3, ~3) - is a vertex operator for the SO( 10) singlet field 

. inside the 27 multiplet Aa3.* This operator has conformal weight h = 1 and the 

U(1) charge q = -2 and thus is a lower component of a chiral multiplet of the left- 

moving N = 2 superalgebra. Hence, the operator product of Q--(z) with Y’;(W) is 

non-singular when w t z, while the operator product expansion of 5$(w) *Q--(z) 

starts with a simple pole O((w - z)-l). Therefore, 

which means that we can interchange vertex operators iXQ+ and <ps in the cor- 

relator in (A.2). S ince the E factor in (A.2) and the integral itself (including the 

Jacobian 1J12) are symmetric under permutation z1 tf zq, we obtain 

u: . d(A"' , Aa2, Aa3, A4”‘, AP5, . . . , Mu”+“) (A-4) 

= uao&4 . d(AP , Aa2, A”“, A”“, AP5, . . . , A/1”“t3). 

Now, if we define moduli and matter fields such that Vz = 6:) then the U ma- 

trix is proportional to the unit matrix and eq. (A.4) implies that the amplitude 

* Two of the 12 + 3 vertex opera.tors here correspond to space-time fermions and thus lmve 
right-moving quantum numbers very different from the R + 1 scalar vertices. Bowever, the 
left-moving quantum numbers do not distiuguish between different members of the same 
space-time supermultiplet. Since it is the left-moving quantum numbers that are relevant 
to our a.rguments, our notations do not indicate which fields and vertices are fermionic. 
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A( A”‘, A@, A”“, Ma4, . . . , APn+3 ) is totally s y mmetric with respect to its n + 3 in- 

dices al, . . . , a,+3. Similarly, the amplitude d(Aml, AmZ, A”“, Mm4,. . . , ~?/r~~+~) 

is also totally symmetric in ml,. . . , mn+3. In view of eqs. (A.l), this symmetry 

immediately implies eqs. (3.38): 

Next consider the string amplitude that involves three 27 fields and n > 0 

(1,2) moduli. In this case we have 

d(A” Ap AY Mm’ 7 , 7 , * * * 9 Mm”) cx ((ixQ+)l * (iA*+) * e,- * (3’4 * ... . (a;+3) 

because operator products of T$ with @- or with XP+ are non-singular, and the 

single pole in the operator product expansion of T>(w) 1 ‘I’:- is cancelled by the- 

factor w - 23 in the numerator. The same argument shows that the string ampli- 

tude involving three 27 matter fields and n > 0 (1,l) moduli fields vanishes too. 

Finally, the amplitudes that involve three matter fields and both (1,l) and (1,2) 

moduli involve correlators of the types ( @+Q+QI-- . a+ * . . @+ . a>- . . . Q-> and 

( 
Q-@-q++. a--...Q-. a+.. . a’>. Arguments similar to (A.5) show that these 

correlators are total world-sheet derivatives. Consequently, the amplitudes involv- 

ing these correlators vanish at zero momentum. Therefore, at zero momentum, 

all string amplitudes involving three matter fields and several moduli fields of the 

same chirality vanish, unless all moduli accompanying three 27 fields are of the 

(1,l) type or all moduli accompanying three 27 fields are of the (1,2) type. This 

is the theorem of Distler and [371 Greene. 

Now let us go back to the field theory and derive eqs. (A.l). First consider am- 

plitudes J~A(M~‘, . . . , MAn, Ap, AT, A’) in rigidly supersymmetric field theory (no 

gravity). For 12 = 0, this amplitude is just the Yukawa coupling: A(AP, A”, A’) = 
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iTVpys. For n = 1, four Feynman dia,gra.ms contribute to A(&!, A, A, A): 

MA Ap AT A6 

=iJy+yy+y+y 

(A-6) 

. 

The contribution of the first diagram is momentum independent; for the other three 

three diagrams, the kinematical factors associated with the sigma-model vertex (0) 

and with the matter-field propagator connecting it to the superpotential vertex (0) 

cancel each other, leaving only a momentum independent factor -1. Together the 

four diagrams yield: 

d(Ad” AD, A7 A6) = i”r/,,, A - ir,loWayn - ir,“,Wp,, - ir,“,Wp,, 7 , 

= ivAwpy6, 
(A-7) 

where I’,;, = GpIyI~Gfff. 

For n > 1 the number of Feynman diagrams grows rapidly. However, all tree 

diagrams contributing to d(M, . . . , M, A, A, A) have the following structure: 

There is one super-potential vertex (0) - the root of the tree, there are zero to n 

sigma-model vertices ( l ), and all 1 ines are directed downward, from the external 

fields (top ends of tree branches) toward the root. Each sigma-model vertex ( l ) has 

several incoming lines and one outgoing, and the kinematic -ik2 factor of the vertex 

precisely cancels (apart from the minus sign) the -i/k2 factor of the outgoing 

propagator. Therefore, all amplitudes d(M, . . . , M, A, A, A) a.re independent of 

the particle momenta. 

64 



To compute the moduli dependence of the amplitudes we use recursion: All 

Feynman diagrams of the (n + l)- moduli amplitude can be obtained from n-moduli 

diagrams by either attaching the (n + l)st external modulus line to an existing 

vertex or by inserting a new sigma-model vertex (to which the new external line is 

attached) into an existing internal or external line (cf. diagrams (A.6)). As far as 

non-kinematic factors are concerned, attaching a new modulus line to an existing 

vertex calls for taking a derivative of that vertex with respect to MA: kD,BI-.B, - 

SCD,B~...B,A, Ga~,~I...~, +-+ G,~,B,...B,,J and W+Y~,B~...B,,, +-+ ~~~pY,~l...~,~. The 

same happens when an internal line is split: G”P H -G”TG~~,AG’~ = DAG~~ and 

ditto for a modulus propagator ycD. Inserting a new vertex into an externa.1 line 

yields a factor -G,,,,GTp E -l?ia, or -r& in case of an external modulus line. 

Therefore, in rigidly supersymmetric field theory we have 

-A( AlA’, . . . , AlAntI, AB, A?, Ah) = vAntl d( AlAl, . . . , AlA”, AD, AT, A6) 
(A-9) 

= . . . = ivAnS . . . VA1 wpy6 . 

Now consider gravitational corrections to eq. (A.9). Gravity itself does not 

contribute to scattering amplitudes d(M, . . . , M, A, A, A) because it is impossible 

to draw a tree-level Feynman diagram for such an amplitude that contains a gravi- 

ton (or gravitino) propagator. However, in a consistent supergravity theory, the 

Yukawa couplings are e K2k/214~~y6 rather than Wprs, and the sigma-model vertices 

involving fermion lines are slightly different from their purely bosonic counterparts: 

A vertex with two fermionic lines cx and ,8 yields e-K’“/48A * . . 8~ (eKz’/4G,p) in- 

stead of 8~. . .dr,G,g (see ref. [15]). Two of the fields in (M,. . . , A4, A, A, A) are 

fermions; hence each tree-level Feynman diagram contributing to this amplitude 

has two continuous fermionic lines connecting external fermions to the Yukawa 

vertex at the root of the tree (o on diagram (A.8)). Therefore, the combined effect 

of gravitational corrections is to replace eq. (A.9) with 

d(A6”‘, . . . , AJAn, A’, A’, A’) = ie-K2k12 VAT. * * VAT (eK2’Wp76) . (A.lO) 

Note that under a Kahler transform I? H K - A - r\, W H e”‘*W, the ampli- 
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tude (A.lO) h g c an es its phase by rc21mA; this behavior is common to all supergrav- 

ity amplitudes that involve two fermionic partners of holomorphic scalars. 

In coordinates corresponding to V E 1, I&‘& is just W,prla=a,p=b,r=c; how- 

ever, covariant derivatives VA act differently on Waac and on W,p, since the metrics 

for the moduli and for the matter fields are different. Specifically, given eqs. (3.36) 

relating those metrics, we have I’iy = I’i,I,+, c=y + Sf. $ d(li’2 - ICr)/8M”, and 

for any tensor XA*...A,,P~~ that has three matter indices (and an arbitrary number 

of moduli indices), VA,+~ (XA~...A,P~~) = e’E2(K22-h’1)v~,+1 (eRZ(K1-liz)X~l . ..~.b,-d). 

Therefore, eq. (A.lO) b ecomes the first equation in (A.l); the second equation 

(A.l) is completely analogous to the first. 

We would like to conclude this a.ppendix with a comment tha.t there are two 

ways to use the result of ref. [37] about string amplitudes involving 27 matter fields 

and (1,2) moduli to prove that the 273 superpotential terms do not depend on the 

(1,2) moduli. (We do it because ref. [37] contains only the string arguments for 

vanishing of mixed amplitudes and treats the implication of this vanishing for the 

superpotential as if it was obvious.) One way is to use eqs. (A.l); notice however 

that these equations rely on formula (3.36) which relate moduli and matter metrics 

to each other: Without the U factors, there would be no eqs. (A.l). The other 

possibility is to use eq. (A.lO) which is based on nothing but general N = 1 

supergravity. If we write the Kahler function of the entire field space in holo- 

normal form, then at the origin of the coordinate system the right hand side of 

eq. (A.lO) reduces to ordinary derivatives of W&p, ( CJ Appendix B). Since the 

273 Yukawa couplings must be holomorphic function of all moduli, the theorem of 

ref. [37] implies that these couplings indeed depend only on the (1,l) moduli. Of 

course once this result is obtained, it remains valid for all coordinate systems on 

the moduli spaces, not just those that allow for a holo-normal form of the Kahler 

function. 
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APPENDIX B 

. 

In this appendix we construct coordinate systems on the two moduli spaces 

for which the Yukawa couplings can be written in the form (3.40). As a first 

step, let us show that for any Kahler manifold one can perform a combination 

of a Kahler transform and a holomorphic coordinate transform that will put the 

Kahler function into a holo-normal form li’ = C; ~~$5~ + 0(v2@). Let us choose 

an arbitrary point on the manifold and let {$i} b e some complex coordinates that 

are regular in its neighborhood; without loss of generality we may assume that all 

$i vanish at the chosen point. K($, 4) is an analytic function, so we can expa.nd 

it into a power series in 4” and 4”. Segregating terms that are at most linear in 

either holomorphic or anti-holomorphic coordinates, we write 

where A( 4) sums all purely holomorphic terms in Ii’ and Ct( $) . @ sums a.11 terms 

that are linear in 4 but carry second or higher powers of the holomorphic co- 

ordinates $i. Now let us perform a Kahler transform I<($, 6) H Ir”( 4, $) = 

Ii’ + A(4) + i\( 4) and d e fi ne new holomorphic coordinates vi z $i + g”j(O) * Cj( 4) 

(this transform is clearly non-degenerate since C,-(d) = 0($2)); then we have 

IQ% a = g&g * (pi@  + O($P2p2). (B-2) 

This expression for Ii” can now be put into the desired form by a linear redefinition 

of coordinates (~“1 that will turn the matrix gij into a unit matrix. 

In the coordinates {vi}, Ir’[il,,,i, (0) = 0 as well as gi~,~l...~,(0) = 0 (and ditto 

for the anti-holomorphic derivatives of I{ and g;l). It follows that at the point 

of expansion the Kristoffel symbols rjk vanish together with all their holomorphic 

derivatives (and ri- vanish with all their anti-holomorphic derivatives). This is the 
31; 

strongest normality requirement achievable in a general Kahler geometry by means 

of a holomorphic coordinate transform; for lack of a better term, we call coordinate 

systems obeying this requirement “holo-normal”. We also call Kahler functions Ii’ 
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“holo-normal” when they are expressed in terms of holo-normal coordinates and 

have no harmonic terms. Note that a coordinate system for a IGhler manifold can 

only be holonormal at some isolated points on the manifold; unless the manifold 

is flat, no coordinate system is holo-normal everywhere. 

Now consider the (1,l) moduli space. Let us write its IGhler function K1 in a 

holo-normal form. Then at the point M = o’, IC,al...a, = 0 and r,: vanish with all 

their holomorphic derivatives; therefore, taking holomorphic covariant derivatives 
. of the first eq. (3.39) yields for any 12 > 0: 

If we now define a manifestly holomorphic function 

E(A4”) f g ; v,, . . . vun Z&&j x jLf”’ * * . n4a,, P.4) 
n=3 * 

then liVbcd,al...a, = K -3&,bcdaya,, at A4 = 6, for any 12 2 0. Since the 273 Yukawa 

couplings are holomorphic functions of the (1,l) moduli, it follows that I’l/b& and 

.Fl obey the first eq. (3.40) throughout the (1,l) moduli space (despite the fact 

that the coordinate system we used to construct .Fl is holo-normal only at one 

point). Similarly, if we write K2 in a holo-normal form, then we can construct an 

F2 that obeys the second eq. (3.40) throughout the (1,2) moduli space. 
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APPENDIX C 

In this appendix we discuss moduli of the (2,2) vacua of the type II superstring 

and compare them to moduli of the same vacua of the heterotic string. First, a 

point of terminology: for the type II superstring we shall restrict the term moduli to 

scalars coming from the Neveu-Schwarz (NS) sectors of both left-moving and right- 

moving world-sheet theories; Ramond-Ramond scalars may be moduli in the sense 

of having a flat potential, but we shall not discuss them here. With this restriction 

in mind, N = (2,2) p su erconformal world-sheet theories lead to essentially the 

same moduli scalars for the type II superstring as for the heterotic string [12,241 ; the 

purpose of this appendix is to make this correspondence precise. 

At zero space-time momentum, type II vertex operators of massless scalars a,re 

world-sheet fields @( , ) f z Z o conformal dimension (h, h) = (1,1) that are upper 

components of both left-moving and right-moving N = (1,1) supermultiplets. For 

(2,2) vacua with integral U(1) charges q and S, such upper-component world-sheet 

fields are the same @i, @i, @k and a$ h t t a appear in moduli vertices of the 

heterotic string. However, at non-zero momenta there is a difference: From the 

left-moving point of view, the type II moduli vertices are 

V*(.z,Z) = exp(i&?I; . X(z,Z)) X (@*(~,i) + i&k. $(z) X Vt) , (C.1) 

where $i, i = 0, 1,2,3 are right-moving superpartners of the bosonic fields Xi re- 

sponsible for the four space-time coordinates, while the heterotic moduli vertices 

are simply eim”x a*. F rom the right-moving point of view, both type II and het- 

erotic vertex operators for massless scalars have a structure that mirrors eq. (C.1). 

However, throughout this article we were able to ignore this right-moving structure 

of the heterotic vertex operators @* and Q* because it completely commutes with 

the left-moving superalgebra (2.7). S ince it is the left-moving quantum numbers 

of the type II moduli vertices that distinguish them from their analogues for the 

heterotic string, we shall continue to ignore the right-moving quantum numbers of 

CD* and Q* in this appendix, except for the last paragraph. 
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Now consider correlators of type II moduli vertices (C.l). Using the fact that 

$‘(.z) are free left-moving world-sheet fermions and hence = @j/212, we 

conclude from (C.1) that 

distinct 
t,j,k,l 

X 
4&j zkl 

F.2) 
where E was defined in formula (3.13) and @F . . . \l;r’ . . . Qf . . . Q: 

> 
is actually 

- 
( 

q . . . Q3” . . . qq . . . a; 
> 

when i > j, etc. All correlators on the right hand side 

appear in heterotic string formulae for scattering of moduli and matter fields (cf. 

eqs. (3.12), (3.17) and (3.22)). Tl lerefore, type II amplitudes for moduli scattering’ 

are related to the heterolic amplitudes via 

d&w1 ) . . . , Mu”) = dH(A4’l, . . . , Man) 

+x “(ki . Ic.i) u~tua3 4 a, a3 .d@,P,..., A~~,...,A~',...,A/r'") 
i#.i 

+c 
“2(ki * kj)(kk ’ h) ua,iu”3Uakual x 

32 at a3 ak al 
distinct 
r,j,k,l 

x d&A4",,.., A;i,...,A;,...,A;k,...,A;i,...,Man) 

+ . . . (C.3) 

(as usual, no sum over the SO(10) vector indices ?; # 0, where by abuse of 

notations we ignore the difference between holomorphic and anti-holomorphic fields 

as well as the difference between (1,l) and (1,2) moduli and 27 and 27 matter fields. 
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The low-energy behavior of various amplitudes in (C.3) may be obtained from 

the Feynman rules of the effective four-dimensional field theory. All tree-level dia- 

grams that involve at most two external matter fields scale as 0( k2) under uniform 

resealing of all particle momenta; this happens because all vertices in those dia- 

grams yield O(k2) f ac t ors. (The total number of vertices in a tree diagram exceeds 

the number of internal lines by one.) Consequently, amplitudes d(A4,. . . , A4) a.nd 

d(A, A, M,. . . , A4) behave like O(k2) (cf. eqs. (3.5) and (3.6)). Diagrams with four 

external matter lines may contain an O(k”) scalar potential vertex or two O(P) 

gauge vertices; hence, the leading behaviour of amplitudes A( A, A, A, A, A4, . . . , A4) 

is O(k”) (cf. eq. (3.11)). F y e nman diagrams with more than four external ma.tter 

lines can be analyzed in the same way. Leaving details as an exercise to the reader, 

we can state the general result as follows: The leading low-energy behavior of scat- 

tering amplitudes involving 3,772 > 0 matter scalars and an arbitrary number of 

moduli scalars is O(k4-2m). On the other hand, all heterotic amplitudes involving 

2m > 0 matter scalars appear in eq. (C.3) multiplied by factors of the order k2”. 

Therefore, 

d&P, . . . , Man) = dH(Mal,. . . ,AP) + o(k4), (C.4) 

while the leading behavior of the two amplitudes themselves is O(k2). The result 

(C.4) is well-known to a few people - it is implicit in ref. 24 for example - but 

it does not seem to have been explicitly presented in the literature. 

At the tree level of the superstring theory, scattering of particles coming 

from the Neveu-Schwarz sector cannot involve Ramond particles as intermediate 

states. Therefore, tree-level scattering of the type II moduli - which come from 

the NS-NS sector - does not depend on interactions that involve fermions or 

Ramond-Ramond bosons. The only couplings that do affect the type II ampli- 

tudes dll(A4, . . . , A4) a,re couplings of moduli fields to ea.ch other and to gravity. 

The same is true for moduli scattering in the heterotic case, albeit for a different 

reason. Hence, the implication of eq. (C.4) for th e 1 ow-energy effective Lagrangian 

is that all two-derivative interactions between mod& scalars are the same .for the 
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heterotic string and the type II superstring compactified on the same (2,Z) vac- 

uum;[241 on the other hand, higher-derivative interactions of mod& may diner. In 

particular, the geometry of the moduli space in both string theories is the same 

direct product of the same two restricted Kahler manifolds* (the geometry is deter- 

mined by the two-derivative kinetic terms in the effective Lagrangian). However, 

higher-derivative interactions of moduli need not respect this direct product struc- 

ture and may depend on both kinds of moduli. 

. Usually the 0(k4) d ff i erence between heterotic and type II amplitudes for mod- 

uli scattering does not vanish. For example, compare the heterotic four-( l,l)- 

moduli amplitude (3.26) to its type II counterpart: 

(This formula can be derived by substituting eqs. (3.26) and (3.19) into (C.3).) On 

the other ha.nd, when a heterotic amplitude vanishes exactly, its type II counterpart 

often does so too. For example, the heterotic amplitude d~(Ad’, A@,?@“,a”) 

va.nishes exactly as an integral of the world-sheet correlator (@+@+a+@+), which 

vanishes by eq. (3.28). In the type II case we have the correlator (V+V+V+V+), 

which is equal to E x (@+a+@+@+) because all other terms in (C.2) vanish by 

the U(1) 1 g ciar e conservation (one cannot have Q s’s without an equal number of 

9-‘s). Hence, Alr(Ad’,A4 b -“,w’) = dH(Ma,Mb,,“,nl”) = 0. Similarly, , A4 

the type II amplitude dII( AP, Mb, M”, %‘) vanishes because 

= E.{O - 0 - 0 - 0} = 0; 

(C.6) 

the second equality here follows from eqs. (3.29) and (3.21). It is easy to generalize 

* In the type IIR case, the (1,l) moduli, the dilaton/axion and their Ra,mond-Ramond su- 
perpartners together span a quaternionic manifold that is not Kahler; however, the (1,l) 
moduli themselves span a restricted IGhler manifold!4’271 In the type IIB case, the same 
happens to the (1,2) moduli instea.d of the (1,l) moduli. 
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eqs. (3.28), (3.29) and (C.6) to the case of an arbitrary number of moduli vertices: 

( v;’ . , . Vn’) = E x (@; . . . @;) = 0, 

(v,‘-.v,+_, * Vn-) = E x (a; . . . @z-l . (a;) + 0 = 0, 
F*7) 

and all type II or heterotic amplitudes involving these correlators (or their complex 

conjugates) vanish identically. 

We derived eqs. (C.7) using only the left-moving N = 2 superalgebra (2.7). 

Exactly a.na.logous arguments based on the right-moving N = 2 superalgebra show 

that for all 11: 

where c* are the right-moving analogues of the V *. From the right-moving point 

of view, massless scalar vertices are of the type G’+ or G’- according to whether the 

space-time field is holomorphic or anti-holomorphic. Therefore, for all scattering 

processes that involve arbitrary numbers of massless scalar fields but no fields of 

other kinds, the (on-shell) amplitudes vanish identically unless at least two of the 

fields are holomorphic and at least two are anti-holomorphic. This result is valid 

not just for the type II superstring, but for the heterotic string as well, and the 

scalar fields involved may be mod&, 27 or 27 matter fields or non-moduli singlets; 

in fact, it is valid for all space-time supersymmetric (0,2) vacua of the heterotic 

string for all massless scalar fields the theory may possess. From the effective-field- 

theory point of view this rule is a consequence of space-time supersymmetry; what 

eqs. (CA) really tell us is that higher-derivative interactions which follow from the 

string theory do behave in the same way. 
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