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1. Introduction 

Electromagnetic radiation from high energy charged particles as they traverse 

strong external fields has been well studied, including the transition between clas- 

sical and quantum regimes. The process of pair creation by photons, related by 

crossing to the above reaction, has also been well studied. Interest in these pro- 

cesses has been revived in recent years by prospects of building high energy linear 

colliders for electron and positron beams in the TeV region. In particular, the 

fractional energy loss to radiation as one beam pulse is accelerated by the elec- 

tromagnetic field of a pulse through which it crosses at the interaction point is 

an important parameter in the design of a collider; this fractional loss is known 

‘j2 as beamstrahlung. Himel and Siegrist3 called attention to the quantum regime 

for beamstrahlung and treated it by adapting earlier quantum calculations of syn- 

chrotron radiation by an electron in a uniform magnetic field. Following the im- 

portant paper by Himel and Siegrist, there has been a flurry of activity 
4-7 

seeking 

simpler and more general means of calculation in order to provide better insights 

into the corrections due to field inhomogeneities and different charge distributions 

in the pulses, as well as to develop a better physical understanding of the process 

and the scaling laws characterizing the transition from the classical to the quantum 

regime! 

A study of the effects of pulse geometry8 and the development of a quantum 

theory of multiple photon emission’ has led to a suggestion of a collider that can 

operate not only as an e+e- machine but also as a photon-electron and a photon- 

photon collider, by modifying the pulse shape.” 

Pisin Chenrl has recently called attention to the potential importance of pair 

production by the beamstrahlung photons as they traverse the beam pulses in 



which they are produced. Using the results of Baier and Katkov 
12 and Tsai and 

Erber,13 Ch en showed that this effect could lead to serious background difficulties 

under certain conditions. This suggestion stimulated us to calculate the probability 

of pair production by photons using the direct approach of high energy scattering 

theory developed in Ref. 4. The results of this investigation are the subject of 

this paper. We confirm previously published results in regions of overlap, extend 

them to more realistic pulse geometries, and provide a simple physical picture of 

this process and of its relation via crossing 
14 to beamstrahlung. Working indepen- 

dently, Jacob and Wur5 have also developed a high energy scattering approach to 

beamstrahlung and to pair production in the extreme quantum limit of beam-beam 

interactions.#l 

Our work is valid in all regimes consistent with the assumption of small disrup- 

tion, i.e. small angular deflection of the electrons as they traverse the other beam 

pulse; in particular, it contains the extreme quantum and the classical cases as lim- 

its. The parameters for most conceptual designs for conceivable TeV colliders 
16-18 

are such that they operate in the transition region between the quantum region 

and the classical limit. Since this regime has not been investigated, we will pay 

particular attention to it through our choice of “typical” collider parameters. The 

next step in estimating the effects of pair production would be to fold the photon 

production spectrum of Ref. 9 with the pair production probabilities derived here 

to include the effects of multi-photons and multi-pairs. We plan to discuss these 

topics in a later paper. 

#l Our result, which satisfies crossing symmetry, differs by a numerical factor from that of Ja- 
cob and Wu who treated only the spin zero case. We all agree for beamstrahlung. However, 
our result for the case of scalar pair production is larger by 8/21i3 - 6.35 in the extreme 
quantum limit that they treated. 
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It is useful to recall the results of beamstrahlung from Ref. 4. Denoting the 

ratio of the final to initial electron energies by II: s pf/pi, so that the photon energy 

is k = (1 - z)p;, the differential probability of a spinless electron emitting a photon 

and ending up with momentum fraction z is given by 

dP( beam) 
dx = 2 CY Y Cb G(ub) , 

where 
co 

G(u) = & 
J [ 

dv 
U4 

3v - 2u - 7 
I 

Ai . 

ffl 

Ai is the Airy functionrg and the variables are given by 

ub = [(; (F)]2’3 NCk Y=a’ 

(1-l) 

(1.2) 

(1.3) 

The scaling variable cb can be expressed in the pulse rest frame and the center- 

of-mass frame respectively as 

me0 Cb = g = - 
2 4YY * 

In the center-of-mass frame the length of the pulse is eo and ym is the incident 

electron energy. The corresponding quantities in the pulse rest frame are L = ye0 

and p; = 2y2m. Our calculation will be carried out in this latter frame. 

The subscript b emphasizes that Ub and Cb are defined for the beamstrahlung 

process. All of these scaling variables will play an important role in our develop- 

ment. The quantity y is proportional to the square root of the luminosity per pulse; 
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values of y - lo2 - lo3 are envisaged for future high energy colliders. Following 

Ref. 4, the average fractional energy loss is written as 

2 s = - i y y = Sclassical F(C) ) 
3 (1.5) 

The scaling variable Cb + co in the classical limit, where F(Cb >> 1) -+ 1, whereas 

Cb + 0 in the extreme quantum limit, where F(Cb << 1) N 0.83 Ci’3. 

These equations were derived for a particular geometry of the collision process, 

namely a head-on collision of an electron with a uniformly charged cylindrical 

pulse of radius B containing N positrons.20 Only collisions with impact parameter 

b < B are included since these are the ones of interest for studying energy loss to 

radiation in e+e- colliders. End effects are also neglected as small since B < L. 

The full contributions for spin l/2 electrons will be discussed in the next section. 
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Physical Interpretation: 

There is a simple way to understand the general form of the main results for 

both beamstrahlung and pair production. The transverse coherence length of the 

radiation, !,, is defined as the path length of the electron corresponding to its 

acquiring a transverse momentum N m from the electric field. Since the widths of 

the photon radiation pattern and the pair production patterns are also - m, the 

radiation can be coherent only from a finite length of the curving path, namely 

m I I L 
elN - N - e0 

eh 2y =p (l-6) 

The longitudinal coherence (or radiation) length !,, is related by the uncertainty 

principle to the reciprocal of the longitudinal momentum transfer: 

(l-7) 

This is the length of the target that the electron scatters from coherently during 

the radiation process. The ratio of Eqs. (1.6) and (1.7) leads to (1.4) and to the 

physical interpretation of Cb as discussed in prior references. 

The occurrence of the combination cb( 1 - x)/x) in (1.3) can be understood by 

considering the minimum value of the longitudinal momentum transfer for a given 

momentum fraction x. Invoking energy conservation, Ei = k + Ef, we find 

min. m2 
Qz =pi-k-pf”-+* 

2pi 2Pf 
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This suggests a corresponding scaling parameter 

l-x c, G &fp”n = c() - = 
( > x - 

,312 

We can now consider the process of pair production by an incident photon 

which is related to beamstrahlung by crossing symmetry. Crossing involves the 

continuation in the matrix element from an outgoing to an incoming photon, and 

the reverse for the incident electron: 

Pi + -P+ Pj -i +p- 

k+--k. 
(1.10) 

Under this transformation, it is easy to see that the scaling variable becomes 

c, = e1* (m2/p; - ?n2/pg = Cb(l - x)/x 

-+ e, * (m2/p; + na2/pZ) = Cp/x(l - x), 

(1.11) 

where in the latter formula, 

Cp =m2L/(2y k). (1.12) 

The subscript p refers to pair production. Crossing symmetry relates matrix ele- 

ments. However in this case, no phase space factors are affected by the crossing 

transformation since we are calculating in the small disruption approximation, i.e., 

the limit of high energy and small scattering angles. Therefore, crossing applies 

also to the differential probability Eq. (l.l)- a c aim we explicitly verify in the 1 

following calculation. For spinless electrons we need only take into account that we 
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average over the two polarization states for the incident photon, but sum over the 

emitted photon states in the beamstrahlung process; this multiplies the result (1.1) 

by a factor of one-half. Therefore, we expect the probability of pair production by 

a photon with momentum k to be given by 

dP(pair) 
dx = a Y Cp G(u) , (1.13) 

where the function G(u) is defined as in Eq. (1.2) but with u now given in terms 

of the C, as given by the last form of Eq. (1.9), up = [CP/x(l - x)12j3. 

The variables Cb and CP are central in our work. They are the reciprocals of 

the corresponding variables x as used in Refs. 11-13. It is seen from Eqs. (1.3), 

(1.4) and (1.13), that l/C is proportional to the energy of the incident particle 

times the strength of the transverse electric field at the edge of the pulse; i.e. 

IeEl] = 2Na/LB, and 

1 PWI(B) I -= 
C m3 ’ 

(1.14) 

We shall show by explicit calculation that (1.13) is the correct pair production 

result. The careful reader may find it remarkable that even though the pair pro- 

duction calculation is in detail very different from the beamstrahlung calculation at 

every stage, the final results are related in the simple manner described above-as 

they indeed must be. The detailed calculations will be carried through both for a 

cylindrical uniformly charged pulse and for a constant electric field. Throughout 

most of our discussion, we shall assume cylindrical symmetry. However, in the 

next section, a general formula, valid for slowly varying fields, will be constructed 

and sensitivities to field variations displayed. Spin l/2 electrons will be treated as 

well as the scalar case. 
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2. Review of New Results and Crossing Symmetry 

In this section we summarize our results, discuss some of their implications and 

connect and contrast pair production with the earlier result for beamstrahlung. 

Henceforth we will work exclusively in the pulse rest frame. The differential prob- 

ability2’ for both processes for spinor electrons can be expressed as 

dP 
- = a y C G(u, x) 
dx (24 

with 

For pair production we have C = CP and 

C [ 1 213 

U=UP- x(1-x) ’ 

while for beamstrahlung, crossing leads to C = Cb and 

u=ub- 

(2.3) 

(24 

The spinor factors are also related in a simple way: 

E + k = w pair production 
non-flip: SNF( x) = “+~+2 beamstrahlung (2.5) 

Pi 

liz=--.- 
P+P- (X&X) pair production 

flip: SF(~) = 
kZ _ (l-x)* 

PiPJ - x 
beamstrahlung . 

P-6) 
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The square of the transverse electric field at impact parameter gin the rest frame of 

the target pulse is E2(b); (2.1) and (2.2) are of course Lorentz invariant. Equation 

(2.2) assumes that the fields are slowly varying in the transverse direction (on a 

scale of Sb - B [CY~]-~/~ << B ) in which case the calculation is found to be simply 

the sum of suitably weighted contributions from small elements of area S2b with 

0 < b < B. The extension to ribbon pulses proceeds exactly as in Ref. 8. 

A number of simple features can be deduced from (2.1) to (2.6): 

1. Crossing symmetry applies directly to matrix elements. It is expressed here 

for the differential probabilities because the final transverse momentum in- 

tegrals cover the same regions of phase space in the two processes; for high 

energies the electron and photon are both essentially massless and each has 

two spin polarization states. 

2. In the extreme quantum limit C t 0; using the definition (1.14), we see that 

this is the high energy, strong field limit. In this limit, u -+ 0 in (2.2), which 

then simplifies to 

G(u -+ 0,x) z i SNF(x) (fv Ai(v)du) T$$ { -j$$$}1’3 , (2.7) 

indicating that the spectrum in x is broad and that all impact parameters 

give significant contributions for both constant fields and uniform charge 

densities for which E(b) 0: b. The total probability is 

Pm = 2 a y c1’3 . 91 * (5 * 92) . a ) (2.8) 
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where 

and 

91 = 
.I 

vAi(v)dv = [3r/3r(1/3)] -l = 0.259 

= 5 
J 

[x(1 - x)]2’3dx = 5 (0.293) 

0 

(2.9) 

(2.10) 

1 for a constant field 
Cl= 

3/4 for a constant charge density . 
(2.11) 

The factor 5 was explicitly introduced in (2.10) because that is the ratio of the 

production probabilities for spin l/2 to spin 0 electrons resulting from the non-flip 

factor SNF(X) of (2.5) in the x-integrand. 

Note that the beamstrahlung probability in this limit differs from pair production 

only by the spectral integral 

gbzjdx(&)2’3+=6, 

0 

which is larger than (2.10) by a factor of - 4 because of the soft photon tail present 

in the beamstrahlung spectrum. 

3. In the extreme classical limit one has C --+ 00 which by Eq. (1.14) is the case 

when the field strength and energy are not too large. In this limit we see a 

sharp contrast between pair production and beamstrahlung. In the former 

case, by (2.3) u + 00 and the integral over the Airy function in (2.2) falls 
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exponentially. For beamstrahlung on the other hand, (2.4) shows that the 

dominant contribution, as discussed in Ref. 4, comes from very soft photons, 

(1 - x) N l/C, leading to, the familiar classical result. 

We also see in (2.2) that when u + 00, most of the contribution to G(u) 

comes from a thin ring near the outer edge of the beam. This is the case 

if the charge distribution is localized and if E2(b) increases as we move out 

from the center (b = 0) to the edge (b M B). It is in this region that the 

lower limit of the dv integral falls to its smallest value. Physically this is the 

demand that in order to transfer sufficient momentum to make a pair in the 

weak field situation, the incident photon must be near the edge of the pulse 

in the region of the maximum field. 

In contrast to this result, for a constant field all impact parameters contribute 

to (2.2) and one obtains a very different result. Setting E2(b) = E2(B), and 

introducing the asymptotic limit of the Airy function, 

Ai -(2’3)v312 , 

one can integrate (2.2) directly 

G(u) N ’ 
a&m [ 1 1 , ---$ e-(2’3)u3’2 , 

(2.12) 

(2.13) 

where the two factor choices in the bracket correspond to a constant field 

and to a uniform charge density, respectively. For large C, the exponential 

restricts x N l/2 according to (2.3), that is the pair share the energy equally, 
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and we obtain 

P aY 
tot = - 

16 d-T 3 2 ,-w3 constant field 

Ptot = & (Ptot)const.field uniform charge . 

(2.14) 

In this limit the pair production probability for spin l/2 electrons is 6 times 

larger than that for the spin 0 case. This factor of 6 can be understood 

simply from (2.2), (2.5), and (2.6) . Th e d ominant contribution in the curly 

bracket in (2.2) reduces to [SNF(X) + SF(X)] when ‘u + u and b --+ B. Also 

since z N l/2 in this classical limit, we see that {SF(~/~)/S,J~( l/2)} = 2, 

indicating that 2/3 of the contribution comes from spin flip. The non-flip 

term itself is twice as large as it is in the spin zero case because two spin 

states contribute. 

4. Having gained a cursory overview of the physics of this process, we now see 

how to derive equations (2.1) and (2.2) for a general but slowly varying field. 

Simply average the result of the constant field calculation over all impact 

parameters but take into account the slow variation of the field strength; for 

a constant field (and suppressing inessential spin factors) we have 

B2 

G,(u) = $ G&b) 
J 
0 

G&b) = &4i(l;) (; - I) 
U 

Recognizing that u cx C2i3 oc (1/E(b)2)1/3, we simply introduce the appro- 
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priate u for each impact parameter 

l/3 

u + u(b) = u(B) 
( ) 

$g 

which reproduces (2.2). 

Similarly one can slice a pulse into disks of varying thickness to allow for a 

field varying along the direction of the collision axis 0 < z < L and write 

G(u) as an integral 

L 

J 
$ G(u,z) 

0 

where in G( u, z) one introduces the (slowly varying) z dependence of E2 (b, z). 

This is the case of varying field that has been treated previously in Ref. 8. 

5. Cross-Over: Coherent production of pairs can be very much larger than into, 

herent production for energies and currents envisioned for some of the future 

collider designs. By equating the relevant second result in Eq. (2.14) with N 

times the Bethe-Heitler rate, we find that they are comparable for C - 3.5 

for typical collider parameters.22 The decrease in coherent production for 

larger C is evident from Eq. (2.14) . Indeed, as C increases from 3 to 6 , 

the coherent production drops by a factor of - 5,000. 

Several important consequences of the above features are summarized in Figs. 1, 

2, and 3. The rapid decrease in the pair production cross section with increas- 

ing C > 1 is shown in Fig. 1. In Fig. 2, one sees that as C increases, the 

z-distribution is more and more peaked at z = l/2. This narrowing effect sup- 

presses the very soft pairs that could be an important source of background. Figure 
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3 illustrates the importance of including electron spin in the calculation. The gen- 

eral topic of experimental consequences of our results will be discussed in more 

detail at a later note. 

3. Scalar Electrons 

In this section we derive an expression for the matrix element for pair pro- 

duction by a photon incident upon a pulse of N electrons; only pairs originating 

inside the pulse (b < B ) are considered. This case is treated first to illustrate our 

approach with minimal algebraic complexity. In a later section the case of Dirac 

electrons will be discussed. The general form of the matrix element of interest is 

the integral 

where 2 is the photon field, 7 is the electron current and 4i-j is the final 

(incoming) scattering eigenstate of the electron-positron pair in the static external 

field of the pulse. For simplicity we will assume that the pulse is a cylinder of 

length L and radius B. The calculation will be carried out in the rest frame of the 

pulse following the analagous treatment of beamstrahlung given in Refs. 4 and 

8. The main technical difference between these two problems lies in the nature 

of the boundary conditions: incoming waves for both members of the pair in the 

present case, and in beamstrahlung the electron line has both an incoming and an 

outgoing wave in the initial and final state wave functions. Let us now introduce 

several kinematic variables that will prove useful. Then we will go into a detailed 

calculation of the relevant wave functions, matrix elements, and cross sections for 

our problem. As in the study of beamstrahlung, it will prove to be necessary to 
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retain corrections of order (1/k)2 to the leading terms, or one order beyond the 

standard eikonal approximation, due to the extended nature of the target. 

Kinematics and Variables: 

The incident photon will have an energy of k and will be assumed to have no 

transverse momentum, kl = 0. The final electron will have an energy denoted by 

p- = lck with components py non-zero and p; = p- - [(pJ2 + m2]/(2p-) . 

The final positron has an energy denoted by p+ = (1 - x)k with p: and 

p: = p+ - [(P-J)” + m21/2p+ * 

It is also convenient to define transverse center of mass and relative coordinates 

for the pair: 

&=pf+pI A, 2 p-J - p; 

and LZ E (L-z), 
(3.2) 

where 2 is a dimensionless variable that will be a useful quantity since it measures 

the fractional distance that the pair travels in the electric field of the pulse after 

being created at the point z . A measure of disruption that occurs naturally in our 

calculation is provided by the ratio 

NcvL 
a = 2B2kx(l -x) ’ 

which is assumed small in our calculation. 

(3.3) 

The momentum transfer to the pulse is defined to be q = k - p- - ps . Its 
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longitudinal component can be expressed as 

qz = 
m2 + (P1)2 

2P- 
+ n-L2 + (P-jj2 

2P+ 

= 2kz(; _ x) b2 + (l - x)(P;)2 + zbI)21 ’ (3.4) 

1 
= 8kz(l - x) 

[4m2+C; +A; +2(1-2x)CI.A,]. 

Approximate Wave Functions: 

The Klein-Gordon equation for a scalar particle of mass m in an external vector 

potential A, is 

[rr~~-(id-eA)~]d = 0. (3.5) 

In the rest frame of the pulse there is only a static field and the spatial K-G 

equation for each member of the pair can be written as 

1 
(E - V)2 + G” - r-n2 qq2) = 0 . 1 

The solution will be written in the form 

where @ satisfies the equation 

( ) 
2 (E - V)2 -rn2 = +I+) -iG2Q, . 

(3.6) 

(3.8) 

For the problem of interest, we must solve this equation in the limit of large 

energies for the requisite boundary conditions, and must exhibit the solutions to 

the requisite accuracy. 
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4. Uniformly Charged Cylindrical Pulse 

Neglecting end effects, the potential for a cylindrically symmetric charge dis- 

tribution is 

V(x) = V(Z,b) b2 = x2 + y2 (4.1) 

for 0 < z < L, and zero otherwise. We will consider the case of a uniformly 

charged cylinder with 

V(z, b) = Vob2 
NC2 

vo = - 
LB2 ’ 

(4.2) 

For the electron, the leading term in Q-(X) must be 2. Y? ; the electron phase 

function to order (l/p-) is 

Q-(x) = 2.2 + VoLb2Z+ 
2 

-V,2 L3 b2 Z3 + $ V. L2 p; . bl ,Z2 , 
3P- 

(4.3) 

as can be seen by direct substitution into Eq. (3.8). The final state boundary 

condition is explicit in the dependence on 2. 

The positron phase function to the same order is 

a+(x) = 3 * 2 - VoLb2Z + 
2 

-V; L3 b2 Z3 - +Vo L2pf . bl Z2 , 
3P+ 

(4.4) 

in which the opposite sign of the charge is also explicit. Certain higher order real 

as well as imaginary terms have been dropped since they will not affect our results 

to the order that we will work, 
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It is interesting to calculate the “local” value of the momentum defined as 

j?;, G +I? * . The results are: 

(PL,>z = P, - V ob2 - zV;L2b2Z2 - LVo Lp; . bl 2 
P- P- 

(P;,)z = P: + Vab2 - -@L2b2Z2 + $4, Lp; . bl Z 

(P& = P; + 2vOLZ bl + 
4 

-V,2L3Z3 bl + 
3P- 

--+ L2 z2 p; 

(~;t,,)l = PI - 2VoLZ bl + &V;L3Z3 bl - --$vo ~~ z” p; 

(4.5) 

In the evaluation of the matrix element, an essential element is the total phase 

of the product of the wave functions. Including the phase of the photon wave 

function A( 7) , and using 7 = ?? - 2 - p 3 , it can be written in the form 

@tot = 2. -7 - F(x) - Q+(x) 

= +T.y+- 2 1 
3kz(l - IC) ‘: L3 b2 z3 + kx(l _ x) 

(4.6) 

where 

PM = XP:: - (1 - x)P; 

(4.7) 

= $A,-;(l-2x&. 

Notice that the zeroth order term linear in Vo has cancelled in the total phase 

function. This is very different from the structure achieved at this point in the 

beamstrahlung calculation; this is due to the different boundary conditions. 
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The total phase can be rewritten in more convenient form as (41 = -Cl) 

where 

= FJl + aZ2(1 - 2x)] - az2a; 

(‘w 

2v2 L3 z3 
A,=+ ’ 

3kx(l - x) 
= +$VoLZ3. 

Matrix Element- Stationary Phase: 

The matrix element now achieves the form 

1 B 

M = eL 
J J 

dZ d2b -T+ . T( Z, b) exp[iQtot(Z, b)l , (4.10) 

0 

where the factor T(Z, b) is the gauge invariant local current 

kw = 
[ 
P~V,b) - P;w . 1 

In component form these are given by Eq. (4.5). 

(4.11) 

The phase C&tot is quadratic in the impact parameter for a long uniform cylin- 

drical pulse. Since the coefficient of b2 is very large in units of the radius of the 
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pulse, we will carry out the d2b integral via the method of stationary phase. To 

do this it is necessary to solve for the stationary impact parameter 70 , where 

&@tot (Z, bo) = o . (4.12) 

This gives 

7i 
To = ---& 

s 
(4.13) 

=& [G-&z], 

which fixes the “classical” impact parameter in terms of the final pair momenta, 

the point of production Z , and the coordinate and energy of the incident photon. 

The Z-dependence is a reflection of the curved classical trajectories of the pair. 

Note that since bo 5 B, the momentum transfers are restricted (otherwise the 

stationary point does not exist). Expanding the impact parameter around this 

value allows the transverse integration to be done, and the result is 

1 

M = -i 3ne dz 4aVo J 23 2 . -P’(Z) exp[iQtot( Z)] . 

0 

To leading order in l/p, the phase @tot(Z) is 

@tot(Z) - @to@, bo(Z>> 

= +q,L - 
[ 

q*LZ + -$i+l. 2, 
3 I 

(4.14) 

(4.15) 
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and after inserting the values from Eq. (4.9) and (3.4) 

@tot(Z) - qzL = - ,,kx;;- x) (4Tl - 3Td 

TI = Ai-2(1-2x)Ai.CI+C~+4m2 (4.16) 

T2 = A&&AL.&+- IL x2,. 
Ci2Z4 

The current, as given by (4.5) and (4.11) and evaluated at the stationary point, 

becomes 

$-i;‘(Z) = & 
[ 
a; - 4q)LZ7&Z) 1 

(4.17) 
1 

z-q. E&-&Ey . 
2 [ 1 

The square of the matrix element, averaged over the incident photon polariza- 

tion, is of the form (e2 = 47rcr ) 

1 
z c 

M*M = 27ra ( &)2j f2z3 S exp[iA@tot(Zr,Z2)] , (4.18) 
PO1 0 

where the polarization sum that we require is 

S(Boson) = c 7’. ?(Zl) x 7). -i-f(Z2) , 
PO1 

(4.19) 

and the phase difference is 

A@tot(Zl, Z,) = @tot(Zl) - Qtot(Z2) . (4.20) 
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Polarization, Phase Differences and Limits: 

Since the polarization vectors are transverse, their sum becomes 

S(Boson) = ?,(.&) * F~(z2) , (4.21) 

which after some manipulation can be written in the form 

4 S( Boson) = h; - 
3(Zl - za,“c. Cl 

4 zlz2)2 
(4.22) 

= jg ( > 
2 

- 9w2(a’i)2 - 
3W2 

-.h;:, 
(z122)‘/+ 

where for convenience, we have introduced the quantities w = Zr - Z2 and 

.q =a; 3 --c; 
a-& z2 

(4.23) 

The phase difference also achieves a simple form in terms of these variables. 

Straightforward algebra leads to 

-AQtot(G, G))] = ,,,,::,-- x> 16 m2 + ca”l - 3.5J2 + 
3w2 

a& Z2 a2(Z1z2)3 
c*c; 1 

Lw 
= 32kx(l - x) 

16771~ + (.A$’ + AWED 1 
1 

E SIJJ + -r3w3 ) 
3 

where 

L r’2 

’ = 32kx(l -x) 
16m2$(A,) 

g = 

(4.24) 

(4.25) 
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Introducing the scaling variables y and C, , these become 

r3 = Y3Cx (2)” 7 

(4.26) 

where we introduce grnal G 4my/3. 

This upper limit on 01 derives from the demand that the stationary point 

exists, i.e. that ho(Z) 5 B . Th is requirement is simplified by noting that the 

phase difference A@ forces the two creation points Zr and Z2 to be very close to 

each other. Thus in the expression for ho(Z) , Z can be replaced by the geometric 

mean position, that is Z = (Zl Z2)‘i2 . This leads to 

To = - 3 
a;- 

1 

~VOL(Z~Z~)~/’ 
-c; 
a&Z2 1 

3 
= -~VOL(Z~Z~)~I” 

g+ 
2 

----cl. 
a-% Za 1 

(4.27) 

Since the disruption parameter a is small, the second term is much larger than the 

first and the limit can be expressed as 

4VoL 
- bo I 

4VoL 
al = 

3 
3B = imy E gmax - (4.28) 

Final State Sum: 

The square of the matrix element, averaged over the polarization and integrated 

over the transverse momentum of the pair, is denoted as 

M*M E s (4.29) 

The differential cross section is achieved by dividing by the normalization factors 
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for the three wave functions and multiplying by the energy constraint integral: 

da = Kdx 
JJ 

M*M 

Ii’dx E [8kp+p-I-’ 
J 

dddp, 
w2 

27rS( AE) 

Ir’ = [16ak2x(l - x)1-l . 

Our next task is to evaluate 

d2p; d2p$ 
1 

SJ 
MrM=4A 

J 
dZ1 dz2 -- 

(27+ (a+ J ayz1 Z2)3 
S exp[iA@t,t( Z1, Z2) ] 

0 

where 

2 

(4.32) 

9 (4.31) 

Interchanging orders and changing the momentum integrations to the local coor- 

dinates (and picking up a factor of l/4 from the change of variable) 

1 

JJ 
M*M = A 

J 

dZl dZ2 

a2(Z1 z2)3 J 

d2A’l d2C 
---L S exp[iA@t,t(Zr, Z2)] . (4.33) 

(2n)2 (27q 
0 

The polarization trace S and the phase difference A@t,t( Zr , Z2) become func- 

tions of w only. All other dependence on the coordinates Z1 and Z2 has been 

absorbed into Al,. Making a change of integration variable from Cl to al now 

allows the limitation due to the radius B to also become independent of Z1,2 so 
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that 

1 

JJ 
M*M = A 

J s 
dZ1 dZ2 S [w2] exp 

0 

[-i (SW + f r3w3)] 

(4.34) 

with the restriction 01 5 crk,, , and where 

4 S [w2] = (A’,)2 - 9 (Q)~ w2 . (4.35) 

The last term in S, given in Eq. (4.22), involves a cross term between A; and al 

and is zero after performing the angular integrations. Thus 

JJ M*M=A - J dZ1 dZ2 exp [-i (SW + f r3w3)] , 

0 
(4.36) 

and changing one of the Z’s to w and integrating the other, we find 

JJ M*M=2A J dw (1 - w) cos (SW + + r3w3) . 

0 
(4.37) 

Since the parameters r and s are large, both of order y from their definition, the 

w integral can be well approximated by the Airy integral, so that 

M*M = 27rA J d2A’ d2 
(27$ (27r)Z 

--%S -2 ;Ai [;] . [ 1 (4.38) 

Finally, using the differential equation satisfied by Ai , namely Ai( = wAi(w) , 

one achieves 

J d2A’ d2 
MtM=2rA - 

(27ri: (27r)Z 
25’ [-;I :Ai [fl . (4.39) 
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where, using the definition of r and s , the polarization sum S simplifies to 

4s -f = 16m2 + 2(A’,)2. [. 1 (4.40) 

Now we proceed to a series of variable changes to make this integral tractable. 

First define 

and the integration over d2Ay can be replaced by an integral over V. Paying 

attention to the limits of integration, and introducing the value of u at (A;)” = 0, 

namely 

ZlrJ = ycz/r = (cx!?y)2’3 ) (4.42) 

we find 

I.1 M+M = A1 7’2 (&)1’3 7 dv [2v - ug]Ai(v) , (4.43) 

0 vo 

with 

Al = 9 [ ‘$fB]’ (yc;‘3) . (4.44) 

If we write (a~/~&,,) = t3 , where 0 < t < 1, then ~0 = up/t, where up is 

the scaling variable defined earlier. The integral now becomes 

JJ M*M = A1 1 3t3dt 7 dv [2v - F] Ai , (4.45) 

0 “P/t 

The integrations can be interchanged, the dt integration performed, and the result 
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is 

JJ M * M = A1 G(up) , 

where 
ccl 

G(u) G & 
J 1 

dv 
U4 

3v-2e7 Ai( 1 
U 

Recall that the scaling variable up is defined by 

G 
i 1 

213 
up = 

x(1-x) * 

(4.46) 

(4.47) 

(4.48) 

Collecting the above results, and using the definitions of C, C, and u, the 

production probability and cross section become 

dP(pair) = 1 da 
dx 

- - = Q y Cp G(up) 
nB2 dx 

(4.49) 

which is the result that was gotten directly from crossing! 
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5. Uniform Electric Field 

For this case, we choose the potential to be 

V(x) = -z.r;lT 2 = Eo?. (54 

In order to characterize the electric field in a dimensionless manner, we will intro- 

duce the parameter E by writing 
. 

2Na 
El)=-----6 

LB * (5.2) 

If E equals one, then the constant electric field equals the field of the uuiformly 

charged cylinder at the boundary of the pulse, b = B as described elsewhere. 

The electron phase function to order (l/p-) is 

L2Z2+ ---+ 
(D-(x) = 15’. 2 - LZ& * iy - - 

L3Z3 

2P- 
Eyp- -I- -E; 

GP- 
(5.3) 

as can be seen by direct substitution into the differential equation. Again, the final 

state boundary condition is explicit in the dependence on Z . 

The positron phase function to the same order is 

L2Z2+ 
Q+(x) = ~?i+ +LZ&$+ 2p+ EYP + 

L3Z3 
7 -E;. (5.4) 

It is again interesting to calculate the local value of the momentum defined as 

8 oc s ;=;a) * . The result here for the local transverse momentum is 

(P&Jl = P: f -LLZ . (5.5) 

We see that the electron and positron pick up equal and opposite momenta from 

the constant field as they propagate in the pulse. 
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The total phase function is 

@tot = q*L (1 -z>-- 
L2Z2 

4/kr(l - x) 
3. a; - (1-2x$ 

I 

L3Z3 *--+ 
- 

6kx(l - x) 
E&Q.bl) 

(5.6) 
The b integral over the face of the pulse in the matrix element will force the 

momentum vector s to be small (Cl 5 l/B). This is much smaller than m so 

. that Cl can be neglected in the rest of the phase. Thus the total phase can be 

separated into the terms 

L2Z2 L3Z3 (5.7) 

Qltot(Z) = +qJ(l - z> - 4kx(l _ x)x * a; - 6kx(l - x)~’ * 

The matrix element now achieves the form 

1 

M=eL dZ7” J . -3(z) 
0 

where the coherence form factor is given by 

exp[i@tot( Z>l J(Cd , 

J(W = JDd?b exp [is.c] . (5.9) 

(5.8) 

The square of the matrix element, averaged over the incident photon polariza- 

tion, is 

i c M*A4 = 2aalJ(CJj2 ] dZ1 dZ:, S exp[iA@t,t(Zl, Z2) ] . 
PO1 0 

(5.10) 

The quantities that we need are evaluated in a straightforward manner. The po- 
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larization sum is 

S(Boson) = c 7 . $( Zl) x 7’ . P( Z2) 
PO/ 

= (a;;)” - L2E;w2 . 

The phase difference is 

-AQtot( Z1, Zz))] = SW + ;r3w3 , 

(5.11) 

(5.12) 

where in this case of a constant field, 

L 72 1 
s = fj~x(l-x) 4m2+@,) 1 [ = YG 1+q,a 

(5.13) 

T-3= L 
8kx(l - x) 

[Eo”L”] = (6~)~ ($) . 

Final State Sum: 

The square of the matrix element averaged over the polarization and integrated 

over the transverse momentum of the photon is computed as before: 

JJ M*M = AldZldZ2 / $$ S exp[iA@t,t(Z1,Z:!)] J$$ ‘Jy$“2 , 

0 
(5.14) 

where now - 

A = 1 a,lr2L2B2. 
2 (5.15) 

Finally, one achieves 

JJ M * iv = ark/ $$s [-;] ;A; [;] J f+ “$$‘2 , (5.16) 
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where, using the definition of r and s , S simplifies to 

s k-1 ,“3 ,= 4m2 1+& 
1 

(A I] ‘I” * (5.17) 

Now we proceed to a series of variable changes to make this integral tractable. 

First define the familiar 

. 2)2x 
r 

yc, 1+-& 
r [ 

(A )] ‘I” ) 

and replace the integration over Al, by an integral over u . Introducing 

C, 
( > 

213 

Wo = yC,/r = t UP E u, = - 
$13 ’ 

we find the form 

(5.18) 

(5.19) 

JS M*M = a 
(27r~n~LB)~ O3 dv 

YG J 
- [2v - uc] A+) . (5.20) 
UC 

UC 

Collecting the above results, the production probability and cross section for 

the constant field case become 

dP(pair) = 1 da 
dx 

- - = a Y Cp G&c) , nB2 dx 
(5.21) 

where 

G&c> = ; 7 dv [2v - uc] Ai . (5.22) 

The entire dependence on the overall strength of the electric field is through the 

dependence of the variable uc on E . In the next section we will relate the results 

of these two field configurations in a physical way. 
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6. Connections and Limiting Behaviors 

Relation between Constant and Varying Fields 

Aside from the dependence’of the variable uc on the relative field strength E , 

which is to be expected, the main difference between these cases is the analytic 

form of the integral that defines the G(u) f unction. This gives rise to a difference in 

the limiting behavior of the production probability in the classical limit of large C 

which can be understood physically. In the case of the uniform charge distribution, 

we have (see Eq. (4.45)) 

UP @UP) = j 6t3dt 7 dv [2z+] Ai(v), 
0 UPll 

The variable t is related to al which, in turn, is related to the impact parameter 

via Eq. (4.28), (al/~,,~) = (b/B). I t n erc h anging limits and changing variables 

we can write 

co 

UP G(UP) = J dv A+) i’ $ [211(3~ - up] , (6.2) 

UP B2(UPl~13 

whereas the corresponding function in the constant field case is (see Eqs. (5.16) 

and (5.22), and recall the factor J), 

WA’&> = 7 dv Ai [2v - uc] 1’ $ . 

UC 0 

(6.3) 

As expected, the constant field case gets equal contributions from the full face of 

the pulse; the case of a uniform charge density on the other hand, has a distribution 

over the face that depends upon the field configuration. 
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It is possible to derive the uniform density case from the constant case by 

assuming that the field changes slowly. The position dependence of the field is 

introduced through E; from Eq. (5.2) th e varying field is introduced by writing 

c = b/B, so that uc = u~(B/~)~/~, and then averaging G, over the area of the 

pulse: 

2 

G(up) = $; 
O” dv 

.i J C 

u, [2v - uc] A+) , 

0 UC 

’ 0 
(6.4) 

az-1 ) 
UC 

which upon integration agrees with the result in the previous section. This is a 

very important relation and allows one to treat the general case of pair production 

and beamstrahlung from a finite region of slowly varying field. 

Incidentally, this formula also shows the main physical difference between the 

uniform charge density case and the constant field case. In the ultra-quantum limit 

of small C , both get finite contributions from the full frontal area of the pulse but 

with a distribution of (b/B)“/” in the former circumstance. In the classical limit, 

i.e. weak fields for which C + 00, pair production from a uniform charge occurs 

predominantly in a ring near the outer edge of the pulse where the field has its 

maximum strength (thus minimizing the effect of the exponential damping at weak 

fields). This ring has a radius of - B , and a width of Ab - B (1 - ( (u/U)~/~)) - 

B /C, for large C, (and Ab N B for C, -+ 0). This latter estimate follows from 

the exponential falloff of the Airy function in the integrand of Eq. (6.4). In this 

outer region, the two scaling variables should be essentially equal since E N 1 . 
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Limiting Behaviors 

Let us now examine the limiting form of our main results. The production 

probability and cross section for the general case is written as 

dP(pair) = 1 da 
dx - - = a y Cp G(u) , 

rB2 dx (6*5) 

where Cp is defined universally as m2L/(2ky). The function G(u) depends upon 

the field configuration as does its scaling variable u . It does not depend upon x 

for scalar electrons. For the constant field case 

G&c) = ; j dv [2 2, - uc] A+) , 

UC 

where up = upc-213 , and for the uniform charge density pulse, 

co 

G(UP) = T& J [ 
4 

dv 
P 

3v-2up-3 A+), 

UP 
1 

(6.6) 

(6.7) 
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Extreme Quantum Limit: In this limit in which C + 0 both uc and up vanish, 

and the integral over the Airy functions can be performed: 

G&c> - 2 91 = t gl e213 

G(UP) - $- 91 - 93 , 
P 

where 00 
J [ 3113 I’(;) 1 -1 

91 = dv vAi(v) = = 0.25887.. . 

0 
cm 

93 = 
J 

dw A+) = f . 

0 

Thus the differential production probabilities in this limit are 

(6.8) 

(6.9) 

dpc - = 
dx 

2 Q: y 91 (c e2)li3 [x(1 - x)]213 

(6.10) 

dP -= 
dx ; a Y 91 (C)‘l3 [x(1 - x)]2/3 ) 

and the total production probabilities are then achieved by integration: 

where 

PC = 2 a y 91 92 (c e”) li3 

p = ; aY 91 92 (C)‘l3 ) 

(6.11) 

1 

92 r2(+’ = J dx [x(l - x)]2/3 = ~ 

0 
w$) 

= 0.29334.. . 
(6.12) 

9192 = 0.075937.. . 
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Classical Limit: In this opposite limit of C --+ 00, the Airy functions can be 

replaced by their form for large argument. Since the exponential decrease insures 

that the important range of v is near the lower limit u , we write for large u , 

dY dv = - .w ' 

A+) N ' 2#?,1/4 exp [ 1 -;v312 +. . . 

’ 
N 2,1/2,1/4 

exp [-+3i2 - y] . 

Thus 

or more accurately, for u > 1 , 

G(UP) N 2,11~u;14 [ l+ -i&-l exp [-$-] . 

These two cases are related by 

G(UP) = [ $1 G&P> = [g-] G&P> * 

Thus the width of the contributing ring for the uniform charge case is 

Ab= LB, 
2c, 

(6.13) 

(6.14) 

(6.15) 

(6.16) 

(6.17) 

in agreement with the estimate given earlier for the classical limit. 

37 



For large C , the x-distribution is controlled by the exponential factor which 

forces x to be near one-half. Expanding about this value, the differential proba- 

bilities become 

z N y (?)‘I’ exp [-EC] exp [-EC(2x 

dP -N 
dx - 

% (-$)‘I2 exp [-$I?] exp [-+7(2x 

and thus (at E = 1) 

dP 3 dP,(t = 1) =- 
dx 4C dx * 

The total production probabilities are 

PC = $! (:)‘I’ c exp [--kc 

P = -& Pc(, = 1) . 

II2 1 
112 1 

(6.18) 

(6.19) 

(6.20) 

More accurate formulas for the latter case are 

dP 
dx = 

1$$ [4x(1 - x)1312 Qs(x) exp [--$I?(1 + (2x - I)~ )] , (6.21) 

where 

&s(x) = ’ 
[ 1-t- ’ 1 

and 

P = 2 (:)‘I’ (c+ll[: I 9 lexr+~Cl . 
32C 

(6.22) 

(6.23) 
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7. Dirac Electrons 

The extension of our analysis to Dirac electrons is straightforward. The general 

form of the matrix element for this case is 

where A is the photon field. It is convenient to use a chiral basis for the Dirac 

spinors. The Hamiltonian and the Dirac equation take the form H S(r) = E Q(r) , 

which, written in terms of the ordinary two-component Pauli matrices, is 

--iT+.~+v m 
H= 

m +a?+v 

The wave function will be written as 

, 

(7.2) 

(7.3) 

where @a(~, b) is the Klein-Gordon phase function. 

For zero external potential, @ = p * r , and the solution for an electron of 

momentum p is 

$u[O] = + NC 1 + & 2 . j? 

while that for a positron of momentum p is 

+u[O]=+Nc 1+&g+ wt 
> 

(7.5) 

$Q[O] = - NC 1 - & 7? . -T;’ ZLQ , 

where the basic two component spinors W* for both the electron and positron and 
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the normalization are given by 

“+ = (;) w-,= (:> (7.6) 

The equations satisfied by the upper and lower components in the presence of the 

external potential are 

m&[V] = E - V + 77’. (VQ) - i??' -7 
> 

$r[V] 

Using the equation satisfied by the phase function, the second order equations 

satisfied by these components are 

[ 2i(j7@). 7 + q2 - i2. eX(r) 1 wu[V] = 0 

I 2i($@). 7 + G2 + i-2 * eZ(r) 1 w/[V] = 0 . 

(7.8) 

For both the electron and positron solution, we must demand continuity at z = L 

with the final state plane wave. Thus the matrix element (7.1) splits into a phase 

factor that is the same as that found for the spin zero case, and a spinor factor 

which will be computed below. 

The solutions correct to order (l/p) are achieved by using g = p (leading 

order only); we find (Z = 1 - z/L) 

wu[V] = 

[ 
1 - g2. e3 1 wu[O] Wl[V] = 

[ 
1+$. eXi!Z 1 wl[O] . (7.9) 
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These solutions can be simplified by expanding. To the order required we have: 

Electron-positive helicity- 

WJV] = 
[ 

1, -I+ 
l+- 

2P- 
0 I * Plot 1 w+ Wl[V] = + [ 

--f 
m-dl*P;c 

2P- 

Electron-negative helicity- 

wp] = 
m+-;;fl*P;c [ -1 2P- 

W- wr[V] = + 
[ 

1, _r 
l-- 

2P- 
u 1 * Plot 

Positron-positive helicity- 

wu[V] = 
[ 
1+ 

1 T 
-21 * Plot ws 
2P+ 1 

WS 

(7.10) 

W- 

(7.11) 

-7 
Wl[V] = - 

m - 21 * Plot [ 1 2PS 
W+ 

(7.12) 

Positron-negative helicity- -T * wp] m + 21 = [ Plot 2P+ 1 W- W/[V] = - i 1- - 1, 0 2PS I *Plot 7 1 w- ) 

(7.13) 

where the local momenta are given by Eq. (4.5) and (5.5), 

(7.14) 

when evaluated at the stationary point. 
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The matrix element of the current is straightforward to evaluate from these ex- 

plicit solutions to the order required. The non-helicity flip current matrix elements 

have the form 

( T I=71 T > = 2kxc;-x) [+E-A(Z) + ii +X B(Z))] (7.15) 

( IF+* TI1> = 2kx(;-x) [-C.-~(Z) + ii +x B(Z))] , 

where 

A(Z) = XPl+,, + (1 - X)PG, = V-J + (1 - x)pl - (1 - 2x)eELZ 

W) = XP;t,, - (1 - X)pL, = Xp: - (1 - x)pl + eELZ . 

(7.16) 

The electric field E may also depend implicitly on the coordinate 2. The helicity 

flip matrix elements are 

(7.17) 

( IICY” ?I r> = 2kx(: - x> 
+z: + icy) . 

Now the average over the photon polarization and the sum over the final helicity 

states can be carried out. One must also evaluate the field E at the stationary 

point in impact parameter, and in the square of the matrix element keep track of 

the two integration variables, 21 and 22. The form for the polarization average 
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of the two non-flip amplitudes is 

Sum(non - flip) = 

and an explicit calculation yields 

Sum(non - flip) = k [A(&) . A(.&) + B( 22) . B(G) ] , 
s 

(7.19) 

where N, = [21cz(l - x)]~ . 

Using the explicit expressions given earlier, Eq. (7.16), we find 

Sum(non - flip) = & [x2 + (1 - x)~] S(boson) , (7.20) 
s 

where S(boson) = P(Z2). P(Zr) from Eq. (4.21). The two flip amplitudes yield 

Sum( flip) = 

= +2m2. 
s 

(7.21) 

Taking into account the differing normalization conventions between fermions 

and bosons (recall the wave function normalization factor of [8k3z(l - X) ] in the 

rate calculation), the fermion result can be directly related to the boson result by 

the simple substitution 

:: 

S(fermion) = SNF(~) S(boson) + SF(~) 4m2 , (7.22) 
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where 

&v(x) = 
x2 + (1 - X)2 

X(1 - X) 

SF(X) = l 
X(1 -X) * 

(7.23) 

Spin Effects and Limiting Behaviors: 

Using the above substitution, one now finds instead of Eq. (6.6) the simple 

result 

dP(pair) 
da = Q,YC~G(U,X), (7.24) 

and for the constant field case, 

03 

Gc(uc,x) = L 
J 

dv [~‘NF(x)(~~ - uc) + &(x)uc] Ai(v) , (7.25) 
UC 

UC 

where the relation uc = up6 -2/3 exposes the dependence on the overall field 

strength. For the uniform charge density pulse, Eq. (6.7) becomes 

G(~p,x) = & Tdu [&i(x) (3-p 
UP 

-2) +2sr(x)up(1-~)] Ai( 

(7.26) 

Extreme Quantum Limit: In the limit of C + 0, the differential production 

probabilities are (see Eq. (6.10)) 

dPc - = 2 (2 y g1 (c t2)1’3 [x(1 - “)12/3 SN&) dx 

(7.27) 

dP -= 
dx ; c-x Y g1 (W3 [x(1 - x)12’3 &vF(X:) , 
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and the total production probabilities are then achieved by integration: 

PC = 10 ay gr g2 (cc2)1’3 

P A ; cry g1 g2 (cp3 ) 
(7.28) 

which are a factor of 5 larger than the scalar boson case (compare Eq. (6.11)). This 

latter formula is shown in Fig. 1 and compared to an exact numerical integration. 

Classical Limit: In the opposite limit of C --+ 00, the differential probabilities 

become (refer to Eq. (6.18)and expand the exponential dependence on C, ) 

dP - 
dx 

S(x) exp [-LC] exp [-$(2x - l)?] 

(7.29) 
w 

S(x) exp [-$?I exp [-iC(2x - lj2] , 

where 

S(x) = [4x(1 - x)]3’2 [SNF + SF] . (7.30) 

Thus (at c = 1) we still have the relation 

dP 3 dP& = 1) 
=- 

dx 4C dx ’ 
(7.31) 

Using the fact that x is forced to one-half as C becomes large, we find that the 

spinor case is larger than the scalar case by the factor S,~(l/2) + SF( l/2) = 6. 

The total production probabilities are then (refer Eq. (6.20)) 

p, = y (i)“’ 6 exp [-EC] 

(7.32) 

P = -& Pc(E = 1) . 
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More accurate formulas for the latter case of a uniform charge density are 

dP - 
dx 

-A!AY- [4x(1 - x)11/2 Q(x) exp 
= 4&z 

-:C (1 + (2x - 1)2 )] , (7.33) 

where 

Q(x) = 
x2 + (1 - x)2 1 

[ 
1+%.p + 

1 [ 1+v ’ 1 
and 

P = % (4)‘” [c: 3l exp[-:C] . 
2 

(7.34) 

(7.35) 

This latter formula is shown in Fig. 1 and compared to an exact numerical 

integration. In Fig. 2 a graph of the normalized x-distribution for several values 

of C are shown. The narrowing of the distribution for increasing C is evident. 

Finally, in Fig. 3, a comparison of the total production probability for spinor and 

scalar electrons are shown as a function of C I 

A more complete discussion of the effects of pair production during pulse cross- 

ings will require a folding of the multi-photon spectrum into the production proba- 

bilities calculated here. If this folding process yields a pair production rate that is 

an important source of background, then one can change the collision geometry as 

has been suggested by Palmerf3 and/or choose collider parameters as far into the 

classical regime as is necessary. For example, by using ribbon pulses to increase 

the effective value of C -+ D = C G, in the notation of Ref. 8 , the beamstrahlung 

is decreased and in addition, the subsequent pair production is suppressed expo- 

nentially. 
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FIGURE CAPTIONS 

Figure 1. The total spinor pair production probability (divided by cy y) as a function 

of C . The solid curve is the exact (numerical) result. The dashed curve is 

the approximation given in Eq. (7.35) re evant 1 for large C , while the dotted 

curve is Eq. (7.28) which is a small C expansion. Typical values for the 

product cy y lie in the range 1 - 5. 

Figure 2. The x-distribution of the produced pair as a function of the scaling variable 

C for larger C values. Each curve is normalized to unity. Note the narrowing 

of the curve as C increases. The alternative scaling variable x (= l/C) used 

in Ref. 11 is also given. 

Figure 3. The total pair production probability (divided by o y) as a function of C 

for spin one-half electrons (solid) and for scalar electrons (dashed). These 

curves were computed by numerical integration of the exa.ct formulae. 
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