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1. INTRODUCTION 
- - 

The purpose of both linear and circular accelerators is, of course, to accelerate beams of 

charged particles. In order to do this it is necessary not only to accelerate particles but also 

to confine them transversely so that they remain in the vacuum environment. Originally, as 

accelerators were developed, the intensity of the beams was rather low and so the external fields 

could be applied without regard to the effects of the space-charge forces of the beams. However, 

as the demand for high intensity increased, collective effects that are due to the space-charge 

forces became increasingly important. 

What do we mean by collective effects. 3 In order to control a beam of particles we apply 

external fields. These focus the beam transversely and accelerate it and focus it longitudinally. 

In addition to these externally applied fields a particle within the beam feels a field due to the 

charge and current of all the other particles in the beam. By collective effects, we mean all those 

modifications to the beam behavior which are due to these beam-induced forces. As an example, 

let’s consider a beam of particles of one charge. If these particles are at nonrelativistiF energies 

then they tend to repel one another. Thus, we need external focusing to control the natural 

divergence of the beam, and also to counteract the divergence due to space-charge forces. At 

higher energies, when u N c, since like currents attract, the electric repulsion due to the charge of 

the beam and the magnet attraction due to the current in the beam tend to cancel. Unfortunately, 

the vacuum environment (RF cavities, bellows, beam position monitors, and other discontinuities) 

tends to spoil this cancellation of electric and magnetic effects. For this reason it’s necessary to 

study the effect of these beam induced fields even at very high energy. 

- Since in this particular paper we are going to discuss many different effects, it’s useful to 

discuss the philosophy of organization. Basically, we have a 2 x 2 x 2 organizational problem. The 

first two major topics are linear and circular accelerators. In the linear accelerator case, we will 

consider as examples only electron linacs that have relatively high energy and so particles will have 

u 1: c. For circular accelerators we’ll consider both protons and electrons or their anti-particles. 

The next two topics are single bunches and multi-bunches. In both linear accelerators and 

circular accelerators the particles have a bunched character because they are accelerated by an 

RF system, and the RF system has a natural wavelength. There is a particular point on the 



I 3 
RF wave that’s optimal for the bunch to sit. There are other non-optimal points that typically 

don’t have any particles, and thus there is a bunched character to the beam. In many cases there 

is only a single bunch in an accelerator but in other cases there are many bunches. By single 

bunch effects, we mean those effects which happen within a single bunch. These are dominated by 

wakefields which tend to be strong over one bunch length. Multi-bunches are typically separated 

-by a distance which is long compared to the size of the bunch and are coupled via a long-range 

wakefield. For this reason, we will tend to divide the problem into single bunches with rather short 

wakefields and multi-bunches with rather long wakefields. In the impedance domain, this means 

that we consider rather broad band impedances for single bunches and narrow band impedances 

for multi-bunches. There is an intermediate wakefield region which will also be discussed in the 

final section. , 

The next two topics arise from the natural separation of longitudinal and transverse effects. 

The two transverse degrees of freedom in an accelerator are rather similar and thus can be 

treated in the same way. This is not true for the longitudinal degree of freedom in both linear 

accelerators and circular accelerators. In an electron linac where the velocity is near the velocity 

of light, the particles have a fixed position relative to one another within the bunch. On the other 

hand, in a circular accelerator, for both electrons and protons, the particles of higher energy or 

lower energy travel different path lengths and have different velocities; thus they exchange their 

positions longitudinally. Therefore, the main difference between linear and circular acc;lerators 

is the circulation longitudinally in circular accelerators. The case of proton linacs is analogous to 

the case of circular accelerators; since the velocity is significantly less than the velocity of light, 

there is longitudinal circulation. 

Since this paper is an overview of an extremely rich and broad field, it is impossible to cover 

all the material on all the subjects just listed. Therefore, in each case a few subtopics will be 

selected to illustrate the physics. There is a small amount of theory in the paper; in many cases the 

theoretical results are stated and sometimes data are given from experiments. From the overlap of 

subjects just discussed, we have 8 topics. These are collected in chapters 4 and 5. In the next two 

chapters, we discuss the basics of longitudinal and transverse motion in storage rings. In these 

cases we consider the most straightforward of collective effects, potential well distortion induced 

by the collective force of the distribution of particles in the beam. For more detailed articles 

and references, the reader is referred to the proceedings of U.S. and CERN Particle Accelerator 

Schools listed in Refs. l-3. 
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2. LONGITUDINAL BASICS 

2.1 THE EQUATIONS OF MOTION 

In order to begin the discussion of longitudinal motion, it useful first to define the coordinate 

system. In Fig. 1, we see the coordinate system which will be used in the discussion of circular 

-accelerators where 

s = pet, 8 = wet, revolution period To = z 
wo ’ 

EO = reference energy . 
(2.1) 

Fig. 1. The coordinate system for a circular accelerator. 

It is useful to define beam coordinates. To do this we pick a reference particle rotating at wg 

and perform a transformation to a rotating coordinate system. That is, we let 

6 = q5+wot . (2.2) 

Thus, C$ is just the angle relative to the moving reference particle. In addition, it is useful to 

define the relative energy deviation E 

E - E. 
fZ= 

Eo 
P-3) 

In many cases we use the longitudinal distance in terms of a time unit rather than an angular 

unit. In this case, we define the variable r given by 

r is simply the “distance” from the reference particle in time units; it is sometimes more convenient 

than the variable d. 
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Now let us derive the longitudinal equations of motion. If we consider the time derivative of 

4, we see that it is equal to the frequency deviation from the reference particle. That is 

dcj de -=-- 
dt dt 

WI-J = w - wo . 

However, we know that the relative frequency difference in a beam is related to the momentum 

di.fI’erence, 
w-w0 Aw E - E. -=--.-e- = -?jc 

wo wo ’ Eo 
P-6) 

where q is the frequency slip factor. In terms of the momentum compaction factor c~ we have 

,=,-1 
r2 - 

Rewriting Eq. (2.5), we obtain 

(2.7) 

Next we need an equation for the relative energy deviation E. The energy of the beam can 

change due to three effects. First, it changes due to the applied RF voltage. Next it can change 

due to the interaction of the beam with the environment. Finally, it changes due to synchrotron 

radiation of single particles in the bending field. 

In this section, we will neglect the loss of energy-due to synchrotron radiation alth&gh this 

is easy to include; it results in the shift of the stable phase angle. For the purposes of deriving 

a differential equation for E, let us assume that the change in energy is small in one turn., This 

allows us to express the difference in E which is obtained in one turn as a differential with respect 

to time rather than a difference with respect to time. In this case, the energy gain is simply 

the integrated voltage gain in one turn; to obtain the equation for the derivative of c, we simply 

divide by the revolution time, which yields, 

de eV (4, t) 
dt= EoTo 

(2.9) 

In this case V(q5, t) is th e integrated voltage for one turn for a particle at 4 and t from all sources. 

The differential equation is a rather good approximation provided that V is sufficiently small. 

Combining Eqs. (2.8) and (2.9) we obtain 

d24 -2wW, t) -= 
dt2 EoT,2 

If we rewrite Eq. (2.10) in terms of the variable r, we obtain 

d2r rleJ% t) 
dt2=- EoTo ’ 

(2.11) 

Eq. (2.11) is a second-order differential equation for the longitudinal deviation from the 

reference particle. We will find that it is useful to construct a Hamiltonian for the motion. The 
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effective Hamiltonian for Eq. (2.11) is given by 

T 
H=!f+” EoTo V(~‘,W’ - 

/ 
(2.12) 

It is straightforward to show that we obtain Eq. (2.11) by simply applying Hamilton’s equations. 

In this case, the canonical momentum p is 

dr Aw p=-&=---&=-qc . (2.13) 

-_ So what is V(7,t) that appears in Eqs. (2.11) and (2.12)? Neglecting synchrotron radiation, 

V(T, t) is given by 

V(O) = &f(r) + VW(G) (2.14) 

where V~(T) is the integrated voltage gain for one turn due to the external RF. That is 

Vrf(7) = Csin w,f(r - re) . (2.15) 

Here wrf is the RF frequency and 70 is the stable phase angle. In further-equations we.will set 

70 = 0. On the other hand, Vw(~,t) is the wake potential. That is, it is the integrated voltage- 

gain of a particle at r and at time t due to the fields induced by the beam in the surroundings _ 

(e.g., bellows, RF cavities, etc.) in one turn. 

If we neglect VW (7, t), and examine the motion for small r, we find 

seQ4fr = o 

EoTo 

(2.16) 

In this case the motion in the longitudinal direction is simple harmonic with a frequency given 

by’. - 
A 

w2 = vVw,f 
8 EoTo 

. (2.17) 

If we look at the Hamiltonian for this motion, we simply expand and keep up to quadratic terms 

(dropping any constant terms) to find 

(2.18) 

The Hamiltonian in Eq. (2.18) is a constant of the motion since it has no explicit time dependence. 

Now that we have found a constant of the motion for externally applied RF, it is useful to see 

how this is modified by the wake potential VW (T). 
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Consider the case when the distribution of particles is stationary (not oscillating in time). In 

this case, the wake voltage is only a function of r and not a function of t. From Eq. (2.12) we 

can write the Hamiltonian as 

which is again a constant of the motion. We see that the wake potential has modified the effective 

potential well in which the beam particles oscillate. Before discussing the effect of this potential 

well distortion, it is useful to discuss the wake potential. 

2.2 THE COLLECTIVE FORCE 

2.2.1 The Longitudinal Wake Potential 

We are faced with a dilemma here. We need to know the bunch distribution in order to 

calculate the field that it induces in the environment. But in fact, those fields change the bunch 

distribution. The solution to this problem in the time domain is to calculate a Green function or 

wake potential and in the frequency domain to calculate an impedance function. Since the time 

domain and the frequency domain are useful for different applications, we must discu2s both. 

Let us consider two particles traversing a structure at v = c (see Fig. 2). The first particle of - 

charge Q induces a longitudinal electric field E,(z,t) along its path. The second particle behind 

a distance T and also traveling at speed c sees the field E,( z, 5 - 7). Given this electric field, the 

wake potential per unit charge felt by the trailing particle is defined to be 

w=(r) = +/E&z, I - T)dz : 

3-09 6327A2 

Fig. 2. Two particles passing through some structure on axis. 

Note that the integral must extend wherever the field is non-zero. To add up the effects of a 

bunch of particles we simply use linear superposition. Let us consider a current distribution I(r) 



defined so that 
8 

/ 
Id7 = eN = Total Charge . (2.21) 

In this case, the voltage induced by the current distribution 1(r) is given by 

VW(‘) = 7 W(r - #)I(T’)d# = j?(~ - #)W(#)d# . (2.22) 

-CXJ co 

It is useful to note some properties of the wake function of W(r). S ince the particles are travelling 

at. a velocity equal to c, then by causality the wake function r must vanish ahead of the bunch, 

that is 

W(r)=O, 7>o . (2.23) 

There is one caution here. In the definition of the wake function, we have held the bunch rigid 

as it passes through the structure. In a linac this is strictly true for v = c. However, in a storage 

ring this is only true for a short structure. It is not true for long distances since 77 # 0 and thus 

particles within the distribution can oscillate longitudinally. If, however, the accelerationvoltage 

is sufficiently weak and the synchrotron frequency is sufficiently small, then it is possible to use- 

this integrated wakefield to approximate the actual wakefield that the bunch would have as it - 

travels through the structure. 

2.2.2 The Impedance 

Impedance is usually defined as the Fourier transform of the wake potential. That is 

- 00 
Z(w) = / wwe +iWT& , (2.24) 

-03 

which means that the wake function can be expressed in terms of the impedance as the inverse 

Fourier transform 
00 

W(r)‘= & 
/ 

Z(w)e-iwrdw . 

-CO 

(2.25) 

The units of wake potential given here are volt/coulomb while the units of impedance are ohms. 

It is useful using the impedance to write the wake function due to a distribution of particles. To 

Jo this, let us define the Fourier transform of the wake voltage VW(T) and the current distribution 



I(r). These are given by 

VW(T) = & /m v(w)emiwrdw , 
-CO 

I(r) = & 7 y(w)e-iwrdw . 

Thus, the full wake voltage is simply 

VW(~) = k 7 dwZ(w)~(w)eviwr 

-CO 

(2.26) 

(2.27) 

or, in other words, we have 

i&(w) = T(w)Z(w) . (2.28) 

Thus, a convolution integral in the time domain has turned into a simple product in the frequency 

domain. 

Now that we have expressed and defined the wake potential in term’s of properti& of the 

current distribution, it is time to return to study potential well distortion. 

2.3 POTENTIAL WELL DISTORTIONS 

In Section 2.1, we found that the constant of the motion depended on the wakefield. Recall 

that 

W2T2 
H=;+++e 

EoTo ?- VW wrl 
J 

co 

J 
S(r - r’)I(r’)dr’ 

-CO 

(2.29) 

where 

(2.30) 

Since this Hamiltonian is not explicitly a function of the time, it it a constant of the motion. 

Now we must find out how this constant of the motion is related to the distribution of particles. 

To do this, consider a distribution $(r,p,t), that is, a distribution which is a function of the 

coordinate, the canonical momenta and possibly the time t. Due to Liouville’s theorem, the total 
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time deriative of $ with respect to t vanishes. That is 

dG 0 dt= * 

Expanding using the convective derivative we find 

w. .a+ .a+ z+rz+p-=0 . 
dP 

(2.31) 

(2.32) 

Eq. (2.32), known as the Vlasov equation, is the equation of motion for the smooth distribution 

in phase space given the equations of motion which determine i and j in terms of r and p. The 

requirement for this to be a stationary distribution is simply that 

When we express i and lj in terms of the Hamiltonian we find 

dH th,5 aHW o -----= 
dp dr ar dp ’ 

(2.34) 

We would like to find the solution to this equation which is only a function of r and p and 

not an explicit function of the time t. As a guess, let us consider a function $ which is a function- 

only of the Hamiltonian. That is, it is a function only of the combination of r and p which occurs - 

in the Hamiltonian. We know, in fact, that this combination of r and p is an invariant. Using 

the chain rule, it is straightforward to show that in this case Eq. (2.34) is satisfied. However, we 

are far from finished. We have to close the system. First we select a normalization condition for 

tilr(? P) 

// 
~[H(w)ld~& = 1 . (2.35) 

Then the longitudinal current distribution is given by 

Ilr[H(~,p)ldp - (2.36) 

Now if we substitute the expression for the Hamiltonian into the representation of the current in 

,: Eq. (2.36) we obtain 

I(r) = eN 

cm 

WV 
f + * + & S(r - T’)I(T’)dT’ . 

-W 1 (2.37) 

Even though we’ve specified that the distribution function is a function only of the invariant, we 

are not done until we also satisfy the consistency condition in Eq. (2.37). That is the hard part. 



11 

For an electron beam which is subject to radiation damping and quantum excitation, the 

bunch reaches an equillibrium distribution which is an exponential in the Hamiltonian. Thus, 

this yields a Gaussian distribution in p. This distribution is given by 

ccl 
2 r2 

+=gupexp -$,-a- 
rle 

w; EoToa; / 
S(r - r’)I(r’)dr’ 

-CO 

where 

ap = Prms = rlcrms = 77 
(E - Eo)rms 

Eo 
, 

OP uo = - = r,,, as N + 0 , 
W S  

and K is the normalization factor. If we perform the integral in Eq. (2.37) and recal 

of ws, then we find the consistency condition for a Gaussian beam 

S(r - r’)I(r’)dr’ 1 

(2.38) 

(2.39) 

the definition 

(2.40) 

where p is wde cos 40. 1 -s. 

To continue in this section it is useful to consider some examples of potential well distortion.5 

Let’s look at four examples; an inductive wake, a resistive wake, a capacitive wake, and a real 

wakefield from the SLC damping ring. That is, let’s consider the wake voltage given by 

VW = RI (2.41) 

7 

VW = $ Idr’ . 
J 

The examples for each of the wakefields shown are given in Figs. 3, 4, 5, and 6. In Figure 3, you 

see the effect of an inductive wakefield at several values of intensity. For the lowest intensities 

the distribution is Gaussian and at the higher intensities it is parabolic for y >> 1 and Gaussian 

at the tail. You see in Figure 3 that the bunch lengthens and becomes non-Gaussian because its 

full-width-at-half-maximum differs markedly from that for a Gaussian. In Figure 4, you see the 

effect of a resistive wake. Unlike the inductive wake, with the resistive wake the bunch centroid 

shifts back on the RF. This is due to the loss of energy with a resistive wake. The bunch must 

move on the RF so that it’s supplied energy by the RF to make up this loss. Notice that the 

bunch length changes only rather slowly. 
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2.5 

3-89. 

-5 0 5 0 20 40 
X I- 6327A19 

0 

Fig. 3. Bunch shape changes for a perfect inductor, 

y = Ll/$‘~o~), I? = LeN/(&c$), x = r/m,. 

3-89 

2- 
,’ ,* .o .’ ** 

: .* 
.* 

.* 
0, 

.’ 

l -- 
_______- =G- 
: 

’ ~;w~,2.355~ - 

(b) - 
1 _ 

-5 0 5 -0 2 4 6 8 
X r 6327A2C 

Fig. 4. Bunch shape change and centroid shifts for a perfect resistor, 

y = RI/(Tjrfoo), I’ = ReN/(p&), x = r/cm. 

For the capacitive wake in Fig. 5, we see a different situation. Since the capacitive wake is 

also lossy due to the charging up of the capacitor as the bunch goes by, the bunch centroid once 

again shifts back on the RF. However, the bunch length, in this case, actually shortens rather 

than lengthens. This is easy to understand due to the slope of the RF. For an inductive wake, 

the slope due to the wakefield is actually the opposite sign as that due to the external RF. This is 

because the example chosen is above transition energy. For capacitive wake the opposite is true. 

The slope due to capacitive wake function is actually the same sign as that for the RF; this leads 

to additional focusing and a shortened bunch length. 

In Figure 6, we finally see bunch lengthening for the damping ring of the SLC.’ The damping 

ring wakefield is dominated by inductive and resistive components. You see that the bunch widens 

as well as the centroid shifting. However, the centroid doesn’t shift simply linearly, it rolls over. 

The reason for this is that longer bunches tend to lose less energy while shorter bunches tend 
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.., ._ v OX 1 

0 

Fig. 5. Bunch shape change for a perfect capacitor, 

y = I/(l&C),I’ = eN/(i&uoC), x = r/uo. 

-0 

- 0 

l- 6327A21 

0 1 2 3 0 1 2 3 

3-89 N/10" N/l 0" 6327A22 

Fig. 6. Bunch lengthening and centroid shifts for the SLC damping rings. 

Plotted points are data. Solid and dashed lines are calculations. 

to lose more. Thus, the bunch lengthening which takes place due to the inductive part of the 

impedance actually decreases the amount of energy lost to the resistive part of the impedance. 

The data in Fig. 6 are plotted as open or closed circles, and the lines correspond to a 

calculation of bunch lengthening using the calculated wakefield for the SLC damping ring. 5’7 In 

Figure 7 you see a comparison of the distribution of particles obtained from measurements (open 

circles) to that obtained from the calculations using the damping ring wakefield.5’7 In both Figs. 

6 and 7, the agreement between the measurement and calculation is excellent. 

In this section we have seen how the fields induced by a bunch of particles can affect the actual 

distribution of particles and how that distribution and field can be obtained in a self-consistent 

way. This leads to a change in the distribution function as the current is increased in a bunch 

of particles. We have not thus far discussed the question of whether this distribution is stable. 

Before continuing to discuss the stability of the longitudinal distribution, we will turn now to the 
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Fig. 7. Longitudinal bunch distribution for several values ofintensity. -’ 

Plotted points are data; solid curves are calculations. 

study of transverse motion to see the analogous effects in the transverse dimension. 

3. TRANSVERSE BASICS 

3.1 EQUATIONS OF MOTION 

For a particle moving in a linear or circular accelerator focused by transverse magnetic fields, 

the-equation of motion for the transverse displacement is given by 

d2y 
ds2 + %)Y = 0 

where 

K(s) = -$$ . (34 

(3.1) 

We include the effect of some coherent force FC on the right-hand side of the equation as follows: 

d2y 
a+K(s)~ = ” P2ymc2 ’ P-3) 

In many cases it is useful to discuss the motion in terms of a smooth approximation. In this case, 

the focusing function K(s) is replaced by a smooth focusing function k2 which yields the average 
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focusing effect of the lattice. In this case, the equation of motion becomes 

d2y ds2 + k2y = 
FC 

P2+ymc2 . (3.4 

- - 3.2 THE COLLECTIVE FORCE 

The transverse wakefield for a structure is defined in a way analogous to that for the longi- 

tudinal wake. Consider two particles moving in a structure at v = c, but offset by an amount 

x0. (See Fig. 8.) The first particle of charge Q induces a field EJz,t) and (77’ x 2),(z,t). The 

second feels the transverse force which is evaluated at the time t = z/c - r. The wakefield is then 

defined as 

W (r) = & j /[ Y iT+3xz 
0 1 I L/C--7 dz (3.5) 

where L is the length of integration. For small L the transverse kick experienced by the trailing 

particle is 

x6efore - xk = 
Ax’ = eQb(-GoL 

2 E - (3.6) 

Notice that the factor L appears both in the definition in Eq. (3.5) and.also in Eq. [?,6). In 

some cases, this factor L is included to obtain the wake force per unit length and in other cases- 

it is excluded. 

- 
3-69 6327A3 

Fig. 8. Two particles offset from the center line by x0 traversing a structure. 

As in the longitudinal case, it is also useful to define a transverse impedance. In this case, we 

set the transverse impedance equal to the Fourier transform of the wakefield as follows 

00 

21(w) = -i 
/ 

Wl(r)e+iWTdr . (3.7) 
-03 

Notice that the factor of -i has been included in the definition. This is conventional and is done 

so that it is the resistive part of the transverse impedance that causes instability. A  transverse 



10 

wakefield written in terms of the impedance is then given by 

- In this case, if we leave out the factor of L in Eq. (3.5), th e units for the transverse wake are 

volt/(coulomb m ) and the units for the transverse impedance are ohm/m. It is important and 

interesting to note that the transverse wakefield is rather different from the longitudinal. In 

Figs. 9 and 10 we see a comparison of the transverse wake and the longitudinal wake for the 

SLAC linac.* The transverse wake is composed of a sequence of sine-like functions, while the 

longitudinal wake is composed of a sequence of cosine-like functions. 

2 

0 
0 1 2 3 4 5 

3-89 s/mm 
0 20 40 60 80 100 

s/mm 6327A15 

Fig. 9. Transverse wakefield per cell for the SLAC structure for 

a particle at the iris radius. The dashed line is a linear 

approximation to the wake seen by a 1 m m  bunch. 

8 _ 8 

4 

0 

-4 
0 1 2 3 4 5 0 20 40 60 80 100 

3-89 s/mm s/mm 6327A16 

Fig. 10. Longitudinal wake per cell for an average SLAC cell. The solid 

curve includes an analytical extension for the high frequency behavior. 
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Thus the longitudinal wake has a finite value as the separation between the test particle 

and the leading particle goes to zero, but the transverse wake goes to zero as the test particle 

approaches the leading particle. The effect of a transverse wake tends to decrease as the bunch 

length gets shorter, while the effect of the longitudinal wake tends to increase. 

3.3 POTENTIAL WELL DISTORTION - - 

For a very high energy particle bunch, the transverse wake vanishes on axis. However, for low 

energy bunches there is a space-charge force due to the beam directly and also due to the image 

currents and charges in the wall. Let us consider a uniform distribution of charge transversely 

and longitudinally in the form of a cylinder and let us imagine that the walls of the vacuum 

environment are far away and let the cylinder have a radius a. Then the transverse force for a 

particle at transverse position y is given by 

F 
Y 

= 2e2ht 
y2a2 

. . . 

where X is the line density. This equation should be very familiar from calculations of static 

electric fields due to a cylindrical uniform line charge. The only difference is due to the factor 

of 7= in the denominator which arises from the cancellation of the electric and magnetic effects. 

Notice that in this case the field is purely linear within the charge distribution. Outsize of the 

beam the field decays inversely with the distance away from the beam. - _ 

What is the effect of this space-charge force on the individual particles? In the previous 

sections, we discovered that we had to calculate a self-consistent distribution longitudinally. In 

this case, ideally, one must also find a self-consistent distribution. However, if the effect is small, 

that is if the space-charge forces are small compared to the externally applied field, then the 

distribution actually changes very little. However, in the transverse case in a circular accelerator, 

in spite of the fact that the transverse distribution changes little, the space-charge forces can 

have a profound effect on the single particle dynamics. If we recall the equation of motion, and 

substitute the space-charge force on the right-hand side then we find 

y” + K(s)y = Fc 
2roX 

p7mc2 = p2r3azy 

! : which for a longitudinally uniform beam becomes 

TON 
y"+ WdY = TRp273a2Y 

where the line-charge density has been replaced by X = N/(27rR), and ro is the classical radius of 

the particle considered. Since this is a linear term, it shifts the tune of the machine; that is, each 

particle in the beam will have the transverse oscillation frequency modified by the space charge 
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effect of the whole beam. To calculate this effect, it is useful to recall the tune shift formula due 

to a small gradient perturbation in the circular accelerator. In this case, the tune shift is given 

C 

AZJ = & / K(+(s)ds , 

0 

(3.12) 

Since the space-charge force is uniform around the ring, it is the average p function which is the 

most relevant. If we let Pave N R/v, then the tune shift formula becomes 

Au2LEZLL 
2Xv ,B2r3 a2 

(3.13) 

where u is the unperturbed tune. Eq. (3.13) is called the Laslett tune shift.g In a bunched 

beam, of course, we need to include an additional factor which takes into account that the local 

current is higher in a bunched beam than in a coasting beam. And in the actual case, we must 

also take into account the beam environment, that is, the actual vacuum chamber impedance. 

These modify the formula, but the basic scaling remains the same. 

In addition, since most beams are not actually uniform, there is a tune spread rather than 

simply a tune shift. That is, the tune shift is actually a nonlinear function. In this case, particles .- .w. 
in the tail will have very little tune shift while particles near the center of the beam would have- 

a larger tune shift. Eq. (3.13) given above is then a very good estimate of the tune spread of the - _ 
beam. If we have such a tune spread in a beam, then in order to avoid resonances, say integer and 

half integer resonances, it is necessary that Au 5 i. This is a limit on the accumulated current 

in proton accelerators. The typical solution to this problem is to inject at higher energy either 

with a higher energy proton linac or with a booster synchrotron. We see that the gain is quite 

rapid as the injection energy is increased because Av cc r-3. 

Let us now summarize the results of the introductory sections on longitudinal and transverse 

dynamics of particles under the influence of their wakefields. In the longitudinal case, we found 

that the beam lengthens due to the influence of the wakefield. This is due to a change in the 

focusing forces experienced by the particles longitudinally and results in a redistribution of the 

charge. The analogous effect also happens transversely; however, the strengths of the field which 

are tolerable transversely are small, because they lead to a tune spread in the beam which causes 

the beam to overlap resonances. The redistribution effects are important transversely in devices 

which have low energy electron beams; such as klystrons, or in transport systems for heavy ions. 

Now that we have studied these incoherent effects on the stationary particle distribution, it is 

time to discuss the stability of these distributions to coherent perturbations. In the next sections, 

we begin the study of collective effects by starting with the longitudinal. 
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4. LONGITUDINAL EFFECTS 

4.1 LINEAR ACCELERATORS 

In this section, we consider the longitudinal effects due to the wakefield in a high energy 

electron or positron linac. In a high energy linac, the particles travel at v = c and thus remain 

-fixed longitudinally; therefore, there are no instabilities. However, the wakefield causes particles 

to lose more or less energy depending on their position in the bunch and depending on their 

position in a train of bunches. These effects can be compensated somewhat by using the slope of 

the external RF or the fill time of the accelerator structure. In the first section, we will consider 

the effects of the single bunch. 

4.1.1 Single Bunch 

For a single bunch in a linear accelerator, only the short wake is relevant. The wakefield 

causes particles to lose more or less energy depending on their position in the bunch. This effect 

can be compensated somewhat by using the slope of the external RF; however, this does yield 

some minimum energy spread for a given longitudinal charge distribution. To begin, we note that 

a particle within a bunch feels an acceleration due to the external field given by 

(4.1)- 

where we have defined q5 = 0 as the bunch center and 4 = 40 as the peak of the RF voltage. 

Relating this to the variable r defined earlier, we see that 

On the other hand, the decelerating field due to the longitudinal wake is given by 

qs=w,fr . 

dE --OO 
dz=- J 

I(r - +V(~‘)d# , 

0 
03 
I- 

(4.2) 

(4.3) 

J I(T)dT = Q . 

--co 

Since we know the wakefield and the density of particles at each point along the bunch, we can 

calculate the total energy loss or gain by the bunch. Using linear superposition, this is given by 

cm 

hot Q= = 
--oo 

-CO 

I(7 - #)W(8)d8 . 

0 

(4.4 

In many cases, the longitudinal wakefield is expressed as a sum of modes with loss factors. In 
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this case, the longitudinal wake can be written 

WI1 = 2 2k, cos (WnT) ,r < 0 
n=O (4.5) 

= 0 ,r >o 

-Substituting using a Gaussian bunch together with Eqs. (4.4) and (4.5), we find that the total 

loss parameter is given by 
Co 

ktot = c k,emwiuz . (4.6) 
n=O 

Thus the total loss parameter, kt,,t, is given by the sum of the loss parameters of all the modes 

weighted by the Fourier transform of the bunch distribution. In Figure 11, you see the total loss 

parameter VS. bunch length for the SLAC linac.’ Notice that shorter bunches lose more energy 

due to the fact that they excite higher-order modes in the cavities and thus lose energy to those 

modes also. Another way of looking at this loss is in the time domain. Referring back to Figure 

10, we see that the longitudinal wakefield increases at shorter distances, and thus short bunches 

induce higher fields which cause more energy loss. 

2 

0 
0 1 2 3 4 5 

3-89 o,/mm 6327A17 

Fig. 11. The total loss parameter per cell vs. bunch length 

for the SLAC structure. 

In addition to the energy loss, the wakefield causes an energy variation over the bunch. 

This can be approximately cancelled by variation of the phase on the RF by using the linear 

variation due to the RF to cancel approximately the variation due to the wakefield. However, 

this cancellation is not perfect. In Figure 12, you see calculations from Ref. 8 in which the RF 

phase has been optimized to yield the minimum energy spread. You see from Figure 12 that as a 

function of bunch length for the SLAC linac, the energy spread is minimum in the neighborhood 
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of 1 to If m m . However, this depends on the amount of current in the bunch. In addition, 

the loss in acceleration gradient is also shown to be quite dramatic for shorter bunches due to 

the energy loss arguments discussed earlier. Therefore, for intense bunches, it is useful to have 

somewhat longer bunches so that the losses are less and the energy spreads are smaller. 

- - 
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3-89 o,/mm 63iTA18 - 

Fig. 12. SLC calculations: (a) Phase to minimize (oE/E) final; - _ 

(b) the resulting final energy spread; and (c) relative loss of average 

acceleration gradient. p = 17 MeV/m and N = 5 x lOlo (solid) or 

7 x lOlo (dashes). 

4.1.2 Multi-bunch 

-In a travelling wave linac, the first bunch through after filling sees the full accelerating field. 

Since it extracts energy, the second bunch sees less acceleration, and so forth. This can lead to 

a large spread of energy from bunch to bunch unless measures are taken to prevent it. If the 

structure is partially filled, it is possible to match the rate of extraction with the rate of filling. 

To model this problem, let us consider the fundamental mode only. In this case, the wakefield is 

given by 

W,, = 2ko cos WIT . P-7) 

Therefore, the field induced by a short bunch of charge q is given by 

dE 
- = -2koq cos wrfr . 
dz 

(4.8) 
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Fig. 13. Schematic of a partially full travelling wave RF structure. 

To see the basic configuration, consider Figure 13 and a single bunch traversing an RF struc- 

ture. Then the energy gain of a test charge at the front of the bunch is given by 

In Eq. (4.9), fz(s) is th e envelope of the RF as a function of distance along the structure. For 

the next calculations we assume the bunch to be at the crest of the cosine, and the cosine will be 

suppressed. 

NOW the problem is, after the first bunch has gone by, to keep the energy of all the bunches 

the same with some precision. To do this, let us consider the configuration in Figure 14. In this 

case, we have modelled the RF as a square wave entering a structure; the wakefield induced by 

the bunch as it travels through the structure is represented on the negative side of the axis to - 
denote that it is decelerating. Just after the first bunch, the electric field has reached the point so 

shown in Figure 14. The wakefield has filled the entire structure since the particle has traversed 

the entire structure. Just before the second bunch arrives, the wakefield has propagated out the 

end of the structure slightly, and the electric field has filled the structure somewhat more. To 

match the energy of the first and second bunch, one simply has to match the additional inflow 

of energy from the RF with the amount of wakefield induced by the first bunch. The situations 

just after the second bunch and just before the third bunch are also presented in Fig. 14. If we 

decide to match the energy of the first and second bunches then the energy of the third bunch 

will be off slightly. However, there is a possibility of approximately matching the energy of a long 

train of bunches by matching the first bunch to the last bunch’s energy gain. In order to do this, 
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it is necessary to match the bunch spacing with the loading so that 

At qo 1 -=- 
Tf 2 1+$0 - 

60 (s) 
Just After 
1st Bunch 

t 
Just Before so I 

- -2Kq 

2nd Bunch 

Just After 
- 2nd Bunch 

i 
I 
I 
I 

l----- 
___________----------------- ----_ 

Just Before 
3rd Bunch 

-t 

(4.10) 

3-89 6327A5 

Fig. 14. Schematic of the filling of the RF structure and the extraction 

of energy by two consecutive bunches. 

Note that in Eq. (4.10) and all subsequent ones in this section, the losses in the traveling 

wave structure have been neglected. For the modifcations due to finite losses, see Ref. 10. In the 

middle of the bunch train there is an energy droop given by 

N w-2) 2 ~Gll,, 
E 32 ‘?’ - 

In addition, since the structure is only partially full, the average acceleration gradient has been 
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reduced. This reduction is given by 

E actual -----Z 
E 

l-E!!! 
max 2 ’ 

and thus the overall efficiency is 

- - Nrlo rlti = Nqo(l - - 2 ) 
. 

(4.12) 

(4.13) 

To illustrate this, let us consider the following example. If we set a tolerance on the maximum 

deviation and energy from bunch to bunch to be 

g, max N 10m3 (4.14) 

and consider the number of bunches N = 10 then this yields 

qo = 2% (4.15) 

and the separation of the bunches in time is given by 

At 
- = 9.95 x w3 
Tf 

. .v. (4.16) 

Then if we consider an RF frequency of 17.1 GHz and a fill time of 70 nsec this yields a 21 cm _ 

bunch spacing, which is 12 RF periods between bunches. In this case, the total efficiency of 

extraction is given by 

qN= 18% . (4.17) 
i 

Since the wakefields here are being balanced with the external RF, it is necessary that there 

be a tight tolerance on the number of particles. In particular, the total number of particles must 

have a variation less than about 1% in order to maintain the tolerance of AE/E. 

If the wakefield fundamental is cancelled as in the previous section to allow - 20% beam 

loading, the short intense bunches will excite higher order modes up to w - l/a,. The cumlulative 

effect of this wakefield can lead to bunch-to-bunch energy variations; because of this, higher-order 

longitudinal modes may have to be damped. 

From the previous section, the total loss parameter governs how much energy is radiated into 

a travelling wave structure, 

ktot = 2 k,e-Wzuz . (4.18) 
n=O 

Since the bunches are so short, many modes are excited and their relative importance is given by 

the kn’s. To illustrate the relative importance, the full wake calculated with modes up to n = 14 
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for a disk-loaded structure at 11.4 GHz is shown in Figure 15a. In Figure 15b, we have separated 

the fundamental mode from the higher modes to illustra.te the relative importance. For this case, 

the energy variation due to higher modes has been calculated by Pa1mer.l’ For high loading the 

variation in beam energy was shown to be the order of 1% for about twenty bunches. However, 

it was found that if the longitudinal modes in the cavities could be damped to Q’s of the order 

of-80, the induced energy spread could be reduced by an order of magnitude to acceptable levels. 

4-89 
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Fig. 15. Longitudinal wakefield for-an 11.4 GHz structure. 

(a) The total wakefield; (b) the fundamental together 

with the higher modes. 

4.2 CIRCULAR ACCELERATORS 

4.2.1 Single Bunch 

We have seen that potential well distortion produces changes in bunch length and shape. 

In an e- ring above some threshold current, the energy spread also increases. This is due to a 

longitudinal instability. This instability has also been observed in proton rings, where it has been 

dubbed the microwave instability; however, in proton rings it is manifested somewhat differently 

due to the lack of radiation damping. 

Due to the nature of this instability, it is useful to consider the physics of a coasting beam 

first. In this section, we will have a brief digression on coasting beams. 

A. Coasting Beams 

Consider a coasting beam of current 1 and energy E circulating in a ring with revolution 

frequency we and a frequency slip factor q. The coasting beam supports travelling wave modes 
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1 = IO + ~lew-wt) (4.19) 

where 8 is the azimuth, n is the mode number (integer) and w is the frequency in the lab. It is 

useful to go to beam coordinates; therefore, we let 

I$=&wet . (4.20) 

Rewriting Eq. (4.19) in terms of beam coordinates, we find 

(4.21) 

thus, the frequency in a lab frame is given by 

Wlab = nw0 + nbeam - (4.22) 

Now consider a longitudinal impedance Z(w), and let the beam have a zero momentum spread. 

_ Then it is straightforward to show!2 that 

.- -. 
R = * i~w@zZ(nwo) 

27qPE 
(4.23)- 

There are several consequences of Eq. (4.23). L e ‘s consider them on a case by case basis. t 

Case 1: Re(Z) # 0. In this case there are two modes, one which is damped and one which 

is anti-damped; thus, there is an instability. 

Case 2: Re(Z) = 0, Im[Z( nwe > 0)] < 0 (2 inductive). In this case, if the frequency slip 

factor 7 > 0 (above transition energy), we have stability since we have two modes each with a 

real frequency. On the other hand, if r] < 0 then we have an instability, one mode being stable 

and the other unstable. 

Case 3: Re(Z) = 0, Im[Z( nwo > 0)] > 0 (2 capacitive). In this case, if the frequency 

factor q > 0, the beam is unstable with one mode unstable and other stable. On the other hand, 

if 7 < 0, then the beam is stable, both modes having only a real frequency shift. 

It is interesting to note that Case, 3 with q > 0 is the negative mass instability. Normally, 

a capacitive impedance, which is like space charge, is stabilizing. If a lump forms in a bunch, 

the particles in the front of the lump are repelled forward and those at the tail of the bunch 

are repelled backward, and thus the lump tends to smooth itself out. On the other hand, if 

the frequency slip factor q > 0 (above transition energy), then the opposite happens. If .3 lump 

forms, particles at the head of the bunch are accelerated. However, since higher energy particles , 
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take longer to go around, they slip back in the bunch, and thus the lump tends to grow instead 

of to dissipate; this causes an instability. It is also interesting to note that the negative mass 

instability is the reason that Saturn has smooth rings in spite of the fact that gravitational force 

is an attractive force. 

Returning now to coasting beams, fortunately, most beams do not have a zero momentum 
- - 
spread. An additional spread in momentum yields a spread in revolution frequency which causes 

Landau damping. l3 The relevant spread in frequency is given by 

Awe AWlab = nAwo = n- 
wo 

The relative size of the shift in frequency and the spread of frequency determines whether or not 

a beam is Landau damped. When the shift in frequency is less than the spread in frequencies 

there is stability; when the shift in frequencies is more than the spread there is instability. This 

implies a threshold condition given by 

AP 
InI < nworlj- . 

: 

If we square the threshold condition, we find12 

eW(nw0)/n( 

~~EG$AP/P)~P~ < ’ 

For a Gaussian beam we let 

: + (ym = UE , 

and for a Lorentzian line shape we let 

(4.25) 

(4.26) - 

(4.27) 

(4.28) 

Thus we find that for currents up to some threshold value, the beam is stable due to Landau 

damping; but for those currents above the threshold value, the particles can indeed cooperate 

coherently and yield instability. 

B. Fast Blow-up of Long Bunches 

Now let us return to bunched beams to see if the coasting beam physics which was just 

discussed applies there. What are the differences between the bunched beam and the coasting 

beam? In the first place, particles circulate longitudinally with frequency ws. In a bunch of par- 

ticles, approximately one half of the particles have revolution frequency greater than the nominal 

revolution frequency; the other half have revolution frequency less than that. The particles circu- 

late in longitudinal phase space causing tF,e relative frequency difference to oscillate. Therefore, 
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on the average the frequency spread is zero. In addition, the particle density is lumped in the 

bunched beam. Thus, the plane waves which were used in the analysis for coasting beams are 

not adequate. We need a wave packet to describe a lumped particle density distribution. In spite 

of these differences, it is possible to have coasting-beam-like instability in a bunched beam under 

the following conditions. 

- 1. The growth rate must be fast compared to w8. That is, the instability takes a snapshot of the 

bunch and the instantaneous relative momentum spread. Therefore, during the instability 

Awo/wo # 0. 

2. The impedance must be broad band relative to the bunch spectrum (Fourier transform of 

the li-ne density). Actually, this is not an essential part of the restriction; but it makes the 

formula simple and analogous to those for a coasting beam. 

3. The instability must occur at wavelengths short compared to a bunch length. 

If all these are true, the middle of a bunch cannot tell that it is not part of a long coasting 

beam; thus, it is possible for a local instability to occur within the bunch, a coasting-beam-like 

instability. For the threshold condition for a bunched beam under the previous conditions, we 

simply replace the current in the coasting beam formula by the peak current in a bunched beam 

to obtain 

e&peak IZ(nW) lnf < 1 
27rErp,2 - ’ 

(4.29) _ 

This equation is the Boussard conjecture,14 which was proved by Wang and Pellegrini I5 to 

apply if conditions l-3 are satisfied. However, it has a different interpretation than the normal 

threshold condition. It is a sufficient condition for no fast-blow-up in the bunch. If we substitute 

the peak current for a Gaussian line density, then we have 

- e2w@JJo)lnl = F 
~0,27rErp,2 - 

(4.30) 

In Eq. (4.30), we have substituted a form factor in order to make this into a necessary and 

sufficient condition for instability. Of course F > 1. For an e* ring, the competition between 

radiation damping plus instability yields an equilibrium at an increased energy spread such that 

the threshold condition is satisfied. Provided that err o( oE, then 

(4.31) 

To illustrate the utility of the previous theory, let’s consider an experiment done at the SLAC 

damping ring6 with the results shown in Fig. 16. In Figure 16a, you see the energy spread 
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cubed plotted us. the bunch intensity. Note that above the threshold for instability at a value 

of about 1.5 x lOlo per bunch, the cube of the energy spread increases linearly with bunch 

intensity, thus confirming the l/3 power loss dependence in Eq. (4.31). In Fig. 16b, c, d, you 

see data for the SLAC damping ring for relative energy spread us. bunch intensity, bunch length 

us. bunch intensity, and the phase shift us. bunch intensity. The curves plotted with the data 

-are calculations based on the damping ring wakes and include potential well distortion and the 

instability threshold. The dashed lines refer to calculations above threshold. These lines are not 

fits to data but were actual calculations based on a calculated impedance of K. Bane.5’7 The 

agreement both above and below threshold is excellent. 

0 1 2 3 0 1 2 3 
6327A35 Bunch Intensity N (10”) Bunch Intensity N (10 lo ) B-89 

Fig. 16. Data and calculations from bunch lengthening experiments on the 

SLC damping rings. Plotted points are data, lines are calculations. 

C. Mode Coupling 

Below the threshold for fast blow-up of a bunched beam, the beam might be stable or have only 

slow growth. For small enough current, the beam oscillates stably at frequencies w = nwo + mw,. 

The circulation of the particles in longitudinal phase space keeps the beam stable. As you see 

from Eq. (4.23)) f or a coasting beam there are stable and unstable modes depending upon the sign 

of n. For the bunched beam the coupling of these revolution modes results in stability. However, 

it is possible for an instability to occur if the frequencies of two synchrotron side bands become 

equal. (Note that the analysis of the coasting-beam-like instability for a bunched beam previously 
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discussed includes modes of all m.) Let’s see what type of results we obtain if we include only a 

few of the lowest-order modes of oscillation. 

Let’s consider including m = 1 and m = 2, dipole mode and quadrupole mode. Then the 

variation us. current might look like Fig. 17.16 Mode m = 2 shifts down and couples to m = 1, 

causing the instability shown. For a highly inductive impedance, we have 
- - 

I$=woL . 

where L is the inductance. 

4 

3 

0 

I I I I I 

(4.32) 

-a 
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Fig. 17. Longitudinal mode coupling VS. current as calculated in Ref. 16. 

If we estimate naively when the quadrupole mode and the dipole mode would collide for an 

inductive impedance, we obtain 

e2NIZ/nl 
&i%~27rEc~u,z 

>6& . (4.33) 

The dipole mode does not shift, and the slope of the quadrupole mode is given by 

Aws2 e2NIZ/nl 
- = 21~Eauc~u,16,,h - WS 

(4.34) 

You see from Eq. (4.33) that for a highly inductive impedance, the two modes would nominally 

collide at a current much greater than the threshold for the microwave instability. Let us see how 

the initial slope compares with the data measured at the SLC damping ring. In this case, you 

see in Fig. 18 the data from Ref. 6. Both the dipole mode and the quadrupole mode divided by 
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2 are plotted on the same graph. The measured initial slope is given by 

dfa2 14 KHz -= 
dN (10’0) 

while that calculated with Eq. (4.34) is given by 

.dfsz. 16 KHz 
- = (1010) m dN 

98 I I 

4 ._ 
I I 

0 1 2 

6048A4 Bunch Intensity N (I 0 lo) 5-88 

(4.35) 

(4.36) 

Fig. 18. Measurement of the shift of m = 1 ( fs) and m = 2 ( fs2/2) 

for the SLC damping ring. 

Thus there is excellent agreement between the calculation and the data. As you see at an 

intensity of around 5 x log, the quadrupole mode frequency stops its linear variation and begins 

to’saturate. This is due to potential well bunch lengthening. As we see in Eq. (4.34), the slope of 

the quadrupole mode is sensitive to the value of the bunch length, and thus it begins to deviate 

from its approach to the dipole mode. It should be obvious from these results that the instability 

viewed in the SLC damping ring which begins at 1.5 x lOlo cannot possibly be due to lower-order 

modes colliding because they simply have not moved enough to interact. 

4.2.2 Multi-bunch 

A. Symmetric Coupled Bunch Instabilities 

In this section, we move to the study of the instabilities that are caused by the coupling 

between bunches. Consider a train of bunches equally spaced in a circular accelerator or storage 

ring. The coupling of one bunch to the next and from turn to turn via the long-range wakefield 
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causes modes of oscillation that were discussed earlier (m = 1, 2, etc.) to depend upon the other 

bunches. This coupling of modes can lead to instabilities in the train of bunches. To illustrate 

this, we will consider only dipole oscillations of each individual bunch coupled together. Consider, 

for example, two bunches located on opposite sides of a storage ring. In this case, there are two 

modes of oscillation. In the 0 mode bunches oscillate rigidly in a dipole fashion in phase with 

-each other; in the 7r mode oscillation, the bunches oscillate out of phase with each other. In this 

case, the coherent frequency shift is given by 

A% ilB - = 
WS 

F(l f (-l)n)n[Z(nwO + US) - Z’(nwo - ws)] 
2hpti cm 40 n=l 

(4.37) 

where IB is equal to current/bunch and h is the harmonic number. In Eq. (4.37) + refers to the . 
0 mode and - refers to the r mode. Note that the 0 mode couples only to even harmonics of the 

impedance, and the - mode couples only to odd harmonics. 

Now let’s consider an example of a particular impedance. Let the impedance be due only to 

the fundamental mode in the cavity of the RF system. And let us assume the harmonic number 

is even, that is, wcav N hwo where h is even. In this case, for the 7r mode, AR = 0; the 7r mode 

is stable. If the bunches start out in a 7r mode oscillation, they oscillate continuously at the 

frequency ws out of phase with oneanother, but their amplitudes do not grow with time. For the 

0 mode and this simple impedance, we find the frequency shift “.. 

An+ irB - = 
ws Pf cos 40 

[Z(hwo + ws) - Z*(hwo - ws)] . (4.38) _ 

In our case, instability corresponds to a positive imaginary part of AR. To examine the 

stability, we simply need to take the imaginary part of Eq. (4.38) to obtain 

Im(AR) - IB 
ws I& cos fpo 

Re (Z(hwo + ws) - Re [Z(h wo-WJ]} ’ (4.39) 

From Eq. (4.39), th ere are two distinct cases. First, consider the case for 77 > 0 (above transition). 

In ,this case, cos 40 > 0. Then for w caV < hwo the mode is damped as we can see from Fig. 19, 

since the imaginary part of An in this case is less than 0. On the other hand, if wcav > hwo then 

we have instability since the imaginary part of AhR is greater than 0. This is called the Robinson 

instability or in the case of damping is called Robinson damping. l7 Physically, when the bunch 

is on the high energy side of its synchrotron oscillation, we would like it to lose a bit more energy. 

Since for E > Eo, w < we, we want more resistance just below wg for the bunch to lose more 

energy. Of course, the situation is simply reversed below transition. 

What about a more complicated impedance? In this case, the r mode can indeed be unstable; 

and if we measure the unstable motion and Fourier analyze it, then we will see side bands around 

the odd harmonics in frequency space. That is, the formula for the instability tells us what we 

will measure. : 
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Fig. 19. The real part of the longitudinal impedance, illustrating 

the shift in frequency of the RF which yields Robinson damping. 

.. In spite of the fact that Eq. (4.37) may predict instability, it is possible that the beam 

be stable via Landau damping. Due to the nonlinear nature of the RF, there is a spread in 

synchrotron frequency given by 
Aw, 1 - N -wg (4.40) 

ws 16 ’ 

If this spread is larger than the Aln shown in Eq. (4.37), th en the beam may be Landau damped; 

and in this case, we have the typical threshold behavior of a Landau damped system. 

5. TRANSVERSE EFFECTS 1 

5.1 SINGLE BUNCH 

51.1 Linear Accelerators 

A. Beam Break-up and BNS Damping 

In an e* linac, the transverse wake due to particles at the head of the bunch can cause the 

deflection of the tail. If the transverse betatron oscillation frequency or wave number is the same 

for the head and tail, this can lead to resonant growth. 

., To model the problem, let us consider a two-particle model as shown in Fig. 7. We place one 

half of the charge in the bunch into each macro-particle and separate the particles by a distance 

fZ which should be set to about 20, when compared to actual bunch distributions. The distance 

between the particles is fixed since they both travel at the speed of light; therefore, the wakefield 

at the trailing particle is fixed. The equations of motion for the two particles in the presence of 

the external focusing system are 

x’l + k2xl = 0 

e2NW(t)xl (5.1) 
x; + (k + Ak)2x2 = 2E , 

where N is the total number of particles in the two macro particles, and IV(e) is the wakefield at 

the second particle. 
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Notice that the external focusing has been smoothed as in Eq. (3.4), and the second particle 

feels a different focusing force characterized by the parameter Ak. This might be due to a 

difference in energy from the front to the back of the bunch; in this case, 

Ak = -6k (5.2) 

where 6 = (Ez - El)/&. M ore precisely, for a general lattice we need to evaluate an average 

chromaticity [ defined by 
Ak E2 - El -= 
k ’ E 

=@ . 

For typical lattices [ is close to -1, and thus the smooth approximation is not too bad. 

P-3) 

.. It is also possible to vary the focusing function along the bunch by the use of RF focusing. 

This decouples the focusing field from the energy spread but couples it to position within the 

bunch. 

Now let us consider the solution of Eq. (5.1) in which both particles have the same initial 

offset, P. For small Ak/k, the solution for the difference between the transverse positions is given 

Q(S) - Xl(S) =-E 2 - ( izrk) isin ($2) ei(k+Ak/2)s . 

._ 
To study Eq. (5.4) t i is useful to consider three different cases: 

Case 1. Ak = 0 - _ 

In this case the difference grows linearly 

e2NWEs . 
x2(s) - xl(s) = -i 4Ek ezks , 

which yields an amplification factor given by 

(5.5) 

x2 - Xl e2NWs 
2 = 4Ek ’ (5.6) 

The linear growth is simply due to a linear oscillation driven on resonance. In an actual beam, 

the growth of the tail of the beam is much faster and has been calculated in Ref. 18. 

Case 2. Ak # 0 , A k very small 

In this case the linear growth is turned over, leading to a maximum amplification factor of 

x2 - Xl 

2 
= (2- ;cFk) N -$‘yk ; P-7) 

the growth stops at s = r/Ak, and there is beating with the maximum amplitude given in Eq. 

(5.7). 
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Case 3. “BNS Damping- lg 

In this case, if we examine Eq. (5.7), we see that the amplification can be set to zero provided 

that 
e2NW 

4EkAk = 
1. (5.8) 

- - 
This yields no growth at all; in fact simulations of actual beam distributions show genuine damp- 

ing of the oscillation. lgJ8 This effect, in the past, was referred to as Landau damping; however, 

Landau damping refers to the lack of growth of coherent oscillations when there is some u1zcor- 

related spread in the oscillation frequencies of the particles in the bunch. In BNS damping, a 

correlated focusing spread is used to compensate the wake forces when the bunch is rigidly offset . 
to one side. In this case, since both particles are offset to one side, the lack of growth is simply 

due to a cancellation of forces. The wakefield force is exactly cancelled by the additional focusing 

force for a trailing particle of slightly lower momentum. It is useful to rewrite the condition for 

the case of momentum spread: 

e2NWP2 = ~E~BNS 1 . (5.9) 

In this case 6~~s is the half spread in energy required for BNS damping and the average beta 

function p has been used rather than the wave number k. Notice that if ,f3. oc E1i2, thes.&NS is 

independent of E. 

It is useful to see a simulation of the effects of BNS damping. In Fig. 20, you see phase space - 

together with (5,~) space for cases with or without BNS damping.20 With no BNS damping, 

the tail of the bunch grows and phase space is diluted. However, with BNS damping, the beam 

tail does not grow, and there is little phase space dilution. 

B. BNS Damping at the SLC21’22 

Recently, we have performed an experiment on the linac at SLAC to test the effects of BNS 

damping. 21’22 In the case of the SLC, several sectors were phased so as to enhance the energy 

correlation from head to tail within the bunch. The following sectors were then phased so as to 

take out the induced correlation over the rest of the linac. This yielded the energy spread profile 

as shown in Fig. 21. The peak energy spread occurs at about l/4 of the way down the linac and 

is.about 2%. 

To test the effects of BNS damping, the beam was kicked by a corrector to induce a coherent 

betatron oscillation down the linac. The tail growth was measured on a profile monitor. In Fig. 

22 you see the size of the tail as a function of the corrector strength with and without BNS 

damping. The difference in the slopes of these two cases is about a factor of 10. This means that 

the beam is a factor of ten less sensitive to initial offsets due to kicker jitter, power supply jitter, 

etc. 
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Fig. 20. Calculation of effects of BNS damping at the SLC. 
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Fig. 21. Relative energy spread us. distance along 

the linac for BNS damping at SLC. 

Qualitatively, the beam seems much more stable with BNS damping than without. Since the 

experiment, BNS damping is used routinely in the SLC linac to control tail growth. 
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Fig. 22. Effect of a dipole corrector at the beginning of the SLC linac 

with and without BNS damping. 

5.1.2 Circular Accelerators 

A. Mode Coupling 

.The circulation in longitudinal phase space in a-circular accelerator causes particles in the 

front of the bunch to exchange places with the head. In this case, we do not get the simple tail- 

growth as in a linac. Rather, the growth is stabilized at low current. However, the coupling of 

the head and tail can lead to an instability via mode coupling. At low current, a bunched beam 

can oscillate transversely with a coherent tune V, = Y, + my,. At higher current these modes 

move and, if they come close together, they may couple to cause instability. 

To illustrate the physics, consider a two-particle model. As the two macroparticles move 

longitudinally, the distance between them varies, causing the wakefield to vary. Let us first 

replace the wakefield by an average value. Then in the two-particle model we have 

x:’ + Lx1 = 0 Rt 
x’21 I ;; x2 _ Nf”L ’ < t < ts’2’ 

(5.10) 

x’z’ + Lx2 = 0 R”z 
Ne2k?’ xy+gxl=TL 

t,/2 < t < t, . 

and so on. The basic parameter is the relative growth of a tail particle in one half of a synchrotron 

oscillation, 

e2NwlRcts 
rl= 8Ev - (5.11) . 
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For 7 small, the net effect of the circulation is a slight shift in frequency of the two modes. The 

first mode (mode 0) in which the particles move in phase has its frequency shifted down while 

the second mode (mode -l), in which the particles move out of phase, has its frequency shifted 

up. When these two modes collide (171 = 2) there is an instability. 

The actual bunch is not composed of two macroparticles. In practice, there are many more 
- - 
modes to consider. To do this, one uses the Vlasov equation to calculate how all the various 

modes couple. In Fig. 23, you see a calculation of mode coupling for a short bunch in a ring with 

a broad band impedance. 23’24 You see that it is modes 0 and -1 which ultimately couple to 

produce the instability. In the case of more complicated impedances and/or longer bunches, the 

higher modes become important. In this case, it is possible for the beam to remain stable even .- 
after modes 0 and -1 pass through each other. 

0.5 

0 

-0.5 

-1.0 ' I I I I I 

g -2' 

-4 1 
0 20 40 60 80 100 

4-89 mA 6327A26 

Fig. 23. Mode coupling with a broad band impedance model for 

the SLC damping ring. 

There have been many experiments on the mode coupling instability. At PEP an experiment 

was performed to test the effect of feedback on the mode coupling instability.25 There had 

been calculations to indicate that reactive feedback (shifting the coherent tune) could increase 

the threshold by a factor of 2 or more. 
26,27,24 In Figs. 24 and 25, you see the characteristics 

of the instability. Fig. 24 shows the accumulation of current in PEP abruptly change due to a 
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beam loss. Fig. 25 shows the tune shift of mode 0 as the current in the bunch is varied. In the 

experiment, two types of feedback were attempted, “reactive feedback” and “resistive feedback.” 

In the first case, the frequency of mode 0 is shifted up to cause the modes to collide later; in 

the second case, the dipole mode is very strongly damped. Both types of feedback proved to be 

experimentally successful and improved the threshold by more than a factor of 2. 
- - 
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3-89 

Fig. 24. 

B. The Head- Tail Eflect2’ 

l 

0 

t (set) 6327A13 

Current US. time during injection in PEP.’ 

The loss is the mode coupling instability. 

0 1 2 3 

In the previous section we assumed a zero chromaticity which led to the cancellation of the 

coherent growth of the tail due to the circulation in longitudinal phase space. If the chromaticity 

is not zero, this cancellation is not perfect, and we can have instability or damping even for small 

current. The key difference is that the betatron frequency is then a function of E via 

where E is the chromaticity. If we integrate Eq. (5.12), we find the betatron phase, 

q$(t) = wit - $yt) * 

(5.12) 

(5.13) 

Thus the phase lags or leads depending upon the sign of [ and 7. This causes a coherent 

growth rate or coherent damping rate o( [. For modes L$ N wjn + mws we find that [ > 0 

corresponds to stability for m = 0. This is a primary reason that the chromaticity must be 

corrected and slightly positive in a storage ring. 
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Fig. 25. Coherent shift of horizontal tune TJS. current in PEP at 4.5 GeV.25 

To calculate the effects of the chromaticity on the other modes, it is necessary to solve the 

Vlasov equation. One could use the two particle model as in the previous section; however, this 

gives estimates which are not accurate for the higher modes. 

In Fig. 26 you see a calculation of the frequency shifts for many coupled low-order modes 

with non-zero positive chromaticity. 23’24 The real frequency shifts are similar to those calculated 

with ,( = 0; however, now we have coherent damping of mode m = 0 and growth of effectively - 
all.other modes, with mode m = 1 having the largest growth rate. If we continue out past the 

threshold for mode coupling, in Fig. 26, we see that modes 0 and -1 interact once again near 

the threshold of Fig. 23 to induce a larger growth rate for the unstable mode. 

In practice there are other damping mechanisms present which can stabilize the higher modes. 

These are Landau damping due to nonlinear spreads in the betatron frequency and radiation 

damping in electron storage rings. Therefore, we usually observe beam stability until the mode 

coupling instability increases the growth rate sufficiently. 

The head-tail effect has been observed in many storage rings and accelerators. In Ref. 29 the 

head-tail effect was studied in SPEAR. In particular, they showed that with positive chromaticity 

the head-tail effect yields coherent damping of the bunch without dilution of phase space. By 
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Fig. 26. The head-tail effect and mode coupling with positive chromaticity. 

using octupoles, they produced a nonlinear tune spread large enough to provide Landau damping 

which overwhelmed the head-tail effect. In this case they observed that phase space was diluted 

as one would expect. 
v 

C. Fast Blow-up of Single Bunches30’23 - _ 

We have seen that mode coupling can lead to instability for short bunches. What happens 

if the bunches get very long and the synchrotron frequency is very low? In this case, it is 

possible that mode coupling will not occur, at least not in the way in which it was described 

earlier. For long bunches the modes 0 and -1 couple only weakly, and thus there is sometimes no 

instability induced by their crossing. In addition, if the spread in betatron frequencies gets to be 

large compared to the synchrotron frequency, then the mode coupling instability may be Landau 

damped. 

However, this does not mean that there is no instability; it means that it is useful to use 

a different analysis method. In this case it is useful to use coasting beam theory as we did in 

Section 4.2.132 for the longitudinal. In fact it has been shown that under conditions similar to 

those stated in Section 4.2.1, there is a transverse coasting-beam-like instability in a bunched 

beam. 30’23 Once again for a fast instability with a short wakefield the center of the bunch cannot 

tell that it is not part of a coasting beam with current equal to the peak current. In this case 

there is a threshold given by 

(5.14) 

where IP is the peak current, 0 is the average beta function and nc = wC/wc is the mode number 
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at the impedance peak. In Eq. (5.14) the chromaticity has been set to zero as it has little effect 

on this threshold. 

5.2 MULTI-BUNCH 

5.2.1 Linear Accelerators 
- - 

A. Cumulative Beam Break-up31’32 

In a train of bunches in a linac, the transverse wake force acting on a bunch due to all 

preceding bunches causes it to be deflected off axis. As in the two-particle model, if all bunches 

have ‘very nearly the same transverse focusing strength, the effect is resonant. The first bunch 

drives the second yielding linear growth in s. The first and second drive the third, yielding linear 

plus quadratic growth in s, and so forth. 

The equation of motion for the nth bunch is given by 

(5.15) 

where 7, the relativistic factor, changes due to acceleration, k,(s) is the smoothed focusing of the .- I. 
nth bunch, and e is the bunch separation. 

The first observation of cumulative beam break-up at SLAC occurred April 27, 1966.33 In - 

this case there were about 4,500 bunches each with 5 x lo7 electrons spaced 10.5 cm apart. -This 

yields a 1.6-psec pulse of electrons with 25-mA current. 

In contrast, the parameters for SLC are quite different. SLC -accelerates 3 bunches (e’, e-, e-) 

with currents in the range l-5 xlO”/bunch but with about 60-nsec spacing. There are no multi- 

bunch problems for SLC due to the large bunch spacing. 

-For next generation linear colliders to achieve high luminosity, it will be necessary to extract 

as.much energy as possible from the RF. This leads to trains of bunches of 10 to 20 with about l-2 

x10" particles per bunch. In this case since the bunches are rather close and the RF frequency 

is quite high, cumulative beam break-up can be a serious problem. Consider the example shown 

in Fig. 27. In this caSe the amplitude of the last bunch in a train of 10 has grown by a factor 

of lo5 by the end of the linac; this is clearly an unacceptable situation. In the next section we 

examine some cures for this problem. 

B. Cures for Beam Break-up34’35’36 

There are several possible cures for beam break-up. 

1. We could reduce the wakefield coupling one bunch to the next. This could be done by 

decreasing the RF frequency, or, at fixed RF frequency, by increasing the bunch spacing 
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Fig. 27. Growth due to cumulative beam break-up in an 

undamped 17-GHz traveling wave structure. 

to allow the natural damping of the wakefield to reduce it. Finally, one could design the 

structure in such a way that the bunches fall close to the zero crossings of the wakefield. .- -w. 

2. We could decrease the number of bunches which are coupled together via the wakefield.- 

As you see from Fig. 27, the earlier bunches are disturbed much less than the later ones - 

in a short train of bunches. To accomplish this, we could simply reduce the number of 

bunches. This would be self defeating because we would like a large number to obtain large 

luminosity. A  better method is to damp the wakefield by some means so that only a few 

bunches are coupled. Ideally one could imagine damping the wakefield between bunches to 

effectively decouple the train. If damping is difficult, it may be sufficient to introduce a 

spread in frequencies in the wakefield by changing the cavity design from cell to cell. This 

- yields an effective damping of the wake due to the decoherence of the modes from different 

cavities. The spread in frequencies in the SLAC linac due to the constant gradient taper 

of the accelerating sections has helped greatly with cumulative beam break-up at SLAC. In 

the SLC mode, this makes bunch spacings of lo-25 nsec possible for currents of 2-5 x lOlo. 

3. Finally, we could change the focusing from bunch to bunch to move off resonance. This is 

suggested by the success of BNS damping in a single bunch. Unfortunately, the required 

frequency spreads are large and difficult to achieve for a long train of bunches. 

For a next generation linear collider at high frequency, extreme measures are necessary. In 

Table 1, you see the parameters for a calculation of a next generation linear collider. In this case, 

two cures were selected; damping the transverse wake combined with tuning the frequency of the 

lowest. Dominant mode to cause the bunches to fall close to zero crossings of the wake. The results 
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are shown in Fig. 28, which plots the maximum blow-up of any bunch in the train versus the 

tuning of the frequency of the lowest dipole mode for several different values of Q.35 We see that 

it is indeed possible to cure the instability using these techniques provided that Q’s from 15 to 

50 can be obtained together with the desired tuning of the transverse mode. 

2 

477.4 477.6 477.8 478.0 478.2 474 476 478 480 482 
4.89 Wavenumber of First Wake Mode (m-l) 6327829 

Fig. 28. Maximum growth of any bunch in the train vs. 

tuning of the first dipole made of the traveling wave structure 

Table 1: Parameters for Main Linacs at 17.1 GHz 

Number of bunches 10 

Number of particles per bunch 1.67 x lOlo 

Bunch spacing .! 21.0 cm 

Initial energy of linac 18 GeV 

Final energy of linac 500 GeV 

Linac length 3000 m  

Initial beta function 3.2 m  

(ko = 0.3125 m -‘) 

One method which has been proposed to damp transverse and higher longitudinal modes is to 

use slots in the irises coupled to radial waveguides. 3g In experimental tests Q’s as low as 20 have 

been measured. In Fig. 29 you see an artist’s conception of such a structure. Clearly, damped 

structures could have applications in storage rings and circular accelerators as well as linacs. _. 
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Fig. 29. Structure with slots coupled to radial waveguides 

designed to damp transverse and higher-order longitudinal modes.3g 

. 
5.2.2 Circular Accelerators 

A. Coupled Batches of Btlnches37’38 

For a circular accelerator the coupled bunch problem is somewhat more complex than in 

the linac because the wakefield from a bunch can interact with that bunch on subsequent turns. 

However, for equally spaced bunches of equal intensity, there is a standard theory for coupled 

bunch motion similar to that for the longitudinal.40 In the case of unequal spacing and/or 

damped wakefields other techniques are useful. .- I. 

To be specific, let us consider a storage ring filled with several batches of about 10 closely- 

spaced bunches. Let us first ignore the other batches and consider the stability of a single batch. - 

The equation of motion for the position of the rigid motion of the bunch is 

x; + 2cxx:, + k2x, = 
j=l j=l q=l 

- (5.16) 

The last term comes from the wakefield of all preceding turns. Let us consider the case in which 

we damp the wakefield in less than one turn but not within the bunch train. In this case the 

batch of bunches does not see its wake on preceding turns. We refer to this as the intermediate 

wakefield regime. Notice that in this model the focusing function has been replaced by a smooth 

approximation, and the wake function is uniform around the ring. Actually, the wakefield is 

localized to the RF structures and other high-Q objects. For a more accurate representation, 

one can introduce a sequence of maps which describe the dynamics. These two methods yield 

identical results provided that the coherent tune shift AvC 5 1/27r, and provided the tune is far 

from integers. 

Note that we have included a coherent damping factor in the differential equation. This factor 

is due to one of three causes: 

1. First, in an electron ring the motion of each particle is coherently damped due to radiation. 
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2. If there is a betatron tune spread due to nonlinearities, then the coherent motion will be 

damped by phase dilution. This Landau damping is, in general, not exponential. 

3. As we saw from the section on the head-tail effect, for positive chromaticity the simple dipole 

motion of the bunch is damped coherently due to the interaction of the short wakefield and 

the longitudinal circulation within the bunch. 
- - 
Without specifying the mechanism, we’include this damping factor explicitly in the model. 

With all the conditions above, the storage ring acts like a very long linac with a cavity now and 

then; however, the key difference is the damping of the betatron oscillation which does not occur 

in a linac. In the case of a linac, the bunches at the tail of a short train can grow substantially as 

w.e saw in Section 5.2.1. However, for a storage ring, due to the exponential damping, the bunch 

train will ultimately be stable. In spite of this, the non-exponential growth of tail bunches can 

lead to very large transient instability. 

Consider for example the case shown in Fig. 30.38 You see that the first bunch damps 

exponentially as expected. However, later bunches show a transient growth which can get quite 

large and can persist for several damping times. 
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Fig. 30. Transient growth in a batch of bunches in a storage ring. 

This type of transient instability has not been appreciated until recently. However, it is 

obvious when viewed in the time domain. If we do the normal frequency domain calculation as 

in Section 4.2.2 for the longitudinal case, we would calculate all the modes (20 in the case of Fig. 

30), and they all would have an imaginary part less than zero. 37’38 That is, all 20 modes would 

be deemed stable. However, to treat the transient behavior properly, we must use the Laplace 

transform and go to the time domain. In this case, in spite of the damping of all 20 modes, the 

transient behavior which is recovered is exactly that shown in Fig. 30. 
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This type of instability can lead to particle loss even though the beam is asymptoticall? 

stable. It is also important for damping rings where the beam is extracted a rather short time 

after injection. 

6. CONCLUDING REMARKS AND ACKNOWLEDGEMENTS - - 

This paper has presented an overview of collective effects in both circular and linear accel- 

erators. A  complete overview of this subject would easily fill one or two books and a complete 

list of references would be longer than this entire paper. The compromise which was made was 

to touch on a few subjects in each category, giving some theory, some physical discussion, and 

some experimental results where possible. The interested reader who wishes details on any of the 

subtopics discussed here should pursue the study beginning with the review articles in Ref. 1-3. 

I would like to thank Kathy Asher for help in preparing the manuscript, Karl Bane and 

Kathy Thompson for useful discussions and for help with figure preparation, and finally Juinn 

Ming Wang, Robert Warnock, and Perry W ilson for continuing discussions of collective effects. 
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