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1. INTRODUCTION

What is a hadron?

In practice, the answer to this question depends upon the energy scale of
interest. At the atomic scale a hadron can be treated as an elementary point-like
particle. The proton’s electromagnetic interactions, for example, are well described

by the simple Hamiltonian for a point-like particle:

_ (F—eAy
H= "= ted (1.1)

This Hamiltonian describes a wide range of low-energy phenomena—e.g.proton-
electron clastic scaitering (ep — ep), Compton scaitering of protons (yp — 7p),.
atomic structure. . .—and it can be made arbitrarily accurate by adding interactions

involving the magnetic moment, charge radius, efc. of the proton.

The description of the proton becomes much more complicated as the en-
“ergy is increased up to the strong interaction scale (~ 1 GeV). In proton-eleciron
elastic scattering, for example, one must introduce phenomenological form factors
F(Q?) to correct the predictions from the point-like theory: in effect, T'(ep) =

F(Q%) T{ep)poini—like Where  is the momentum transfer and

F(Q*) ~ (Q%Ag)z (1.2)

One might try to modify the proton-photon interaction in the point-like Hamilto-

nian to reproduce the phenomenological form factors, but the resulting interaction
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would be very complicated and nonlocal. Furthermore such a modification would
not suffice to accouni for the changes in the Compton amplitude of the proton
at high energies. In fact, new terms would have to be added to the Hamiltonian
for every process imaginable, resuliing in a horrendously complicated theory with
little predictive power. -

The tremendous complexity of the high-energy phenomenology of hadrons
stalled the development of strong interaction theory for a couple of decades. The
breakthrough to a fundamental description came with the realization that the
rich structure evident in the data was a consequence of the fact that hadrons
are themselves composite particies. The constituents, the quarks and gluons, are
again described by a very simple theory, Quantum Chromeodynamics (QCD).l
The complexity of the strong interactions comes not from the fundamental inter-
actions, but rather from the structure of the hadrons. The key to the properties
of the form faciors and other aspects of the phenomenology of the proton thus
lies in an understanding of the wavefunctions describing the proton in terms of
its quark and gluon constituents.

In this article we shall discuss the relationship between the high-energy be-
havior of wide-angle exclusive scatiering processes and the underlying structurc
of hadrons. Exclusive processes are those in which all of the final state particles
are observed: e.g. ¢p — ¢p, Yp — ¥p, pp — pp. ... As we shall demonstrate, the
highly varied behavior exhibited by such processes at large momentum transfer
be understood in terms of simple perturbative interactions between hadronic con-
stituents”® Large momentum transfer exclusive processes are sensitive to coher-
ent hard scattering quark-gluon amplitudes and the guark and gluon composition
of hadrons themselves. The key result which separates the hard scattering am-

- plitude from the bound state dynamics is a factorization _fr:;rmula,:4 To leading

order in 1/Q) a hard exclusive scattering amplitude in QCD has the form

1

M= [ Tute, @ T] ¢ae,, @l 3)
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Here Ty 1s the hard-scattering probability amplitude to scatter quarks with frac-
tional momenta 0 < z; < 1 collinear with the incident hadrons to fractional
momenta collinear to the fina! hadron directions. The distribution amplitude ¢y,
is the process-independent probability amplitude to find quarks in the wavefunc-
tion of hadron H; collinear up to the scale ¢, and

[dz] = E[ldx}-é(x —ixk) (4)

k=1



Remarkably, this factorization 1s gauge invariant and only requires that the mo-
mentum transfers in Ty be large compared to the intrinsic mass scales of QCD.
Since the distribution amplitude and the hard scaitering amplitude are defined
without reference to the perturbation theory, the factorization is valid to leading
order in 1/@, independent of the convergence of perturbative exfaansiona.

Factorization at large momentum iransfer leads immediately to a number of
important phenomenological consequences including dimensional counting rules,

hadron helicity c::onserva,tican,6 and a novel phen()menon7 called “color trans-
parency”, which follows from the predicted absence of initial and final state inter-
actions at high momentum transfer. In some cases, the perturbation expansion
may be poorly convergent, so that the normalization predicted in lowest order
perturbative QCD may easily be wrong by factors of two or more. Despite the
possible lack of convergence of perturbation theory, the prediciions of the spin.
angular, and energy structure of the amplitudes may still be valid predictions of
the complete theory.

This article falls into two large parts. In the first part, we introduce the
general perturbative theory of high-energy wide-angle exclusive processes. QOur
discussion begins in Section 2 with a discussion of hadronic form factors for
mesons composed of heavy quarks. This simple analysis, based upon nonrel-
ativistic Schrodinger theory, illustrates many of the kev ideas in the relativistic
analysis that follows. In Section 3 we introduce a formalism for describing hadrons
in terms of their constituents, and discuss general properties of the hadronic wave-
functions that arise in this formalism. In Section 4 we give a detailed description
of the perturbative analysis of wide-angle exclusive scattering.

In the second part of the article we present a survey of the extensive phe-
nomenology of these processes. In Sections 5 and 6 we-review the general pre-
dictions of QCD for exclusive reactions and the methods used to calculate the
hard scattering amplitude. Various apphcations to electromagnetic form factors,
electron-positron annilulation processes and exclusive charmonium decays are also
discussed. One of the most important testing grounds for exclusive reactions in
QCD are the photon-photon annihilation reactions. These reactions and related
Compton processes are discussed in Section 7.

In Section 8, the QCD analysis is extended to nuclear reactions. The reduced
amplitude formalism allows an extension of the QCD predictions to exclusive
reactions involving light nuclei. Quasi-elastic scattering processes inside of nuclei
allow one to filter hard and soft contributions to exclusive processes and to study
color transparency.

The most difficult challenges to the perturbative QCD description of exclusive



reactions arc the data on spin-spin correlations in proton scattering. We review
this area and a possible explanation for the anomalies in the spin correlations
and color transparency test in Section 9. General conclusions on the status of
exclusive reactions are given in Section 10.

The appendices provide a guide to the main features of baryon form factor and
evolution equations; a review of light-cone quantization and perturbation theory;
and a discussion of a possible method® to calculate the hadronic wavefunctions
by directly diagonalizing the Hamiltonian in QCD.
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Figure 1. Nonrelativistic form factor for a heavy-quark meson.

2. NONRE—LATIV ISTIC FORM FACTORS
FOR HEAVY-QUARK MESONS

The simplest hadronic forin factor is the eleciromagnetic form factor of a
heavy-quark meson such as the T. In this section we show how perturbative QCD
can be used to analyze such a form factor for momentum transfers that are large
compared with the momentum internal to the meson, but small compared with
the meson’s mass. The analysis for relativistic momentum transfers is presented
in subsequent sections. _

Heavy-quark mesons are the simplest hadrons to analyze mnsolar as they are
well described by a nonrelativistic guark-antiquark wavefunction. The amphtude
that describes the elastic scattering of such a meson off a virtual photon is, by
definition of the form factor, the amplitude for scatiering a point-like particle
multiplied by the electromagnetic form factor. The form factor is given by a
standard formula from nonrelativistic quantum mechanics {see Fig. 1}:

3 - —
F(§%) = f SR+ g2y, (5)

(27)3

(Note that the wavefunction’s argument is 1/2 of the relative momentum between
the quark and antiquark.) At first sight it seems that we require full knowledge of



the meson wavefunciion in order to proceed, but in fact we need know very httle
about the wavefunction if ¢ is sufficiently large. To see why we must determine
which regions of k-space dominate the integral in Eq. (5) when ¢ is large.

When ¢* = 0 the integral in Eq. (5) is just the normalization integral for

the wavefunction, and F(§°) &~ 1—the meson looks like a point-like particle to
long-wavelength probes. As ¢ becomes large, large momentum flows through
one or the other or both of the wavefunctions in Eq. (5). Since nonrelativistic
wavefunctions are strongly peaked at low momentum, the form factor is then sup-
pressed. The dominant region of &-space 1s that which minimizes the suppression

due to stressed wavefunctions. There are three regions that might dominate:
1) |k| < |7, where *(k + ¢ /2) is small but Pk ) is large;
2) ik + ¢ /2] < |7, where gb(i) is small but *(k + §/2) is large;
3) |k + /2| = |k | = |G /4], where both ¢(k ) and *(k + §/2) are small, but
noti as small as the stressed wavefunction in either of the other two regions.
The g-dependence of the contributions to F{g?) from each of these regions is
readily related to the high-momentum behavior of the wavefunction. In region 1),

% can be neglected relative to g /2 1n the first wavefunction and so the form {actor
has ¢g-dependence

F(§%) ~ 9*(§72). : (6)

The contribution from region 2) is essentially identical, as is clear if one makes

the variable change FoF =k + 4 /2. In region 3), the phase space contributes
a factor of ¢° while each wavefunction goes like ¥{{/4) so that

The dominant region is clearly a function of the high-momentum behavior of the

wavefunction.

In fact wavefunctions for heavy-quark mcsons, like those for QED atoms, fall
off as inverse powers of the momentum when it becomes large. As we show below,
the ground state wavefunction falls off like 1/¢* up to factors of log(¢®). Then the
form factor is dominated by regions 1) and 2) for large (nonrelativistic) g*, and
falls off as ¥(§/2) ~ (1/(}'2)2‘ The contribution from region 3} is suppressed by
an additional factor of 1/|7], and so can be neglected when ¢° is sufficiently large.
Note that this behavior is characteristic of wavefunctions that vanish as powers of
the momentum. With a Gaussian wavefunction, for example, region 3) dominates
and the form factor is exponentially damped for high momentum transfers.



Neglecting & relative to §/2, the contribution to F(§”) coming from region 1)
has the simple form

(@ /2) [ 3w(a = P/ e(F=0) - (8)

where (" =0} is the wavefunction evaluated at the origin (in coordinate space).
We can further simphiy this equation using the Schrodinger equation for w(§/2)
{Fig. 2):

—-q/2)w(k) (9)

[ @R
Wi = |- 00

where ¢ js the nonrelativistic binding energy, M, = Mg/?2 1s the reduced mass of
the quark and antiquark, and V' is the interaction potential between them. The

——
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Figure 2. Momentum-space Schrodinger equaiion for the meson wavefunction,

potential V(¢') can be computed using perturbation theory when the momentum
transfer ¢ is large; to leading order it is just the Coulomb interaction modified
by a running coupling constant:

47’ os(q” ]CF
9:;2

Vi) = {10)

Here Cr = 4/3 is the value of the Casimir operator for the fundamenial repre-



sentation of SU3 (i.e. the quark’s representation), and

2y 47
as(Q )— ﬁo log(Qg/AgQCD)

is the running coupling constant of QCD, with scale parameter Agcp ~ 200 MeV,
and By = 11 — 2ny/3 where ny is the number of active quark flavors (ny = 4
for the T). Given this behavior for ¥V we can show that the region |E§| < |q'/2]
dominates the integral in Eq. (9) by using arguments similar to those just applied
to the form factor (Eq. (5)}. Thus when ¢ is large Eq. {9) becomes

Y R Nt |
sy~ [SDEE) viegm e -o), o)

and the forim factor takes the form

1 1
—~{¢'/2)?/2M; * —(§/2)2]2M,

F(é’g)zw*(F:O){V(mg’/Q) V(ué'/B)}v’;(F:UJ

~ (7 =0)]?

(12}
where we have now included the contributions from both regions {1} and {2). So
all we really need to know about the meson i1s its wavefunction evaluated at the
origin. The high-¢° form factor is completely determined by perturbation theory
up to an overall multiplicative constant!

Equation (12} has a simple, intuitive interpretation that generalizes easily to
the relativistic case and to other processes. The quantity

1 1 .
Gy, T =g Y

Tu(§?) = V(-§/2)

1287 ag(§7/4) MoCr
(§*)?

that appears in the first expression of Eq. (12} is just ihe nonrelativistic meson
form factor but with each of the initial and final state mesons replaced by au
on-shell quark-antiquark pair. The quark and antiquark share the meson’s three-
momentum equally. QOur analysis shows that momenta internal to the mesons



can be neglected relative to ¢ in this “hard-scattering amplitude” —1.e. that Ty
is roughly independent of the relative momenta of the quark and antiquark when
g is large. In coordinate space this means that the separation between the quark
and antiquark in this process {~ 1/|§|) is much smaller than the size of the
mesons. Thus Eq. (12) for the asymptotic form factor can be recast in the highly
suggestive form (Fig. 3)

F(§%) =¢"(F=0)Tu(§") »(F =0). (14)

where (7 = 0) is the amplitude for finding the quark and antiquark on top of
each other in the initial meson, Ty 1s the amplitude for scattering the quark-
antiquark pair from the initial direction to the final direction, and ¥*(¥ =0) is
the amplitude for transforming the resulting quark-antiquark pair into the final
Neson.
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Figure 3. The asymptotic form factor in terms of the hard scattering amplitude
Tw and the meson’s wavefunction at the origin ¥{#¥ =0).

Notice that we are justified in using perturbation theory to compute Ty
only because the hard-scattering subprocess occurs over short distances. This
highlights an important distinction between the perturbative analysis of form
faciors and that of other processes like deep inelastic scattering. Perturbative
QCD is reliable only for phenomena that eceur over short distances {or near the
light cone). In processes like deep inelastic scattering the short distances arise for
largely kinematical reasons: the cross section for deep inelastic scattering is given
by a matrix element of two currents separated by 22 ~ 1/Q%. By contrast, we
find short distances in our form factor analysis only by looking inside the process.
Short distances arise as a result of the propertics of the bard-scattering amplitude
Ty—1.e. as a result of the dynamics of the theory. As a consequence the validity
of a perturbative analysis of form factors is perhaps not as well established as it
is for, say, deep inelastic scattering. By the same token the analysis is perhaps
more interesting because of the critical role played by the dynamics and by hadron
structure.



Finally we should comment briefly upon the principal limitation of our per-
turbative analysis: it is valid only over a limited range of momentum transfer.
It is clear from our analysis that §/2 must be larger than the root-mean-square
momentum in the wavefunction. This is evident from the form factor for ground-
state positronium, which can be computed analytically:

1677\’
Foul?) = (—) 15
Ps(q ) q?2 ¥ 16‘}‘2 {13)

where ¥ = am,/2 is the rms momentum. Here § must be of order 4 times the
rms momentum before the form factor begins to fall off like the asymptotic form
factor. In the QCD case /2 must also be sufficiently large that the perturbative
part of V{4 /2) dominates the nonperturbative part. At the high end, 4 is limited
by the fact that our analysis i1s nonrelativistic. Also radiative corrections to the
form factor (Eq. {(5)) and to the quark potential (Eq. {10)) contribute corrections
of order é'szé that become important for relativistic §¢. These limitations make
it unlikely that our results can be used for the ¥ or even for the T; neither meson
1s sufficiently nonrelativistic. So we must develop a relativistic analysis if we are
to treat these mesons or, more generally, hight-quark hadrons properly.

3. HADRONIC WAVEFUNCTIONS

The relativistic analysis of hadronic form factors and other large-p; processes
1s conceptually similar to the nonrelativistic analysis. The only significant dif-
ference 1s in the formalism used to describe hadronic structure in terms of its
constituents. To proceed we require a relativisiic formulation of the bound state
problem. _

The conventional formalism for relativistic bound states is the Bethe-Salpeter
formalism. In this formalism a meson is described by a covariant wavefunction

WIS (ky, ke) = (0| Toplk Y(ka) | M) (16)

that depends vpon the four momenta of its quark and antiquark constituents. Al-
though formally correct, this formalism is of liftle use in the description of such
simple systems. The problem 1s that the couplings between different channels—
e.g. between quark-antiquark and quark-antiquark-gluon channels—is usually
large in highly relativistic systems, and the energy available is more than ample
for particle creation. Thus the physics of such systems tends to depend upon the
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interplay between a large number of channels. A meson for example is a super-
position of states involving a quark-antiquark pair, a quark-antiquark pair plus a
gluon, a quark-antiquark pair plus two gluons, two quark-antiquark pairs, and so
on. In the Bethe-Salpeter formalism this interplay between channels 1s implicit
since the meson is described entirely by a quark-antiquark wavefunction. Refer-
ence to all other channels is buried inside the potential and irreducible scattering
amplitudes used in analyzing hadronic processes, and as a result these potentials
and scattering amphitudes become largely intractable. Even in situations where a
single channel dominates, the formalism is still quite complicated and very nonin-
tuitive. For example the Bethe-Salpeter wavefunction has no simple probabilistic
interpretation analogous to that for nonrelativistic wavefunctions. Because of
such complexity the Bethe-Saipeter formalism has been largely abandoned. even
1 state-of-the-art calculations pertaining to such highly nonrelativistic systems
as positronium or the hydrogen atom.

Intuitively one would like to describe hadrons in terms of a series of wave-
functions, one for each channel, jusi as one would in nonrelativistic quantumn

mechanics: e.g.

7} =) 190 Yogsn + > 1939} bagosn + - (17)
99 439

Formally this can be done by quantizing QCD at a particular time, say { = 0, and
using the creation and annihilation operators from the fields to define the basis
states for such a “Fock-state” representation. The problem with this approach is
that the zero-particle state in this basis is not an eigenstate of the Hamiltonian,
An interaction term in the Hamiltonian like ga'y# A*y contains contributions such
as blaldl that create particles from the zero-particle state. As a result not all of
the bare quanta in an hadronic Fock state need be associated with the hadron:
some may be disconnected and possibly quite remote elements of the vacuum
(Fig. 4}. This greatly complicates the interpretation of the hadronic wavefunc-
tions. Also Lorentz transformations are very complicated in this formalism; boost
operators tend to create all sorts of additional quanta. This is because the quan-
tization surface ¢ = 0 is not invariant under boosts, and thus boosting a state
inevitably involves the dynamical evolution (in ¢) of parts of that state. This is
a serious problem for our analysis of large-p, processes since the initial and final
state hadrons necessarily have very different momenta.

Fortunately there 1s a convenient and intuitive formalism, originally due to
Dira,c,g that avoids these problems. This is based upon the “light-cone quan-
tization” of QCD, where the theory is quantized at a particular value of light-
cone time 7 = t + 2 rather than at a particular time ¢. In this formalism the
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Figure 4. Perturbative contributions to the pion’s ¢gggy wavefunction. Con-

tributions of type b} correspond to creation of a ¢gg from the vacuum, and have

. nothing to do with the hadron. These latter contributions do not arise in light-cone
gquantization.

hadronic wavefunctions describe the hadron’s composition at a particular 7, and
the temporal evolution of the state 1s generated by the light-cone Hamiltoman:
Hpc = P~ = P? — P3, conjugate to 7. Remarkably a simple kinematical argu-
ment shows that the zero-particle state in the lighi-cone Fock basis is an ezact
eigenstate of the full Hamiltonian Hyc. Therefore all bare quanta in an hadronic
Fock state are pari of the hadron. Furthermore Lorentz boosts are greatly sim-
plified in this framework since the quantization surface 7 = 0 is invariant under
longitudinal boosts. It is also convenient to use 7-ordered light-cone perturbation
theory (LCPTh), in place of covariant perturbation theory, for much of our anal-
ysis of exclusive processes. LCPTh provides the natural perturbative framework
for computing amplitudes in terms of the light-cone wavefunctions that describe
hadrons, the resulting formalism being conceptually very similar to ordinary time-
dependent perturbation theory in nonrelativistic quantum mechanics. LCPTh s
also very convenient for analyzing other light-cone dominated processes, such as
deep inelastic scattering. Unlike {-ordered perturbation theory, r-ordered per-
turbation theory does not suffer from an explosion in the number of diagrams
relative to covariant perturbation theory.

The advantages of light-cone quantization do neot come for free. The quan-
tization surface 7 = 0 is not invariant under arbitrary rotations or even under
parity inversions. As a consequence the operators that generate these transfor-
mations are as complicated as the light-cone Hamiltonian, making it difficult, {or
example, to specify the spin of a particular hadronic state. However the simplic-
ity of the vacuum and of boosts is more important for our applications than is
rotation symmetry.

Light-cone quantization and perturbation theory are briefly reviewed {or QC1)
in Appendix I1L. lu the following sections we describe the Fock state basis and

12
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wavefunctions in greater detail, emphasizing those features important to our anal-

ysis of form factors.

3.1. DEFINITIONS

It is convenient when quantizing on the light-cone to rewrite four-vectors in
terms of their +, —, and L components:

pt=pi4ps

) p=p_p? (18)
N
P, = (P, P,

These components transform very simply under boosts along the z-direction:
— —

Pt o exp(ta)P* and P, — P . In this notation dot-products have the

form

2 tg— 2 P ot  —
p.P=ptp-_F, Pp.g='1 ;“ 1 _F

14 (19)

If 7 = 2% = t 4+ 2 is to play the role of time in our light-cone formalism then
P~, the momentum conjugate to 7, plays the role of the Hamiltonian, and £ =

—}
(P*, P ) is the three-momentum that specifies the state of a particle. The
light-cone energy of a noninteracting particle with mass M is just

2

. P+ M
pr= it (20)
and the particle’s phase space 1s given by
dip , ., dP*d®P,
L} é+ “ - = = —; 2

gy O M) = e (21)

Thus a properly normalized momentum eigenstate satisfies
(P|P") = 2P*(27)* (P - P'). (22)

Note that the longitudinal momentum P+ for a particle is always positive.
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To quantize QCD on the light-cone one defines commutators for the indepen-
dent fields at a particular light-cone time 7. {See Appendix [II). Particle creation
and annihilation operators are obtained by Fourier transforming the unrenor-
malized field operators. These create and destroy bare quarks and gluons that
have specific three-momenta and helicities. Using the creation and annihilation
operators we can define a set of basis states for the quantum theory:

o)
g7 - ki) = (kA1) dF (Ep2) [0)

lqGg @ kM) = b1k M) M (kpho) at (k3 ha) 10)

where b, d' and a' create bare quarks, antiquarks and gluons having three-
momenta £, and helicities A;. Of course these “Fock states” are generally not
eigenstates of the full Hamiltonian Hyc. However the zero-particle state is the
only one with zero total P, since all quanta must have positive &+, and thus this
state cannot mix with the other states in the basis. It is an exact eigenstate of
HLC.#I Although they do not diagonalize the Hamiltonian, the Fock states form
a very useful basis for studying the physical states of the theory. For example, a

pion with rmomentum P = (Pt TJ}_L) is described by state

T dl‘,‘dzg_!_;'
iﬂ-£>—§f1:[ \/1'_3'16??3

¥t J:i'P+,$3'T;J_ + E_Lh A3> d"nf?r(-rt': 'I_‘:J_h /\t)

(24)

#1 The restriction &+ > 0 is a key difference between light-cone quantization and ordinary
equal-time quantization. In equal-time quantization the state of a parton is specified by
its ordinary three-mmomentum E = {k', k2 k3). Since each component of k can be either
positive or negative, it is easy to make zero-momentum Fock states that contain particles,
and these will mix with the zero-particle state to build up the ground state. In light-cone
quantization each of the particles forming a zero-momentum state must have vanishingly
small k+. Such a configuration represents a point of measure zero in the phase space, and
therefore such states can usually be neglected. Actually some care must be taken here
since there are operators in the theory that are singular at k* = 0—e.g. the kinetic energy
(Ef +MZY kT In certain circumstances states containing £ —  quanta can significantly
alter the ground state of the theory. One such circumstance 1s when there is spontanecous
symmetry breaking. However such effects play little role in the sort analysis we deal with
in this article, since we are concerned with high-energy, short-distance phenomena. Note
also that the space of states that play a role in the vacuum structure 1s much smaller
for light-cone quantization than for equal-time quantization; the state of each parton is
specified by a two-momentum rather than a three-momentum since &+ = 0. This suggests
that vacuuin structure may be far simpler to analyze using the light-cone formulation.

14



where the sum 1s over all Fock states and helicities, and where

I

ﬁdx,' de,'5 I—Z:L'J'
t Tt 3

ﬁdzgli = Hdzglg 16'!{3 62 Z E_L}
t ' j

The wavefunction Y al2is Eii, A) is the amplitude for finding partons with mo-

— —
menta (z;Pt,z; P4 + ki) in the pion. It does not depend upon the pion’s
momentum. This special feature of light-cone wavefunctions is not too surpris-

ing since z; is the longitudinal momentum fraction carried by the 2th

parton
(0 <z; <1), and kb its momentum “transverse” to the direction of the meson.

Both of these are frame independent quantitics.

Throughout our analysis we employ the light-cone gauge, - 4 = AT = 0, for
the gluon field. The use of this gauge results in well known simplifications in the
perturbative analysis of light-cone dominated processes such as high-momentum
hadronic form factors. Furthermore it is indispensable if one desites a simple,
intuitive Fock-state basis, for there are neither negative-norm gauge boson states
nor ghost states in A¥ = 0 gauge. Thus each term in the normalization condition

dr,d? k ; = ,
Z/H 167 3_L |"rbnf7r($iaklis)\i)|2 =1 (2())

7,

is positive. This equation follows immediately from the normalization condition
for the full pion-state.

3.2. LigHT-CONE BOUND-STATE EQUATIONS

Any hadron state, such as |7} for the pion, must be an cigenstate of the light-
cone Hamiltonian. Consequently, when working in the frame where P, = (1,0)
and P7 = M2, the state |r) satisfies an equation

(M2 — Hyc) ) = 0. (27)

Projecting this onto the various Fock states {¢q|, {¢gg¢|... results in an infinite

15



number of coupled integral eigenvalue equations,

o Yog/x (q@lV9ea) {(qalVigag) -] [ Yea/s
(Mg_z_é:;__s) bagerx | = | (q991V g9} (qa9lV ig79) -] | Yagosr
(28)

where V is the interaction part of Hy. Diagrammatically, V involves completely
irreducible interactions—i.e. diagrams having no internal propagators—coupling
Fock states (Fig. 5). These equations determine the hadronic spectrum and

o] [Z o] [ =] 2D

Figure 5. Coupled eigenvalue equations for the light-cone wavefunctions of a
pion.

wave functions. Although the potential is essentially trivial, the many channels
required to describe an hadronic state make these equations very difficult to solve.
Nevertheless the first attempts at a direct solution have been made.

The bulk of the probability for a nonrelativistic system is in a single Fock
state—e.g. {e€) for positronium, or |bg) for the T meson. For such systems it
~ is useful to replace the full set of multi-channel eigenvalue equations by a single
equation for the dominant wavefunction. To see how this can be done, note that
the bound state equation, say for positronium, can be rewritten as two equations
using the projection operator P onto the subspace spanned by €€ states, and its
complement @ =1 - P:

Hpp |Ps)p + Hpg [Ps)g = M? |Ps)p
{29)
Hop [Ps)p + Hog |Ps)y = M? |Ps),,

where Hpg = PHQ. .., and |Ps)p = P|Ps).... Solving the second of these
equations for |Ps)g and substituting the result into the first equation, we obtain
a single equation for the €€ or valence part of the positromum state:

He [Ps), = M2 |Ps), (30)
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where the effeciive ee Hamiltonian is

1
Heg = HPP+HPQW—HQ'P- (31)

— Hyg

The second term of He.g includes all effects from nonvalence Fock states; in light-
cone perturbation theory it is given by the sum of all diagrams for e — ¢€ having
no e¢ intermediate states (1.e. it is “eg-irreducible”). Thus we have (Fig. 6)

- . 1 -
o k_Lg-}-ﬂlg - dzfl - - 9 =
= ee\ L, = T3 Ye 1“;1{; eel(y, 11).
(M L Yaate ) = [y [ S Veate Ruso T M) st )
0
(32)
where Vg is given by
Tirr(e€ — €?)

(1 - 2)y(1 — y)'*

Vet = (33)

and Ti (€ — €€) is the eg-irreducible amplitude for elastic €€ scattering. The
hehicity dependence is implicit in this equation.

-
| (a)
e -

T (b) 154

Figure 6. a) Bouand state equation for the ¢e wavefunction of positronium. b}
The e€-irreducible potential.

One might wonder whether or not this simple equation 1s also useful for rel-
ativistic states like light-quark hadrons. For positronium the effective potential,
Ve & Vioulomb, 18 little modified by nonvalence Fock states and so this reduc-
tion to a valence equation s well warranted. However nonvalence states are most
likely quite important for a light-quark hadron, and therefore V.g cannot help
but be very complex in this case. For example, retardation effects must become
significant when non-valence states become important, as 1s evident from the
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nermalization condition for the valence wavefunction:

drid?ky . av, |
Z/H $16 3-’- e (i B i, AP = 1 — (yai] Mg |3hvar) (34)

—the expectation value of 8V,5/3M?, a measure of the retardation, equals the
probability carried by nonvalence Fock states. So usually one is forced to use the
full coupled-channel equations when analyzing ordinary hadrons. However, as we
shall see, the valence state plays a special role in high-momentum form factors,
and so the valence-state equation will be useful in our analysis.

3.3. GENERAL PROPERTIES OF LIGHT-CONE WAVEFUNCTIONS

One major advantage of the Fock-state description of a hadron is that much
intuition exists about the behavior of bound state wavefunctions. So, while the
task of solving Eq. (28) remains formidable, there is nevertheless much we can
say about the hadronic wavefunctions. An important feature that is immediately
evident from Eq. (28) is that all wavefunctions have the general form

, 1
balzi, ki, Ai) = = V). 35
Palzi, ko, ) M?—E,-(kj,-quf)/a:,;( ) (35)

Consequently ¢, tends to vanish when

E2, 2
SEMQ—Z—J‘E%TJ“ - —0c. {36)

This is intuitively plausible. In the Fock state expansion we think of thc bare
quanta as being on mass shell but off (light-cone) energy shell: i.e. each parton

comprising a state with P = (Pt T;_L has
prising

i — (i P 4 kpq)° +mi
: z, Pt

— ki =m? (37)

but the sum over all k; is not equal to P~. In fact the difference is just

—_ —)2
— PJ_+M ki;+m2 P_L £
Tk = 2 e tP) TR U9

Parameter £ is a boost-invariant measure of how far off energy shell a Fock state
1s. Thus Eqg. {35) implies that a physical particle has little probability of being
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in a Fock state far off shell. In general £ is large when f_c'i, or r; is smali—i.e. the
wavefunction should vanish as E_f, — o< or z; — 0. Formally such constraints
appear as boundary conditions on the wavefunctions and are important if ithe
Hamiltonian is to be well defined (e.g. self-adjoint). These are subtle issues that
we will not discuss here. Suffice it to note that all wavefunctions must satisfy the
conditions
Ei,‘ gbn(sg,fc._u,a\,') — 0 as E_E, — o0
(39)
Yalzy, E_L,-, Ai) >0 asz; — 0.

if the free-particle Hamiltonian is to have a finite expectation value.

Perturbation theory is a useful source of intuition concerning wavefunctions
and Fock-state expansions. The electron’s Fock-state expansion, for examnple, can
be computed perturbatively. To lowest and first order there are only electron and
electron-photon components 1n the physical electron state: e.g. an clectron with
momentum P = (1,0) and positive helicity is described by

|physical eT) = |eT> Zy +

f dz d®k {
1678 (z(1 — z))/2

e 2L e e (2 R+ (10)

|6T7l : :r*-*g-!-> we:?lfez(xagi) + }

where the electron in Ie’y : (B,EJ_> has momentum k, = (:;:,f_cl] and the photon

has momentum k, = (1 — (I:,“‘—E_L). The ey-component of this state is readily
computed from the light-cone Hamiltoman using ordinary first-order Rayleigh-
Schrédinger perturbation theory. Schematically this term is given by the expres-
sion

sl ) 1 Ve o)

which is identical in form to the LCPTh amplitude for the diagram in Fig. 7.
Thus the ey-wavefunctions follow directly from LCPTh: e.g.

- eup(k.)ey(ky) - yui(L) —e(k; — 1k
wCTTifel(z'!k.L) = o -"2 T T = —’2( : ,)2)' (42]
m? — (ki +zm?)/z(l —z) ki 4 z2m?

Having computed these wavefunciions, the renormalization constant Z3 is fixed
by the normalization condition for the full electron state; obviously Z; is the
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probability for finding a bare electron in a physical electron, The wavefunctions
for an elementary particle like the electron can be used in much the sarne way
as the wavefunctions for a composite particle; given the wavefunctions, there is
little distinction between composite and elementary particles in this formalism.
Notice that the ey-wavefunctions do not satisfy the boundary conditions discussed
above, and as a result Z3 is not finite. This is of course just the usual ultraviolet
divergence in QED. As we discuss in the next section, neither of these boundary
conditions is generally satisfied in the absence of ultraviolet (k; — oo) and
infrared {(z — 0) regulators.

L p (xky)

|
(1,0) i

|

!

{(1-%,-K }

6318AT 3BG

Figure 7. LCPTh amplitude corresponding to the ey-wavefunction for a physical
electron.

More generally perturbation theory can be used to compute the high-momen-
tum behavior of light-cone wavefunctions. The basic ansatz of perturbative QCD
is that the short distance behavior of the theory is perturbative; only perturba-
tive interactions are sufficiently singular to contribute at short distances. Consc-
quently wavefunctions behave in much the same way as perturbative amplitudes
(in LCPTh) when ky — ¥? This is evident from our analysis of the non-
relativistic wavefunction for heavy-quark mesons: the large-§ dependence of the
wavefunction is obtained by replacing the meson with an on-shell quark-antiquark
pair and computing in perturbation theory. A similar analysis in the relativis-
tic case shows that the pion’s gg wavefunction falls off roughly as I/Ei when
EE — 00, just like the LCPTh amplitude for gg — ¢*g* that is shown in Fig. 8a.
Similarly one expecis the ggg wavefunction to fall like the perturbative amphtude
in Fig. 8b—i.e. ¢y, ~ 1/1k1| as |EL| - oo.

In addition to determining the }arge-;c'l behavior of wavefunctions, perturba-
tion theory also serves as a guide to modelling such things as the helicity depen-
dence of wavefunctions. Normally one can say little about the angular-momentum

#2 'This connection can be made precise using the cperator product expansion, as we illus-
trate in later sections.
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XK, XKy
(b) :Q - T
—_—
- 388 £315A8

Figure 8. LCPTh diagrams having behavior similar to that of wavefunctions for
k) large.

content of a model wavefunction, since the angular momentum operators are very
complicated in light-cone quantization. However perturbation theory can be used
to produce examples of wavefunctions having particular spin quantum numbers,
and thesc can be used to motivate non-perturbative models. For example, to
see what a pion’s ¢g wavefunction might look like, we can treat the pion as an
elementary paltlcle that couples to the quarks through elementary couplmgs like
Yy T T or Yysy - OF - Ty, The wavefunction can then be computed pertur-
batively in much the same way we compute ¥,/ above. This wavefunction has
the correct quantum numbers in the limit where the quark-antiquark interactions
are negligible, and so it can serve as the starting point for the design of emipirical
wavefunctions to model the pion. Note that such a wavefunction is more sin-
gular at large momenta than the pion's true wavefunction; this is the essential
difference between an elementary particle and a composite particle.

Further intuition about wavefunctions comes from the physics of nonrela-
tivistic bound states. In the rest frame, where P* = P~ = M and Hﬁl = 0,
time ¢ and lighi-cone time 7 = ¢ + z/c are almost identical for a nonrelativistic
system since the speed of light ¢ is effectively infinite. Consequently the usual
Schrodinger wavefunciion defined at a particular ¢ should be almost the same as
the light-cone wavefunction defined at 7 = . To make the connection notice that
the i** constituent has longitudinal momentum

kY =M = B 4+ k) = omy + O(mp®) + &} (43)

where the constituent’s energy k? is just its mass m; plus small corrections (due to
kinetic and potential energies) of O(m;v?) < k3 ~ myv. Thus the quantity z;M —
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m, is effectively equal to k3, and a Schrédinger wavefunction can be converted to
a light-cone wavefunction simply by the replacement: &3 — ;M — m,. This is
also evident when we note that all energy denominators have the form

E2,+m? 1":'.2'-i-(:e:"ﬁ/_"—_m,')2
MP_N T E  9M ENg - L - 44
2 T “
when |z, M — m;| € m;. This correspondence indicates thai nonrelativistic light-
cone wavefunctions are sharply peaked at

.._mi E_,O 4:
l;‘*M 1: = Y, (J)

just as Schrodinger wavelunctions are peaked at low ks (& m;). This 15 well
illustrated by the wavefunction for ground state positronium {or hydrogen) which
is given by

(46)

y{’(x\‘h EJ_) ~ (

i

-2;1473)” ’ 877
(f:i +(xeM — me)? + '}-'3)

when gﬁ, (zeM — m.)? < m?2. Here v = am, where m, is the reduced mass.

3.4. RENORMALIZATION

As we discuss in earlier sections, perturbation theory indicates that hadromc
wavefunctions do not fall off sufficiently quickly as Eji — oc. This leads to
infinities in the unitarity sum {Eq. (26)), energy expectation values, and in
the wavefunctions themselves. Of course this is not unexpected given that the
wavefunctions and the theory are as yet unrenormalized. To make the theory
finite we must truncate the Fock space by in effect discarding all Fock states with
light-cone energy |£| > A%. This ultraviolet cutoff can be introduced by using
Pauhi-Villars and related regulators or, equivalently, dimensional regularization.
These regulators preserve the Poincaré and gauge symmetries of the theory. For
our purposes, however, 1t 1s simpler and more intuitive {o simply truncate the Fock
space, excluding all states with |£] or Ei greater than some A®. This procedure
causes no problems in “leading-log” analyses of the sort we are concerned with
here. The end result is that all loop integrations in LCPTh are finite, and the
wavefunctions all vanish at large k.
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Usually onec takes A — oo when computing. However the key physical char-
acteristic of renormalizable theories is that this cutoff has no effect on the results
for any process provided only that A is much larger than all mass scales, energies,
and so on relevant to the process of interest. So we can compute with finite A.
This is not to say that states with |£] > A? are unimportant—the existence of
ultraviolet divergences is dramatic evidence to the contrary. Rather it means
that all low-energy effects due to these very high-energy states can be accounted
for by redefining the coupling constants, masses, etc. appearing in the effective
Lagrangian {or Hamiltonian) for the truncated theory—e.g.

£ = Fi0- g Ay = m(AYp + 147 + 0 (P4 ) )

These bare parameters vary with A in the usual way, as more or less of the
high-energy Fock space is absorbed:

d o 0, m(A)
’\HO{&(”\ ) =5 (GS(A ), )

(48)

In general nonrenormalizable interactions appear as well, but these are suppressed
by powers of 1/A, as is suggested by simple dimensional arguments. Also the
effective Lagrangian can change radically as A passes thresholds for new heavy
quarks, or say for observing quark substructure (if there is any).

Working with a finite cutoff, the couplings, masses, and wavefunctions of the
theory are both well defined and well behaved. Furthermore they have a simple
interpretation. The bare parameters—g{A), m(A}...—are the eflective couplings
and masses of the theory at energies of order A (i.e. at distances of ~ 1/A). Indeed
as we shall see, a process or quantity in which only a single scale @) is relevant is
most naturally expressed in terms of the couplings, masses, wavefunctions, etc.
of the theory with cutoff A ~ ¢). Of course one must compute with A > . but
the dominant effect of vertex and self-energy corrections is to replace g(A), m(A},
M by g(@), m(Q), @} Thus as Q is increased, ever finer structure is
unveiled in the wavefunctions and in the theory.

The wavefunction ?,bitA}(a:,-,El,-,/\,‘) has a multiplicative dependence upon A
when z; and k| ; are held fixed, and when kj}“_,' < A%
1/2

A _
. i (24, K M) (49)

(o)
Zj

oM @i, B ) =1]

5
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(A}

where Z;" is the usual wavefunction renormalization constant for the j*® parton.

(A}

This formula is easily understood by recalling that Z;™ is the probability for

finding a “bare” parton in a “dressed” parton. Also it follows that 0 < ZJEM < 1.

Furthermore, Z}A} generally decreases with increasing A since the effective phase
space, and therefore the probability, for the multi-parton Fock states in a dressed
parton increases with A. Although the probability shifts from Fock state to Fock
state with varying A, the total probability is always conserved:

o dz;d? k (A - m
Z / el @ F MF =140 (). (50)
One final modification of theory is required. The polarization sum {or a glion

is singular as the gluon’s longitudinal momentum &kt vanishes:

* kv + Vk -
E :&‘#(ﬁ,»\)ey(ﬁ,)\) = —Guv + Tulv T v k"'?? £ {51)
A

As a result wavefunctions for states with gluons diverge as kF — 0, again contrary

to the boundary conditions Eq. (39). This singularity is to soime extent an
artifact of hght-cone gauge. For our purposes it can be regulated by making the

1 \" 1 i 1 |
(&_"') Y {(k+ +18)® + (k+ — 3‘5)1;} : (52)

Physical amplitudes or cross sections are independent of 6 provided 1t 1s sufii-

replacement:

ciently small. This implies that gluons decouple when k;’ < §é for some small
6. Thus we can use this regulator with a small but non-zero é to obtain wave-
functions that are well behaved when gluons have vanishingly small longitudinal
momenta. Typically the cutoff point must be & < {ky)/Q, where (k] } is some
average of the gluon’s %, and () 1s the momentum scale of the probe. Therefore
as ( increases, so does the number of “wee” gluons. Notice finally that (&)
can never vanish for physical states since very long wavelengih gluons cannot
couple to a color-singlet state. Thus, with finite § and A cutoffs, all Fock-state
wavefunctions are well behaved, both as z; — 0 and f:._,_,- — 00.
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3.5. CALCULATING

In principle the hadronic wavefunctions determine all properties of a hadron.
Here we illustrate the relation between the wavefunctions and measurable quanti-
ties by briefly examining a number of processes. These exainples also demonstrate
the calculational rule for using wavefunctions: i.e. an amplitude involving wave-
function t,b,(;\), describing Fock state n in a hadron with P = (P7, hﬁl], has the
general form

T dr.d?ky - =
S [T s i b d) TP 2 Pre fih) 59)
A i !

where T5" is the irreducible scatiering amplitude in LCPTh with the hadron
replaced by Fock state n. If only the valence wavelunction is to be used, Y}g’l\) 18
irreducible with respect to the valence Fock state only: e.g. T,EA) for a pion has
no qq intermediate states. Otherwise contributions from all Fock states must be

summed, and T,EA) is completely irreducible.

T — I

The leptonic width of the 7% is one of the simplest processes hecause it
involves only the ¢§ Fock state. The sole contribution to #~ decay is from

0%,y (1 — ys)¢alr ) = —V2PY fy

dxdzg_;_ (A) - \/?_1; Y
—-/."Tﬁ_'?rs—wd&‘ (mag"l) \/‘z

where n, = 3 i1s the number of colors, fr &~ 93 MeV, and where only the L. =
S, = 0 component of the general ¢g wavefunction contributes. Thus we have

-1
(1]
L

ded®ky (a), . Jx
[ S ek - (

This result must be independent of the cutoff A provided A is large compared
with typical hadronic scales. This equation is an important consiraint upon the
normalization of the du wavefunction, indicating among other things that there
is a finite probability for finding a #~ in a pure du Fock state.
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Hadronic form factor

The electromagnetic form factor of a pion is defined by the relation
{r  P|JE,|x: Py = 2P+ P F(—(P - Py). (56)

where J&,, is the eleciromagnetic-current operator for the quarks. The form factor
is easily expressed in terms of the pion’s Fock-state wavefunctions by examining
the 4 = + component of this equation in a frame where P = (1,0) and P’ =
{(1,41). Then the spinor algebra is trivial since (kv u{l) = 2Vk+I*, and
the form factor is just a sum of overlap integrals that is quitc analogous to the

. . 1
nonrelativistic result (Fig. 9a}):

] dl‘ d k_L A —+ .'\ — -
Flgi) = ZZ“”‘*/H Y- ol D M) e e B, ). (5T)

Here e, is the charge of the struck quark, A® >> tj'j and
o= };l,- — ;4. + ¢, for the struck quark

1 = -

ki — g1 for all other partons.
Notice that the transverse momenta appearing as arguments of the first wave-
function correspond not to the actual momenta carried by the partons but to
the actual momenta minus z;§, to account for the motion of the final hadron.
- Notice also that {; and %, become equal as ¢ — 0, and that Fr — 1 in this

limit as a consequence of the unitarity condition Eq. (50). The behavior at large
c}'f is discussed at length in subsequent sections.

f + i +
{a)
%Q + ij : +
ses (b) sosas

Figure 9. Diagrams contributing to the electromagnetic form {actor of a hadron:
a} only terms for g = +,; b} additional terms for u # +.
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It is interesting to note that a very different expression is obtained for the
form factor if one examines some other component of the current, for example
the 4 = — component. Not only does the momentum dependence of the quark-
photon become more complicated, but the vertex no longer conserves particle
number since there are now terms involving transitions ¢ + ¥* — ¢ + ¢ and
g+ g+ — g, as illustrated in Fig. 9b. These various expressions for the
form factor must all be equal, and yet there is no simple way of demonstrating
this fact. The problem is that rotations must be used to relate one expression
to another, and the rotation operators are complicated in our formahism. The
equality of these expressions implies a nontrivial relationship between different
Fock states, a relationship that ought to be incorporated as much as possible into
empirical models for the pion wavefunctions.

Note finally that our expression for the pion form factor is actually far more
general. The helicity-conserving electromagnetic form factor of any hadron has

precisely the same form.

Deep inelastic scatiering

The proton’s struciure functions are determined to leading order in as(Q°) by
the T-ordered diagrams in Fig. 10. Furthermore- the only region to contribute in
this order is k2 & Q where Q2 = q . This is because the hadronic wavefunctions ™

are peaked at low LJ_. This has two important consequences: first, we can neglect
E_L relative to §y to leading order; and second, we can set the ultraviolet cutoff
A equal to (} since only those Fock states with EE & @° are important. The
structure functions are then

IM Fi(z,Q) = 2 n Y €2 Gpplz.Q) (59)

where, from Fig. 10,

drid?k ; - ,
Cupte,@ =3 [T] e Mo Bas P ol =) (60
b=qa

1,4,

is the number density of partons of type ¢ with longitudinal momentum frac-
tion z in the proton. {The >°, is over all partons of type a in Fock state n.)
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This equation leads immediately to a very useful interpretation of the structure

0.0,

. 0

(c) ENSAM

Figure 10. LCPTh diagrams contributing to the proton’s structure functions for
deep inelastic scattering.

function moments:

1 — =+
. a4+l (@)
a+l _ (pll,bﬂ"}‘_l'(lD ) +12¥"G Ip)
fda::c Gopplz, Q) = (‘2Pp+)”+2
G

(61)

where the matrnx element 1s between proton states and 1s evaluated with ultra-
violet cutoff A = @, and where the gauge-covariant derivative is D¥ = 8% in
light-cone gauge. The {J-dependence of the moments is determined simply by the
cutoff dependence of matrix elemenis of (twist-two) local operators!

o 4. A PERTURBATIVE ANALYSIS

In this section we develop the techniques needed to understand exclusive pro-
cesses with large momentum transfer. This relativistic analysis is very similar to
the nonrelativistic analysis given in Section 2, and, as 1n the nonrelativistic case,
the result is both simple and intuitive. Generally one finds that the amplitudes for
such processes can be writien as a convolution of quark distribution amplitudes
#(z;, @), one for each hadron involved in the amplitude, with a hard-scattering

. 4 : .
amplitude Ty. ? The pion’s electromagnetic form factor, for example, can be
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4,2

wriiten as

1

fmwhja 460, Q) Tu(e 0, Q2,0 (1+05)) . (@
0

G

Here Ty is the scattering amplitude for the form factor but with the pions re-
placed by collinear ¢¢ pairs—i.e. the pions are replaced by their valence partons.
The process-independent distribution amplitude4 éxlz, Q) is just the probabiliiy

amplitude for finding the ¢7 pair in the pion withzg =z and 25 =1 — 2.7

2k
6:(0,Q) = [ T vl F) (63)
dz + +
— p+ P /2 ( Y V5 . {Q .
r e OO T2 | e

The &, integration 1 Eq. (63) is cut off by the ultraviolet cutoff A = @ tmplicit
in the wavefunction; only Fock states with energies [£] < Q? are important, =

The structure of Eq. (62) is very reminiscent of that for the nonrelativistic
form factor (Eq. (14}). The major difference is that here there is a convolution
over the longitudinal momenta of the partons. In a nonrelativistic meson the
longitudinal momentum is sharply peaked about z = 1/2, and thus the z-y
dependence of Ty plays no role. One can set z = y = 1/2 in Ty, and factor it
out of the integral in Eq. (62). Then one needs only f dz ¢, which is just the
wavefunction evaluated at the origin, to compute the form factor. As far as the
nonrelativistic meson is concerned the hard subprocess occurs over very short
distances. The situation is different for a relativistic meson, which is sensitive to
the fact that the hard subprocess is not really a short-distance reaction. Although
the volume within which the subprocess occurs is small in the transverse direction
(1621] ~ 1/@), it can extend over large longitudinal distances: 62~ ~ 1/PF =
1/ms in the pion’s rest frame. A relativistic meson has structure over such
distances, and therefore the asymptotic form factor is given by a convelution over

#3 The distribution amplitude is gauge invariant. In gauges other than light-cone gauge, a
path-ordered “string operator” Pexp(fal dsig A(sz) - 2} must be included between the
and ¢. The line integral vanishes in light-cone gauge because A -z = A*z7 /2 = 0 and so
the factor can be omitted in that gauge. This (non-perturbative) definition of ¢ uniquely
fixes the definition of Ty which must itself then be gauge invariant.
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longitudinal momentum. Note that the subprocess is still restricted to a region
very near the light-cone—ie. 622 = 62182~ — 6% ~ —1/Q*. Such “light-cone
dominated” processes can still be analyzed perturbatively.

The distribution amplitude is only weakly dependent on @, as is evident {from

>
the evolution equation4'" {which we derive below):

1

Qb%%(x,Q) - f dy V(z,9,04(Q%) éx(3.Q) (65)
(]

Viz,y, as{@?)) = as(Q%) iz, y) + 2(Q%) Val(a,y) + -+ (66)

The bulk of the Q dependence comes from Ty. To leading order in as(Q?), Ty is
obtained directly from the form factor for 4* + ¢§ — ¢g, where the mesons have
been replaced by collinear ¢¢ pairs:

Foa(z,y, @)

Ty(z,y,Q) = :
BT = o - )P

{leading order). (67)

Beyond leading order only the “collinear-irreducible” part of Fig is retained: all
mass singularities are systematically subtracted out since contributions from low
momenta are already included in the distribution amplitudes. Therefore we can
neglect all quark and meson masses in Ty, leaving () as the only scale. The
amplitude musi then have the general form

Ti(z,4.Q) = é (2.1, 2:(@?)) (68)

where n — 2 from simple dimensional arguments. This means that the pion
form factor falls as 1/Q?, up to logarithms of Q. In general the dimension of
an amplitude is {energy|™" where n is the total number of quarks, gluons, and
leptons in the initial and final states of the process: e.g. n = 6 — 4 for the pion
form factor since the process ex — er involves four partons and two leptons.
This “dimensional-counting rule” implies that the nucleon form factor falls off
roughly like 1/Q? with increasing @, since there is one additional parton in each
of the initial and final states of Ty relative to the pion case and thus n = § — 4.
Generally the more partons that must be scattered from the initial to the final
direction, the more powers of 1/¢) there are in the form factor.
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Figure 11. The gg-irreducible diagrams contributing to the g7 form factor.

> 1A

A second consequence of neglecting masses in Ty is that total quark helicity

is conserved since the vector couplings with gluons cannot flip the helicity of

massless quarks.#4 By its definition ¢ carries no helicity, and so the helicity of
the hadron equals the sum of the helicities of its valence quarks in Ty. Thus.
for example, hadronic helicity is conserved in high-Q? form factors—i.e. helicity-
flip form factors such as the nucleon form factor Fo arc suppressed by additional
powers of m/Q.

In the following sections we derive these results for the pion’s electromag-
netic form factor; the techniques generalize readily to other large-p, processes.
We discuss how the distribuiion amplitudes might be compuied nonperturba- ~
tively. We examine problems that arise in certain processes due to singularities
in Ty. Finally, we address the critical question of how large @ must be for these
asymptotic resulis to hold. We do this by examining competing mechanisms and
by investigating the seli-consistency of perturbation theory.

4.1, FACTORIZATION—LEADING ORDER ANALYSIS

The pion’s form factor can be written in terms of its ¢g wavefunction alone:

FK(QQ) — / dx dzi;l / dy d?g_!_ ¢(A)*(y’ ‘?_L) T(l'& k.!.; Y, !J.Q é'_L) %‘;)(1‘\)(1,.J ;‘-:_L)
16x% J 167° [=(1 - 2)y(1 -y}
(69)
Here T is the sum of all gg-irreducible LCPTh amplitudes contributing to the ¢g
form factor for v* + qg — ¢§ {(Fig. 11). The ultraviolet cutoff 1s A >» @.

#4 The helicity-projection operators for massless quarks are Just 1 4 5. Noting that, for
example, that the vertex wy*{1 — v5)u equals u'(1 — v5}7 % v#u, we see that the vector
coupling of the gluons with the quarks preserves quark helicity. This would not be the
case if the gluon was a scalar where, for example, the coupling might be %(1 — vsju which
equals ©'(1 + vs5)7y%u and flips the quark’s helicity. This same sort of argument can also
be used to explain why massless neutrinos are always left-handed.
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Consider first the disconnected part of T {Fig. 1la). For the moment we
ignore renormalization diagrams, and consider only terms where the photon at-
taches to the guark line. The disconnected part then gives a contribution

27 3 .
o [do [t 6O E 4 (0= D)y e ) (10)
T
U

to Fi, where e, 1s the quark’s electric charge. The analysis of this contribution
follows closely that of the nonrelativistic form factor. The integral is dominated
by two regions of phase space when Q7 is large since the wavefunctions are sharply
peaked at low transverse momentum:

1) |3-c.l| < (1 — z)Q, where LL'{M(:I:,EL) is large;

2) kL + (1 — 2)§o| < (1 - 2)Q, where 8N (2, by + (1 — 2)4)) is large.
In region 1), %, can be neglected in (M) (z, £L+(1 — )¢y ) until IELI 2 (1—ax)0,
at which point () begins to cut off the k, integration. Thus in region 1} we
can approximate Eq. (70) by

. ) d’k) o .
eqfdw“” (2, (1~ 2)q1) ] T v k). (71)

The bulk of the integral comes from |£,| < (1 — z)Q. Similarly we obtain the
following contribution from region 2):

i (1-2)Q

42k . . .
o [l [ TEHE) P ()
]

One can easily show that these approximations are valid to “leading-log”™ order—-—
2

i.e. up to corrections of 01/ log(Q?))—given that  falls off roughly as 1/}':".'l in
QCD.

Again as in the nonrelativistic case, we can use the bound-state equation for
the valence wavefunction (c.f. , Eq. (32)) to further simplify these expressions
by isolating the ¢y dependence of the stressed wavefunctions. The equation for
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d)(A)(I: (1 - x)(z?_L) is

1 -

Mz, (1-2)qL) = ﬁ;—-—/dy]—3Veff(&"-,(l—x)u;y,ll)t.b("‘)(y,h)
—ql(l—:r)_/:ro 167 :

(73)

where we have neglected masses in the energy denominator. As above the domi-

nant contribution here is from {{; | < (1 — y)@, and so we can approximate this

equation {0 leading-log order by

- 1 (1-y12
. Vg(z, (1 —2)q)1:y,0 a2, -
W (2, (1 — 2)q1) ~ / gy Yei(®: {1 — 2)0139,0) / Ly Ty, (74)
[}

-gi(1 —z)/z 1673

It is readily demonsirated that Vg(z, {1 —2)q;y,0) is free of mass singularities in
light-cone gauge.#s Consequently all loop momenta are of order ¢ or larger, and
perturbation theory can be used to compute V. To leading order Vg involves
the exchange of a single gluon between the quark and antiquark.

Combining Eq. (74) with Eqgs. (71) and (72) we arrive at a simple expression
for the contribution to Fr coming from the disconnected part of T' (Eq. (70)):

1 1

] dz ] dy 3y, (1 - 9)Q) e T (2,9, Q) dolz, 1 — 2)Q).  (75)
g

0

Here the unrenormalized quark distribution amplitude ¢g 1s defined by

z

dolz = ﬁ Mr k | 76
.0( ‘Q) 16F2¢ ( H J.)) ( )

#5 Mass singularities do occur in Vegl(z, (1 — )41 ; ¥, 0) when using covariant gauges. They
arise because the external quarks that carry no transverse momentuin in this amplitode
are effectively on energy-shell. In mosi covariant gauges such a quark couples strongly to a
nearly collinear gluon, resulting in an integral over the gluon’s transverse momentum that
1s logarithmically sensitive to masses and other low-momentum scales: e.g. fdfi /(:TE +
O(m*}). In light-cone gauge the coupling between a gluon and an on-shell quark vanishes
as the gluon becomes collinear with the quark. This means there is an extra factor 0L/Q
i the integral over the gluon’s momentum 11, and thus the logarithmic dependence upon
masses 15 removed. Indeed all contributions from lf}_! & @} are strongly suppressed. The
only diagrams that lead to collinear singularities in light-cone gauge are cnes in which
a gluon is exchanged between two nearly on-shell quarks {or gluons) that are collinear
with each other. Such diagrams do not contribute to Vg since they are not two particle
irreducible.
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and the hard-scattering amplitude T};) is given by

|

T = Vg(z, (1 - 2)§1;4,0)—5————
w=ve V90 s

+(z o y) (77)

Note that T};) comes from part of the LCPTh amphtude for 4* + ¢g — ¢7 {Iig.
12a).

T S) = Vot + Vot

%0, 1y, 1yq,

$

+ tes

F

|
|
L] T
30 ] ] BH5A12

Figure 12. The unrenormahzed hard-scattering amplitude for the pion form
factor.

In addition to the disconnecied parts, the connected part T of 7" contributes
to Eq. (69) as @ — oo (Fig. 11b). By the same reasoning used above, we can
neglect {; and &, relative to ¢ in T¢ to obtain a formula that is identical to Eq.

(75) but with e, 7' replaced by (Fig. 12b)

Tc(xa 0; i, U& q-.!.) )
21 — 2)y(1 — y)}*/?

Again T, is free of mass singularities (in 47 = 0 gauge) and can be computed

o T

g Ty’ = (78)
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perturbatively.

Stall ignoring renormalization, the otherwise complete result is therefore

i 1

FYQY) ~ /dx/dy{éa(y;(l Q) e T (2,3, Q) dolz, (1 = 2)Q)
1 1] -
(79)

+ o5(y, yQ) ez T (1 — 2,1 — 3, Q) do(x, 2Q) }

where we have now included contributions for the photon attaching to each of
the quark and the antiquark. The unrenormalized hard-scattering amplitude in
lowest order is given by

e 167 Cr as(A? .
The. @) = Tf + T = LB (50)

which 1s just the Born amplitude for a collinear ¢g pair to scatter with the virtual
photon (divided by [z(1 — z)y{1 — y)]]ﬁ).

Finally we must consider the effects of vertex and propagator corrections in
Ty (Fig. 13). Each of these corrections iivolves propagators off” energy shell ™

2
&-0-0 2(10) z(:fa\)
B, ~ —E=
Z(;\} z(:?}

el 6315413

Figure 13, Vertex and propagator corrections to the hard-scattering amplitude.

by O{Q%) and therefore all loop momenta are of order Q or larger {in A1 = 0
gauge). It is then a straightforward consequence of renormalization theory that
the propagators and vertices are modified only by the factors

Z‘-(A)/ZEQ) for propagators
(81)
ZEQ)/ZEA) for vertices

(A)

up to corrections of Oas(Q7)), where Z}"' is the usual renormalization constant
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with ultraviolet cutoff A¥® Thus in leading order T}} ts multiplied by (Fig. 13)

2 2
(Q) ZéA) _ ZéQ) O’s(Qg)
Z(A) 2@\ zZM ) as(ay)

where Z{F renormalizes quark-gluon vertices, and Z( ) and Zém renormalize the

—
.

«
| O]
pa—

quark and gluon propagators. Here we use the fact that a; is renormalized by
Z3(Zy)Zyp)?—ie. that as(Az)ZéA)(ZéA)/Zii))z is independent of A. Also the
photon-quark vertex correction in this amplitude cancels the quark-propagator
correction by the QED Ward identity. So Eq. (79) is corrected to give

i 1
Fr(QY) ~ ]d:r]dy {60, (1 = 9)Q) e Ta(z, 3, Q) $las (1 — 2)Q) + (g = 7}
0 0

(33)
where now the leading-order hard-scattering amplitude 1s
167 Cr as{Q?)
Tu{z,y,Q (84)
L Ty e
and the distribution amphiude 1s given by )
@Y
z T,h] ). 85
¢z, Q) = P = Wiz, k) (8)

1672

Since the bulk of the integral in Eq. (85) comes from k2 < @2, we can use Eq.
(49) to redefine

dk?

@(r,Q)-f 5o,k (36)
1677

where now the k; cutoff at |J_c.l| ~ @ 1s 1mmplicit in the definition of the wavefunc-

tion. Our equations now have the general form proposed in the introduction o

this section.

#6 For example, the full unrenormalized quark propagator has the form dp{A/Q, o {A%)) /(g
) as Q% = —g® — oo. Since the quark is far off energy shell dr is independent
of masses in this limit. Furithermore the A dependence can be removed by dividing
with the renormalization constant Zg"), Thus the quantity dp(A/Q,a,(Az))/Z-(_,M must
equal dp(l,a,(Q"’))/qu}, up to corrections of O{o,(Q))) due to the fact that A/Q is
not large in the second case. ‘Since dp{l, 0 {Q?)) = 1 + O(a,(Q?)), the final result is
dr(A/Q. a{A%)) = Z(A)/Z{QJ‘ again up to corrections of Ofa(Q?)).

36



The major effect of the renormalization corrections is to replace as(A?} by
as{Q?) in the hard-scattering amplitude, and %) by (@} in the distribution
amplitude. This is exactly what is expected on the basis of our earlier discussion
of renormalization. The only physical scale in Ty is Q and 50 a;(Q?) is the natural
expansion parameter. Furthermore T only probes structure in the wavefunctions
down to distances of O(1/Q). Thus the wavefunction ¥{?} defined in a theory
with cutoff 2, incorporates hadronic structure over all distance scales relevant to
the physical process. Structure at distances smaller than 1/} is irrelevant except
insofar as it determines a,(Q?), m(Q)....

" The leading order result for Ty is consistent with the dimensional-counting
prediction for the pion form factor: i.e. Ty ~ 1/Q? up to logarithms of Q. This
rule also shows why it i1s that only the valence Fock state is relevani for large
(). For example, the hard-scattering amplitude for scatiering a collincar ¢ggg
state has four additional partons and so must fall as 1/Q%; this amplitude has
many more far off-shell (~ @?) internal propagators than does the ¢§ amplitude.

The same is true of states with additional gluons provided that one is working in

light-cone gau g;e.#7

4.2. THE QUARK DISTRIBUTION AMPLITUDE

Everything one needs to know about the pion in order to compute the asymp-
totic form factor is lumped into the quark distribution amplitude ¢(z, Q)‘“ Ob-
viously ¢ is intrinsically nonperturbative. However its variation with ¢ can be
studied in perturbation theory. To see this we differentiate Eq. {85) with respect
to (@ to obtain '

J Z(Q) 2 ,
Q55012.0) = 25 Ve 1) - rr(n@ole. @) (5D
2

#7 A hard-scattering amplitude with additional gluons can coniribute to leading order n
1/QQ when covariant gauges are used. For example, adding a single gluon to the ¢g hard
scattering amplitude introduces one additional denominator of Q(Q?). In addition there
is typically a numerator factor of (¢ - g}, where € is the gluon's polarization vector. So
such an amplitude is suppressed by ¢ - ¢/@% ~ 1/@Q in light-cone gauge where ¢* = 0.
However other gauges can have ¢ ¢ = ¢*g~ ~ @7, in which case the amplitude with an
additional gluon is not suppressed at all.
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where v i1s the anomalous dimension associated with Z;—

d
Q-@Zém = —yr(as(Q?)) 289

c AL ) (88)
Fa;(Q)fdy +(y_y) +0(0'3) ZéQ)

(The singularity at y = 0 in this equation cancels in the final result because the
meson is a color singlet.) The first term in Eq. (87) represenis the change in
the probability amplitude ¢ due to the addition of more ¢ states as the cutoff ¢
is increased, while the second term represents the loss of probability from those
already present, as ZéQ) decreases. By using the bound-state equation as in Eq.
(74), we can express '}z ¢\ ) in terms of ¢(z,Q). To leading order we need
only consider one-gluon exchange between the quark and antiquark, and this gives

(Fig. 14)

z{? (A, =y AT am as(Q°) ) Viz,y)
= ' T d AT

where again a;(A®) is converted to o, (Q?) by propagator and vertex corrections.

Substituting into Eq. (87) we obtain finally the leading-order evolution equaticm4

${y, Q)

£ 5ALE

Figure 14. The ¢§ wavefunction for §7 = Q? large.

for ¢:

1

o s(Q2 V(wy .
Q5502 Q) = / dy - 6(3,Q) — 26(2,Q) (90)

0
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where the evolution potential is

Tl —1x
Viz,y) = 4Cp{x(1—y)9(y—1‘) (5—h,i+ yiL:c) + (y o1 “y) } = V(y, ).

(91)
Operator A in the potential 1s defined by
¢y, &) #y. Q) ¢z, Q)
A———"= = - . 92
Wi-n) = Wi-y) #i-a) %2)

Also h and A are the helicities of the quark and antiquark (6—,‘.,3 = 1 for pions).

The evolution equation completely specifies the ¢} dependence of ¢{z,Q):
given ¢(x, o), ¢(z,}) is determined for any other ) by integrating this equation,
numerically or otherwise. Still it is instructive to exhibit explicitly the most
general § dependence. Using the symmetry V(z,y) = V(y,2) to diagonalize V,

the general solution of Eq. (90) i1s easily shown to be ™

oo 2 —’Tnfzﬁo
Mo Q) =2(1-2)Y @ Ca*(22 1) (log ) ' (93)

n=0

9
where#

n+1 -hE
4 > 94
n { + Zﬂ {n+1) ?1-{—2)} 0. (%)

By combining the orthogonality condition for the Gegenbauer polynomials and
the operator definition of ¢ (Eq. (64)), we obtain an interpretation for the ex-

#8 The evolution potential V(z,y) can be treated as an integral operator. Being symimetrie
it has real eigenvalues ¥, and eigensolutions ¢, (y) that satisfy [ dyV(z, ) w(y) ¢n(y) =
n $n{z) where integration weight w{y) = 1/(y{1 — y)). The eigensolutions must be
orthogonal with respect to welght w(z}, from which it immediately follows that ¢.{z) «
z(l — x) Cnf'(Zx — 1) where C'n “isa Gegenbauer polynomial. It is a straightforward
exercise Lo now extract analytic expressions for the eigenvalues. Given the eigenvalues a
general solution of the evolution equation can be written down as an expansion on the
complete set of eigensolutions, as we do here.

#9 Note that Agep is the scale appearing in the running coupling constant; it has nothing
to do with the uliraviolet cutoff A. Recall also that Cp = 4/3 and f; = 11— 2n/ /3 where
ny is the number of quark flavors.
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pansion constants in Eq. {(93}):

*'"fnf2ﬁo
n (log ——9-2-—) - A2t ]) zC3 (2 — 1) ¢(, Q)

Aop CEDEDY o)
4(2n 4 3)
:(2-1-(n11)(t+n (019 1(/_7% JHD eI

—the ay’s are just matrix elements of local operators.

This analysis shows that the distribution amplitude can be expressed as a
sum of matrix elements of local (twist-two) operators.n'12 This sum 1s just the
operator-product expansion of the operator ¥(0)y*vs%(z) in Eq. (64). Such an
expansion is warranted since the separation between the fields is very nearly on
the light cone: 2% = 227 — 72 = O(1/Q*). The Gegenbauer polynomials also
appear very naturally in this context, as a consequence of the residual conformal
symmetry of QCD at short distances. All of the dimensionful couplings in the
QCD lagrangian can be dropped at very short distances, and so the classical the-
ory {i.e. tree order in perturbation theory) becomes invariant under conformal
mappings of the space-time coordinates. This conformal symmetry, is destroyed _
in the quantum field theory by renormalization, which necessarily introduces a
dimensionful parameter such as the cutoff A. However the evolution potential for
¢ 1s given by tree diagrams in leading order, and so the leading-order potential
ought still to be consistent with the requirements of conformal symmetry. One
such requirement is that local operators that are multipbcatively renormalizable
must transform irreducibly under conformal transformations. In the case of me-
son operators conformal symmetry is enough by itself to uniquely specify the
structure of the these local operators. As these are the operators that appear
in the operator-product expansion, conformal symmetry completely specifies the
structure of the expansion for ¢. These 1deas do not easily generalize beyond

leading order.”

The operator-product analysis of the distribution amplitude suggests an im-
portant constraint on ¢. The n = 0 Gegenbauer moment of the distribution
amplitude is proportional to the amplitude for pion decay (c.f. Eq. (55)):

/ dz é(z, 0 r (96)

Given the shape of ¢(z,Q) this equation normalizes it for any ¢J. Note that the
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value of this moment is ¢} independent. This is because the n = 0 operator 1s just
the axial-vector current operator. As far as its ultraviolet behavior is concerned,
this operator is conserved and so its anomalous dimension vanishes: yu=0 = 0.
Notice also that v, > 0 for all other n. Thus only the n = 0 term in the expansion
of ¢(z, Q) survives when @ becomes infinite: _

3fx

e

z,Q) — z{l — z) as () — oo. {97)

So ¢(z, Q) is completely determined for pions when @ is very, very large.

Notice finally from Eq. (89) that %) (z, 7)) does in fact fall as V/q3i, up to
logarithms, as g, grows. The high-momentum or short-distance behavior of the
Fock-state wavefunctions is perturbative in nature, and as a general rule is crudely
that of simple Born amplitudes in light-cone perturbation theory. In particular
wavefunctions are not exponentially damped at large ¢ , as 1s frequently assumed
in phenomenological studies.

4.3. DETERMINATION OF DISTRIBUTION AMPLITUDES

Large-p exclusive processes, like most other high-energy processes, involve -
physics both at short distances and at long distances. A special feature of the
large-p; processes is that we are able to separate short from long distance physics
in a relatively simple fashion. This allows us to analyze each regime separately,
using the tools best suited to that regime. The hard-scattering amplitudes and
the evolution potentials for distribution amplitudes embody the short-distance
physics; they are most effectively analyzed using perturbation theory. However
perturbation theory is largely useless for determining anything about the dis-
tribution amplitudes beyond their §-dependence. The distribution amplitudes
contain the long-distance physics of a large-p) process, and as such require some
sort of nonperturbative treatment.

Given that the distribution amplitude is intrinsically nonperturbative one
might wonder whether it isn’t just as well to treat the entire process nonpertur-
batively. This is generally a very bad idea. Any nonperturbative analysis of a
large-p; process would have to deal accurately with QCD dynamics over a huge
range of momentum scales—e.g. a vast grid would be required in lattice QCD if
one wanted to accommodate both the relatively small momenta that characterize
hadronic structure and the very large momenta transferred in the process. Such
an analysis would be very inefficient. Instead we can use our renormalization-
group analysis to “divide and conquer” the problem in pieces. First we compute
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the distribution amplitude ¢{z, Qq) for some small Qq, of order a few GeV, us-
ing a nonperturbative technique. The range of relevant momentum scales 1s quite
modest for this part of the analysis. Then we use the perturbative evolution equa-
tions to evolve ¢{z, ) out to the large values of (J characteristic of the process.
The evolution equations build ‘up the short-distance structure of the hadronic
wavefunction and are trivial to apply. Finally we combine the distribution am-
plitudes with the hard-scattering amplitude, which incorporates (perturbatively)
the short-distance structure particular to the process.

We can illusirate the nonperturbative analysis of distribution amplitudes
1415 1
the other QCD sum rules.® Both methods are based upon the behavior of matrix

elements of the form (0] T T;{0) I';(¢) |0)(Q°) where each I';{t) is the spatial average
of a local operator like those in Eq. (95}):

with a brief discussion of two such analyses, one using lattice QCD

Ti(1) = %/d%r,-(:z,t). (98)
V

By inserting a complete set {|n})} of hadronic eigenstaies between the two oper-
ators it 1s easy 1o see that

(OIT:(8) T5(0) [0} = 37 (0] T4(0) [n){9) (miT;(0) [0)(@ ™ B¢ (99)

n

when £ > (. The matrix elements multiplying the exponential in the sum are
precisely those that determine the moments of the distribution amplitude for
state {n). _

In the latiice analysis ordinary time is analytically continued to euclidean
time so that it — 1, and the cutoff Qg is determined by the lattice spacing. The
matrix element in Eq. (99) is computed for large ¢. The sum is then dominated
by the lowest mass state {ng} that couples both to I'; and I';—e.g. the pion for
operators taken from Eq. {95)—and so for sufficiently large ¢ the expectation

value has the form
0| Ti(2) T;(0) [03(9°) 5 (0] Ti(0) [no) (D} (ng| T;(0)]0)(Pe} ¢ Mot (100)
K ¥

where M is the mass of state [ng). The moments of the distribution amplitude
for the lowest-lying state can be read off directly from the large-{ behavior of the
I'; T';-amplitude. '
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16 . . .
QCD sum rules” can be derived for the Fourier transform of the matrix
element,

I(g?) = / aet OIT, (T, 0, (101)

analytically continued deep into the euclidean region ¢° < 0. Amplitude J;;(¢")
can be computed in two ways as g — —oo. First, since the two operators are
forced together in this limit, the operator product expansion can be used to re-
late the amplitude to vacuum expectation values of such local operators as a; P;fu
and /o, uu. These matrix elements are universal and their values are usually
inferred from other processes. On the other hand, the spectral decomposition Eq.
{99) can be used to relate I;;(g%) to the moments of the distribution amplitudes
for hadronic states {n). In practice the sum over hadronic states is replaced by a
sum over a few low lying hadrons together with a continuum contribution approx-
imated by the formula for free quarks, the threshold being a tunable parameter of

the model. The moments are extracted by fitting the spectral formula for 1;;(¢%)

. . 10
to 1ts operator product expansmn.#

Each of these methods_currently suffers from large systematic uncertainties
and so one must be cautious in accepting results derived using them. Neverthe-
less such results form a reasonable starting point for phenomenological studies.
Furthermore these methods have played an important role in aleriing us to the
potential complexity of hadronic distribution amplitudes. For example, one might
have expected a relatively smooth disiribution amplitude for the pion, not too
different perhaps from its asymptotic form z(1 — z). However the sum rules, for
example, seem to imply a double-humped distribution z(1 —2){2x —1)?. The sum
" rule predictions for baryons are even more remarkable—e.g. 65% of the proton
momentum is carried by the u-quark with helicity parallel to the proton, while
the remaining quarks split the remainder in this model. 1t is unclear how seri-
ously one should take such predictions, but it is clear that unusual z-dependence
is a distinct possibility for hadronic distribution amplitudes. It is also clear that
the reliability of the these nonperturbative techniques, particularly the lattice
analysis, will improve substantially in the not-too-distant future.

Note finally that it was essential for our nonperturbative calculations that the
distribution amplitude have a nonperturbative definition—i.e. in terms of opera-
tor matrix elements in a cut off field theory. Had the distribution amplitude been

#10 Ia actual practice this procedure is modified to employ a Borel transform so as o de-
emphasize the high-mass region.
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defined in terms of perturbative constructs, it would have been almost impossi-
ble to carry that definition over into a nonperturbative framework such as that
provided by lattice QCD. In general it is important to provide a nonperturbative
characterization for the contributions omitted from the perturbative analysis of
a process. ' _

4.4, HigHER ORDER ANALYSIS

The leading-order formula for the asymptotic pion form factor results from a

series of approximations. One can systematically undo these approximations to
L. 17, . . .
obtain'"® O(as(Q?)) corrections to Fr(Q?). For example in our leading-order

analysis of the disconnected contribution

eg/d:c/ ‘ftﬂf{; PO By + (1= 2)q) $ e, ) (102)
g

we assumed that large transverse momentum flows through one or the other wave-
function. We ignored the contiribution from the region where large momentum
flows through both wavefunctions: El ~ ].‘:.1 + (1 —x)gL ~ (1 =z)g,. The~
contribution from the latier region is easily estimated. We can use the bound
state equation to replace both wavefunctions by a convolution of the perturbative
potential with the distribution amplitude (Eq. (74)) to obtain a contribution

1 1

/ dy ] dz ¢(z, (1 = 2)Q) Taly, 7, Q) doly, (1 — 1) Q). (103)

¢ (U

where

l i 7 —
PR Viglz, 02, kL + (1 — 2)d Vele Fyig.0
Tg(y,z,@):/dxf 16J§ eif(z x _L'i‘(q z)q1) & e;i(; 1Y )
™ —(kr+ (1 - 2)qu ) e(l —x) © —kj/a(l-2)

The EJ_ integration in this expression must be restricted to the region where both
ki and k, + (1 —z)§, are large, because the contributions from the regions where
one or the other vector is small are already included in the leading-order result.
One way to restrict the range of f_c'l is to introduce collinear subtractions that
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remove precisely the contribution included in the leading-order analysis. The
region where k; is small is removed by subtracting

1 (-5Q -
dzk V;E vov y 1— q V. 3k 3 )0
T§1(y,z,Q)=/d$ f ke (2 12(2 z)q1) ‘. el k1iy,0)
16m% —((1 —2)qL)*/z(1 —2) ° —k¥/z(1 - z)
(104)
where we neglect k; relative to (1 — z)§, and integrate over {£,| < (1 — z)Q,

o

just as in the leading-order analysis (¢.f. , Eq. (71)). Similarly the region where
kJ__—i- (1 — z)q) is small is removed by

1 {1-2)}Q
Ty, 2,Q) = / dz /

[t

@k Vea(z, 0z, ky)  Verlr, —(1 — 2)8154.0)

1673 —?_5'_12_/1'(1 —~ ) (1= 2)@L)*/2(1 - 2)
{165}

where we have changed variables so that Ei + (1 — z)§y — k1. The subtracted

amplitude {Fig. 15a) contains only large momenta when ¢ is large, and thus
it can be computed perturbatively and gives an O{a2(Q?)} contribution to the
hard-scattering amplitude Tx. All masses can be neglected, and no logarithms
of ¢ can arise from the E_;_—integration since @} is the only scale left after the
subtractions. ) -

A similar analysis can be applied to the bound state equation to obtain higher
order corrections to the formula relating the high-¢) wavefunction and the distri-
bution amplitude (Eq. {74}). These corrections lead to additional Of{a?) contri-
butions to Ty (Fig. 15b), and to O{a?) contributions to the evolution potential
V. In addition to these higher-order corrections, there are corrections coming
~ from the one-loop {and higher) ¢g-irreducible diagrams, both for Ty (Fig. 15¢)
and for V. As discussed in earlier sections, these irreducible amplitudes have no
sensitivity to low momenta when they are computed 1n light-cone gauge. and thus

they are perturbative when () is large.

This procedure can iterated to produce still higher-order corrections to the
hard-scattering amplitude and to the evolution potential. In this way one es-
tablishes the self-consistency of the factored perturbative result to all orders in
perturbation theory. The only complication arises when endpoint and/or pinch
singularities appear in the hard-scattering amplitude, and these we discuss in the
next section.

A systematic analysis of higher order corrections, based upon Mueller’s cut-
vertex formalism, has been given in Ref. 19. Using this method, the vahdity of
the perturbative expression for the meson form factor has been established to all
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Figure 15. Diagrains contributing to the second-order hard-scatiering amplitude
for the pion form factor.

orders in perturbation theory. The one-loop corrections have also been calculated ™

17.18
for the meson form factor.

4.5, COMPLICATIONS

The perturbative analysis of large-p, processes relies upon the fact that the
hard subprocess is confined to a small volume near the light-cone. This is a
consequence not of the kinematics of the process but rather of the dynamical
behavior of the hard-scattering amplitude Ty, all of whose internal propagators
are typically far off shell (|€| ~ Q7). Unfortunately the z integrations in the
perturbative formula can include points where internal lines in Ty go on shell.
In form factors these points show up as singularities in 7y at the endpoints of
the integration—i.e. = 0 or x = 1-—and so they are referred to as endpoint

. .. 18 . .. , . .

singulanties.” Singularities can also occur at intermediate values of z in hard-
. ‘ . . . 20

scattering amplitudes for hadronic scattering amphiudes;” these are referred to

as pinch sing,ula,rities#11 Perturbation theory breaks down in the vicinity of such

#11 In the covariant caleulation of a Feyniman amplitude every internal propagator has singu-
lar points. Usually these singularities are avoided by deforming the integration contours
into the complex momentum plane. A singularity that occurs at the endpoint of a con-
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singularities, and so our perturbative results are jeopardized if large contributions
come from such regions.

Remarkably it 1s just in the e-ndpointw'4 and pinch regions?l that Sudakov
form factors appear. In these regions individual quarks {or gluons) tend to scatter
independently of the other partons comprising the hadrons. An isolated, nearly
on-shell quark wants to radiate gluons when it scatters, the amount of radiation
increasing as the change in the guark’s state of motion becomes more drastic.
In an exclusive process such bremsstrahlung is prohibited, and as a result the
amplitude is suppressed. This phenomenon is apparent in perturbation theory.
For example, in computing the electromagnetic form factor of a single quark one
obtains double logarithms of Q? coming from the radiative corrections to the
quark-photon vertex. These exponentiate when summed to all orders to give a
quark form factor that ultimately falls faster than any power of 1/¢}. This is the
Sudakov form factor. Such form factors tend to suppress contributions coming
from the endpoint and pinch regions.

Note that double logarithms of ¢ and Sudakov form factors only appear in
the vicinity of singularities in 7. In other regions all of the constituents of
each hadron are involved in the same hard subprocess. The collinear bunches of
partons representing each hadron in Ty carry no color charge, and thus the soft
gluons that normally build up Sudakov form-factors decouple.

In this section we examine the contributions coming from the endpoint and
pinch regions. We show where these contributions come from and why Sudakov
suppression is expected.

Endpoint Singularities

Qur analysis of the g7 contribution to Fr(Q?) for large Q? depends upon the
assumption that either EJ_ or r’;_l_ + (1 — z)q) is O(F) ) in the overlap integral

eq]dm-/ 16?’3 PPk + (1 - 2)d ) v, By (106)

—i.e. that large momentum flows through one or the other of the wavefunctions.
This is certainly the case except in the infinitesimal region where

1—z~)Q (107)

if A is the typical transverse momentum in the wavefunction. Within this “end-

tour obviously cannot be avoided in this fashion; this is how endpoint singularities arise
in exclusive amplitudes. In addition it is possible for a contour to be trapped or pinched
between two singularities. This is how pinch singularities arise.
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point region” both wavefunctions carry small transverse momentum {~ A). The
meson form factor receives a contribution from this region of order

1 14726
Fep(@) ~ [ dz Ve 2 ~ (-5-) ' (108)

A
-3

when M (2, A) vanishes like (1 — )% as + — 1. This mechanism, in which
spectator quarks are stopped rather than turned, was actually the first parton
model suggested for hadronic form factors. To assess its importance here we
require information about the ¢ wavefunction as z — 1% The g4 state in the
pion is far off shell in the endpoint region—

/\2

Sl
€] z{l — z)

~ A0 (109)

—suggesting that perturbation theory might be a reasonable guide to the behavior
of the wavefunction (Fig. 16). Perturbation theory imples § = 1 and thus the

- . -

@ P
e L
]
&) ¢ X )
X i
'
P

Figure 16. Born amplitudes whose behavior might be similar to that of the
hadronic wavefunciions as + — 1.

endpoint contributions fall as (A/Q}*, down by a full power of A/Q relative to
the hard-scattering contributions.

#12 We consider only the valence Fock state here since the phase space i the case of n
spectator partons goes like (A/Q2)"—small numbers of spectators are favored.
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The analysis is similar for baryon form factors where

1 A/Q \ 2426
Fep{Q?) ~ / dm/dxglzp(f‘)(x,-,/\)ﬁw(a) : (110)
Y i

2
1-3

Perturbation theory again gives § = 1, but here the endpoint contribution seems

to be suppressed by only two powers of a(AQ) relative to the hard scattering

prediction:

_ as(AQ)
Q*

Endpoint singularities are far more severe in the nucleon form factor than they are

Fpp ~ a2(AQ) Fys. (111)

in the meson form factor. In general they are equally severe in more complicated
process, such as hadron-hadron scattering.

In fact the suppression of the endpoint region is probably a good deal stronger
than these equations indicate. As far as the photon is concerned the struck quark
is very nearly on shell in the endpoint region since |[£| ~ M@ < Q. Furthermore
only the struck quark participaies in the hard subprocess in this region; it behaves
as though isolated from thé other quarks over time scales of O(1//AQ). Consc-
quently the endpoint contribution to the amplitude is suppressed by a Sudakov
form factor, and most likely is negligible when @ is sufliciently large.

Pinch Singularities

. . ., 202122 . . .
The pinch singulanty ™ is most serious in hadron-hadron scattering. As
an illustration consider the diagram in Fig. 17a, which contributes to 7-7 scat-

tering. Three-momentum conservation requires

Ta +Zp = T+ 2¢
(112)
kiatkip—kic—kig=(2c—z}FL + (2a — 2:)q)

where k| ,...%k, 4 are the transverse momenta appearing in the wavefunctions
for each of the pions, z4...z4 are the longitudinal momenta, and where ihe
relativistic invariants for the process are

— 2
s=riedd

t=—§'_$_ (113)
u=—Fi

with 7, -4 = 0. At high energies and wide angles, FJQ_ and (}'i are both large, and
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so at least one of l-c’_La el E_Ld must be large for most values of z,...z4. Then,
as in our analysis of the meson form factor, the wavefunction with large f_cl 1s
replaced by a gluon exchange to give a hard-scatiering amplitude, as depicted in
Fig. 17b {where kygqis large). Dimensional counting then implies

¥
Tgwsjf(GCM;xa...xd) (114)

for this contribution. Also the energy denominator in D in Fig. 17a,
D = (zc—2a )T +(2a—za)dT +2(k1a—k1a) Gt 2k c—Kia) 7 +. . e, (115)

1s of O{s} indicating that the two quark-quark scatterings occur within a very

short time of each other.

xa‘ xa (qi+ rl) +kla Xy X+ k.Lc

{b)

>80 M SATE

Figure }7. a} Diagram contributing to 77 scattering. b} Hard scattering am-
plitude coming from a}.

Notice however that in the pinch region,

A A
|ze — el ~ == {2g— @a| ~ 5, (116)
|7 | |G |

all wavefunction momenta EJ_Q . Eid can be small (~ A). Furthermore the
denominator D is O(A\/s) or less, and can even vanish. Thus the two quark-quark
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scatterings can occur more or less independently, at widely separated points. The
scattering process is no longer localized, and factorization does not occur. The s
dependence of the contribution from this region can be readily estimated: a) the
quark-quark scattering amplitudes each give (1/s)?, by dimensional counting;
b) phase space as restricted by in Eq. {116} gives a factor (A//5)?; ¢} the energy
denominator gives a factor 1/D ~ 1/A\/s. Thus the pinch region contributes

1
Tps ~ ;gﬁf(QCM;xa) (117}

which apparently dominates the hard scattering contribution by a factor /s.

Two things work to suppress this pinch contribution. First the number of
hard scattering amplitudes is much larger than the number of pinch singularity
diagrams. More importantly, perhaps, radiative corrections to the individual
guark-quark amplitudes build up Sudakov form factors that increase the effective
power of 1/s to something like

3 4Cr It]
§+ 3 log log (ﬁ) {118)

which grows infinitely large as |{| ~ s — 00. These corrections do not cancel here .
because the quarks and antiquarks scatter separately bere, and not together as
color singlets. So the pinch region is probably completely suppressed by Sudakov
effects when s is sufficiently large. It turns out that a contribution still remains
from a region intermediate between the pinch region and the hard-scattering
rrs:gican.21 This results in a small correction to the power-law predicted by dimen-
sional counting. For example, pp elastic scattering at wide angles should fall off

~19 a5 predicted by dimensional counting. Con-

roughly like s7%7  rather than s
siderable progress has been made recently towards a complete analysis of such

23
effects.

Pinch singularities always show up as singularities in the hard scatiering am-
plitude Ty{zg,xy...,Q) at poinis z4,7p... away from the endpoints 0 and 1.
The integrals over z4,z; ... are then singular. Not every midpoint singularity in
Ty actually corresponds to a pinch. For example, singularities that are linear—
e.g. 1/{z — ¢+ ie)—do not involve pinches. These cause no problems when
integrating over x: the real part of the amplitude is obtained using a principal
value prescription, while an imaginary part is generated by making the replace-
ment 1 /(x —c+1e) — —27i8(z — ¢). When the singularities are more severe they
must be cut off by explicitly including Sudakov form factors in the pinch region.
The dimensional-counting rule is modified only in these very singular situations.
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4.6. HOwW LARGE I$ ASYMPTOTIC 7

The perturbative formalism we have described 1s only valid at large momen-
tum transfers. A critical question24 then is, How large is large? Here as in any
application of perturbative QCD there are really two issues: 1) the convergence
of perturbation theory; and 2} the relative importance of competing nonpertur-
bative mechanisms. We examine each in term.

The perturbative expansion describing a short-distance process in QCD—e.g.
ap+a) as(Qgﬁ)/r-!-. ..—converges quickly if the characteristic momentum Qg for
the process is large compared with the QCD scale parameter Agcp ~ 200 Mev.
To determine (J.g for large-p ) exclusive processes we can examine the momentum
flow in the hard-scattering amplitude. The pion's form factor, for example, is
given by

1 1
Frl@) ~ / da / dy {6 (5, (1 = 1)Q) eg T (2,1, Q) 6(z, (1 - 2)Q) + (g = 3)}
G [¢]

(119)

where the hard-scattering amplitude is

_ 16‘.’1"0}2‘03
C(1-2)(1-y)Q*

TH(I)y)Q) (1-)'0)

The running coupling in Ty is associated with gluon-exchange between the quark
and the antiquark as they scatter from the initial to the final direction. Thus it
1s natural to set the scale of this coupling equal to the square of the gluon’s four
momentum: a, — as({1 — z){1 — y}Q?} in TH.#U The defining relation for Qeg
then 1s obvicusly

1 i 1

* GS((I_x)(l _y)Q ) * & ) .
[ e =Gy e /dxf"”(l—x)(lﬁ-—y)“” e

U 0 0

A small complication is that the usual perturbative formula for a4(Q?) has an
unphysical singularity at ¢ = Agcp, and so the integral on the left-hand-side

#13 In earlier sections we set the scale equal to @2, The changes that result from the replace-
ment Q% — (1 — z)(1 — y)Q? are higher order in a, and so are irrelevant at very large
Q?. However we are now concéerned with how small Q7 can be made before perturbation
theory fails, and for this purpose it is important to use the more physical scale in o,.
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of this equation is ill-defined. This is easily remedied by redefining the running
coupling so that

an(0) — 4
@ ) Bo Tog(c + Q%/Agcp)

where ¢ is a constant {~ 1-3). This is a rather ad hoc remedy, but the ratio

(122

Qe /Q that results is fairly insensitive to both ¢ and @ unless Q is very small.
The ratio Qeg/@ is clearly quite sensitive to the z-dependence of the distri-
bution amplitudes, with broader amplitudes giving more emphasis to the region
z,y ~ 1 and thus lower Qeg’s. Assuming the asymptotic dependence z(1 — 2},
one finds that QJ.g/@ = 0.2. In this case a form factor with momentum trans-
fer of say 2 Gev actually probes QCD at scales of order only 400 MeV. The
effective momentum transfer is smaller still with the broader distribution am-
plitudes suggested by QCD sum rules (Qeg/@ =~ 0.1). The running coupling
constant 1s of order unity for such small Qeg's and so perturbation theory is not
likely to converge very well, if at all. Some perturbative properties, such as the
dimensional-counting and helicity-conservation rules, are valid to all orders in
perturbation theory; these might well be applicable even for such Q.’s. However
1t should not be surprisingf predictions for things like the magnitude of the form
factor are off by factors of 2 or more. {Note, for example, that replacing a,{Q?)

-

by as(Qgﬂ) more than doubles the perturbative prediction for the form factor at
@ =2GeV.)

It has proven difficult to measure meson form factors for (J’s much above a
couple of GeV. However the proton form factor has been measured out beyond
5 Gev. Unfortunately the hard-scattering amplitudes for baryon form factors
tend to be more singular in the low-momentum region than meson amplitudes
resulting in smaller ratios of Q.q/Q: e.g one finds that Q5/Q =~ 0.1 for the
asymptotic distribution amplitude x1z2x3, and the ratio is smaller by another
factor of a half to a third for the broader distribution amplitudes predicted by
sum rules. So existing data for the proton form factor, although more accurate,
still probes much the same region in effective momentum as does the data for the
pion form factor.

The ratio Qeq/Q is also relevant to the second important issue—the relative
importance of nonperturbative contributions. We expect the quark-antiquark in-
teraction in Ty to evolve smoothly from nonperturbative to perturbative behavior
as (Jefr increases, with the crossover occurring around a few hundred MeV. Con-

sequently the pion form factor, for example, could be predominantly perturbative
by @ = 2 GeV since Qg is then of order a few hundred MeV. This is despite the
fact that perturbative interactions bring in factors of «,: the coupling QS(QEH)

83



is not particularly small when (Jog is small, and thus it does not suppress such
interactions much” ! With protons, perturbative behavior might set in at 3 GeV
or higher, depending upon the distribution amplitude.

For larger (}’s one must also worry about nonperturbative contributions com-
ing from the endpoint region, pérticularly in the case of baryon form factors and
scattering amplitudes. Perturbative arguments indicate that such contributions
are suppressed by Sudakov {form factors, but the extent of this suppression at ac-
cessible (F’s is uncertain. The importance of this region also depends sensitively
upon the behavior of the hadronic wavefunctions in the endpoint region: it is
easy to make model wavefunctions in which there is little contribution from the

25,26,27 . .
1t 1s also easy to make

endpoint region for Qs greater than a few GeV;
models 1n which the region 1s important even ai several GeV (ignoring Sudakov
eﬁ‘ects)?4 The situation is further complicated in the case of hadronic scattering
amplitudes by our incomplete understanding of the Sudakov suppression of pinch
singularities.

In the light of these uncertainties the best one can do is to assume the vahdity
of the perturbative analysis, at least as a qualitative or semi-quantitative guide
to large-p, exclusive processes. This model is quite plausibly correct, and in any
case there is currently no other comprehensive theory of these processes. The
validity of the perturbative model can then be judged by the extent to which it
1s capable of accounting for the broad range of available data.

#14 Of course perturbation theory will not converge well if «, is large. When we speak of
“perturbative behavior” here we are again thinking of behavior that is true to all orders—
factorization, dimensional counting, helicity conservation.... It is important to realize
that the validity of the factorized form for a large momentum transfer amplitude is not
necessarily contingent on the applicability of perturbation theory. Indeed there is likely to
be a region of momentum transfer where factorization, dimensional counting. . . are valid
but where perturbation theory does not converge at all.
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5. APPLICATIONS OF QCD TO THE
PHENOMENOLOGY OF EXCLUSIVE REACTIONS

In the following sections we will discuss the phenomenology of exclusive re-
actions as tests of QUD and the structure of hadrons. The primary processes
of interest are those in which all final particles are measured at large invariant
masses compared to each other: i.e. large momentum transfer exclusive reactions.
This includes form factors of hadrons and nuclei at large momentum transfer ¢
and large angle scaitering reactions. Specific examples are reactions such as
e~ p — e~ p, ete™ — pp which determine the proton form factor, two-body scat-
t.efing reactions at large angles and energies such as #¥p — =¥ p and pp — pp,
two-photon annihilation processes such as vy — KYK~ or pp — 7v7, exclusive
nuclear processes such as deuteron photo-disintegration yd — np, and exclusive
decays such as 7t — gty or J/yp — xt7x~ 7%, In this section we will summarize
the main features of the QCD predictions developed in the previous sections.

QCD has two essential properties which make calculations of processes at
short distance or high-momentum transfer tractable and systematic. The criti-
cal feature is asymptotic freedom: the effective coupling constant as(Q?) which
controls the interactions of-quarks and gluons at momentum transfer Q? vanishes
logarithmically at large Q2 since it allows periurbative expansions in a.(Q?).
Complementary to asymptotic freedom is the existence of factorization theorems
for both exclusive and inclusive processes at large momentum transfer. In the case
of “hard” exclusive processes (in which the kinematics of all the final state hadrons
are fixed at large invariant mass}, the hadronic amplitude can be represented as
the product of a process-dependent hard-scattering amplitude Ty (x;, J) for the
scattering of the constituent quarks convoluted with a process-independent dis-
tribution amplitude ¢(z, Q) for each incoming or outgoing hadron” When Q% s
large, Ty is compuiable in perturbation theory as is the -dependence of ¢(z. Q).
We have discussed the development of factorization for exclusive processes in de-
tail in Section 4.

(Juantum chromodylrladnrlics1 has now been extensively tested 1n high momen-
tum transfer inclusive reactions where the factorization theorems, perturbation
theory, and jet evolution algorithms provide semi-quantitative predictions. Tests
of the confining nonperturbative aspecis of the theory are, however, either qual-
itative or at best indirect. In fact QCD is a theory of relatively low mass scales
(Agg ~ 200 £ 100 MeV, <« ki >U2 A 300 MeV}, and eventually its most
critical test as a viable theory of strong and nuclear interactions will invelve rel-
atively low energies and momentum transfer at the interface of the perturbative
and nonperturbative domain.
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The understanding of hadronization and the computation of hadron mainx
elements clearly requires knowledge of the hadron wavefunctions. In Table I
we give a summary of the main scaling laws and properties of large momentum
transfer exclusive and inclusive cross sections which are derivable starting from
the light-cone Fock space basis-and the perturbative expansion for QCD.

As we have discussed in Section 3, a convenient relativistic description of
hadron wavefunctions is given by the set of n-body momentum space ampli-
tudes, ¥p(zi, ky1,, i), 2 = 1,2,...n, defined on the free quark and gluon Fock
basis at equal “light-cone time” 7 = t + 2/c in the physical “light-cone” gauge
At = A% 4+ A% = 0. (Here z; = kf/p't", >i%i = 1, is the light-cone momentum
fraction of quark or gluon ¢ in the n — particle Fock state; &y, with >~k = 0.
is its transverse momentum relative to the total momentum p#; and A; 1s its helic-
ity.) The quark and gluon structure functions G,y (z, Q) and G/ {2, Q) which
control hard inclusive reactions and the hadron distribution amplitudes ¢y (2, Q)
which control hard exclusive reactions are simply related to these wavefunctions:

Q
Gynte,@ o« 3 [ Tahy, [N lynlois ki ooy —2)

and

Q
bilzi,Q) f Nk, Yegencel 21 kL)

In the case of inclusive reactions, such as deep inelastic lepton scattering,
two basic aspects of QCD are relevant: (1) the scale invariance of the underly-
ing lepton-quark subprocess cross section, and (2) the form and evolution of the
structure functions. A structure function is a sum of squares of the light-cone
wavefunctions. The logarithmic evolution of G4(z,@?) is controlled by the wave-
functions which fall off as |¢’(2:,§:'l)|2 ~ as(k)/k? at large k7. This form is a
consequence of the pointlike ¢ — g¢, ¢ — g¢, and ¢ — ¢g splittings. By taking ihe
logarithmic derivative of G with respect to { one derives the evolution equations
of the structure function. All of the hadron’s Fock states generally participate;
the necessity for taking into account the {(non-valence) higher-particle Fock states
in the proton is apparent from two facts: (1) the proton’s large gluon momentum

fraction and (2) the recent results from the EMC collaboration % suggesting that,
on the average, little of the proton’s helicity is carried by the light qua1‘ks.29
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Table 1

Table I Comparison of Exclusive and Inclusive Cross Sections

Exclusive Amplitudes

Inclusive Cross Sections

Mo~ Tz, Q) ® Thizi, Q)
: @
#(z,Q) = / 125,142, (2, %))

Measure ¢ in 5 — MM

Z A=Ay

icH

99(2,Q) _ / (dy) V(z,¥) $(y)

dlog @?
Qllm Q5(I,Q) = H Iy Cﬁa.vm

d 1
d—Z(A+B-+ C+ D)= —— f{fom.)

n=na-+ng+nc+np

Sﬂ

Ty : expansion in as(Q?)

End point singularities

Pinch singularities

High Fock states

do ~ 11 G(Im Q) @ d&(zﬂr Q)

Q )
6@ =Y [Pk el 1o k)P
Measure G in fp — £X

> di# Ay

15

Evolution

aG
B =a [d PG

Jim G(z,Q) = 8(z)C

Power Law Behavior

do " {
W(AB_’ cxy=y"

Nget = Ng + 0y + 1+ 1y

1 —ar

dé : expansion in o, (Q?)

Complications

Multiple scales

Phase-space limits on evolution
Heavy quark thresholds

Higher twist multiparticle processes

Initial and final state interactions

)Eﬂ,—l

J(8cm.)
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In the case of exclusive electroproduction reactions such as the baryon form
factor, again two basic aspects of QCD are relevant: (1) the scaling of the un-
derlying hard scattering amplitude (such as I + qq¢ — { + ¢q¢), and {2} the {orm
and evolution of the hadron distribution amplitudes. The distribution amplitude
is defined as an integral over the lowest (valence) light-cone Fock state. The
logarithmic variation of ¢{z,Q?) is derived from the integration at large k| i.e.
wavefunctions which behave as ¥{z, Ei) ~ as(ki)/ki at large fci This behavior
follows from the simple one-gluon exchange contribution to the tail of the va-
lence wavefunction. By taking the logarithmic derivative, one then obtains the
evolution equation for the hadron distribution amplitude.

As we showed in Seciion 3, the form factor of a hadron at any momentum
transfer can be computed exactly in terms of a convolution of initial and final
light-cone Fock state wavefunctions.” In general, all of the Fock states contribute.
In contrast, exclusive reactions with high momentum transfer ¢, perturbative
QCD predicts that only the lowest particle number (valence) Fock state is required
to compute the contribution to the amplitude to leading order in 1/Q).

For example, in the light-cone Fock expansion the proton is represented as
a column vector of states Pyqq, Pggqq+ Pogegq - --- In the light-cone gauge, AT =
A% + A3 = 0, only the minimal “valence” three-quark Fock state needs to be
considered at large momentum transfer since any additional quark or gluon forced ™
to absorb large momentum transfer yields a power-law suppressed contribution
to the hadronic amplitude. Thus at large Q?, the baryon form factor can be
systematically computed by iterating the equation of motion for its valence Fock
state wherever large relative momentum occurs. To leading order the kernel 1s
effectively one-gluon exchange. The sum of the hard gluon exchange contributions
can be arranged as the gauge invariant amplitude Ty, the final form factor having
the form

1 1
Fp(Qh) = _/[dy] /[dSC] ¢4 (y;, Q) T(zi,y;,Q)bR(2:, Q) -
i ]

The essential gauge-invariant input for hard exclusive processes is the distri-
bution amplitude ¢g(z, Q). For example ¢.(z, Q) is the amplitude for finding
a quark and antiquark in the pion carrying momentum fractions z and 1 — =z
at impact (transverse space) separations less than &) < 1/¢}. The distribution
amplitude thus plays the role of the “wavefunction at the origin” in analogous
non-relativistic calculations of form factors. In the relativistic theory, its depen-
dence on log ¢ is controlled by evolution equations derivable from perturbation
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theory or the operator product expansion. A detailed discussion of the light-conc
Fock state wavefunctions and their relation to observables is given in Section 3
and in Ref. 30.

The distribution amplitude contains all of the bound-state dynamics and
specifies the momentum distribution of the quarks in the hadron. The hard-
scattering amphiude for a given exclusive process can be calculated perturba-
tively as a function of o4(Q?). Similar analyses can be applied to form factors,
exclusive photon-photon reactions, and with increasing degrees of complication,
to photoproduction, fixed-angle scattering, etc. In the case of the simplest pro-
cesses, vy — MM and the meson form factors, the leading order analysis can be
readily extended to all-orders in perturbation theory.

p,q Pc
‘ x4 x$ b
A
X2 xS
B o)
xg & x§
X3 xB
xB xD
v R
pB pD
5-59 BMSASD

Figure 1§, QCD factorization for two-body amplitudes at large momentum
transfer.

In the case of exclusive processes such as photo-production, Compton scatter-
ing, meson-baryon scattering, etc., the leading hard scattering QCD contribution
at large momentum transfer ° = tu/s has the form (helicity labels and sup-
pressed) (see Fig. 18)

Masp—cip(Q% 0cim) = f [dz]éc(zc, Q) ¢p(za, Q) Th{zi; Q% 0cm.)
X ¢a(z4,Q) $8(z5,Q)

In general the distribution amplitude is evaluated at the characteristic scale ¢
set by the effective virtuality of the quark propagators.
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By definition, the hard scattering amplitude Ty for a given exclusive process is
constructed by replacing each external hadron with its massless, collinear valence
partons, each carrying a finite fraction z,; of the hadron’s momentum. Thus Ty
1s the scattering amplitude for the constituents. The essential behavior of the
amplitude is determined by Ty, computed where each hadron is replaced by its
(collinear) quark constituents. We note that Ty is “collinear irreducible,” i.e. the
transverse momentum integrations of all reducible loop integration are restricted
to ki > O(Q?) since the small k) region is already contained in ¢. If the internal
propagators in Ty are all far-off-shell O(Q?), then a perturbative expansion in
as(@Q?) can be carried out.

Higher twist corrections to the quark and gluon propagator due to mass terms
and intrinsic transverse momenta of a few hundred MeV give nominal corrections
of higher order in 1/Q?. These finite mass corrections combine with the leading
twist results to give a smooth approach to small Q% It is thus reasonable that

PQCD scaling laws become valid at relatively low momentum transfer of order
of a few GeV.

5.1. GENERAL FEATURES OF EXCLUSIVE PROCESSES IN QCD

The factorization theorem for large-momentum-transfer exclusive reactions

separates the dynamics of hard-scattering quark and gluon amplitudes Ty from-

process-independent distribution amplitudes ¢y{z, Q) which isolates all of the
bound state dynamics. However, as seen from Table 1, even without complete
information on the hadronic wave functions, it is still possible to make predictions
at large momentum transfer directly from QCD.

Although detailed calculations of the hard-scattering amplitude have not been
carried out in all of the hadron-hadron scattering cases, one can abstract some
general features of QCD common to all exclusive processes at large momentum
transfer:

1. Since the distribution amplitude ¢y is the L, = 0 orbital-angular-momen-
tum projection of the hadron wave function, the sum of the interacting

. i .6
constituents’ spin along the hadron’s momentum equals the hadron spin:
> st=sy.
el

In contrast, there are any number of non-interacting spectator constituents
in inclusive reactions, and the spin of the aciive quarks or gluons is only
statistically related to the hadron spin {except at the edge of phase space
zr — 1) |
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2. Since all loop integrations in Ty are of order Q, the quark and hadron
masses can be neglected at large Q% up to corrections of order ~ m/Q.
The vector-gluon coupling conserves guark helicity when all masses are
neglected-i.e. ) y*u; = 0. Thus total quark helicity is conserved in Ty . In
addition, because of (2}, each hadron’s helicity is the sum of the helicities
of its valence quarks in Ty. We thus have the selection rule

Y dm=) dg =0,

initial final

i.e. total hadronic helicity is conserved up to corrections of order m /() or
higher. Only (flavor-singlet} mesons in the 0~% nonet can have a two-gluon
valence component and thus even for these states the quark hehaty equals
the hadronic helicity. Consequently hadronic-helhicity conservation apphes
for all amplitudes involving light meson and ba,ryons.gl Exclusive reactions
which involve hadrons with quarks or gluons in higher orbital angular states
are suppressed by powers.

3. The nominal power-law behavior of an exclusive amplitude at fixed 6, ;. 1s
(1/Q)"~%. where n is the number of external elementary particles (quarks.
gluons, leptons, photons, ...) In Tyx. This dimensional-counting rule” is
modified by the Q7 dependence of the factors of as(@?) in Ty, by the @
evolution of the distribution amplitudes, and possibly by a small power
correction associated with the Sudakov suppression of pinch singularities in
hadron-hadron scattering.

The dimensional-counting rules for the power-law falloff appear to be ex-
perimentally well established for a wide variety of processes.32’33 The helicity-
conservation rule is also one of the most characteristic features of QCD, being a
direct consequence of the gluon's spin. A scalar-or tensor-gluon-quark couphng
flips the quark’s helicity. Thus, for such theories, helicity may or may not be
conserved In any given diagram contribution to Ty depending upon the number
of interactions involved. Only for a vector theory, such as QCD, can one have a
helicity selection rule valid to all orders in perturbation theory.
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Figure 19. {a) Factorization of the nucleon form factor at large Q% in QCD. (b)
The leading order diagrams for the hard scattering amplitude Ty. The dots indicale
insertions which enter the renormalization of the coupling constant. {c) The leading
order diagrams which determine the Q? dependence of the distribution amplitude

${z,Q).

52. ELECTROMAGNETIC FORM FACTORS

Any helicity conserving baryon form factor at large (* has the form: [see Fig.

19(a)]
1

i
Fa(Q®) = / 1dy) f (dz] & (4, Q)T (zir 5, Q)5(z, Q)
G

0

where to leading order in a,{Q?), Ty is computed from 3¢ + 7% — 3g tree graph
amplitudes: {Fig. 19(b) ]

9412
Ty = [agg )] flzi,95)
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and

¢p(zi, Q) = /[dzh] Py (i, k)8R, < QF)

is the valence three-quark wavefunction [Fig. 19(c)] evaluated at quark impact
separation b ~ Q(Q~!). More detailed formulae for the baryon form factor arc
presented in Appendix I. Since ¢p only depends logarithmically on Q? in QCD,
the main dynamical dependence of Fg(Q?) is the power behavior (Q%)~? derived
from scaling of the elementary propagators in 7. More exphcitly, the proton’s

magnetic form factor has the form:*

2v72 2y ~ Y Tm
G_M(Qg) = [aséQg )] Zanm (log %)

X [1 + 0(as(@)) + O (é)] .

The first factor, in agreement with the quark counting rule, is due to the hard
scattering of the three valence quarks from the initial to final nucleon direction.
Higher Fock states lead to form factor contributions of successively higher order
in 1/Q?. The logarithmic corrections derive from an evolution equation for the
nucleon distribution amplitude. The v, are the computed anomalous dimensions,
reflecting the short distance scaling of three-quark composite operators.w The re-
sults hold for any baryon to baryon vector or axial vector transition amplitude
that conserves the baryon helicity. Helicity non-conserving form factors should
fall as an additional power of 1/Q". Measurements"" of the transition form fac-
tor to the J = 3/2 N(1520) nucleon resonance are consistent with J, = £1/2
dominance, as predicted by the helicity conservation rule’ A review of the data
on spin effects in electron nucleon scattering in the resonance region is given in
Ref. 34. It is important to explicitly verify that Fo(Q?)/F1{Q?) decreases at large
Q?. The angular distribution decay of the J/i — pp is consistent with the QCD
prediction A, + Ay = 0.

Thus, modulo logarithmic factors, one obtains a dimensional counting rule

for any hadrenic or nuclear form factor at large Q% (A = A’ = 0 or 1/2)
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Figure 20. Comparison of e.v(periment:35 with the QCD dimensional counting
rule {Q?}*~1F(Q") ~ const for form f{actors. The proton data extends beyond 30
GeVZ2.

where n is the minimum number of fields in the hadron. Since quark helicity

is conserved in Ty and ¢{z;,Q) is the L, = 0 projection of the wavefunction,

total hadronic helicity is conserved at large momentum transfer for any QCD

exclusive reaction. The dominant nucleon form factor thus corresponds to F3(Q?)

or Gur{Q?); the Pauli form factor F5(Q?) is suppressed by an extra power of Q2.

Similarly, in the case of the deuteron, the dominant form factor has helicity
= A" =0, corresponding to /A(@?).

The comparison of experimental form factors with the predicted nominal
power-law behavior is shown in Fig. 20. We will discuss predictions for the
normalization of the leading power terms in Section 5.6. As we have discussed
in Section 4, the general form of the logarithmic corrections to the leading power
contributions form factors can be derived from the operator product expansion
at short distance’™" or by solving an evolution o:a-quat.ion4 for the distnbution
amplitude computed from gluon exchange [Fig. 19(c)], the only QCD contribution
which falls sufficiently small at large transverse momentum to effect the large Q°
dependence.

The comparison of the proton form factor data with the QCD prediction
arbitrarily normalized is shown in Fig. 21. The fall-off of (Q?)?Gy(Q?) with Q?
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is consistent with the logarithmic fall-off of the square of QCD running coupling
constant. As we shall discuss below, the QCD sum rule’® model form for the
nucleon distribuiion amplitude together with the QCD factorization formulae,
predicts the correct sign and magnitude as well as scaling behavior of the proton

3
and neuiron form factors.
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Figure 21. Comparison of the scaling behavior of the proton magneiic form
factor with the theoretical predictions of Refs. 4 and 16. The CZ 1:>rec|icti-:>nsl6 are
normalized in sign and magnitude. The data are from Ref. 36.

5.3. CoMPARISON OF QCD ScCALING WITH EXPERIMENT

Phenomenologically the dimensional counting power laws appear consistent
with measurements of form factors, photon-induced amplitudes, and elastic hadron-
hadron scattering at large angles and momentum ¢ransfer’ The successes of the
quark counting rules can be taken as strong evidence for QCD since the deriva-
tion of the counting rules require scale invariant tree graphs, soft corrections from
higher loop corrections to the hard scattering amplitude, and strong suppression
of pinch singularities. QCD is the only field theory of spin % fields that has all
of these properties.

As shown in Fig. 22, the data for yp — n¥n cross section at fcpy =
7/2 are consistent with the normalization and scaling do/dt {(yp — 7tn) =~

[1nb/{s/10 GeV)"} f(t/s).
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Figure 22. Comparison of photoproduction data with the dimensional counting
power-law prediction. The data are summarized in Ref. 37.

The check of fixed angle scaling in proton-proton elastic scattering is shown in
Figs. 23. Extensive measurements of the pp — pp cross section have been made at
ANL, BNL and other laboratories. The scaling law s!%do/di{pp — pp) ~ const.
predicted by QCD seems to work quite well over a large range of energy and angle.
The best fit gives the power N = 9.7+ 0.5 compared to the dimensional counting
prediction N=10. There are, however, measurable deviations from fixed power
dependence which are not readily apparent on the log-log plot. As emphasized
by Hendry38 the s!%o/dt cross section exhibits oscillatory behavior with pr
(see Section 9). Even more senous is the fact that polarization measurements’
show significant spin-spin correlations (Any), and the single spin asymmetry
(An) is not consistent with predictions based on hadron helicity conservation
(see Section 6} which is expected to be valid for the leading power behavior,
Recent discussions of these effects have been given by Farrar®' and Lipkin.42 We
discuss a new explanation of all of these effects in Section 9.

As emphasized by Landshoff, the ISR data for hgh energy elastic pp scat-
tering at small |t|/s can be parameterized in the form da/dt ~ const/t® for
2 GeV? < |t| < 10 GeV?2. This suggests a role for triple gluon exchange pinch
contributions at large energies where multiple vector exchange diagrams could
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Figure 23. Test of fixed f¢ps scaling for elastic pp scattering. The data compr-
lation is from Landshoff and Polkinghorne.

dominate. However, from Mueller’s analysisg1 one expects stronger fall-oft in
t due to the Sudakov form factor suppression. This paradox implies that the
role of the pinch singularity in large momentum transfer exclusive reactions is
not well understood and deserve further attention’> As discussed in Section 4.5.
pinch singularities are also expected to modify the dimensional counting scaling
laws for wide-angle scattering, but the change in the exponeni of s i1s small and
hard to detect experimentally. However, Ralston and Pire™ have suggested that
the oscillatory behavior in the wide-angle pp scattering amplitude results from
interference between the pinch contributions and the ordinary hard-scattering
contributions to the pp amplitude. Thus pp scattering may provide a expcrimen-
tal handle on pinch contribution. However it is possible that the oscillations are
specific to particular channels, in which case an alternative explanation is nec-
essary. We discuss this further in Section 9. Pinch singularities do not arise

form factors, or such photon-induced processes as vy — Mﬂ,m T4y - M‘,;

v — M;.. My at fixed angle,‘;4 ~y — BB, vB — 4B, et %
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5.4, EXCLUSIVE ANTI-PROTON PROTON ANNIHILATION PROCESSES

Anti-proton annihilation has a number of important advantages as a probe of
QCD in the low energy domain. Exclusive reaction in which complete annihilation
of the valance quarks occur (pp — £, vv, ¢¢, etc.) necessarily involve impact
distances b) smaller than 1/M, =5 fm™! since baryon number is exchanged in
the i-channel. There are a number of exclusive and inclusive 7 reactions which
can provide useful constraints on hadron wavefunctions or test novel features
of QCD involving both perturbative and nonperturbative dynamics. In several
cases (pp — 4, pp — J/v, Bp — 77), complete leading twist (leading power
law) predictions are available. These reactions not only probe the subprocesses
999 999 — 77, etc., but they also are sensitive to the normalization and shape
of the proton distribution amplitude ¢p(x;. 22, 23; Q}, the basic measure of the
proton’s three-quark valance wavefunction.

The fixed angle scaling laws for the Bp channels are:

dg _ QQ Fa—
o) (Pp — ete™) L) f€ ¢ (cos8, tnpy)
T
do o’
a0 (Pp — 77) = (28 F7{cos 8, fnpr)
T
do _ Q2 +M
a0 (pp > YM) ~ TEAT J 7 (cos 8, fnpr)
T
do 1 MW
'CE (pp_bMM)h—J (p2 )7 f (Coseﬂfin)
T
do . ] BB
70 (pp — BB) ~ T %7 (cos 8, fnpT)

The angular dependence reflects the structure of the hard-scattering perturbative
Ty amplitude, which in turn follows from the flavor pattern of the contributing
duabity diagrams.

It is important to note that the leading power-law behavior originates in the
minimum three-particle Fock state of the 7 and p, at least in physical gauge,
such as AT = 0. Higher Fock states give contributions higher order in 1/s. For
pp — £f this means that initial-state interaction such as one gluon exchange are
dynamically suppressed (see Fig. 24). Soft-gluon exchange is suppressed since the
incident p or P color neutral wavefunction in the three-parton state with impact
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operation b) ~ 0(1/./s). Hard-gluon exchange is suppressed by powers of a,(s).
The absence of a soft initial-state interaction in these reactions is a remarkable
consequence of gauge theory, and is quite conirary to normal treatments of initial

interactions based on Glauber theory.

p §-88

B125A5

Figure 24. Analysis of initial-state interactions in PQCD.

We will discuss in Section 8.1 another class of exclusive reactions in QCD
involving light nuclei, such as 3d — yn and pd — 7~ p which can probe quark
and gluon degrees of freedom of the nuclens at surprisingly low energy. We
will also discuss the “color transparency” of nuclei in quasi-elastic processes like

PA — (A —1).
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5.5. ADDITIONAL TESTS OF GLUON SPIN IN EXCLUSIVE PROCESSES

The spin of the gluon can be tested in a wide variety of exclusive processes:

{a) vy — pp, K*K*,.... These cross sections can be measured using ¢te”
colliding beams. At large energies (s 2 2 — 4GeV?) and wide angles, the final-
state helicities must be equal and opposite. These processes can also be used as
a sensitive probe of the structure of the quark distribution amplitudes.l6

(b) Electroweak form factors of baryons. Relations, valid to all order in as,
can be found among the various electromagnetic and weak-interaction for factors
of the nucleons and other ba.ryons:ﬂ These relations depend crucially upon quark-
hehicity conservation and as such test the vector nature of the gluon, Current data
for the axial-vector and electromagnetic form factors of the nucleons 1s in excellent,
agreement with these QCD predictions, although a definitive test requires higher
energies.

(c) 7p — 7p,pp — pp,.... QCD predicts that total hadronic helicity is
conserved from the initial state to the final state in all high-energy, wide-angle,
elastic, and quasi-elastic hadronic amplitudes. One immediate consequence of
this 1s the suppression of the backward peak relative to the forward peak in
scalar-meson- baryon scattering. This follows because angular momentum cannot
be conserved along the beam axis if only the baryons carry helicity, helicity is
conserved, and the baryons scatter through 180°. Data’” for mpand N p scattering
1s consistent with this observation. However the hard-scattering amphtudes for
these processes must be computed before a detailed interpretation of the data is
possible.

In the case of pp — pp scattering, there are in general five independent parity-
conserving and time-reversal-invariant amplitudes M{(+4+ — ++}, M{(+- —
+-}), M(~+ — 4=}, M{4++ — +-), and M(—— — ++4). Total-hadron-
helicity conservation implies that AM{++ — +—) and M{—— — ++4) are power-
law suppressed. The vanishing of the double-flip amplitude implies Ay y = Ags,
and

2ANN — ALL =1 (ac.m. = 900)-

Here Apy is the spin asymmetry for incident nucleons polarized normal (z) to
the scattering plane. Ay refers to initial spins polarized along the laboratory
beam direction (£) and Aggs refers to initial spin polarized (sideways) along y.
Data at pp, = 11.75 GeV/c from Argonne‘;8 appears to be consistent with this
prediction.

{(d) Zeros of meson form factors. Asymptotically, the electromagnetic form
factors of charged 7’s, K's, and p{A = 0)’s have a positive sign in QCD. In a theory
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of scalar gluons, these form factors become negative for Q7 large, and thus must
vanish at some finite Q? since F(Q? = 0) = 1 by definition. Consequently the
absence of zeros in Fx(Q?) is further evidence for a vector gluon. We discuss this
mn detail in the next section.

5.6. HADRONIC WAVEFUNCTION PHENOMENOLOGY

Let us now return to the question of the normalization of exclusive ampli-
tudes in QCD. It should be emphasized that because of the uncertain magnitude
of corrections of higher order in as(Q?), comparisons with the normalization of
experiment with model predictions could be misleading. Nevertheless, 1t this sec-
tion we shall assume that the leading order normalization is at least approximately
accurate. If the higher order corrections are indeed small, then the normaliza-
tion of the proton form factor at large Q® is a non-trivial test of the distribution
amplitude shape; for example, if the proton wave function has a non-relativistic
shape peaked at z; ~ 1/3 then one obtains the wrong sign for the nucleon form
factor. Furthermore symmetrical distribution amplitudes predict a very small
magnitude for Q*Gh,(Q?) at large Q2.

The phenomenology of hadron wavefunctions in JCD is now just beginning.
Constraints on the baryon and meson distribution amphtudes have been recently
obtained using QCD sum rules and lattice gauge theory. The resulis are expressed
in terms of gauge-invariant moments < z° >= [ Tidz; x]" ¢{zi, p) of the hadron’s
distribution amplitude. A particularly important challenge is the construction
of the baryon distribution amplitude.In the case of the proton form factor, the
constants ap;, in the QCD prediction for Gy must be computed from moments of
the nucleon’s distribution amplitude ¢(z;, @}. There are now extensive theoretical
efforts to compuie this nonperturbative input directly from QCD. The QCD
sum rule analysis of Chernyak et all % provides constraints on the first 12
momentis of ¢(x, (). Using as a basis the polynomials which are eigenstates of
the nucleon evolution equation, one gets a model representation of ithe nucleon
distribution amplitude, as well as 1is evolution with the momentum transfer scale.
The moments of the proton distribution amplitude computed by Chernvak el al.,

have now been confirmed in an independent analysis by Sachrajda and King.so

A three-dimensional “spapshot” of the proton’s uud wavefunciion at equal
light-cone time as deduced from QCD sum rules at g ~ 1 GeV by Chernyak
et ol and King and Seu:hra,jda50 is shown in Fig. 25. The QCD sum rule
analysis predicts a surprising feature: strong flavor asymmetry in the nucleon’s
momentum distribution. The computed moments of the distribution amplitude
imply that 65% of the proton’s momentum in its 3-quark valence state is carried
by the u-quark which has the same helicity as the parent hadron.
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Figure 25. The proton distribution amplitude ¢p{zi, i) determined at the scale
g~ 1 GeV from QCD sum rules.

. . L) .
Dziembowski and Mankiewicz™ have recently shown that the asymmetric
form of the CZ distribution amplitude can result from a rotationally-invariant CM
wave function transformed to the light cone using free quark dynamics. They find

that one can simultaneously fit low energy phenomena (charge radii, magnetic
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moments, etc.), the measured high momentum transfer hadron form factors, and
the CZ distribution amplitudes with a self-consistent ansatz for the quark wave
functions. Thus for the first time one has a somewhat complete model for the
relativistic three-quark siructure of the hadrons. In the model the transverse
size of the valence wave function is not found to be significantly smaller than
the mean radius of the proton—averaged over all Fock states as argued in Ref.
51. Dziembowski et al. also find that the perturbative QCD contribution to the
form factors in their model dominates over the soft contribution {obtained by
convoluting the non-perturbative wave functions) at a scale /N =~ I GeV, where
N is the number of valence constituents. (This criterion was also derived n

Ref. 52.)

Gari and Stefanis™ have developed a model for the nucleon form factors
which incorporates the CZ disiribution amplitude predictions at high Q? together
with VMDD constraints at low Q%. Their analysis predicts sizeable values for the
neutron electric form factor at intermediate values of Q2.

A detalled phenomenological analysis of the nucleon form factors for different
shapes of the distribution amplitudes has been given by Ji, Sill, and Lombard-
Nelsen”® Their results show that the CZ wave function is consistent with the
sign and magnitude of the proton form factor at large Q% as recently measured
by the American University /[SLAC collaboration 3 {see Fag. 26).
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Figure 26. Predictions for the normalization and sign of the proton form factor
at high Q° using perturbative QCD factorization and QCD sum rule predictions for
the proton distribution amplitude {from Ref. 54.) The predictions usc forms given by

Chernyak and Zhitnitsky, King and Sa.chrajda.?uand Gari and Stefanis®
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It should be stressed that the magnitude of the proton form factor is sensi-
tive to the z ~ 1 dependence of the proton distribution amplitude, where non-
perturbative effects could be importa,nt.55 The asymmetry of the distribution
amplitude emphasizes contributions from the large z region. Since non-leading
corrections are expected when the quark propagator scale @Q%(1 — ) is small, in
principle relatively large momentum transfer is required to clearly test the pertur-
bative QCD predictions. Chernyak ef al®® have studied this effect in some detail
and claim that their QCD sum rule predictions are not significantly changed when

higher moments of the distribution amplitude are included.

- The moments of distribution amplhitudes can also be computed using lattice
gauge theory.14 In the case of the pion distribution amplitudes, there is good
agreement of the lattice gauge theory computations of Martinelli and Sachra-
jda.15 with the QCD sum rule results. This check has strengthened confidence
in the reliability of the QCD sum rule method, although the shape of the me-
son distribution amplitudes are unexpectedly structured: the pion distribution
amplitude is broad and has a dip at z = 1/2. The QCD sum rule meson distri-
butions, combined with the perturbative QCD factorization predictions, account
well for the scaling, normalization of the pion form factor and vy — MTM~

cross sections.

In the case of the baryon, the asymmetric three-quark distributions are con-
sistent with the normalization of the baryon form factor at large Q° and also
the branching ratio for J/¢» — pp. The data for large angle Compton scattering

4p — p arc also well described”® However, a very recent lattice calculation of

the lowest two moments by Martinelli and Sachra,jda.15 does not show skewing
of the average fraction of momentum of the valence quarks in the protou. This
lattice result is in contradiction to the predictions of the QCD sum rules and
does cast some doubt on the validity of the model of the proton distribution pro-
posed by Chernyak et al’® The lattice calculation is performed in the quenched
approximation with Wilson fermions and requires an extrapolation to the chiral
Limit.

The contribution of soft momentum exchange to the hadron form factors
is a potentially serious complication when one uses the QCD sum rule model
distribution amplitudes. In the analysis of Ref. 24 it was argued that only
about 1% of the proton form factor comes from regions of integration in which

all the propagators are hard. A new analysis by Dziembowski el al”’ shows

that the QCD sum rule’® distribution amplitudes of Chernyak ef al'® together
with the perturbative QCD prediction gives contributions to the form factors
which agree with the measured normalization of the pion form factor at Q? >
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4 GeV? and proton form factor Q% > 20 GeV? to within a factor of two. In the
calculation the virtuality of the exchanged gluon is restricted to |£%] > 0.25 GeV™.
The authors assume oy = 0.3 and that the underlying wavefunctions fall off
exponentially at the z ~ 1 endpoints. Another model of the proton distribution
amplitude with diquark clustering58 chosen to satis{ly the QCD sum rule moments
come even closer. Considering the uncertainty in the magnitude of the higher
order corrections, one really cannot expect betier agreement between the QCD
predictions and experiment.

The relative importance of non-perturbative contributions to form factors is
also an issue. Unfortunately, there is little that can be said until we have a deeper
understanding of the end-point behavior of hadronic wavefunctions, and of the
role played by Sudakov form factors in the end-point region. Models have been
constructed in which non-perturbative effects persist to high Q‘M Other models

. . . . . 25,26,27
have been constructed in which such effects vanish rapidly as () increases.

iIf the QCD sum rule results are correct then, the light hadrons are highly
structured oscillating momentum-space valence wavefunctions. In the case of
mesons, the results from both the lattice calculations and QCD sum rules show
that the light quarks are highly relativistic. This gives further indication that
while nonrelativistic potential models are useful for enumerating the spectrum of
hadrons (because they express the relevant degrees of freedom), they may not be
reliable in predicting wave function structure.

5.7. CALcULATING Ty

The calculation of hard-scatiering diagrams for exclusive processes in QCD
becomes increasingly arduous as the number of incident and final parton lines
increases. The tree-graph calculations of Ty have been completed for the meson
and baryon form factors, as well as for many exclusive two-photon processes such
as 7y — pP for both real and viriual photons and various Compton scattering
reactions. Further discussion of the two-photon predictions is given in Section 7.

The most efficient computational methods involve two-component spinor tech-
nigues where the amplitude itself can be converted to a trace. This method was
first used by Bjorken and Chen % for their calculation of the QED “trident” am-
plitudes for uZ — ppp. It was further developed by the CALKUL group and
applied to exclusive processes by Farrar'” and Gunion® and their co-workers.

The large number of PQCD tree graph (300,000 for pp scattering) may
help to explain the relatively large normalization of the pp amplitude at large
momentum transfer. For example the nominal one-gluon exchange amplitude
arCp(s/t)as(t)[FF(t)])? gives a contribution only about 107° of that required by
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the large angle pp scattering data. It is clearly necessary to develop highly efficient
and automatic methods for evaluating multi-particle hard scattering amplitudes
Ty for reactions such as pp scattering. The light-cone quantization method could
prove highly effective. In this method one expands the S-matrix in the r-ordered
perturbation theory. For numerical computations one can use a discrete basis,
such that 1n each intermediate state one sums over a complete set of discretized
Fock states, defined using periodic or anti-periodic boundary conditions. The ma-
trix elements of the light-cone Hamiltonian Hg‘é%“i"‘m are simple to compute.
In the expansion all Feynman diagrams and all time-orderings are automatically

summed.

In principle the perturbative QCD predictions can be calculated systemati-
cally in powers of a,{Q?). In practice the calculations are formidable, and thus far
only the next-to-leading correction to the pion form factor and the yy — =7 am-
plitude have been systematically studied. The two-photon amplitude analysis is
given by Nizic® and is discussed further in Section 7. The complete analysis of the
meson form factor to this order requires evaluating the one-loop corrections to the
hard-scattering amplitude for vg§ — ¢, plus a corresponding correction to the
kernel for the meson distribution amplitude. The one-loop corrections to T’y for
the meson form factor have been evaluated by several groups. Because of different
conventions the resulis differ in detail; however Braaten and Tse'® have resolved
the discrepancies between the three previous calculations. An important featurc
1s the presence of correction terms of order %;(1—31-0,4 — %)log[(l —z)(1 — 1)@
which sets the scale of the running coupling constant in the leading order contri-
bution at ngf = (1 — z){1 — y)Q®. This is consistent with the expectation that
the running coupling constant scale is set by the virtuality of the exchanged gluon
propagator, just as in Abelian QED. This is also consistent with the automatic
scale-fixing scheme of Ref. 63. Thus a significant part of the PQCD higher order
corrections can be absorbed by taking the natural choice for the argument of
the running coupling constant. The next-to-leading correction to the kernel for
the meson distribution amplitude has also been evaluated by several groups. A
surprising feature of this analysis is the fact that conformal symmetry cannot be
used as a guide to predict the form the results even when the 8-function is set to

zero.13 This is discussed in further detail in Section 4.2
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5.8. THE PRe-QCD DEVELOPMENT OF EXCLUSIVE REACTIONS

The study of exclusive processes in terms of underlying quark subprocesses
in fact began before the discovery of QCD. The advent of the parton model and
Bjorken scaling for deep inelastic structure functions in the late 1960’s brought
a new focus to the structure of form factors and exclusive processes at large
momentum transfer. The underlying theme of the parton model was the con-
cept that quarks carried the electromagnetic current within hadrons. The use of
time-ordered perturbation theory in an “Iinfinite momentum frame”, or equiva-
lently, quantization on the light cone, provided a natural la.nguage for hadrons

as composites of relativistic pa.rtons i.e. point-like constituents' As discussed

in Section 3, Drell and Yan'? introduced Eq. (57) for current matrix elements
in terms of a Fock state expansion at infinite momentum. {Later this result was
shown to be an exact result using light-cone quantization.)

Drell and Yan suggested that the form factor is dominated by the end-point
region z = 1. Then it is clear from the Drell-Yan formula that the form factor
fall-off at large Q is closely related to the z — 1 behavior of the hadron structure
function. The relation found by Drell and Yan was

if  Fofz, @) ~ (1 — 2y L,

Gribov and Lipatov65 extended this relationship to fragmentation functions

D(z,Q%) at z — 1, taking into account cancellations due to quark spin. Feyn-
man®® noted that the Drell-Yan relationship was also true in gauge theory models
in which the endpoint behavior of structure functions is suppressed due to the
emission of soft or “wee” partons by charged lines. However, as discussed in
Section 4, the endpoint region is suppressed in QCD relative to the leading per-
turbative contributions.

The parton model was extended to exclusive processes such as hadron-hadron
scattering and photoproduction by Blankenbecler, Brodsky, and Gunion®" and

by Landshoff and Polkmghorne ® It was recognized that independent of specific
dynamics, hadrons could interact and scatter simply by exchanging their common
constituents. These authors showed that the amplitude due to quark interchange
{(or rearrangement) could be written in closed form as an overlap of the light-
cone wavefunctions of the incident and final hadrons. In order to make definite
predictions, model wavefunctions were chosen to reproduce the fall-off of the form
factors obtained from the Drell-Yan formula. Two-body exclusive amplitudes in
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the “constituent interchange model” then take the form of “fixed-angle™ scaling

laws

do F(Bem)
—(AB— CDy~ =%

where the power N reflecis the power-law fall-off of the elastic form factors of
the scattered hadrons. The form of the angular dependence f(f.,) reflects the
number of interchanged quarks.

Even though the constituent interchange is model was motivated in part by
the Drell-Yan endpoint analysis of form factors, many of the predictions and
systematics of quark interchange remain applicable in the QCD ana]ysis.ﬁ? A
comprehensive series of measurements of elastic meson nucleon scattering reac-
tions has recenily been carried out by Baller ef al®® at BNL. Empirically, the
quark interchange amplitudes gives a reasonable account of the scaling, angular
dependence, and relative magnitudes of the various channels. For example, the
strong differences between K *p and K ~p scattering is accounted for by v quark
interchange in the K *p amplitude. It is inconsistent with gluon exchange as the
dominant amplitude since this produces equal scattering for the two channcls,
The dominance of quark interchange over gluon exchange is a surprising result
which eventually needs to be understood in the context of QCD.

The prediction of fixed angle scaling laws laid the groundwork for the deriva-
tion of the “dimensional counting rules.” As discussed in Ref. 5, it 1s natural
to assume that at large momentum transfer, an exclusive amplitude factorize as
a convolution of hadron wavefunctions which couple the hadrons to their quark
constituents with a hard scattering amplitude Ty which scatters the quarks from
the initial to final divection. Since the hadron wavefunction is maximal when the
quarks are nearly collinear with each parent hadron, the large momentum trans-
fer occurs in Ty. The pre-QCD argument went as follows: the dimension of Ty is
[L"~%) where n = ny + ng+nc+np is the total number of fields entering 7%. In
a renormalizable theory where the coupling constant is dimensionless and masses
can be neglected at large momentum transfer, all connected tree-graphs for Ty
then scale as [1/4/s]** at fixed t/s. This immediately gives the dimensional

counting law

f(Bem)

ghatnptnctnp-2'

do

2\ D)
In the case of incident or final photons or leptons n = 1. Specializing to elastic
lepton-hadron scattering, this also implies F(Q?) ~ 1/{Q%)*#~! for the spin av-

eraged form factor, where ny is the number of constituents in hadron H. These
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results were obtained independently by Matveev ei al® on the basis of an “auto-
modality” principle, that the underlying constituent interactions are scale free.

As we have seen, the dimensional counting scaling laws will generally be
modified by the accumulation of logarithms from higher loop corrections to the
hard scattering amplitude Ty ; the phenomenological success of the counting rules
in their simplest form thus implies that the loop corrections be somewhat mild. As
we have seen, it is the asymptotic freedom property of QUD which in fact makes
higher order corrections an exponentiation of a log log Q% series, thus preserving
the form of the dimensional counting rules modulo only logarithmic corrections.

6. EXCLUSIVE ete™ ANNIHILATION PROCESSES

The study of time-like hadronic form factors using e*e™ colliding beams can
provide very sensitive tests of the QCD helicity selection rule. This follows be-
cavse the virtual photon in ete™ — v* — hahg always has spin 1 along the
beam axis at high energies.#ls Angular-momentum conservation implies that the
virtual photon can “decay” with one of only two possible angular distributions
in the center-of-momentum frame: (1+4cos?0) for | A4 — Ag |= 1, and sin8 for
| Aa — Ap |= 0, where A4 p are the helicities of hadron A4 p. Hadronic-helicity
conservation, Eq. {7), as required by QCD greatly resiricts the possibilities. It
implies that Ag + Ap = 2A4 = —2Xp. Consequently, angular-momentum conser-
vation requires | Ay |=| Ag |= % for baryons and | A4 |=| Ag |= 0 for mesons;
and the angular distributions are now completely determined:

do

dcos §
do

dcos @

(e¥e™ — BB) x 1 + cos’ f(baryons),

(e¥e™ — MAM)  sin” f{mesons).

It should be emphasized that these predictions are far from trivial for vector
mesons and for all baryons. For example, one expects distributions like sin® §
for baryon pairs in theories with a scalar or tensor gluon. Simply verifying these
angular distributions would give strong evidence in favor of a vector gluon.

#15 This follows from helicity conservation as well, which is a well-known property of QED
at high energies. The electron and positron must have opposite helicities; i.e. ¥, + v = 0.
since it is the total helicity carried by fermions (alone) which is conserved, and there are
re fermions in the intermediate state. In the laboratory frame (— p, = — — pg), their
spins must be parallel, resulting in a virtual photon with spin X1 along the beam.
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The power-law dependence on s of these cross sections is also predicted in
QCD, using the dimensional-counting rule. Such “all-crders” predictions for QCD
allowed processes are summarized in Table 11.6’70 Processes suppressed in QCD
are also listed there; these all violate hadronic-helicity conservation, and are sup-
pressed by powers of m?/s in QCD. This would not necessarily be the case in

scalar or tensor theories.

Table 11

Exclusive channels in e¥e™ annibilation. The kakgy® couplings in allowed processes are —le{paq — py)* F{s)

for mesons, -i¢t(pg Iy G{s)u(pa) lor baryons, and —éezem,ppj;f €°pS Fag (s} for meson-photon final states, Similar

predictions apply to decays of heavy-quark vector states, such as ,%',..., produced in ete™ collisions.
ete” — halda)hplip) Angular distribution :—r((f:::—;:?—j—f%
ete” —wtnT KK sin’ @ HIP(s)? ~ of s
ete™ — p¥pT(0), KR sin’ # LIF(s)? ~ ¢fs?
Allowed ete” — 2%y, py, 9" 14 cos?o (maf2)s {Fary () ~ <fs
in QCD ete” o p(:l:% )ﬁ(:Fi—, ), N7, ... 1+ cos?d [G(s}? ~ ¢fst
ete” — p{£})A(F])HA. . 1 +¢os?8 |G{s)? ~ cfs*
ete™ —'A(:l:%)z(:!:%)'y'ﬁ'.”. 14 cos? 8 IG(5)|% ~ cfs4
ete™ — pH{Qlp (L1}, rtp  , AYH"—, ... 1+4cos?s < ¢fs®
Suppressed ete™ — p¥(£l)pT{£1),... sin® @ < cfst
in QCD ete” —'p{i%}ﬁ(:l:%),pz,&z,.,. sin 24 < ¢fs®
ete” — p(2i)A(L3),44, ... 1+ cos?d <cfst
ete” —»A[i%)z(i%),... sin? § < efs®
Table 11

All of these perturbative predictions assume that s is sufficiently far from

resonance contributions.

Notice the ete™ — mp,mw, KK*, ..., are all suppressed in QCD. This oc-
curs because the ¥ — 7 — p can couple through only a single form factor -
e‘“’”:’;Ef)egp}pg-ﬂpgp)}?m(s) — and this requires | A, |= 1 in ete™ collisions.
Hadronic-helicity conservation requires A = { for mesons, and thus these amupli-
tudes are suppressed in QCD (although, again, not in scalar or tensor theories).
Notice however that the processes e¥e™ — 7, vn, v are allowed by the helicity
selection rule; helicity conservation applies only to the hadrons. Unfortunately
the form factors governing these last processes are not expected to be large, e.g.

Frols) ~2fx/s.
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These form factors can also tell us about the quark distribution amplitudes
#n{zi, Q). For example sum rules require (to all orders in o, ) that #¥a ™~ KT K,
and ptp~ (helicity-zero) pairs are produced in the ratio of fi : f% : 4f2 ~
1:2: 7, respectively if the =, K, and p distribution amplitudes are of similar
shape. These ratios must apply at very large energies, where all distribution
amplitudes tend to ¢ o z{l — z). On the other hand, the kaon’s distribution
amplitude may be quite asymmetric about = = % at low energies due to the
large difference between s and u,d quark masses. This could enhance A1 K~
production. {Distribution amplitudes for 7’s and p’s must be symmetric due to
isospin.) The process ete™ — K Kg is only possible if the kaon distribution
amplitude is a,syr.fm:vel;ric;#16 the presence or absence of Ky K¢ pairs relative to

K+ K~ pairs is thus a sensitive indicator of asymmetry in the wave function.

6.1. J/i» DECAY TO HADRON PAIRS

The exclusive decays of heavy-quark atoms (J/¥,¢’',...) into light hadrons
can also be analyzed 1n QCD.71 The decay ¥ — pp. for example, proceeds via

+e~ collisions must

diagrams such as those in Fig. 27. Since ¢’s produced in ¢
also have spin +1 along the beam direction and since they can only couple to
light quarks via gluons, all the properties listed in Table 11 apply to 3,9, T, Y’ ...
decays as well. Already there is considerable experimental data for the v and

72,73
decays.

Figure 27. Quark-gluon subprocesses for ¥ — BB.

#16 For example, this amplitude vanishes under the {stronger} assumption of exact flavor-
SU(3) symmetry. This is easily seen by defining Gy parity, in analogy to (G parily:
Gy = Cexp(inly), where the U/; are the isospin-like generators of SU{3); which connect
the Ko and Kg. The final state in ete™ — Ky Kg has positive Gy parity, while the
intermediate photon has negative Gy parity. Gu parity is conserved if SU(3}s 1s exact,
and ete” — K Ks then vanishes.
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Perhaps the most significant are the decays v, ¥’ — pp,nn,.... The predicted
angular distribution 14 cos?f is consistent with published data’® This is im-
portant evidence favoring a vector gluon, since scalar- or tensor-gluon theories
would predict a distribution of sin?8 4 O(as). Dimensional-counting rules can be
checked by comparing the ¥ and ' rates into pp, normalized by the total rates
into light-quark hadrons so as to remove dependence upon the heavy-quark wave
functions. Theory predicts that the ratio of branching fractions for the pp decays
of the ¥ and ¥’ is

B(!b'ﬁpz?)wQ“ My )
By —pp) T A\M, ]

where @+~ 15 the ratio of branching fractions into ete™:

= 0.135 £+ 0.023

o B et
ete” = B(J/y — ete)

Existing data suggest a ratio (My /M,)}* with n = 6 £ 3, In good agreement
with QCD. One can also use the data for ¥ — pp, AA,=Z, ..., to estimate the
relative magnitudes of the quark distribution amplitudes for baryons. Correcting
for phase space, one obtains ¢, ~ 1.04(13) &, ~ 0.82(5) ¢= ~ 1.08(8) ¢x ~
1.14(5) ¢ by assuming similar functional dependence on ihe quark momentum
fractions r; for each case. _

As is well known, the decay ¢ — 777~ must be eleciromagnetic if G-parity is
conserved by the strong interactions. To leading order in oy, the decay is through
a virtual photon {(i.e. ¥y — v* — n¥x7) and the rate is determined by the pion’s
electromagnetic form factor:

T(yp - =ata™) _
T($p — utp=)
where s = (3.1GeV)?. Taking Fr(s) > (1 ~s/m§)‘1 givesarate ['(¢p — ntn7) ~

0.0011 I'(¢p — p*p~), which compares well with the measured ratio 0.0015(7).
This indicates that there is indeed little asymmetry in the pion’s wave function.

SEIPIL + Olag(s)]

The same analysis applied to ¥ — K+ K~ suggests thai the kaon’s wave
function is nearly symmetric about * = 1. The ratio ['(¢p — K+ K~)/T(v —
7¥77) is 2 4 1, which agrees with the ratio (fi/fr)! ~ 2 expected if 7 and K
have similar quark distribution amplitudes. This conclusion is further supported
by measurements of ¥ —+ K Kg which vanishes completely if the K distribution
amplitudes are symmetric; experimentally the limit is I'(yp — K Ks)/T{(% —

ope— 1
K*K )y}
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6.2. THE =x-p PUZZLE

We have emphasized that a central prediction of perturbative QCI for exclu-
sive processes is hadron helicity conservation: to leading order m 1/, the total
helicity of hadrons in the initial state must equal the total helicity of hiadvons
the final state. This selection rule is independent of any photon or lepton spin ap-
pearing in the process. The result follows from (a) neglecting quark mass terns.
(b} the vector coupling of gauge particles, and (¢} the dominance of valence Fock
states with zero angular momentum projection.ﬁ The result is true 1 each order
of perturbation theory i as.

" Hadron helicity conservation appears relevant to a puzzling anomaly 1 the
exclusive decays J/o> and ¢ — pr. K*K and possibly other Vector-Pscudoscalar
(VP) combinations. One expects the J/y and ¢’ mesons to decay to hadrons
via three gluons or, occasionally. via a single direct photon. In cither case the
decay procecds via |¥(0)]%, where ¥(0) is the wave function at the origin in the
nonrelativistic quark model for ¢. Thus it is reasonable to expect on the basis of
perturbative QCD thal for any final hadronic state 2 that the branching fractions
.

scale like the branching fractions mmto ¢7e

B — i)

Qh = B(J/{;’" ., h] = Q(*r‘

Usually this is true. as is well documented in Ref. 71 for ppr", 2772z 7=",
7tr 7w, and 373727 hadronic channels. The startling exceptions occur for px
and KR where the present experimental limits ~ are Qpr < 0.0063 and Q.. 7<
0.0027.

Perturbative QCD quark helicity conservation implies6 Qor = [Blv' —
pr}/ B(J /v — pm)] < Q€+e—lﬁf‘]’{£}/.‘i;{¢_ﬂ]6 This result includes a form facror sup-
pression proportional to [.MJN/.M{,:]‘; and an additional two powers of the mass
ratio due to helicity flip. However. this suppression s not nearly large enough to

i
account for the data,.# '

From the standpoint of perturbative QUD, the observed suppression of ¢ —

. L ‘ 75 ,
V P is to be expected; it is the J/v that is anomalous. ” The ¥ obeys the pertur-
bative QCD theorem that total hadron helicity i1s conserved m high-momentum

#17 There is the possibility is the these form factors are dominated by end-point contributions
for which quark masses may be less relevant. Such terms are expected to be strongly
suppressed by quickly falling Sudakov form factors. This could also explain the rapd
falloff of the v+ — @ — p form factor with increasing M
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transfer exclusive processes. The general validity of the QCD helicity conservation
theorem at charmonium energies is of course open to question. An alternative
model " based on nonperturbative exponential veriex functions, has recently been
proposed to account for the anomalous exclusive decays of the J/¢. However,
helicity conservation has received important confirmation in J/¢¥ — pp where the
angular distribution is known experimentally to follow {1 + cos? 8] rather than
sin® @ for helicity flip, so the decays J/¢ — 7p, and K K seem truly exceptional.

The helicity conservation theorem follows from the assumption of short-range
point-like interactions among the constituents in a hard subprocess. One way in
which the theorem might fail for J/¢ — gluons — 7 p is if the intermediate gluons
resonate to form a gluonium state (. If such a state exists, has a mass near that
of the J/+, and is relatively stable, then the subprocess for J/¢p — #p occurs
over large distances and the helicity conservation theorem need no longer apply.
This would also explain why the J/4 decays into 7p and not the 9.

Tuan et al'° have thus proposed, following Hou and Soni,ﬁ that the en-
hancement of J/y — K*K and J/i — pr decay modes is caused by a quan-
tum mechanical mixing of the J/4 with a JP€ = 17~ vector gluonium state O
which causes the breakdown of the QCD helicity theorem. The decay width for
J1 — pr{K*K) via the sequence J/i» — O — pr{K*K) must be substan-
tially larger than the decay width for the (non-pole) continuum process J/¢ — 3
gluons — pr(K*K). In the other channels (such as pp, ppr®, 227~ x% etc.),
the branching ratios of the O must be so small that the continuum contribution
governed by the QCD theorem dominates over that of the O pole. For the case of
the ¥’ the contribution of the O pole must always be inappreciable in comparison
with the continuum process where the QCD theorem holds. The experimental
limits on Qpr and @ k- are now substantially more stringent than when Hou
and Soni made their estimates of Mo, Fo_.,r and I'yy_ -7 in 1982,

A gluonium state of this type was first postulated by Freund and Nambu '
based on OZI dynamics soon after the discovery of the J/¥ and ¢’ mesons. In
fact, Freund and Nambu predicted that the O would decay copiously precisely
into pm and K*I with severe suppression of decays into other modes like ete™
as required for the solution of the puzzle.

Branching fractions for final states A which can proceed only through the
intermediate gluonium state have the ratio:

(Mg — Mo)? + § T
(Mg — Mo)? + ¢ T

Qr = Qete-
It 1s assumed that the coupling of the J/¢ and ¥’ to the gluonium state scales
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as the ete™ coupling. The value of @, is small if the O is close in mass to the
J /. Thus one requires (M ;4 ~ Mo)? +% I'H $26Q GeV?. The experimental

limit for (@ ;.. then implies [(MJN, — Mo + % f%]lﬁ < 80 MeV. This imphies
| My, — Mo |< 80 MeV and I'p < 160 MeV. Typical allowed values are Mp =
3.0 GeV, T'p = 140 MeV or Mp = 3.15 GeV, 'o = 140 MeV. Notice that the
gluonium state could be either lighter or heavier than the J/v. The branching
ratio of the O into a given channel must exceed that of the J/i.

It is not necessarily obvious that a JF¢ = 17~ gluonium state with these
parameters would necessarily have been found in experiments to date. One must
remember that though O — pr and © — K*K arc important modes of decay, at
a mass of order 3.1 GeV many other modes (albeit less important) are available.
Hence, a total width T'p = 100 to 150 MeV is quite conceivable. Because of
the proximity of Mo to M, the most important signatures for an O search via
exclusive modes J/ — K*Kh, J/ — prh; h = 77, 0,7, are no longer available
by phase-space considerations. However, the search could still be carried out
using ' — K*Kh, ¢ — prh; with & = 77, and 7. Another way to search for
O in particular, and the three-gluon bound states in general, is via the nclusive
reaction ¢’ — {x7w)+ X, where the xx pair is an isosinglet. The three-gluon
bound states such as (J should show up as peaks in the missing mass {i.e. mass
of X'} distribution.

The most direct way to search for the O is to scan Pp or ete™ annihilation
at /5 within ~ 100 MeV of the J/y, triggering on vector/pseudoscalar decays
such as mp or KK*.

The fact that the pr and K*K channels are strongly suppressed in 1%’ decays
but not in J/3 decays clearly implies dynamics beyond the standard charmonium
analysis. The hypothesis of a three-gluon state O with mass within = 100 MeV
of the J/i mass provides a natural, perhaps even compelling, explanation of this
anomaly. If this deseription is correct, then the ¢’ and J/ hadronic decays not
only confirm hadron helicity conservation {at the %' momentum scalej, but they
also provide a signal for bound gluonic matter in QCD.

6.3. ForM FACTOR ZEROS IN QCD

The exclusive pair production of heavy hadrons |Q1Q,), |@1Q2@Q3) consisting
of higher generation quarks (@}; = 1, b, ¢, and possibly s} can be reliably predicted
within the framework of perturbative QCD, since the required wavefunction input
is essentially determined from nonrelativistic considerations. ® The results can be
applied to e¥e™ annihilation, vy annihilation, and W and Z decay into higher
generation pairs. The normalization, angular dependence and helicity structure
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can be predicted away from threshold, allowing a detailed study of the basic
elements of heavy quark hadronization.

A particularly striking feature of the QCI) predictions is the existence of a
zero in the form factor and eTe™ annihilation cross section for zero-helicity hadron
pair production close to the specific timelike value ¢°J4M¥ = my /2m, where m),
and mp are the heavier and lighter quark masses, respectivelv. This zero reflects
the destructive inierference between the spin-dependent and spin-independent
{Coulomb cxchange} couplings of the gluon in QCD. In fact, all pseudoscalar
meson form factors are predicted 10 QCD {o reverse sign from spacelike to timelike
asymptotic momentum transfer because of ther essentially monopole form. For
my, > 2my the form factor zero occurs in the physical region.

To leading order in 1/¢°. the production amplitude for hadron pair production

15 given by the factonzed form
M= [lde] [[1d0)) ol 7) by 0,,7) Tt O

where [da;] = 8 (307, vx — 1} T1i—, dzi and n = 2,3 is the number of quarks
in the valence Fock state. The scale ¢ is set fron higher order calculations. but
it reflects the minimum momentum transfer in the process. The main dynamical
dependence of the form factor 1s controlled by the hard scattering amphiude T'y
which is computed by replacing each hadron by collinear constituents P/ = 2, Pj}
Since the collinear divergences are summed mn ¢y, Ty can be systematically
computed as a perturbation expansion in a,(g°).

The distribution amplitude required for heavy hadron production ¢y{ri. ¢°)
15 computed as an integral of the valence light-cone Fock wavefunction up to
the scale 7. For the case of heavy quark bound states. one can assume that
the constituents are sufficiently non-relativistic that glion emission. higher lock
states, and retardation of the effective potential can be neglected. The analvsis
of Section 2 is thus relevant. The quark distnibutions are then controlled by a

simple nonrelativistic wavefunction, which can he taken 1n the model form:

. C
bar(ai, k1) = - P 3
222 hare ki +m B ko 4 ms
Tdy | vig Ty o

This form 1s chosen since it coincides with the usual Schrédinger- Coulomly wave-

function 1 the nonrelativistic limit for hydrogenic atoms and has the correct
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large momentum behavior induced froin the spin- independent gluon couplings.

The wavefunction is peaked at the mass ratio x; = m,; /My

T My M7,

where (.(*’) is evaluated in the rest frame. Normalizing the wavelunction to unit
probability gives
o oy g s
¢ =128x ((v“))b*{‘m:(ml + ma)
where <'£.‘2) 15 the mean square relative velocity and m, = mymy/(my + o) s

the reduced mass. The corresponding distribution amplitude is

- 1

167> [.?'1;1'3;11’}'; — J‘-_:mf — .rnni]

olry) =

1H4

1 A;J;.J 6 Ty
= £ Jyp - —————
N M}f’f I wy + e

It is easy to see from the structure of Ty for ete™ — MAJ that the spectator
quark pair is produced with momentum transfer squared ¢°zsys = 4mZ. Thus
heavy hadron pair production is dominated by diagrams in which the primary
coupling of the virtual photon is to the heavier quark pair. The perturbative
predictions are thus expected 1o be accurate even near threshold to leading ovder
in a-s(ﬂimf) where my is the mass ol highter quark 1n the meson.

The leading order ete™ production helicity amplitudes for higher generation
meson (A = 0.41) and baryon (A = £1/2,£3/2) pairs are computed in Ref. 79
as a function of ¢° and the quark masses. The analysis is simplified by using the
peaked form of the distribution amphitude, Eq. (6). In the case of meson pans

the (unpolarized) e*e™ annihilation cross section has the general form

#18 th(q?) 1s thie form factor for the production of two mesons which have both spin and
helicity (Z-component of spin) as A and A respectively. There are two Lorentz and gange
invarisit form factors of vecior patr producion. However, oue of them turns out ta Ly
the same as the form factor of pseudoscalar plus vector production maultiphed by My
Therefore the differential cross section {or the production of two mesons with spin U or |
can be represented m terms of three independent form factors.
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do 3 | S L
dr a0 (eTe™ — Ay MA) = 30 tem ity 5;3' sin” ¢
3.7 1 47 s " TN
X | Fo0lg" )" + -5 (3 — 257 4+ 33 F1a(¢H))

= 4(1 4+ 8%) Re (F11(¢")Fg1 (0”0 + A Foa ()

332 2
+ “(T——M (1 + cos® )[Fo,l(qz)lu

A7 :
4 {H‘ The production

where A and B reflect the Coulomb-like and transverse gluon couplings, respec-
tively. The results to leading order in ag are given in Ref. 79. In general A and
B have a slow logarithmic dependence due to the ¢*-evolution of the distribution
amplitudes. The form factor zero for the case of pseudoscalar pair production
reflects the numerator structure of the Ty amplitude.

. = m% i me 2
Numerator ~ ¢y { §~ — 5 - ~—— —
d4Msz royy 4ME a5y
H : H ¥

For the peaked wavefunction,

PR | : m . ™2 m3

M2 2 1 2 2 3

Fy X — 5 € - +ealqg =
0.0t (7°)? { : (q 2???-3) } ('j 2?711) m]}

If m; 1s much greater than my then the ¢; is dominant and changes sign al

q2/4114}‘} = m/2my. The contribution of the e¢; term and higher order contribu-
~ tions are small and nearly constant in the region where the ¢; term changes sign:
such contributions can displace slightly but not remove the form factor zero.
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These results also hold in quantuin electrodynamics; e.g. pair production ol
muonium {2 — e) atoms in eje. annihilation. Gauge theory predicts a zevo at
G =m,/2m,.

These explicit resulis for form factors also show that the onset of the leading,
power-law scaling of a form factor is controlled by the ratio of the A and B terms:
i.e. when the transverse contributions exceed the Coulomb mass-dominated con-
tributions. The Coulommb contribution to the form factor can also be compnted
directly from the convolution of the initial and final wavelunctions. Thus. con-
trary to the claim of Ref. 24 there are no exira factors of a(g¢”) which suppress
the “hard™ versus nonperturbative contributions.

The form factors for the heavy hadrons are normalized by the constraint that
the Coulomb contribution to the form factor equals the total hadronic charge at
¢° = 0. Further, by the correspondence principle, the form factor should agree
with the standard non-relativistic calculation at small momentum transfer. All
of these constraints arc satished by the form

_ 4 Ag2 N2 2 9,
Fiftet) = & s (‘”i’ l- i T2 ) 4o
! (¢ +177)° \ my My

At large ¢° the form factor can also be written as

\ 1670, f} A fat |
F(‘(")]_O} = ¢ 9 M (mg) + {1 & 2}. ﬁ: dro(x, Q)

where fay = (643 /%M ;)1 is the meson decay constant. Detailed results for F'F
and B.B. production are give in Ref. 79.

At low relative velocity of the hadron pair one also expects resonance contri-
butions to the form factors. For these heavy systems such resonances conld be
related Lo ¢ggq bound states. From Watson's theorem, one expects any resouauce
structure to introduce a final-state phase factor, but not desiroy the zcro of the
underlying QCD prediction.

Analogous calculations of the barvon form factor. retaining the constituen!
mass structure have also been done. The numerator structure for spin 1/2 baryons

has the forin
A+ Bg +cgt .

Thus it is possible to have two form factor zeros; e.g. at spacelike and timelike
X .
values of ¢~.
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Although the measurements are difficult and require large luminosity. the
observation of the striking zero structure predicted by QCD would provide a
uniqgue test of the theory and its applicability to exclusive processes. The onset
of leading power behavior is controlled simply by the mass parameters of the

theory.

7. EXCLUSIVE 4+ REACTIONS

Two-photon reactions have a number of unique features which are espeaally

. . . . ‘ 80
important for testing QCD. especially in exclusive channels:

I. Any even charge conjugation hadronic state can be created in the annihi-
lation of two photons—an initial state of minimum complexity. DBecause
v7 annihilation 1s complete, there are no spectator hadrons to confuse res-
onance analyses. Thus, one has a cleau environment for identi{ying the
exotic color-singlet even (" composites of quarks and gluons [¢g >. |gg >.
lggg >, lgGg >. [¢qqq >.... which are expected to be present in the few
GeV mass range. (Because of mixing, the actual mass eigenstates of GC'D
may be complicated admixtures of the various Fock components.)

2. The mass and polarization of each of the incident virtual photons can be
continuously varied, allowing highly detailed tests of theory. Because a
spin-one state cannot couple to two on-shell photons, a J = 1 resonance
can be uniquely identified by the onset of its production with increasing
photon mass "

3. Two-photon physics plays an espeaally nnportant role in probing dynam-
1ical mechamsms. In the low momentum transfer domain, v reactions
such as the total annihilation cross section and cxclusive vector meson pair
production can give important insights into the nature of diffractive reac-
tions in QUD. Photons in QCD couple directly to the quark currents at
any resolution scale (sce Fig. 28). Predictions for high momentun; trans-
fer vy reactions, including the photon structure functions, F;(.’;'.QB) and
FZ(E,QQ), high pr jet production, and exclusive channels are thus much
more specific than corvesponding hadron-induced reactions. The poiuthke
coupling of the annihilating photons leads to a host of special features whiclh
differ markedly with predictions based on vector meson dominance models,

4. Exclusive vy processes provide a window for viewing the wavefunctions of
hadrons in terms of their quark and gluon degrees of freedom. In the case of
~v annihilation into hadron pairs, the angular distribution of the produc-
tion cross section directly reflects the shape of the distribution amplitude
{valence wavefunction) of each hadron.
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Figure 28. Photon-photon annihilation in QCD. The photous couple directly to
one or two quark currents.

Thus far experiment has not been sufficient]y precise to measure the logaritli-
mic modification of dimensional counting rules predicted by QCD. Perturhative
QCD predictions for vy exclusive processes at high momentum tramfer and Ingh
invariant pair mass provide some of the most severe tests of the theory,” A simple.
but still very important example is the Q*-dependence of the reaction 7% — 3f
where Af is a pseudoscalar meson such as the 5. The invaniant amplitude contains
only one form factor:

. 2
f“,uu = f;;uar}“iqr["m(Q ).

It is easy 1o see {rom power counting at large (7 that the dominant amplitude
(in light-cone gange) gives F,(Q?) ~ 1/Q° and arises from diagrams (see Fig.
29) which have the minimum path carrving Q°: i.e. diagrams in which there is
only a single quark propagator between the two photons. The coefficient of 1/0-
mvolves only the two-particle ¢§ distribution amplitude ¢(z, @), which evolves
logarithmically on . Higher particle number Fock states give higher power-law
falloff contributions to the exclusive amplitude.

The TP(' /4~ data® shown in Fig. 30 are in st z‘ikino- agreemeul with the
predicted QUD power: a fit to the data gives Fy,(Q (1/Q%)" with n =
1.054+0.15. Data for the 3 from Pluto and the TPC/~y~ expem‘nents give shilar
results, consistent with scale-free behavior of the QUD quark propagator and the
point coupling to the quark current for both the real and virtual photons. 1u the
case of decp inelastic lepton scattering, the observation of Bjorken scaling tests
these properties when both photons are virtual.

The QCD po“ez law prediction, Fl,(Q%) ~ 1/Q?, is consistent with dimeu-

sional count.mg and also emerges from current algebra arguments {when botls
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Figure 20. Calculation of the v — g transition form factor 1 QCD from the

valence g§ and ¢y Fock states
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Figure 30, Companison of TPC /vy data® for the ¥ —nand 7 — i transition
form factors with the QCUD leading twist prediction of Ref. 82. The VMD predictions
are also shown. See 5. Yellin, this meeting.

photons are very \a'irtual).84 On the other hand, the 1/Q? fallofl is also expected in
vector mieson dominance models. The QCD and VDM predictions can be readily
discrimmated by studying 47" — 5. In VMI} one expects a product of {orm
factors; in QCD the falloff of the amplitude is still 1/Q% where Q° is a linear
combination of @7 and Q2. Tt is clearly very important to test this essgntienl
feature of QCD.

Exclusive two-body processes vy — HH at large s = H-'EA__ = {1 + ¢2)° and
fixed 6% provide a particularly important laboratory for testing QCD. siuce the
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large momentum-transfer behavior, helicity structure. and often even the absolnte
. . . 82,56 .

normalization can be rigorously predicted. I'he angular dependence of some

of the v — HH cross sections reflects the shape of the hadron distribution

amplitudes o4{x,. Q). The v3vsr — HH amplitude can be written as a factorized

form
1
Mo (Wyy, Oem) = /[ﬁ’yi] Oyl Q) o3(yi. Q) Toxr(w, y5 Wiy lem)

where Ty, is the hard scattering helicity amplitude. To leading order T x
a-(a‘;/ﬁ-';f )" and dofdt ~ TV, _{ - )f(é’cm] where n = 1 for micson and n = 2 {or
barvon pairs.

Lowest order predictions for pseudo-scalar and vector-meson pamrs for each
helicity amplitude are given in Ref. 82. In each case the helicities of the hadron
pairs are equal and opposite to leading order in /1%, The normalization and an-
gular dependence of the leading ovder predictions for 14 anmihilation into chiarged
meson pairs are almost model independent; i.e. they are insensitive to the precise
form of the meson distribution amplitude. If the meson distribution amplitudes

15 syinmetric in @ and {1 — ). then the saine quantity
l
ol iQ)
(1 - z)
1]

controls the x-integration for both Fr(Q~) and to high accuracy M(3y — #1t77).
Thus for charged pion pairs one obtains the relation:

ff_f (vy = 7t77) _ 4|Fels
9o (nn ) 1 —cost Oy

dr

Note that in the case of charged kaon pairs. the asymmetry of the distribution
amplitude may give a small correction to this relation.

The scaling behavior, angular behavior, and normalization of the 74 exclu-
sive pair production reactions are 1]011111\1&] predictions of QCD Recent Mark 1}
meson pair data and PEP4/PEPS data®® for separated 7z~ and N TR~ pro-
duction in the range 1.6 < W, < 3.2 GeV near 907 are in satisfactory agreeinent
with the normalization and energy dependence predicted by QCI) (see Fig. 31
In the case of 7979 production. the cos B dependence of the cross section can

be inverted to determine the r-dependence of the pion distribution amplitude.
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The wavefunction of hadrons containing light and heavy quarks such as the K.
D-meson are likely to be asymmetric due to the disparity of the quark masses. 1
a gauge theory one expects that the wavefunction 1s maximum when the quaiks
have zero relative velocity: this corresponds to z; &« m;; where mj’_ = ki + e
An explicit model for the skewing of the meson distribution amplitudes based on
QQCD sum rules 1s given by Benyayoun and Chcrnyal{.86 These authors also apply
their model to two-photon exclusive processes such as 4y — ATA ™ and obtain
some modification compared to the strictly symmetric distribution amplitudes.
If the same conventions are used to label the guark lines, the calculations of
Benvayoun and Chernyak are in complete agreement with those of Ref. 32

The one-loop corrections to the hard scattering ampbtude for meson pairs
have been calculated by Nizie? The QCD predictions {or mesons containing
adinixtures of the lgg} Fock state is given by Atkinson, Sucher. and Tsokos

The perturbative QU analysis has been extended to barvon-pair production
m comprehensive analyses by Farrar ¢f al®*® and by Gunion et a1 Predic-
tions are given for the “sideways™ Compton process 99 — pp. AA pair produic-
tion, and the entire decuplet set of baryon pair states. The arduous calculation
of 280 vy — ¢qqggq diagrams in Ty required for calculating v7 — BB is greatly
simplified by using two-component spinor techniques, The doubly cliarged A paiv
is predicted to have a fairly small normalization. Experimentally such resonance
pairs may be difficult to identify under the continuum background.

The normalization and angular distnibution of the QCD predictions for proton-
antiproton production shown in Fig. 32 depend in detail on the forin of the
nucleon distribution amplitude. and thus provide severe tests of the model form
derived by Chernvak, Ogloblin, and Zhitnitsk}-’49 from QCD sun rules.

An important check of the QCD predictions can be obtamed by combining
data from 54 — pp and the annilnlation reaction. pp — 5, with large angle
Compton scattenng vp — vp. The avallable data® for large angle Compton
scattering (sec Fig. 33). for § GeV? < s < 10 Gel'? are consistent with the
dimensional counting scaling prediction, s8do/dt = f(0.,,). In general. compar-
isons between channels related by crossing of the Mandelstam variables place
severe constraint on the angular dependence and analytic form of the underlving
QCD exclusive amplhitude. Furthermore in pp colhsions one can study timelke
photon production into ete™ and examine the virtual photon mass dependence
of the Compton amplitude. Predictions for the ¢ dependence of the pp — ~7°

. . . . . 306
amplitude can be obtained by crossing the results of Gunion and Millers,

The region of applicability of the leading power-law predictions for 7+ -

F
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Figure 31. Comparison of 94 — 7ta~ and 97 — KT A~ meson pair production

data with the parameter-free perturbative QCD prediction of Ref 82, The theory

predicts the normalization and scaling of the cross sections. The data are from the
. .85

TP /+~ collaboration.

pp requires that one be beyond resonance or threshold effects. It presumably
is set by the scale where QG {Q7) is roughly constant. re. Q7 > 3 GeV-
Present measurements may thus be too close to threshold for meaningful tesis, |
It should be noted that unlike the case for charged meson pair production. the
QCD predictions for baryons are seusitive to the form of the running coupling
constant and the endpoint behavior of the wavelunctions.

The QCD predictions for vy — HH can be extended to the case of one
or two virtual photons, for measurements in which oue or both electrons are
tagged. Because of the direct coupling of the photons to the quarks, the Q5 aud
Qr:i dependence of the y7 — H_H amplitude for transversely polarized photons is

minimal at 1~ large and fixed 0y, since the off-shell quark and gluon propagators
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in 1y already transfer hard momenta; 1.e. the 24 coupling is eflectively local {or
Qf Q:i < ;)%—. The 1*+* — BB and MM amplitudes for off-shell photons

. .86
have been calculated by Millers and Gunion.

In each case, the predictions show
strong sensitivity to the form of the respective baryvon and meson distribution
amplitudes.

We also note that photou-photon collisions provide a way to measure the
running coupling constant m an exclusive channel, independent of the lorm ol
hadronic distribution a.mp]itudcs.&2 The photon-meson transition form factors
F.}-_‘-U(QE), M = 7% 3% f. etc., are measurable in tagged eq — ¢’ reactions.
QCD predicts

0dQ?) = = A
T dr QP (QY)
where to leading order the pion distnibution amplitude enters both numeraior
and denominator in the same manner.

The complete calculations of the tree-graph structure (see Figs. 31. 33, 36)
of both vy — MM and v+ — BB amplitudes has now beeu completed. One
can usc crossing to compute Ty for pp — 4 to leading order in ay(p7) fromn the
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calculations reported by Farrar, Maina and Ner1™ and Gunion and Millers. b

amples of the predicted angular distributions are shown i Figs. 37 and 3s.

N
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L \\ I-y
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Figure 34.  Application of QCD to two-photon production of mesou pairs.bl"

=
= =R =
=5

Figure 35. Next-to-leading perturbative contribution to Ty for the process v+ —
=5 - . .. . &8
A AT The calculation has been done by Nizie.

As discussed in Section 2, a model form for the proton distribution amplhtude
has been proposedby Chernyak and Zhilnitsk}-‘]s based on QD suwm rules which
leads to normalization and sign consistent with the measured proton form factor
(see Fig. 21}. The ('Z sum rule analysis has been confirmed and extended Ly
King and Sa.{;hrajda.an The CZ proton distribution amplitude yields predictions
for vv — pp in rough agreement with the experimental normalization, although

the production energy is too low for a clear test. It should be noted that unlike
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Figure 36. Leading diagrams for 4 + v — P + p calculated 1 Ref. 56.

. . &% .. . -
meson palr production  the QUD predictions for baryons are highly sensitive
to the form of the running coupling constant and the endpoint behavior of the
wavefunctions.

It is possible that data from pp collisions at energies up to 10 GeV could
greatly clarify the question of whether the perturbative QCD predictions are reli-
able at moderate momentum transfer. As emphasized in Section 4. an importan
check of the QCD precdictions can be obtained by combming data {rom pp — =+,
7 — pp with large angle Compton scattering yp — 7p. This comparizon checks
in detail the angular dependence and crossing behavior expected [romn the the-
ory. Furthermore, in pp collisions one can even study time-like photon production
into et¢~ and examine the virtual photon mass dependence of the Compton am-
plitude. Predictions for the ¢° dependeuce of the pp — 17" amplitude can be

. . . . 56.61
obtained by crossing the results of Gunion and Millers.
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Figure 37. QCD prediction for the scaling and angular distribution for  + 4 —
F+p calculated by Farrar el al’® The dashed-dot curve corresponds to 1A% /s = 0.0016
and 2 maxunuw running couphng constant 7% = 0.8, The solid curve corresponds

£

to 4A%/s = 0.016 and a maxinmum running coupling constant a7%% = 0.5, The dashed
curve corresponds 1o a fixed o, = 0.3. The results are very sensitive to the endpoint
behavior of the proton distribution amplitude. The C7 form is assunwed.

8. QCD PROCESSES IN NUCLEI

The least-understood process 1 QUD is hadronmization - the mechaimam
which converts quark and gluon quanta to color-singlet integrally-charged hadrons.
One way to study hadronization is to perturb the environment by introducing a
nuclear medium surrounding the hard-scattering short distance reaction. This ix
obviously impractical in the theoretically simplest processes -~ e¥e™ or 77 auni-
hilation. Iowever, for large momentum transfer reactions occurring in a nuclear

target. such as deep inelastic lepton scattering or massive lepton palr production.
Bet, p ¢ g P I i
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and dot-dashed curves correspond to one photon space-like. with @;/s = 0.1

oo e )
CZ distribution amplitudes are

the nuclear medium provides a nontrivial perturbation to jet evolution throngh
the influence of initial- and/or final-state interactions. In the case of large momen-
tum transfer quasiexclusive reactions, one can use a nuclear target to {ilter and
influence the evolution and structure of the hadron wavefunctions themselves.
The physics of such nuclear reactions 1s surprisingly interesting and subtle —
mvolving concepts and novel effects quite orthogonal to usual expectations.

The pucleus thus plays two complimentary roles in guantum chromodynaunics:

I. A nuclear target can be used as a control medium or background field 1o
modify or probe quark and gluon subprocesses. Some novel examples are
color transparvency. the predicied transparency of the nucleus to hadrons
participating in high-momentum transfer exclusive reactions, and forination
zone phenomena, the absence of hard, collinear, target-induced radiation by
a quark or gluon interacting in a high-momentum transfer inclusive reaction
if its energy is large compared to a scale proportional to the length of the
target. (Soft radiation and elastic mnitial-state interactions in the nucleus
still occur.) Coalescence with co-moving 51')(3(.1&11.01'5;90 has been discussed ax
a mechanism which can lead to increased open charm hadroproduction. but
which also suppresses forward charmontum production (relative to lepton
pairs} in heavy ion collisions” ' There are also interesting specaial features of

nuclear diffractive amplitudes — high energy hadronic or electromagnetic
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reactions which leave the entire nucleus intact and give nonadditive contn-
butions to the nuclear structure function at low z g;. The Q? dependence ol
diffractive v*p — p%p is found to have a slope in the {—dependence exp
where b = b{(Q?)} is of order 1 ~ 2 GeV =2, much smaller than expected ou
the basis of vector meson dominance and ¢—channel factorization.

o

Conversely, the nucleus can be studied as a QCD structure. At short dis-
tances nuclear wavefunctions and nuclear interactions necessarily mvolve
hidden color, degrees of freedom orthogonal to the chaunels described by
the usual nucleon or isobar degrees of freedom. At asymiptotic momentum
transfer, the deuteron form factor and distribution amplitude are rigor-
ously calculable. One can also derive new types of testable scalmg laws for

exclusive nuciear amplitudes 1 terms of the reduced amphtude formalism,
8.1. EXCLUSIVE NUCLEAR REACTIONS — REDUCED AMPLITUDES

An ultimate goal of QCD phenomenoclogy is to describe the nuclear foree and
the structure of nuclei in terms of quark and gluon degrees of freedom. Explicit
signals of QCD n nuclei have been elusive, in part because of the fact that an
effective Lagrangian containing meson and nucleon degrees of freedom must b
in some sense equivalent te QCD if one s limited to low-energy probes. On the
other hand, an eflective local field theory of nucleon and meson fields cannot
correctly describe the observed off-shell falloff of form factors. vertex amplhitudes.
Z-graph diagrains, etc. because hadron compositeness is not taken into account.

We have already mentioned the prediction Fy(Q*) ~ 1/Q'® which comes from
simple quark counting rules, as well as perturbative QCD. One cannot expect this
asymptotic prediction to become accurate until very large Q7 is reached since the
momentum transfer has to be shared by at least six constituents. However thereis
a §imple way to isolate the QUD physies due to the compositeness of the nucleus.
not the nucleons. The deuteron form factor is the probability amplitude for the
deuteron to scatter from p to p + ¢ but remain intact. Note that for vanishing
nuclear binding energy ¢4 — 0. the deutcron can be regarded as two nucleons
sharing the deuteron four-momentum {see Fig. 39). The momentum £ is imited
by the binding and can thus be neglected. To first approximation the proton and
neutron share the deuteron’s momentum equally. Since the deuteron form factor
contamns the probabihity amplitudes for the proton and neutron to scatter from

o 92,93
p/2 to p/2 + ¢/2; it is natural to define the reduced deuteron form factor

Fo(@%) ‘
T e

162

fd(Qz)_ =



The effect of nucleon compositeness is removed from the reduced forin factor.

QCD then predicts the scaling

Le, the sanme scaling law as a meson form factor. Diagrammaticallv. the ex-
tra power of 1/Q? comes from the propagator of the struck quark line. the one
propagator not contained in the nucleon form factors. Because of hadron he-
licity conservation, the prediction is for the leading helicity-conserving deuteron
form factor (A = A" = 0.) As shown in Fig. 40, this scaling is consistent with

experiment for ¢ = pr 2 1 Gev.™

e ef

i
d d p+g:=p’
6-86 5446A10

Figure 39. Apphcation of the reduced amplitude formalism to the deuteron form
factor at large momentum transfer.

The distinction between the QCD and other treatments of nuclear amplitudes
is particularly clear m the reaction yd — np; ie. photodisintegration of the
deuteron at fixed center of mass angle. Using dimensional counting, the leading
power-law prediction from QCD is simply %hd — np) ~ 5‘1’, F(8cm). Again we
note that the virtual momenta are partitioned among many quarks and gluons.
so that finite mass corrections will be significant at low to medium energics.
Nevertheless. one can test the basic QCD dynamics in these reactions taking into
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account much of the finite-mass, higher-twist corrections by using the “reduced

»

amplitude” formalism > Thus the photodisintegration amplitude coutains the
probability amplitude (i.e. nucleon form factors} for the proton and neutron to
each remain intact after absorbing momentum transfers p,—1/2pg and p, —1/2py.
respectivelv (see Fig. 41). After the {form factors are removed, the remainiug
“reduced” amplitude should scale as F(0.,)/pr. The siugle inverse power ol
transversce momentum pr is the slowest conceivable 1 any theory, but 1t s the

unique power predicted by PQCD.
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Figure 40, Scaling of the devteron reduced form lactor. The data are sunimarized
m Ref 92
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Figure 41. Construction of the reduced nuclear amplitude for two-body melastic
.a
deuteron reactions.

The prediction that f(f.,) is energy dependent at high-momentum transfer
is compared with experiment in Fig. 42, It is particularly siriking to see the QUD
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prediction verified at incident photon lab energies as low as 1 GeV. A comparison
with a standard nuclear physics model with exchange currents is also shown for
comparison as the solid curve in Fig. 42(a). The fact that this prediction falls
less fast than the data suggests that meson and nucleon coinpositeness are not
taken to into account correctly. An extension of these data to other angles and
higher energy would clearly be very valuable.

An important question 1s whether the normalization of the 4d — prr ampli-
tude is correctly predicted by perturbative QCD. A recent analysis by Fujita%
shows that mass corrections to the leading QUD prediction are not significant in
the region 1y which the data show scaling. However Fupta also finds that i a
model based on simple one-gluon plus quark-interchange mechanism, normahzed
to the nucleon-nucleon scattering amphtude. gives a photo-dismtegration amph-
tude with a normalization an order of magmtude below the data. However tns
model only allows for diagramns in which the photon nsertion acts ouly on the
guark lines which couple to the exchanged gluon. It is expected that including
other diagrams in which the photon couples to the current of the other four quarks

will inerease the ploto-disintegration amplitude by a large factor.
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Figure 42. Comparison of deuteron photodisintegration data with the scaling
prediction which requires f*(f...} to be at most logarithmically dependent on energy
al large momentum transfer. The data in (a} are from the recent experiment of Ref, 95,
The nuclear physics prediction shown mn (a) is from Ref. 96. The data in (b) are from
Ref. 97. '
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The derivation of the evolution equation for the deuteron and other multi-
quark states is given in Refs. 99 and 93. In the case of the deuteron, the evolution
equation couples five different color singlet states composed of the six quarks.
The leading anomalous dimension for the denteron distribution amplitude and
the helicity-conserving deuteron form factor at asymptotic Q% is given in Ref. 99.

There arc a number of related tests of QCD and reduced amplitudes which
require 7 beams” such as od — yn and pd — 7 p in the fixed O, region.
These reactions are particularly interesting tests of QCD in nuclei. Dimensional
counting rules predict the asymptotic behavior ‘fi—f {pd — 77 p) ~ Gs})—ﬁ— HUS
since there are 14 initial and final quanta involved. Again one notes that the
pd — 77 p amplitude contains a factor representing the probabihity amplitude (i.c.
form factor) for the proton to remain intact after absorbing momentum transfer
squared 1 = (p — 1/2pg)? and the NN time-like form factor at 5 = (B + 1/2p)°.
Thus Mgzq_z—p ~ Fin(l) Fin{8) M,, where M, has the same QCD scaling
properties as quark meson scattering. One thus predicts

do

@ (Pd—n7p)  f{Q)
FR)FPR(8)  ph

The reduced amphtude scaling for vd — pn at large angles and py 2 1 GeV
{see Fig. 12). One thus expects similar precocious scaling behavior to hold {or
pd — 77 p and other pd exclusive reduced amplitudes.  Recent analvses by
Kondratyuk and Sapozhni]\'o\'m(J show that standard nuclear physics wavefune-
tions and interactions cannoi explain the magnitude of the data for two-hody

antl-proton anmhilation reactions such as pd — 77 p.

8.2, CoLoR TRANSPARENCY

A striking feature of the QCD description of exclusive processes is “color
transparency:” The only part of the hadronie wavefunction that scatters at large
momentum transfer 1s its valence Fock state where the quarks are at small rela-
tive impact separation. Such a fluctuation has a small color-dipole moment and
thus has negligible interactions with other hadrons. Since such a state stays small
over a distance proportional to 1ts energy, this implies that quasi-elastic hadroi-
nucleon scattering al large momentum transfer as illustrated in Fig. 43 can
occur additively on all of the nucleons in a nucleus with minimal atienuation
due to elastic or inelastic final state interactions in the nucleus, ife. the nu-

cleus becomes “transparent.” By contrast. in conventional Glauber scattering.
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Figure 43.  Quasi-clastic pp scattering inside a nuclear target. Normally one
expects such processes to be attennated by elastic and inelastic interactions of the
incident proton and the final state interaction of the scattered proton. Perturbative
QCD predicts minimal attenuation; 1.e. “color transparency,” at large momentum
transfer.

one predicts strong, nearly energy-independent initial and final state attcinua-
tion. A detailed discussion of the time and energy scales required for the validity
of the PQCD prediction s given in by Farrar ef al. and Mueller in Ref. 7.

A recent experiment101 at BNL measuring quasi-elastic pp — pp scatter-
ing at O, = 90° in various nuclei appears to confirm the color transparency
prediction—at least for pp up to 10 GeV /e (see Fig. 44). Descriptions of elastic
scattering which involve soft hadronic wavefunctions cannot account for the data.
However, at higher energies, py; ~ 12 GeV/c, normal attenuation is observed in
the BNL experiment. This is the same kinematical region Foy ~ 5 GeV where

. - . 102 . .
the large spin correlation in Ay y are observed. ~ Both features may be signaling
: : : . 103

new s-channel physics associated with the onset of charmed hadron production

or interference with Landshoff pinch singularity diaugra,ms.43 We will discuss these
possible solutions in Section 9. Clearly, much more testing of the color trans-
parency phenomena is required, particularly m quasi-elastic lepton-proton scat-
tering, Compton scattering, antiproton-proton scattering, etc. The cleanest test
of the PQCD prediction is to check for mimimal attenuation in large momentum
transfer lepton-proton scattering in nuclei since there are no complications {rom
pinch singularities or resonance interference effects.

In Section 5.4 we emphasized the fact that soft initial-state interactions Ip —
¢ are suppressed at high lepton pair mass. This is a remarkable consequence of
gauge theory and is quite contrary to normal treatments of initial interactions
based on Glauber theory. This novel effect can be studied in quasielastic pA —
{¢ (A — 1) reaction. in which there are no extra hadrons produced and the
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near 90° on Aluminum. ® Conventional theory predicts that T should be small and

roughly constant in energy. Perturbative QCD." predicts a monotonic fise (o 7 = 1.

produced leptons are coplanar with the beam. {The nucleus (A — 1) can be left
excited). Since PQCD predicts the absence of imitial-state elastic and inelastic
interactions, the number of such events should be strictly additive in the number
Z of protons in the nucleus, every proton in the nucleus 1s equally available
for short-distance annihilation. In traditional Glauber theory only the surface
protons can participate because of the strong absorption of the p as it traverses

the nucleus.

The above description is the ideal result for large s. QCD predicts that
additivity is approached monotonically with increasing energy, corresponding to
two effects: a} the effective transverse size of the p wavefunction s by ~ 1/./s,
and b} the formation time for the P is sufficiently long, such that the Fock state
stays small during transit of the nucleus.

The color transparency phenomena is also important to test in purely hadronic
quasiexclusive antiproton-nuclear reactions. For large py one predicts
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dG’ +
Ty (PA - 1Tx” +(A-1)) Z;Gpm dt 2 (pp o tET)
pe

where G/ 4(y) is the probability distribution to find the proton in the nucleus
with light-cone momentum fraction y = (p® + p*)/(p% + p3), and

1 \®
) = (g—)z—) flcosOcm) -

T

d
a(pp -t

The distribution G,;4(y) can also be measured in eA — ep(A — 1) quasiexclusive
reactions. A remarkable feature of the above prediction is that there are no cor-
rections required from initial-state absorption of the p as 1t traverses the nucleus,
nor final-state interactions of the outgoing pions. Again the basic point s that
the only part of hadron wavefunctions which 1s involved in the large pr reaction is
¥r(by ~ O(1/pr)). i.e. the amplitude where all the valence quarks are at small
relative impact parameter. These configurations correspond to small color singlet
states which, because of color cancellations, have negligible hadronic interactions
in the target. Measurements of these reactions thus test a fundamental feature
of the Fock state description of large pr exclusive reactions.

Another interesting feature which can be probed in such reactions is the
behavior of G 4(y) for y well away from the Fermi distribution peak at y ~
my /M4 Fory — 1 spectator counting rules’ predict Gy} ~ (1 —y )Nl o
(1 — 4)%4~7 where N, = 3(A - 1} 15 the number of quark spectators required
o “stop” (y; — 0) as y — 1. This simple formula has been quite successful
in accounting for distributions measured in the forward fragmentation of nuclei
at the BEVALAC.'® Color transparency can alsc be studied by measuring
quasiexclusive J /¢ production by anti-protons in a nuclear target A — J/y{A—
1) where the nucleus is left in a2 ground or excited state, but extra hadrons
are not created {see Fig. 45}, The cross section involves a convolution of the
pp — J/1 subprocess cross section with the distribution Guraly) where y =
(p° + 393)/(392i + p%) 1s the boost-invariant light-cone fraction for protons in the
nucleus. This distribution can be determined from quasiexclusive lepton-nuciecn
scattering {A — {p(A — 1).

In first approximation pp — J/¥ involves ggq + gg¢ annihilation into three
charmed quarks. The transverse momentum integrations are controlled by the
charm mass scale and thus only the Fock siate of the incident antiproton which
contains three antiquarks at small impact separation can annihilate. Again it
follows that this state has a relatively small color dipole moment, and thus i
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Figure 45. Schematic representation of guasielastic charmonium production in
PA reactions.

should have a longer than usual mean-free path in nuclear matter; i.e. color
transparency. Unlike traditional expectations, QCD predicts that the Pp anni-
hilation into charmonium is not restricted to the front surface of the nucleus.
The exact nuclear dependence depends on the formation time for the physical 7
to couple to the small ggg configuration, 7p « E,. It may be possible to study
the effect of finite formation time by varying the beam energy, E,, and using
the Fermi-motion of the nucleon to stay at the J/i resonance. Since the J/4 is |
produced at nonrelativistic velocities in this low energy experiment, it is formed
inside the nucleus. The A-dependence of the quasiexclusive reaction can thus be
used to determine the J/y-nucleon cross section at low energies. For a normal
hadronie reaction A — HX, we expect Aqg ~ A3, corresponding to absorption
in the initial and final state. In the case of PA — J/¥ X one expects Aoy much
closer to A if color transparency is fully effective and o(J/¥ N} is small.

9. SPIN CORRELATIONS IN
PROTON-PROTON SCATTERING

One of the most serious challenges to quantum chromodynamics is the be-
do(j1)—do{]]
do(11)+do{11)
in large momentum transfer pp elastic scattering (see Fig. 46). At py; = 11.75

bavior of the spin-spin correlation asymmetiry Ayy = measured

GeV/c and ey, = m/2, Axn rises to ~ 60%, corresponding to four times more
probability for protons to scatter with their incident spins both normal to the
scattering plane and parallel, rather than normal and opposite.

The polarized cross section shows a striking energy and angular dependence
not expected from the slowly—c.hanging perturbative QCD predictions. However,
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Figure 46. The spin-spin correlation Anx for elastic pp scattering with beam
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and target protons polarized normal to the scattering plane.  Ayy — 60% implies
that it is four times more probable for the protons to scatter with spins parallel rather
than antiparallel.

the unpolarized data is in first approximation consistent with the fixed angle scal-
ing law 5'%o /dt(pp — pp) = f(fcuy) expected from the perturbative analysis
(see Fig. 23). The onset of new structure’” at s ~ 23 GeVZ is a sign of new
degrees of freedom in the two-baryon system. In this section, we will discuss a
possible expla,mxticmm3 for (1) the observed spin correlations, {2} the deviations
from fixed-angle scaling laws, and (3) the anomalous energy dependence of ab-
sorptive corrections to quasielastic pp scattering in nuclear targets, in terms of a
simple model based on two J = L = § = 1 broad resonances (or threshold en-
hancements) interfering with a perturbative QCD quark-interchange background
amplitude. The structures in the pp — pp amplitude may be associated with the
onset of strange and charmed thresholds. If this view is correct, large angle pp
elastic scattering would have been virtually featureless for py,p > 5 GeV/c, had it
not been for the onset of heavy flavor production. As a further illustration of the
threshold eflect, one can see the effect in Ay y due to a narrow °F3 pp resonance

at /s = 2.17 GeV (pjgp = 1.26 GeV/c) associated with the pA threshold.

. . 2 . .
The perturbative QCD analysis” of exclusive amplitudes assumes that large
momentum transfer exclusive scattering reactions are controlled by short distance
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quark-gluon subprocesses, and that corrections from quark masses and intrinsic
transverse momenta can be ignored. The main predictions are fixed-angle scaling
laws™ (with small corrections due to evolution of the distribution amplitudes, the

. . . . L - .8
running coupling constant, and pinch singularities), hadron helicity conservation,
and the novel phenomenon, “color transparency.”

As discussed in Section 8.2, a test of color transparency in large momentum
transfer quasielastic pp scattering at fcq ~ /2 has recently been carried out at

BNL using several nuclear targets (C, Al, Pb)‘lm

The attenuation at py, = 10
GeV/c in the various nuclear targets was observed to be i fact much less than
that predicted by traditional Glauber theory (see Fig. 44). This appears to

support the color transparency prediction.

The expectation from perturbative QCI} is that the transparency effect should
become even more apparent as the momentum transfer rises. Nevertheless, at
e = 12 GeV/c, normal atienuation was observed. One can explain this sur-
prising resuli if the scattering at py = 12 GeV/c (/s = 4.93 GeV), is dom-
inated by an s-channel B=2 resonance (or resonance-like structure) with mass
near 5 GeV, since unlike a hard-scattering reaction, a resonance couples to the
fully-interacting large-scale structure of the proton. If the resonance has spin
S =1, this can also explain the large spin correlation Ay y measured nearly at
the same momentum, pip = 11.75 GeV/c. Conversely, in the momentum range
Pl = 9 to 10 GeV /c one predicts that the perturbative hard-scattering ampli-
tude 1s dominant at large angles. The experimental observation of diminished
attenuation at pjp = 10 GeV/c thus provides support for the QCD description
of exclusive reactions and color transparency.

What could cause a resonance at /s = 5 GeV, more than 3 GeV beyond the
pp threshold? There are a number of possibilities: (a) a multigluonic excitation
such as |¢g¢qggggg), (b) a “hidden color” color singlet |¢qgqqq) naxcit,a’[ion,m8
or {c) a “hidden flavor” |qqqqqu§) excitation, which 1s the most interesting
possibility, since it is so predictive. As in QED, where final state interactions give
large enhancement factors for attractive channels in which Zaj/v,¢ is large, one
expects resonances or threshold enhancements in QCD in color-singlet channels
at heavy quark production thresholds since all the produced quarks have similar
velocities.~ One thus can expect resonant behavior at M* = 2.55 GeV and
M* = 5.08 GeV, corresponding to the threshold values for open strangeness:
pp — AK*tp, and open charm: pp — A.D"p, respectively. In any case, the
structure at 5 GeV is highly inelastic: its branching ratio to the proton-proton
channel is BPP ~ 1.5%.

A model for this phenomenon is given in Ref. 103 In order not to over com-
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plicate the phenomenology; the simplest Breit-Wigner parameterization of the
resonances was used. There has not been an attempt to optintize the parameters
of the model to obtain a best fit. It is possible that what 1s 1dentified a single
resonance is actually a cluster of resonances.

The background componeﬁt of the model is the perturbative QCID ampli-
tude. Although complete calculations are not yet available, many features of
the QCD predictions are understood, including the approximate s™% scaling
of the pp — pp amplitude at fixed Oy and the dominance of those ampli-

tudes that conserve hadron helicity.6 Furthermore, recent data comparing dif-
ferent exclusive two-body scattering channels from BNL*® show that guark in-
terchange a,mplitudesn0 dominate quark annihilation or gluon exchange contri-
butions. Assuming the usual symmetries, there are five independent pp helicity
amplitudes: ¢; = M{++,++), ¢2 = M{——,++), 93 = M{(+—,+-), &4 =
M{—+,+—}, ¢5 = M(++,+4~—). The helicity amplitudes for quark interchange

have a definite relationship:w

$1(PQCD) = 2¢5(PQCD) = ~204(PQCD)

= 41rCF(t)F(u)[t — ::‘f + (u o 1))’

Tt

The hadron helicity nonconserving amplitudes, ¢2{PQCD) and ¢5{PQCD) are
zero. This form is consistent with the nominal power-law dependence predicted by
perturbative QUD and also gives a good representation of the angular distribution
over a broad range of energies.111 Here F(¢) is the helicity conserving proton
form factor, taken as the standard dipole form: F(t) = (1 — t/m3)™", with
m3 = 0.71 GeV?. As shown in Ref. 40, the PQCD-quark-interchange structure
alone predicts Ayny ~ 1/3, nearly independent of energy and angle.

Because of the rapid fixed-angle s falloff of the perturbative QCD ampli-
tude, even a very weakly-coupled resonance can have a sizeable effect at large
momentum transfer. The large empirical values for Ay y suggest a resonant
pp — pp amplitude with J = L = § = 1 since this gives Ayy = 1 (in absence of
background) and a smooth angular distribution. Because of the Pauh principle,
an S = 1 di-proton resonances must have odd parity and thus odd orbital angu-
lar momentum. The the two non-zero helicity amplitudes fora J = L = § =1
resonance can be parameterized in Breit-Wigner form:

%[‘pp(s)

NE

<im

¢a(resonance) = 12n ,

di1(8em) 5
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(The 3 F; resonance amplitudes have the same form with dil}l replacing dlil‘l.)
As in the case of a narrow resonance like the Z°, the partial width into nu-
cleon pairs 1s proportional to the square of the time-like proton form factor:
TPP(s)/T = BPP|F(s)|2/{F(M*?)|?, corresponding to the formation of two pro-
tons at this invariant energy. The resonant amplitudes then die away by one
iverse power of {Feq — M) relative to the dominant PQCD amplitudes. (In
this sense, they are higher twist contributions relative to the leading twist per-
turbative QCD amplitudes.) The model is thus very simple: each pp helic-
ity amplitude ¢; is the coherent sum of PQCD plus resonance components:
¢ = $(PQCD) + X¢(resonance). Because of pinch singularities and higher-order
corrections, the hard QCD amplitudes are expected to have a nontrivial pha.s.c;43
the meodel allows for a constant phase é 1n ¢{PQCD}. Because of the ahsence
of the ¢5 helicity-flip amplitude, the model predicts zero single spin asymmetry
Apn. This 1s consistent with the large angle data at p = 11.75 Ge"v“/c.112

At low transverse momentum, pr < 1.5 GeV, the power-law fall-off of ¢(PQCD)
in s disagrees with the more slowly falling large-angle data, and one has little guid-
ance from basic theory. The main interest in this low-energy region is to illustrate
the effects of resonances and threshold eflecis on Ay . In order to keep the model
tractable, one can extend the background quark interchange and the resonance
amplitudes at low energies using the same forms as above but replacing the dipole
form factor by a phenomenological form F(t} o« e=V/28VE A kinematic factor of
V/5/2pcm is included in the background amplitude. The value B = 0.85 GeV™!
then gives a good fit to do/dt at 8.y = 7/2 for pjop < 5.5 Gc‘s\f'/c.“3 The normal-
1zations are chosen to maintain continuity of the amphiudes.

The predictions of the model and comparison with experiment are shown in
Figs. 47-52. The following parameters are chosen: € = 2.9 x 103, § = —1 for
the normalization and phase of ¢(PQCD). The mass, width and pp branching
ratio for the three resonances are M7 = 2.17 GeV, Ty = 0.04 GeV, Bf;‘” = 1
M?: = 255 GeV, I's = 1.6 GeV, B = 0.65 and M = 508 GeV, I, =
1.0 GeV, BI? = 0.0155, respectively. As shown in Figs. 47 and 48, the deviations
from the simple scaling predicted by the PQCD amplitudes are readily accounted
for by the resonance structures. The cusp which appears in Fig. 48 marks the
change in regime below pjp; = 5.5 GeV/c where PQCD becomes inapplicable. It
1s interesting to note that in this energy region normal attenuation of quasielastic
pp scattering is observed!”'  The angular distribution (normalized to the data
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at G = 7/2) is predicted to broaden relative to the steeper perturbative QCD
form, when the resonance dominates. As shown in Fig. 49 this 1s consistent with
experiment, comparing data at pip = 7.1 and 12.1 GeV/c.
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Figure 47. Prediction (solid curve) for do/dt(pp — pp) at bew = 7/2 compared
with the data of Akerlof ef al!'® The dotted line is the background PQCD prediction.
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Figure 48. Ratio of do/dt{pp — pp) at ey, = 7/2 to the PQCD prediction. The
data’™® are from Akerlof et al. {open triangles), Allaby et af (solid dots} and Coccont
et al {open square). The cusp at pigp = 5.5 GeV/c indicates the change of regime
from PQCD.

The most striking test of the model is its prediction for the spin correlation
Ann shown in Fig. 50. The rise of Ay y to =~ 60% at piop = 11.75 GeV/c is cor-
rectly reproduced by the high energy J=1 resonance interfering with ¢(PQCD).
The narrow peak which appears in the data of Fig. 50 corresponds to the onset
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Figure 49. The pp — pp angular distribution normalized at 6., = 7 /2. The data
are from the compilation given in Sivers ef ai., Ref. 32. The solid and dotied lines are
predictions for pgp = 12.1 and 7.1 GeV /¢, respectively, showing the broadening near
resonance.

of the pp — pA(1232) channel which can be interpreted as a vuuuddgg resonant
state. Because of spin-color statistics one expects in this case a higher orbital mo-
mentum state, such as a pp 3F3 resonance. The model is also consistent with the
recent high-energy data point for Ay y at pip = 18.5 GeV/c and p%- = 4.7 GeV?
(see Fig. 51}. The data show a dramatic decrease of Ay to zero or negative val-
ues. This is explained 1n the model by the destructive interference effects above
the resonance region. The same effect accounts for the depression of Axp for
Piab = 6 GeV/c shown in Fig. 50. The comparison of the angular dependence
of Ann with data at pyp = 11.75 GeV/c is shown in Fig. 52. The agreement
with the data''® for the longitudinal spin correlation Apy at the same pp is
somewhat worse.

The simple model discussed here shows that many features can be naturally
explained with only a few ingredients: a perturbative QCD background plus res-
onant amplitudes associated with rapid changes of the inelastic pp cross section.
The model provides a good description of the s and { dependence of the differ-
ential cross section, including its “oscillatory” dependem:e115 in s at fixed 8,.
and the broadening of the angular distribution near the resonances. Most -
portant, 1t gives a consistent explanation for the striking behavior of both the
spin-spin correlations and the anomalous energy dependence of the attenuation
of quasielastic pp scattering in nuclei. Ii is predicted that color transparency
should reappear at higher energies (pyp > 16 GeV/c), and also at smaller angles
(fem = 60°) at pp = 12 GeV/[c where the perturbative QCD amplitude domi-
nates. If the J=1 resonance structures in Ay y are indeed associated with heavy
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Figure 50. Apnpy as a function of prgp at fun = 7/2. The <:lat.a,]13 are from
Crosbie ef al. (solid dots), Lin ef el {open squares) and Bhatia ef al. (open triangles).
The peak at prp = 1.26 GeV/c corresponds to the pA threshold. The data are
well reproduced by the interference of the broad resonant struciures at the strange
{Pras — 2.35 GeV/c) and charm (pige = 12.8 GeV /<) thresholds, interfering with a
PQCD background. The value of Ay y from PQCD alone is 1/3.
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Figure 51. Ann at fixed p7 = (4.7 GeV/c)?. The data poin!,“3 at prap = 18.5
GeV /c is from Court et al.

quark degrees of freedom, then the model predicts inelastic pp cross sections of
the order of 1 mb and 1pb for the production of strange and charmed hadrons
near their respective thresholds '® Thus a crucial test of the heavy quark hy-
pothesis for explaining Ay y, rather than hidden color or gluonic excitations, is
the observation of significant charm hadron production at py; > 12 GeV/c.

. 43 .
Recently Ralston and Pire ~ have proposed that the oscillations of the pp elas-
tic cross section and the apparent breakdown of color transparency are associated
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Figure 52. Anp as a function of transverse momentum. The data'®® are from
Crabb et al. {open circles) and O’Fallon et al. (open squares). Diffractive contributions
should be included for p < 3 GeV?.

with the dominance of the Landshoff pinch contributions at /s ~ 5 GeV. The
oscillating behavior of do /dt is due to the energy dependence of the relative phase
between the pinch and hard-scattering contributions, Color transparency will dis-
appear whenever the pinch contributions are dominant since such contributions
could couple to wavefunctions of large transverse size. The large spin correlation
in Ay is not readily explained in the Ralston-Pire model. Clearly more data
and analysis are needed to discriminate between the pinch and resonance models.

10. CONCLUSIONS

The understanding of exclusive processes i1s a crucial challenge to QCD. The
analysis of these reactions is more complex than that of inclusive reactions since
the detailed predictions necessarily depend on the form of the hadronic wavefunc-
tions, the behavior of the running coupling constant, and analytically complex
contributions from pinch and endpoint singularities. Unlike inclusive reactions,
where the leading power contributions can be computed from an incoherent prob-
abilistic form, exclusive reactions require the understanding of the phase and spin
structure of hadronic amplitudes. These complications are also a virtue of exclu-
sive reactions, since they allow a window on basic features of the theory which are
extremely dificult to obtain 1n any other way. The perturbative QCD analysis
15 based on a factorization theorem so that only one distribution amplitude is
required to describe the interaction of a given hadron in any large momentum
transfer exclusive reaction. In some cases the prediciions for exclusive processes
in PQCD are completely rigordus in the sense that the results can be derived to
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all orders in perturbation theory. In particular the PQCD resulis for the pion
form factor, the transition form factor Fy»(Q?%), and the vy — 77 amplitudes are
theorems of QCD and are as rigorous as the predictions for Rg+.-{s}, the evolu-
tion equations for the structure functions, etc. Although the perturbative QCD
analysis 1s complex, it is hard t6 imagine that any other viable description would
be simpler. At this point there is no other theoretical approach which provides
as comprehensive a description of exclusive phenomena.

The application of perturbative QCD to exclusive processes has in fact been
quite successful. The power laws predicted for form factors and fixed angle scat-
tering amplitudes have been confirmed by experiment, ranging from the theo-
retically simplest reactions ¥*y — 75 to the most complicated reactions such as
pp — pp. The application te nuclear exclusive amplitudes such as the deuteron
form factor and yd — np have also been surprisingly successful. Taken together
with input from distribution amplitudes predicted by QCD sum rules, the sign
and magnitude of the meson form factors, the vy — #¥7~, K* K~ the Compton
amplitude yp — yp and the proton form factor are all apparent, though model
dependent, successes of the theory.

The fact that PQCD scaling laws appear to hold even at momentun transfer
as low as 1 GeV/c suggests that the QCD running coupling constant is rather
slowly changing even at momentum transfers of order 200 MeV . Barring a con-
spiracy between non-perturbative and perturbative contributions, the evidence
from exclusive reactions is that A%%D is of order 100 MelV or even smaller.
Alternatively the running coupling constant may “freeze” at the low effective
momenta characteristic of exclusive processes. Thus the analysis of exclusive
reactions provides important information on the basic parameters of QCD.

As we discussed in Section 8.2, recent BNL data for pp quasi-elastic scat-
tering i nuclei at d., = § shows that the number of eflective protons in the
nucleus rises with the momentum transfer as predicted by color transparency
at least up to ppp = 10 GeV/e. This remarkable empirical result clearly rules
out any description of exclusive reactions based on soft wavefunciions. The ob-
servation of the onset of color transparency in quasi-elastic pp ~» pp scattering
appears to be an outstanding validation of a fundamental feature of perturbative
QCD phenomenology. The tests of color transparency address directly the cen-
tral dynamical assumption of the perturbative analysis, that exclusive reactions
at high momentum transfer are controlled by Fock componenis of the hadron
wavefunction with small transverse size.

However, in direct contradiction to PQCD expectations, the BNL data at
higher momentum, py,p = 12 GeV/e, indicates normal Glauber attenuation. Be-
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cause of the importance of this and other anomalies and the challenges they pose
to the theory, we have devoted several sections of this article to these topics and
their possible resolution.

The successes of fixed-angle scaling laws could of course be illusory, perhaps
due to soft hadronic mechanisms which temporarily simulate the dimensional
counting rules at a range of intermediate momentum transfer. If such a descrip-
tion is correct, then the perturbative contribuiions become dominant only at
very large momentum transfer. Quantities such as Q>Fr(Q?) would drop from
the present plateau to the PQCD prediction, but at a high value of Q7, much
higher than the natural scales of the theory. An important question 1s whether a
soft hadronic model can also account for the normalization of the cross sections
for other exclusive processes besides form factor measurements. For example.
consider hadronic Compton amplitudes such as yp — yp or vy — 7 7. As we
have shown in Section 7, the data appear to scale in momentum transfer accord-
ing to the perturbative QCD predictions. One can consider a simple model where
the hadronic Compton amplitude is given by the product of a point-like Comp-
ton amplitude multiphed by the corresponding hadronic form factor. This model
predicts do/dt{vp — vp) =~ 5 pb/GeV? at s = 8 GeV?, B = 7/2 compared to
the experimental value of 300 pb/GeV? (see Fig. 33). The same simple model
predicts o(yy — 7tx7) ~ 0.1 nb at s = 5 GeV? compared to the experimental
value of 2 nb (see Fig. 31).

The above estimates are also characteristic of the soft-scattering models in
which the end-point large z regime dominates so that the Compton amplitude is
given by the sum of coherent point-like quark Compton amplitudes with z, o~ 1
multiplied by the electromagnetic form factor. Again one has the problem that
the normalization of data for large angle Compton scattering is one to two orders
of magnitude larger than predicted. In contrast, in the perturbative QCD de-
scription there are many more contributing coherent hard scattering amplitudes
for Compton scattering than lepton-proton scattering, so the large relative mag-
nitude of the proton Compton cross section can be accounted for. In the case
of large angle pp scattering, the large normalization of the daia relative to that
obtained by simply multiplying form factors can be understood as a consequence
of the many coherent contributions to Ty for this process. We also emphasize
that the observation of color transparency in the BNL experiment implies mini-
mal attenuation of the incident and outgoing protons and thus appears to exclude
any model in which the full size of the hadron participaies in the hard scattering
reaction.

. . 24 . .
Questions have been raised recently” on a number of quesiions concerning
the application of perturbative QCD to exclusive reactions in the momentum
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transfer range presently accessible to experiment. The issues involved are very
important for understanding the basis of virtually all perturbative QCD predic-
tions. The debate 1s not on the vahdity of the predictions but on the appropriate
range of their applicability because of possible complications such as nonperturba-
tive efiects. The questions raised highlight the importance of further experimental
tests of exclusive processes.

As we have discussed 1n this article, there are, in addition to the numer-
ous successes of the theory, a number of major conflicts beiween perturbative
QCD predictions for exclusive processes and experiment which can not be readily
blamed on higher contributions in a,(Q”). For example, the helicity selection rule
appears to be broken in mp — p%p scattering at large angles, the J/% — 7p and
J/Y — KK* decays. The strong spin correlations seen in large angle pp scatter-
ing at /s = 5 GeV are not explained by PQCD mechanisms. Color transparency
appears to fail at the same energy. Small but systematic deviations or oscillations
are observed relative to the PQCD power-law behavior. In each case, the data
seems to indicate the intrusion of soft non-perturbative QCD mechanisms such as
resonances perhaps due to gluonic or color excitations or heavy quark threshold
effects. The presence of contributions from Landshoff pinch singularities may also
be indicated.

Thus exclusive reactions still remain a challenge to theory. A crucial require-
ment for future progress is the computation of hadron light-cone wavefunctions
directly from QUD. Unfortunaiely it appears very difficult to obtain much more
than the leading moments of the distribution amplitude from either lattice gauge
theory or QCD sum rules. The discretized light-cone quantization method re-
viewed 1n Appendix Il shows promise, but so far solutions have been limited
to QCD in one space and one time dimension. The computation of hadronic
structure funciions, magnetic moments, and electroweak decay amplitudes also
require this non-perturbative input. The detailed understanding of the relative
role of perturbative and non-perturbative contributions to exclusive amplitudes
will unquestionably require a fuller understanding of the hadronic wavefunctions.

Much more theoretical work is also required to compute the hard scattering
amplitudes for experimentally accessible exclusive processes, and to understand
in detail how to integrate over the pinch and endpoint singularities, taking into
account Sudakov suppression in the non-Abelian theory. The computerized alge-
braic methods now available can be used to compute the hard-scattering quark-
gluon amplitude Ty for processes as complicated as pp — pp and the deuteron
form factor. Each Feynman diagram which contributes to Ty represents a par-
ticular overlap of the participating hadron wavefunctions. Considering the un-

certainties in the wavefunctions and the myriad number of diagrams contributing
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to pp scattering, even getting the correct order of magnitude of the large angle
cross section would be a triumph of the theory. Computations of the higher order
corrections to high momentum transfer exclusive reactions will eventually also be
needed.

More precise predictions for color transparency 1s needed, particularly ep
quasi-elastic scattering in nuclel. The analysis requires computing the detailed
parameters which control the color transparency effect due to smallness of the
participating Fock state amplitude, and by uncertainties involving the role of
formation zone physics, which controls the length of time the hadron can stay
small as 1t traverses the nucleus.

The experimental study of exclusive reactions is also in its infancy. Much
more experimental mput 1s required particularly from ep, vp, pp, and 7 nitial
states. Ratios of processes such as vy — pp and ATATT can isolate important
features of the baryon wavefunctions. The ratio of the square transition form
factor for v*y — = to the pion form factor provides a wave-function indepen-
dent determination of o4(Q?). It is important to confirmi the color transparency
phenomena, particularly in the simplest channels such as ep quasi-elastic scaticr-
ing. It is important to verify that both elastic and inelastic initial and final state
interactions are suppressed in the nucleus. Once this phenomena is validated it
can be used as a “color filter” to separate soft and hard contributions to a large -
range of exclusive reactions.

We have emphasized in this article that the correctness of the PQCD descrip-
tion of exclusive processes is by no means settled. There is now a strong challenge
to design decisive experimental and theoretical tests of the theory. If the theory
survives, the reward is high: through exclusive reactions we can explore both the
behavior of QCD and the structure of hadrons.

APPENDIX I
BARYON FORM FACTORS AND EVOLUTION EQUATIONS

The meson form factor analysis given in Section 3 is the prototype for the cal-
culation of the QCD hard scatiering contribution for the whole range of exclusive
processes at large momentum transfer. Away from possible special points in the
z; integrations a general hadronic amplitude can be written to leading order in
1/Q? as a convelution of a connected hard-scattering amplitude Ty convoluted
with the meson and baryon distribution amplitudes:

€< Q? )
dek,

dm(z,Q) = =

qu%(ﬂf,g_]_) 1
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and
[£j<@Q?

é5(zi, Q) = f (P [ggq (2, Es) -

The hard scattering amplitude Ty is computed by replacing each external
hadron line by massless valence quarks each collinear with the hadron’s momen-
4.6

tum pf' = z;p%. For example the baryon form factor at large Q? has the form

G (Q?) = ] (d2]ldy]é* (v, D) T (2,4 Q1) (2, Q)

where Ty is the 3¢ + v — 3¢’ amplitude. For the proton and neutron we have to
leading order [Cg = 2/3]

o 128niC}
TR+ M

128722
Ty =—nu "B 1, T
5o v aze T

T

where
03(33?}3622) Q’s(l - 3-'1)(1 - yI)Q:})
z3(1 — 21)2 y3(1 — y1)?
+ al2212Q7%) o ((1 — 21 )(1 — 11)Q%)
z2(1 = z1)? y2ll — 1 )?
as{z2y2Q°) as(z3y3Q%)
zox3(l — z3) yeya(l — 1)

Ty = -

and

as(1111Q%) as{z3ysQ?)
z1z3(1 — z1) y1ys{l — y3)

Ty= -

Ty corresponds to the amplitude where the photon interacts with the quarks (1)
and (2) which have helicity parallel to the nucleon helicity, and T3 corresponds
to the amplitude where the quark with opposite helicity 1s struck. The running
coupling constanis have arguments QQ corresponding to the gluon momentum
transfer of each diagram. Only the large Q? behavior is predicted by the theory;
we utilize the parameter My to represent the effect of power-law suppressed terms
from mass insertions, higher Fock states, etc.
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The Q?%-evolution of the baryon distribution amplitude can be derived from
the operator product expansion of three quark fields or from the gluon exchange
kernel, in parallel with derivation of Eq. {90). The baryon evolution equation to

. . . 6
leading order in oy, 18

1

xlzzxs{(fg Hzi, 0 )+§95¢(m., )} if ] )V (2, i) Q).
G

Here ¢ = z122236,¢ = log(logQ?/A?), Cp = (nZ —1)/2n. = 4/3, Cp = (nc +
1)/2n. = 2/3, B =11 — (2/3)n;, and V(z;,y;) is computed to leading order in
s from the single-gluon-exchange kernel [see Fig. 19(b)]:

oh % A
V(:L'”y,) = 2x;T273 Zg(yi - 1‘,)5(.1:;; - yk)yjl ( bl + Yi — 1?.)

T, Xy
2 Tj \ T+ %5

- V(yf)xi)

The infrared singularity at z; = y; is cancelled because the baryon is a color -
singlet.

The evolution equation automatically sums to leading order in a(Q?) all of
the coniributions from multiple gluon exchange which determine the tail of the
valence wavefunction and thus the @*-dependence of the distribution amplitude.
The general solution of this equation is

20 Q2 —In
(zi,Q) = 112223 ) aa (fn K‘g) $nlz:)
n=9

where the anomalous dimensions v, and the eigenfunctions 5,1(3:,') satisfy the
characteristic equation:

R (— 30*‘) Fulzi) = L 5 (dy] Viziry:) dulse)

A useful technique for obtaining the solution to the evolution equations is to
construct completely antisymmetric representations as a polynomial orthonormal
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basis for the distribution amplitude of multiguark bound states. In this way one
obtain a distinctive classification of nucleon (V) and delta (A} wave functions
and the corresponding * dependence which discriminates N and A form factors.
This technique is developed in detail in Ref. 117.

Taking into account the evolution of the baryon distribution amplitude, the

4v

nucleon magnetic form factors at large Q2, has the form

G (@) % > b (logA—i)ﬁ_Tf [1 +0 (@@ 2—2)]

where the v, are computable anomalous dimensions of the baryon three-quark
wave function at short distance and the b, are determined from the value of the
distribution amplitude ¢ y(z, Qé) at a given point Qé and the normalizationof T'y.
Asymptotically, the dominant term has the minimum anomalous dimension. The
dominant part of the form factor comes from the region of the z; integration where
each quark has a finite fraction of the light cone momentum. The integrations
over z; and y; have potential endpoint singularities. However, it is easily seen
that any anomalous contribution [e.g. from the region z2,23 ~ O(m/Q),2) ~
1 — O(m/Q)] is asymptotically suppressed at large Q@ by a Sudakov form factor
arising from the virtual correction to the gvg vertex when the quark legs are |
near-on-shell [p® ~ C?(n';,é,?)].ﬁ'19 This Sudakov suppression of the endpoint region
requires an all orders resummation of perturbative contributions, and thus the
derivation of the baryon form factors i1s nol as rigorous as for the meson form
factor, which has no such endpoint singularity.lg

One can also use PQCD to predict ratios of various baryon and isobar form
factors assuming 1sospin or SU(3)-flavor symmetry for the basic wave function
structure. Results for the neutral weak and charged weak form factors assuming
standard SU(2) x U(1) symmetry are given in Ref. 47.

APPENDIX II
LIGHT CONE QUANTIZATION AND PERTURBATION THEORY

In this Appendix, we outline the canonical quantization of QCD in At =0
gauge. The discussion follows that given in Refs. 4 and 51. This proceeds in
several steps. First we identify the independent dynamical degrees of freedom in
the Lagrangian. The theory is quantized by defining commutation relations for
these dynamical fields at a given light-cone time 7 = t 4 z (we choose T = 0).
These commutation relations lead immediately to the definition of the Fock state
basis. Expressing dependent fields in terms of the independent fields, we then
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derive a light-cone Hamiltonian, which determines the evolution of the state space
with changing 7. Finally we derive the rules for r-ordered perturbation theory.

The major purpose of this exercise is to illustrate the origins and nature of
the Fock state expansion, and of light-cone perturbation theory. We will ignore
subtleties due to the large scale structure of non-Abelian gauge fields (e.g. ‘instan-
tons’}, chiral symmetry breaking, and the like. Although these have a profound
effect on the structure of the vacuum, the theory can still be described with a
Fock state basis and some sort of effective Hamiltonian. Furthermore, the short
distance interactions of the theory are unaffected by this structure, or at least
this is the central ansatz of perturbative QCD.

Quantization

The Lagrangian {density) for QCD can be written
| — ..
L= =3 Tr(F* Fo )+t P —m)y

where F'#¥ = G¥ AY — 0V A% + ig|A*, A] and iD¥# = ig* — g A*. Here the gauge
ficld A% is a traceless 3 x 3 color matrix (A* = 3 AT Te(T¢T®) = 1/26%,
[T, 7% = ic®cT<, .. ), and the quark field ¥ is a color triplet spinor {for sim-
pheity, we include only one flavor). At a given light-cone time, say 7 = 0, the
imndependent dynamical fields are ¥+ = A4y and Ai with conjugate fields iigll
and 8"'/11. where Ay = v%9%/2 are projection operators (AzA_ = 0, A} =
Ax, Ay + A- = 1) and 0% = 8%+ 5% Using the equations of motion, the
remaining fields in £ can be expressed in terms of ¢, Aj_:

1

oy [3D_L a) + fmlyy

1
= Y- (9+ gAJ_ G_L tsb-{* s

¥

(35+ 2

2 -4 —
AT = 18 - AL+

e {7 Ai) + 20l 70 7

2g
(id+)?

Ay ooy, al) vopl Tog e}

with 8 =~° and @, = 4°4.
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To quantize, we expand the fields at 7 = 0 in terms of creation and annihila-
tion operators,

+ g2, .
vata) = [ e S0 (e uali ) e
A

kt 1673
k+ >0
+di (k2 vail, N ), =2t =0
i dkt d~L_|_ e~k - +
.L(x)‘—— f k+167r3 Z{ —}-CC}, T=z =10,
k>0

with commutation relations (k = (k‘"‘,f::i)):

{ot0), o2} = {ati,2), d(p, ¥}
= atk ), oz, V)]

= 167° k¥ 6*(k — p) 6ax .

(b} = {d,d}=...= 0.

where A is the quark or gluon helicity. These definitions imply canonical com-
mutation relations for the fields with their conjugates (r = z+ = y* =0, z

(z7,21),...0

H

{0462, olw)} = M 8- p),

[4ita), 0* Al ()| =187 Sz - y).

The creation and annihilation operators define the Fock state basis for the
theory at 7 = 0, with a vacuum |0} defined such that 5|0) = 4|0} = a|0) = 0.
The evolution of these states with 7 is governed by the light-cone Hamiltonian,

‘Hpc = P~, conjugate to 7. The Hamiltonian can be readily expressed in terms
of ¥4 and Aj_:

Hic=Hy+V,
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where

WPON i
Hy =_/d3I {Tf (3_1“131/41) + if’l (i0y - a1 + Bm) = (10 oy + 5??1)¢‘+}

dk+ &k 2
= Z/ 1673 k+l { "L("c A)alk f\)ki + bi(ﬁ‘,,\)b(&,,\)

colors

ki-i—m?

k2
9 _L+m
kt

o +dT (&, \) bk, A)

} + constant

is the free Hamiltonian and V the interaction:

_ fd% {29 T (1074 (A, 4] ) - =1 2| A, A

VY gp AD+g Ty ([23+A” il [ia’f,ii*',,liy])

+

1 o~ o~ ~
+9%% /423+ A — gyt ((d+)2 25+A”,Au]>¢

92_+ a 1
— )
v T ey

%*T“w} ,

with ¢ = ¢_ + Py (—Pasg — D) and AF = (U,g_,Ai) {(— A" as ¢ — 0). The

Fock states are obviously eigenstates of Hy with

Holn:kF by = Z(k +m) Ik kL)

[t 1s equally obvious that they are not eigenstates of V, though any matrix el
ement of V between Fock states is trivially evaluated. The first three terms in
V correspond to the familiar three and four gluon vertices, and the gluon-quark
vertex [Fig. 53(a)]. The remaining terms represent new four-quanta interactions
containing instantaneous fermion and gluon propagators [Fig. 53(b)]. All terms
conserve total three-momentum k = (k“ﬂr"s.l), because of the integral over z in
V. Furthermore, all Fock si.ates other than the vacuum have total k+ > 0, since
each individual bare quantum has &% > 0. Consequently the Fock state vacuum
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Figure 53. Diagrams which appear in the interaction Hamilienian for QCD on
the light cone. The propagators with horizontal bars represent “instantanecus” gluon
and quark exchange which arise from reduction of the dependent fields in A% = 0
gauge. (&) Basic interaction vertices in QUD. (b} “Instantaneous” contributions.

must be an eigenstate of V' and therefore an eigenstate of the {ull light-cone
Hamiltonian.

Light-Cone Perturbation Theory

We define light-cone Green’s functions to be the probability amplitudes that
a state starting in Fock state |z} ends up in Fock state |f) a (light-cone) time 7
later

(1) GUf ) = (fle e
de  _;
o B —der/2 - .
=i [ 52 R G (Tl
where Fourier transform G(f,1;¢) can be written
‘)

i i 1
- — V :
C—HLC+30++€—HQ+EO+ f—fr’g+20+

1
€—HLC+2:O+

(F1iy Gfyise) = (f
- <f
1 1 1 4

Vv o
+ € — Hg +:04 E—H0+50+V5~Hg+i0+

i)

The rules for 7-ordered perturbation theory follow immediately when (¢ — 77;)~"
is replaced by its spectral decomposition.

1 B fo[ dkF d%ky | sk, AsY {n: kg, A
€ — Ho+104 = 16m3 k€ — S0(k? + m?);/kF + 404
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The sum becomes a sum over all states n intermediate between two interactions.

To calculate G(f,7;¢) perturbatively then, all r-ordered diagrams must be

considered, the contribution from each graph computed according to the following

rules:
1.

b

Assign a momentum k¥ to each line such that the total k™, k| are conserved
at each vertex, and such that k> = m?, ie k= = (k¥ + m?)/k*. With
fermions associate an on-shell spinor.

0, Loy () oA=t
H(L,,\)_\/k__i_(k +B8m+ a5 kJ.) {X(i) A=)

; Loay S xty A=t

w0 = i (K = Bt 8y ) {xm A=l

where x(1) = 1/v/2(1,0,1,0) and x(]) = 1/v/2(0,1,0,-1)T. For gluon
lines, assign a polarization vector ¢# = (0, 2¢ - f}.l/k+, €) ) where & (T) =
“1/VE(1,3) and €1(1) = 1/V3(1, —i).

Include a factor 8{k*}/k™ for each internal line.

For each vertex include factors as illustrated 1n Fig. 54. To convert incomn-
ing into outgoing lines or vice versa replace

U v, U —v, € ¢
mn any of these vertices.
For each intermediate state there is a factor
1

£ — Z k_+i0+

interm

where ¢ is the incident P, and the sum is over all particles in the interme-
diate state.

Integrate fdk+d2k_;_/167r3 over each independent &, and sum over internal
helicities and colors.

Include a factor —1 for each closed fermion loop, for each fermion line that

both begins and ends in the initial state (i.e. T...u), and for each diagram
in which fermion lines are interchanged 1n either of the initial or final states.
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Vertex Factor Color Factor
a _
J—;?'—" © gulc) £, ula) T
b
g{{(pa — mp) - Eotq  €p o

+ cyclic permutations}

d g2 {eg - ecel - €7+ €5 - €c€p - 52} igebe joede

b a T
e ‘ I j dgzﬁ(a)fbm—

76 T4
¢ —pJ)

£e ule)

5. (o —p )t —p})

b a
C d gca'fb

z'cabe z'ccde
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(pd + 1)) ¢
b a rh) ;
_ . -~ede e
c E d g2 a(a) v u(b) 7( T P2 €€ wwete T
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Figure 84. Graphical rules for QCD in light-cone perturbation theory.

As an illustration, the second diagram in Fig. 54 contributes

! Ok — K
2 4m? L+ Lt
922; u(b)e*(kq ~ by, A ula)u(d) dk, — ky, A) u(c) )
IR G R Y )
= Lo

(times a color factor) to the ¢g — ¢§ Green’s function. {The vertices for quarks
and gluons of definite helicity have very simple expressions in terms of the mo-
menta of the particles.) The same rules apply for scattering amplitudes, but with
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propagators omitted for external lines, and with ¢ = P~ of the initial {and fipal)
states.

Finally, notice that this quantization procedure and perturbation theory
(graph by graph) are manifestly invariant under a large class of Lorentz transfor-
mations:

1. boosts along the 3-direction — ie. pt — Kpt, p~ = K~ 'p~, p. — p,
for each momentum,;

2. transverse boosts — ie. pT - pT, pT — pT +2p, - Q@ + p+Qi, Py —
p1 + pT @ for each momentum (@, like K is dimensionless};

3. rotations about the 3-direction.

It is these invariances which lead to the frame independence of the Fock state
wave functions.

APPENDIX III
A NONPERTURBATIVE ANALYSIS OF EXCLUSIVE REACTIONS--
DISCRETIZED LIGHT-CONE QUANTIZATION

Only a small fraction of exclusive processes can be addressed by perturba-
tive QCD analyses. Despite the simplicity of the ete™ and 75 initial state.
the full complexity of hadron dynamics is inveolved 1n understanding resonance '
production, exclusive channels near threshold, jet hadronization, the hadronic
contribution to the photon structure function, and the total e¥e™ or vy annili-
lation cross section. A primary question is whether we can ever hope to confront
QCD directly in its nonperturbative domain. Lattice gauge theory and effective
Lagrangian methods such as the Skyrme mode! offer some hope in understanding
the low-lying hadron spectrum but dynamical computations relevant to vy an-
nthilation appear intractable. Considerable information'® on the spectrum and
the moments of hadron valence wavefunctions has been obtained using the [TEP
QCD sum rule method, but the region of applicability of this method to dynam-
ical problems appears limited.

Recently a new method for analysing QCD in the nonperturbative domain
" The method

has the potential for providing detailed information on all the hadron’s Fock

has been developed: discretized light-cone quantization (DLCQ).

light-cone components. DLCQ has been used to obtain the complete spectrum
of neutral states in QED8 and QCDllg in one space and one time for any mass
and coupling constant. The QEI} resuits agree with the Schwinger solution at
infinite coupling. We will review the QUD|141] results below. Studies of QED in

. . 120 .. .
3+1 dimensions are now underway.~ Thus one can envision a nonperturbative
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TABLE 11

Table I1I. Comparison Between Time-Ordered and 7-Ordered Perturbation Theory

Equal ©

Equal r =t + 2

k° = Vk? + m?® (particle mass shell)

S % conserved

Mb—vb"*‘zvac Vac

. k- E K7+ e
n! time-ordered contributions

Fock states t,(k;)

- k? +m2
__-L—k+

{particle mass shell)

3" ky, kT conserved

Mg =V, b+ZVac

k* > 0 only

Fock states wn(r'-c.lg. 2}

+ -
33:%:, Ywmi=1,3 k=
1=z =1
0<z; <)
5—P+(P_-§k:)
n k2+m2
=M2_Z _J._z_>

kT Zk -l—chc

b
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method which in principle could allow a quantitative confrontation of QCD with
the data even at low energies and momentum transfer.

The basic idea of DLCQ 15 as follows: QCD dynamics takes a rather simple
form when quantized at equal light-cone “time” r = t + z/c. In light-cone gauge
AT = A% + A* = 0, the QCD lighi-cone Hamiltonian

Hoep = Ho +gHy + g"”Hg

contains the usual 3-point and 4-point interactions plus induced terms from in-
stantaneous gluon exchange and instantaneous quark exchange diagrams. The
perturbative vacuum is an eigenstate of Hoep and serves as the lowest state in
constructing a complete basis set of color singlet Fock states of Hy in momentum
space. Solving QCD is then equivalent to solving the eigenvalue problem:

HQCDIQ’ >= M2|\If >

as a matrix equation on the free Fock basis. The set of eigenvalues {M?} rep-
resents the spectrum of the color-singlet states in QCD. The Fock projections
of the eigenfunction corresponding to each hadron eigenvalue gives the quark
and gluon Fock state wavefunctions 4,(z;, k14, Ai} required to compute siructure |
functions, distribution amplitudes, decay amplitudes, etc. For example, as shown
by Drell and Ya.n,10 the form-factor of a hadron can be computed at any momen-
tum transfer @ from an overlap integral of the ¥, summed over particle number
n. The ete™ annihilation cross section into a given J = 1 hadronic channel can
be computed directly from its ¥4 Fock state wavefunction.

The light-cone momentum space Fock basis becomes discrete and amenable
to computer representation if one chooses (anti-)periodic boundary conditions for
the quark and gluon fields along the 2~ = z — ¢t and z directions. In the case of
renormalizable theories, a covariant ultraviolet cutoff A is introduced which limits
the maximum invariant mass of the particles in any Fock state. One thus obtains
a finite matrix representation of HggD which has a straightforward continuum
limit. The entire analysis is frame independent, and fermions present no special

difficulties.

Since Hic, PT, P'_L, and the conserved charges all commute, ;¢ 1s block
diagonal. By choosing periodic {or antiperiodic) boundary conditions for the basis
states along the negative light-cone (2~ = +1) = £4(2~ = — L}, the Fock basis
becomes restricted to finite dimensional representations. The eigenvalue problem
thus reduces to the diagonalization of a finite Hermitian matrix. To see this,
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note that periodicity in 2z~ requires P* = EEK , kj" = QT ni, Yo an= K.
The dimension of the representation corresponds to the number of partitions of
the integer & as a sum of positive integers n. For a finite resolution X, the
wavefunction 1s sampled at the discrete points

kT o 1 2 K-1
HTPT K O\K K UK

The continuum limit is clearly K — oo.

" One can easily show that P~ scales as L. One thus defines P~ = %H i
The eigenstates with P? = M? at fixed P* and P, = 0 thus satisfy H¢ |y =
KH|¥) = M?|¥), independent of L (which corresponds to a Lorentz boost
factor).

The basis of the DLCQ method is thus conceptually simple: one quantizes the
independent fields at equal light-cone time 7 and requires them to be periodic
or antiperiodic in light-cone space with period 2L. The commuting operators,
the light-cone momentum P = %K and the light cone energy P~ = :_;—';H arc
constructed explicitly in a Fock space representation and diagonalized simulta-
neously. The eigenvalues give the physical spectrum: the invariant mass squared
M? = PYP,. The eigenfunctions give the wavefunctions at equal 7 and allow one
to compute the current matrix elements, structure functions, and distribution
amplitudes required for physical processes. All of these quantities are manifestly
independent of L, since M? = PtP~ = HK. Lorentz-invariance is violated by
periodicity, but re-established at the end of the calculation by going to the con-
tinuum limit: L — oo, K — oo with P¥ finite. In the case of gauge theory.
the use of the light-cone gauge AV = 0 eliminates negative metric states in both
Abelian and non-Abelian theones.

Since continuum as well as single hadron color singlet hadronic wavefunctions
are obtained by the diagonalization of Hye, one can also calculate scattering
amplitudes as well as decay rates from overlap mairix elements of the interaction
Hamiltonian for the weak or electromagnetic interactions. An important point is
that all higher Fock amplitudes including spectator gluons are kept in the light-
cone quantization approach; such contributions cannot generally be neglected in
decay amplitudes involving light quarks.

The simplest application of DLCQ to local gauge theory is QED in one-space
and one-time dimensions. Since A* = 0 is a physical gauge there are no photon
degrees of freedom. Explicit forms for the matrix representation of Horp are
given in Ref. 8.
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The basic interactions which occur in Hpc(QCD) are illustrated in Fig. 33.

Recently Hornbostel  has used DLCQ to obtain the complete color-singlet spec-
trum of QCD in one space and one time dimension for No = 2,3,4. The hadronic

spectra are obtained as a function of quark mass and QCD couphing constant (see

Fig. 55). Where they are available, the spectra agree with results obtained eatlier:

8-87

—— SU(2)

——= SU(3)

TR

- SU{4)

Hamer:
SU{2}) Lattice

Baryon Mass

i I

| 1

m/g

1.0 .5

S837AZ4

Figure 55. The baryon and meson spectrum in QCD [1+41] computed in DLCQ
for No = 2,3,4 as a function of quark mass and coupling constant. ¢

in particular, the lowest meson mass in SU(2) agrees within errors with lattice

Hamiltonian results!?! The meson mass at N¢ = 4 is close to the value obtained
n the large N limit. The method also provides the first results for the baryon
spectrum in a non-Abelian gauge theory. The lowest baryon mass is shown in
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Fig. 55 as a function of coupling constant. The ratio of meson to baryon mass as
a function of N also agrees at sirong coupling with results obtained by Frishman
and Sonnenschein’>> Precise values for the mass eigenvalue can be obtained by
extrapolation to large K since the functional dependence in 1/K is understood.

M2/ {mZ + /)

0 0.2 0.4 0.6 0.8 1.0
3-8E |/(| + ?Tm2/q2}|K2 LaTrAl

Figure 56. Representative baryon spectrum for QCD in one-space and one-time
t'iii’i’tension.11

As emphasized above, when the light-cone Hamiltonian is diagonalized for a
finite resolution A, one gets a complete set of eigenvalues corresponding to the
total dimension of the Fock state basis. A representative example of the spectrum
1s shown In Fig. 56 for baryon states (B = 1) as a function of the dimensionless
variable A = 1/(1 + 7m?/¢*). Antiperiodic boundary conditions are used. Note

that spectrum automatically includes continuum states with B =1 .
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Figure 57. The meson quark momentum distribution in QCD{1+1] computed
. 119
using DLCQ.
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Figure 59. Contribution to the baryon quark momentum distribntion from ¢¢¢gg

states for QCD[LH].119

The structure functions for the lowest meson and baryon states in SU(3) at
two different coupling strengths m/g = 1.6 and m/g = 0.1 are shown in Figs.
57 and 58. Higher Fock states have a very small probability; representative
contributions to the baryon structure functions are shown in Figs. 59 and 60.
For comparison, the valence wavefunction of a higher mass state which can be
identified as a composite of meson pairs (analogous to a nucleus) is shown 1 Fig.
61. The interactions of the quarks in the pair state produce Fermi motion beyond
z = 0.5. Although these results are for one time one space theory they do suggest
that the sea quark distributions in physical hadrons may be highly structured.

In the case of gauge theory in 3+1 dimensions, one also takes the ko=
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Figure 61. Comparison of the meson quark distributions in the gg§§ Fock sate
with that of a continuum mesor pair state. The structure in the former may be due

. . )
to the fact that these four-particte wavefunctions are c;rthc;gonal,11

(Q?r/L_L)nj_ as discrete variables on a finite cartesian basis. The theory is covari-
antly regulated if one restricts states by the condition

.2 2
) klitmi _ oo
- b i - ’
1
where A is the ultraviolet cutoff. In effect, states with total light-cone kinetic
energy beyond A? are cut off. In a renormalizable theory physical quantities are
mdependent of physics beyond the ultraviolet regulator; the only dependence on
A appears in the coupling constant and mass parameters of the Hamiltonian.
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consistent with the renormalization group.123 The resolution parameters need to
be taken sufficiently large such that the theory is controlled by the continuum
regulator A, rather than the discrete scales of the momentum space basis.

There are a number of important advantages of the DLCQ method which have
emerged from this study of two-dimensional field theories. They are as follows:

1. The Fock space is denumerable and finite in particle number for any fixed
resolution K. In the case of gauge theory in 341 dimensions, one expects
that photon or gluon quanta with zero four-momentum decouple from neu-
tral or color-singlet bound staies, and thus need not be included in the Fock
basis.

Because one is using a discrete momentum space representation, rather

o

than a space-time lattice, there are no special difficulties with fermions:
e.g. no fermion doubling, fermion determinants, or necessity for a quenched
approximation. Furthermore, the discretized theory has basically the same
ultraviolet structure as the continuum theory. It should be emphasized that
unlike lattice calculations, there is no constraint or relationship between the
physical size of the bound state and the length scale L.

3. The DLCQ method has the remarkable feature of generating the complete
spectrum of the theory; bound states and continuum states alike. These can
be separated by tracing their minimum Fock state content down to small |
coupling constant since the continuum states have higher particle number
content. In lattice gauge theory it appears intractable to obtain informa-
tion on excited or scatiering states or their correlations. The wavefunctions
generated at equal light cone time have the immediate form required for rel-
ativistic scatiering problems. In particular one can calculate the relativistic
form factor from the matrix element of currents.

4. DLCQ is basically a relativistic many-body theory, including particle num-
ber creation and desiruction, and is thus a basis for relativistic nuclear and
atomic problems. In the nonrelativistic limit the theory 1s equivalent to the
many-body Schrédinger theory.

Whether QCD can be solved using DLC — considering its large number of
degrees of freedom is unclear. The studies for Abelian and non-Abelian gauge
theory carried out so far in 141 dimensions give grounds for optimism.
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