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1. INTRODUCTION 

What is a hadron? 

In practice, the answer to this question depends upon the energy scale of 

. interest. At the atomic scale a hadron can be treated as an elementary point-like 

particle. The proton’s electromagnetic interactions, for example, are well described 

by the simple Hamiltonian for a point-like particle: 

H = (F- ea2 + e($ 
2M (14 

This Hamiltonian describes a wide range of low-energy phenomena-e.g.proton- 

electron elastic scattering (ep + ep), Compton scattering of protons (yp + ~p)~,. 

atomic structure. . . -and it can be made arbitrarily accurate by adding interactions 
- _ 

involving the magnetic moment, charge radius, etc. of the proton. 

The description of the proton becomes much more complicated as the en- 

ergy is increased up to the strong interaction scale (- 1 GeV). In proton-electron 

elastic scattering, for example, one must introduce phenomenological form factors 

F(Q2) to correct the predictions from the point-like theory: in effect, T(ep) = 

J’(Q2> ~(eP)p&tt-like where Q is the momentum transfer and 

One might try to modify the proton-photon interaction in the point-like Hamilto- 

nian to reproduce the phenomenological form factors, but the resulting interaction 
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would be very complicated and nonlocal. Furthermore such a modification would 
not suffice to account for the changes in the Compton amplitude of the proton 
at high energies. In fact, new terms would have to be added to the Hamiltonian 
for every process imaginable, resulting in a horrendously complicated theory with 
little predictive power. 

The tremendous complexity of the high-energy phenomenology of ha.drons 
stalled the development of strong interaction theory for a couple of decades. The 
breakthrough to a fundamental description came with the realization that the 

. rich structure evident in the data was a consequence of the fact that hadrons 
are themselves composite particles. The constituents, the quarks and gluons, are 
a.gain described by a very simple theory, Quantum Chromodynamics (QCD).l 
The complexity of the strong interactions comes not from the fundamental inter- 
a.ctions, but rather from the structure of the hadrons. The key to the properties 
of the form factors and other aspects of the phenomenology of the proton thus 
lies in an understanding of the wavefunctions describing the proton in terms of 
its quark and gluon constituents. 

In this article we shall discuss the relationship between the high-energy be- 
havior of wide-angle exclusive scattering processes and the underlying structure 
of hadrons. Exclusive processes are those in which all of the final state particles 
are observed: e.g. ep --+ ep, yp --f yp, pp --+ pp. . . . As we shall demonstrate, the -’ 
highly varied beha.vior exhibited by such processes at large momentum transfer 
be understood in terms of simple perturbative interactions between hadronic con- 

2’3 stituents. Large momentum transfer exclusive processes are sensitive to coher- 
ent hard scattering quark-gluon amplitudes and the quark and gluon composition 
of hadrons themselves. The key result which separates the hard scattering am- 
plitude from the bound state dynamics is a factorization formula: 4’2 To leading 
order in l/Q a hard exclusive scattering amplitude in QCD has the form 

Here TH is the hard-scattering proba,bility amplitude to scatter quarks with frac- 
tional momenta 0 < xj < 1 collinear with the incident hadrons to fra.ctional 
momenta collinear to the final hadron directions. The distribution amplitude dH, 
is the process-independent probability amplitude to find quarks in the wavefunc- 
tion of hadron Hi collinear up to the scale Q, and 

[dx] x fi dxjb (1 - 2 ok) 

j=l L=l 
(4) 

J 



- - 

Remarkably, this factorization is gauge invariant and only requires that the mo- 
mentum transfers in TH be large compared to the intrinsic mass scales of QCD. 
Since the distribution amplitude and the hard scattering amplitude are defined 
without reference to the perturbation theory, the factorization is valid to leading 
order in l/Q, independent of the convergence of perturbative expansions. 

Factorization at large momentum transfer leads immediately to a number of 
important phenomenological consequences including dimensional counting rules: 

hadron helicity conservation: and a novel phenomenon7 called “color trans- 
parency” , which follows from the predicted absence of initial and final state inter- 

. actions at high momentum transfer. In some cases, the perturbation expa.nsion 
may be poorly convergent, so that the normalization predicted in lowest order 
perturbative QCD may easily be wrong by factors of two or more. Despite the 
possible lack of convergence of perturbation theory, the predictions of the spin, 
angular, and energy structure of the amplitudes may still be valid predictions of 
the complete theory. 

This article falls into two large parts. In the first part, we introduce the 
general perturbative theory of high-energy wide-angle exclusive processes. Our 
discussion begins in Section 2 with a discussion of hadronic form factors for 
mesons composed of heavy quarks. This simple analysis, based upon nonrel- e 
ativistic Schrodinger theory, illustrates many of the key ideas in the relativistic 
analysis that follows. In Section 3 we introduce a formalism for describing ha.drons 
in terms of their constituents, and discuss general properties of the hadronic wave- 
functions that arise in this formalism. In Section 4 we give a detailed description 
of the perturbative analysis of wide-angle exclusive scattering. 

In the second part of the article we present a survey of the extensive phe- 
nomenology of these processes. In Sections 5 and 6 we-review the general pre- 
dictions of QCD for exclusive reactions and the methods used to calculate the 
hard scattering a.mplitude. Various applications to electromagnetic form fa.ctors, 
electron-positron annihila.tion processes and exclusive charmonium decays are also 

- discussed. One of the most important testing grounds for exclusive rea.ctions in 
QCD are the photon-photon annihilation reactions. These reactions and relat.ed 
Compton processes are discussed in Section 7. 

In Section 8, the QCD analysis is extended to nuclear reactions. The reduced 
amplitude formalism allows an extension of the QCD predictions to exclusive 
reactions involving light nuclei. Quasi-elastic scattering processes inside of nuclei 
allow one to filter hard and soft contributions to exclusive processes and to study 
color transpa.rency. 

The most difficult challenges to the perturba.tive QCD description of exclusive 
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reactions are the data on spin-spin correlations in proton scattering. We review 
this area and a possible explanation for the anomalies in the spin correlations 
and color transparency test in Section 9. General conclusions on the status of 
exclusive reactions are given in Section 10. 

The appendices provide a guide to the main features of baryonform factor and 
evolution equations; a review of light-cone quantization and perturbation theory; 
and a discussion of a possible method’ to calculate the hadronic wavefunctions 
by directly dia.gonalizing the Hamiltonian in QCD. 

-k 5315Al 

Figure 1. Nonrelativistic form factor for a heavy-quark meson. 

2. NONRELATIVISTIC FORM FACTORS 1 .* 
FOR HEAVY-QUARK MESONS 

The simplest hadronic form factor’is the electromagnetic form fa.ctor of a 
heavy-quark meson such as the Y. In this section we show how perturbative QCD 
can be used to analyze such a form factor for momentum transfers that are large 
compared with the momentum internal to the meson, but small compared with 
the meson’s mass. The analysis for relativistic momentum transfers is presented 
in subsequent sections. 

Heavy-quark mesons are the simplest hadrons to analyze insofar as they are 
well described by a nonrelativistic quark-antiquark wavefunction. The amplitude 
that describes the elastic scattering of such a meson off a virtual photon is, by 
definition of the form fa.ctor, the amplitude for scattering a point-like particle 
multiplied by the electromagnetic form factor. The form factor is given by a 
standard formula from nonrelativistic quantum mechanics (see Fig. 1): 

W”) = J -JCL l/5*@ + f/2)$(i). p43 (5) 

(Note that the wavefunction’s argument is l/2 of the relative momentum between 
the quark and antiquark.) At first sight it seems that we require full knowledge of 
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the meson wavefunction in order to proceed, but in fact we need know very little 
about the wavefunction if <2 is sufficiently large. To see why we must determine 
which regions of k-space dominate the integral in Eq. (5) when {2 is large. 

When 9” = 0 the integral in Eq. (5) is just the normalization integral foi 
the wavefunction, and F($2) M‘ l-the meson looks like a pointilike particle to 
long-wavelength probes. As <” becomes large, large momentum flows through 
one or the other or both of the wavefunctions in Eq. (5). Since nonrelativistic 
wavefunctions are strongly peaked at low momentum, the form factor is then sup- 
pressed. The dominant region of k-space is that which minimizes the suppression 
due to stressed wavefunctions. There are three regions that might dominate: 

1) 1; 1 < [<I, where $*(z + q’/2) is small but $(i;‘) is large; 

2) Ii + f/2/ < 19’1, where $(z) is small but $*(c + q/2) is large; 

3) 1; + 4’/2] M Ii1 z [f/41, where both $(i) and r,!~*(< + f/2) are small, but 
not as small as the stressed wavefunction in either of the other two regions. 

The q-dependence of the contributions to F(f2) from each of these regions is 
readily related to the high-momentum behavior of the wavefunction. In region l), 
i;’ can be neglected relative to q/2 in the first wa.vefunction and so the form facto1 
has q-dependence 

Qf2) - +*hw. (6) - 

The contribution from region 2) is essentially identical, as is clear if one makes 

the variable change z + z’ f c + q’/2. In region 3), the phase space contributes 
a factor of q3 while each wavefunction goes like G(f/4) so that 

JY!?‘) - q31?N9’14)12. 

The dominant region is clearly a function of the high-momentum behavior of the 
wavefunction. 

In fact wavefunctions for heavy-quark mesons, like those for QED atoms, fall 
off as inverse powers of the momentum when it becomes large. As we show below, 
the ground state wavefunction falls off like l/q* up to factors of log(q”). Then the 
form factor is dominated by regions 1) and 2) for large (nonrelativistic) {2, and 
falls off as $({/a) N (1/q2)2. Th e contribution from region 3) is suppressed by 
an additional factor of l/l</, -2 . and so can be neglected when q IS sufficiently la.rge. 
Note that this behavior is characteristic of wavefunctions that vanish as powers of 
the momentum. With a Gaussian wavefunction, for example, region 3) dominates 
and the form factor is exponentially damped for high momentum transfers. 
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Neglecting z relative to q/2, the contribution to F(g’“) coming from region 1) 
has the simple form 

where $(F = 0) is th e wavefunction evaluated at the origin (in coordinate space). 
We can further simplify this equa.tion using the Schrodinger equation for +(</2) 

- (Fig. 2): 

~kw> = (9) 

where E is the nonrelativistic binding energy, A/r, = MQ/~ is the reduced mass of 
the quark and antiquark, and V is the interaction potential between them. The 

.a 

Figure 2. Momentum-space SchrGdinger equation for the meson wavefunction. 

potential V( {) can be computed using perturbation theory when the momentum 
transfer { is large; to leading order it is just the Coulomb interaction modified 
by a running coupling constant: 

4 
(10) 

Here CF = 4/3 is the value of the Casimir operator for the fundamental repre- 
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sentation of SU3 (i.e. the quark’s representation), and 

47r 
- - as(Q2) = /k, 1og(Q2/A&) 

is the running coupling constant of QCD, with scale parameter AQCD N 200 Me\/, 
and /?o = 11 - 2nf/3 where nf is the number of active quark flavors (12f = 4 
for the Y). Given this behavior for V we can show that the region II;‘/ < If/21 

_ dominates the integral in Eq. (9) by using arguments similar to those just applied 

. to the form factor (Eq. (5)). Thus when $ is large Eq. (9) becomes 

w2)2 -I 
lw/2) = -2M 1 1 V(-W) w =a 

T (11) 

and the form factor takes the form 

F(q’“) = 11’F = 0) w-m -(u‘,‘f?i”dr + { l? -(cr’i2)-i2n4T 
V(-g’/2) $@=O) 

- -T > 

z 
1287r o,(q”/4) MQCF 

l+(?-o)l” - 
e 

@“I2 
(12) 

where we have now included the contributions from both regions (1) and (2). So 
all we really need to know about the meson is its wavefunction evaluated at the 
origin. The high-q” form factor is completely determined by perturbation theory 
up to an overall multiplicative constant! 

Equation (12) has a simple, intuitive interpretation that generalizes ea.sily t.o 
the relativistic case and to other processes. The quantity 

M4’2) - w/~)-(~,2;~,2M + l 7 -(qp)2/2Mr v(-d2) 

e 
1287r cr,(g’“/4) MQCF 

(q”)” 

(13) 

that appears in the first expression of Eq. (12) is just the nonrelativistic meson 
form factor but with each of the initial and final state mesons replaced by an 
on-shell quark-antiquark pair. The quark and antiquark share the meson’s three- 
momentum equally. Our analysis shows that momenta internal to the mesons 
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can be neglected relative to < in this “hard-scattering amplitude”-i.e. that TH 
is roughly independent of the relative momenta. of the quark and antiquark when 
f is large. In coordinate space this means that the separation between the quark 
and antiquark in this process (- l/l<l) is much smaller than the size of the 
mesons. Thus Eq. (12) for th e asymptotic form factor can be recast in the highly 
suggestive form (Fig. 3) 

lq2) = ?+h*(F=o)TH(cy2)$(~=o). (14) 

where v,LJ(F = 0) is the amplitude for finding the quark and antiquark on top of 
each other in the initial meson, TH is the amplitude for scattering the quark- 
antiquark pair from the initial direction to the final direction, and $*(? = 0) is 
the amplitude for transforming the resulting quark-antiquark pair into the final 
meson. 

Figure 3. The asymptotic form factor in terms of the hard scattering amplitude 
TH and the meson’s wavefunction at the origin $(?=O). 

Notice that we are justified in using perturbation theory to compute TH 
only because the hard-scattering subprocess occurs over short distances. This 
highlights an important distinction between the perturbative analysis of form 
factors and that of other processes like deep inelastic scattering. Perturbative 
QCD is reliable only for phenomena that occur over short distances (or near the 
light cone). In processes like deep inelastic scattering the short distances arise for 

- 
largely kinematical reasons: the cross section for deep inelastic scattering is given 
by a matrix element of two currents separated by .z~ - 1/Q2. By contrast, we 
find short distances in our form factor analysis only by looking inside the process. 
Short distances arise as a result of the properties of the hard-scattering amplitude 
TH---i.e. as a result of the dynamics of the theory. As a consequence the validity 
of a perturbative analysis of form factors is perhaps not as well established as it 
is for, say, deep inelastic scattering. By the same token the analysis is perhaps 
more interesting because of the critical role played by the dynamics and by hadron 
structure. 
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Finally we should comment briefly upon the principal limitation of our per- 
turbative analysis: it is valid only over a limited range of momentum transfer. 
It is clear from our analysis that 4;/2 must be larger than the root-mean-square 
momentum in the wavefunction. This is evident from the form factor for ground- 
state positronium, which can be computed analytically: 

(15) 

where y = am,/2 is the rms momentum. Here < must be of order 4 times the 
rms momentum before the form factor begins to fall off like the asymptotic form 
factor. In the QCD case q’/2 must also be sufficiently large that the perturbative 
part of V(cj’/2) d ominates the nonperturbative part. At the high end, < is limited 
by the fact that our analysis is nonrelativistic. Also radiative corrections to the 
form factor (Eq. (5)) and to the quark potential (Eq. (10)) contribute corrections 
of order a”/&$$ that become important for relativistic <. These limita.tions make 
it unlikely that our results can be used for the \T, or even for the Y; neither meson 
is sufficiently nonrelativistic. So we must develop a relativistic analysis if we are 
to treat these mesons or, more generally, light-quark hadrons properly. 

3. HADRONIC WAVEFUNCTIONS 

The relativistic analysis of ha.dronic form factors and other large-p1 processes 
is conceptually similar to the nonrelativistic analysis. The only significant dif- 
ference is in the formalism used to describe hadronic structure in terms of its 
constituents. To proceed we require a relativistic formulation of the bound state 
problem. 

The conventional formalism for relativistic bound states is the Bethe-Salpeter 
formalism. In this formalism a meson is described by a covariant wavefunction 

that depends upon the four momenta of its quark and antiquark constituents. .41- 
though formally correct, this formalism is of little use in the description of such 
simple systems. The problem is that the couplings between different channels- 
e.g. between quark-antiquark and quark-antiquark-gluon channels-is usually 
large in highly relativistic systems, and the energy available is more than ample 
for particle creation. Thus the physics of such systems tends to depend upon the 
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interplay between a large number of channels. A meson for example is a super- 
position of states involving a quark-antiquark pair, a quark-antiquark pair plus a 
gluon, a quark-antiquark pair plus two gluons, two quark-antiquark pairs, and so 
on. In the Bethe-Salpeter formalism this interplay between channels is implicit 
since the meson is described entirely by a quark-antiquark wavefunction. Refer- 
ence to all other channels is buried inside the potential and irreducible scattering 
amplitudes used in analyzing hadronic processes, and as a result these potentials 
and scattering amplitudes become largely intractable. Even in situations where a. 
single channel dominates, the formalism is still quite complicated and very nonin 
tuitive. For example the Bethe-Salpeter wavefunction has no simple probabilist,ic - 
interpretation analogous to that for nonrelativistic wavefunctions. Because of 
such complexity the Bethe-Salpeter formalism has been largely abandoned: even 
in state-of-the-art calculations pertaining to such highly nonrelativistic systems 
as positronium or the hydrogen atom. 

Intuitively one would like to describe hadrons in terms of a series of wave- 
functions, one for each channel, just as one would in nonrelativistic quantum 
mechanics: e.g. 

IT) = ~lqv, +qq/, + c 1449) hgjg/7r + . . . . (W 
q7 Q99 

.- * 
Formally this can be done by quantizing QCD at a particular time, say t = 0, and 
using the creation and annihilation operators from the fields to define the basis 
states for such a “Fock-state” representation. The problem with this approach is 
that the zero-particle state in this basis is not an eigenstate of the Hamiltonian. 
An interaction term in the Hamiltonian like g&,A”1C, contains contributions such 
as btatdt that create particles from the zero-particle state. As a result not all of 
the bare quanta in an hadronic Fock state need be associated with the hadron; 
some may be disconnected and possibly quite remote elements of the va,cuum 
(Fig. 4). This greatly complicates the interpretation of the ha.dronic wavefunc- 
tions. Also Lorentz transformations are very complicated in this formalism; boost 

- operators tend to create all sorts of additional quanta. This is because the qua.n 
tization surface t = 0 is not invariant under boosts, and thus boosting a state 
inevitably involves the dynamical evolution (in t) of parts of that state. This is 
a serious problem for our analysis of large-p1 processes since the initial and final 
state hadrons necessarily have very different momenta. 

Fortunately there is a convenient and intuitive formalism, originally due to 
Diraca that avoids these problems. This is based upon the “light-cone quan- 
tization” of QCD, where the theory is quantized at a particular value of light- 
cone time 7 E t + z rather than at a particular time t. In this formalism the 
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Figure 4. -- Perturbative contributions to the pion’s qqqqg wavefunction. Con- 
tributions of type b) correspond to creation of a qqg from the vacuum, and have 

. 
nothing to do with the hadron. These latter contributions do not arise in light-cone 
quantization. 

hadronic wavefunctions describe the hadron’s composit ion at a  particu1a.r r! and 
the temporal evolution of the state is generated by the light-cone Hamiltonian: 
HLC G P- G  P” - P3, conjugate to 7. Remarkably a  simple kinematical argu- 
ment shows that the zero-particle state in the light-cone Fock basis is an  exact 
eigenstate of the full Hamiltonian HLC. Therefore all bare quanta in an  hadronic 
Fock state are part of the hadron. Furthermore Lorentz boosts are greatly sim- 
plified in this framework since the quantization surface r = 0  is invariant under 
longitudinal boosts. It is also convenient to use r-ordered light-cone perturba.tion e  
theory (LCPTh), in place of covariant perturbation theory, for much of our anal- 
ysis of exclusive processes. LCPTh provides the natural perturbative f’ra.mework 
for computing amplitudes in terms of the light-cone wavefunctions that describe 
hadrons, the resulting formalism being conceptually very similar to ordinary time- 
dependent  perturbation theory in nonrelativistic quantum mechanics. LCPTh is 
also very convenient for analyzing other l ight-cone dominated processes, such as 
deep inelastic scattering. Unlike t-ordered perturbation theory, r-ordered per- 
turbation theory does not suffer from an explosion in the number  of dia.grams 
relative to covariant perturbation theory. 

- The advanta,ges of l ight-cone quantization do not come for free. The quail- 
tization surface 7  = 0  is not invariant under arbitrary rotations or even under 
parity inversions. As a  consequence the operators that genera.te these transfor- 
mations are as complicated as the light-cone Hamiltonian, making it difficult, for 
example, to specify the spin of a  particular hadronic state. However the simplic- 
ity of the vacuum and of boosts is more important for our applications than is 
rotation symmetry. 

Light-cone quantization and perturbation theory are briefly reviewed for QCD 
in Appendix III. In the following sections we describe the Fock state basis a.nd 
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wavefunctions in greater detail, emphasizing those features important to our anal- 
ysis of form factors. 

3.1. DEFINITIONS - - 

It is convenient when quantizing on the light-cone to rewrite four-vectors in 
terms of their +, -, and I components: 

P+ E PO + P3 

- p- G po - p3 . 

Y* E (P’,P2). 

P) 

These components transform very simply under boosts along the 2-direction: 

P* + exp(fa) P* and 31 t 31. In this notation dot-products have the 
form 

p.p=p+p--3; P-q= 
p+q- + p-q+ 

-3 
2 I?ii WV 

If 7 E X+ E t + z is to play the role of time in our light-cone formalism then 
P-, the momentum conjugate to 7, plays the role of the Hamiltonian, and e = 

.w 

(P+, 31) is the three-momentum that specifies the state of a particle. The 
light-cone energy of a noninteracting particle with mass M is just 

p- _ ?;+A!” - 
P+ ’ 

and the particle’s phase space is given by 

- M2) = dP+ d”TI: 
2P+ (27r):. 

Thus a properly normalized momentum eigenstate satisfies 

(PIE’) = 2P+(27r)3 syp - p>. 

(21) 

(22) 

Note that the longitudinal momentum P + for a particle is always positive. 
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To quantize QCD on the light-cone one defines commutators for the indepen 

dent fields at a particular light-cone time 7. (See Appendix III). Particle crea.tion 

and annihilation operators are obtained by Fourier transforming the unrenor- 

- - malized field operators. These create and destroy bare quarks and gluons that 

have specific three-momenta arid helicities. Using the creation and annihilation 

operators we can define a set of basis states for the quantum theory: 

(23) 

where bt, dt and czf create bare quarks, antiquarks and gluons having three- 

momenta b, and helicities X,. Of course these “Fock states” are generally not 

eigenstates of the full Hamiltonian HLC. However the zero-particle sta.te is the 

only one with zero total P+, since all quanta must have positive k+, and thus this 

state cannot mix with the other sta.tes in the basis. It is an exact eigenstate of 
#1 

HLC. Although they do not diagonalize the Hamiltonian, the Fock states form 

a very useful basis for studying the physical states of the theory. Fdr example, a ‘* 

pion with momentum p = (P+, 3,) is described by state 

#l The restriction kt > 0 is a key difference between light-cone quantiza.tion and ordinary 
equal-time quantization. In equal-time quantization the state of a parton is specified by 
its ordinary three-momentum 5 = (k’, I?, Ic3). S’ mce each component of k can be either 
positive or negative, it is easy to make zero-momentum Fock states that contain particles, 
and these will mix with the zero-particle state to build up the ground state. In light-cone 
quantization each of the particles forming a zero-momentum state must have vanishingly 
small Ic+. Such a configuration represents a point of measure zero in the phase space, and 
therefore such states can usually be neglected. Actually some care must be taken here 
since there are operators in the theory that are singular at Lt = 0-e.g. the kinetic energy 
(Zj + M2)/k+. In certain circumstances states containing Ic+ - 0 quanta can significantly 
alter the ground state of the theory. One such circumstance is when there is spontaneous 
symmetry breaking. However such effects play little role in the sort analysis we deal with 
in this article, since we are concerned with high-energy, short-distance phenomena. Note 
also that the space of states that play a role in the vacuum structure is much smaller 
for light-cone quantization than for equal-time quantization; the state of each parton is 
specified by a two-momentum rather than a three-momentum since Ic+ = 0. This suggests 
that vacuum structure may be far simpler to analyze using the light-cone formula.tion. 
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where the sum is over all Fock states and helicities, and where 

(25) 

The wavefunction $,/,(xi, Zli, Xi) is the amplitude for finding partons with mo- 

menta (Zip+, Xi-Jfl + cli) in the pion. It does not depend upon the pion’s 
momentum. This special feature of light-cone wavefunctions is not too surpris- 
ing since xi is the longitudinal momentum fraction carried by the ith-parton 
(0 5 2; 5 l), and $li its momentum “transverse” to the direction of the meson. 
Both of these are frame independent quantities. 

Throughout our analysis we employ the light-cone gauge, 17. A = A+ = 0, for 
the gluon field. The use of this gauge results in well known simplifications in the 
perturbative analysis of light-cone dominated processes such as high-momentum 
hadronic form factors. Furthermore it is indispensable if one desires a simple, - 
intuitive Fock-state basis, for there are neither negative-norm gauge boson states 
nor ghost states in A + = 0 ga.uge. Thus each term in the normalization condition 

(26) 

is positive. This equation follows immediately from the normalization condition 
for the full pion-state. 

3.2. LIGHT-CONE BOUND-STATE EQUATIONS 

Any hadron state, such as 1~) for the pion, must be an eigenstate of the light- 
cone Hamiltonian. Consequently, when working in the frame where p, = (1,O) 
and P; = Al:, the state 1~) satisfies an equation 

(Ad; - HLCT) IT) = 0. (27) 

Projecting this onto the various Fock states (qql, (qqgj . . . results in an infinite 
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number of coupled integral eigenvalue equations, 

- - 

where V is the interaction part of HLC. Diagrammatically, V involves completely 
irreducible interactions--i.e. diagrams having no internal propagators-coupling 
Fock states (Fig. 5). These equations determine the hadronic spectrum and 

xJ= 
: 3 II 

- - 
0 
. . . . 

I- . 
1 II 

0 l .  .  f  

- - IL 7 - - . . . . . . 
Figure 5. Coupled eigenvalue equations for the light-cone wa.vefunctious of a 

pion. 

wave functions. Although the potential is essentially trivial, the many channels 
required to describe an hadronic state make these equations very difficult to solve. 
Nevertheless the first attempts at a direct solution have been made. 

The bulk of the probability for a nonrelativistic system is in a single Fock 
state-e.g. (eE> for positronium, or Ibb) for the r meson. For such systems it 
is useful to replace the full set of multi-channel eigenvalue equations by a single 
equation for the dominant wavefunction. To see how this can be done, note that 
the bound state equation, say for positronium, can be rewritten as two equations 
using the projection operator P onto the subspace spanned by eE states, and its 
complement & E 1 - P: 

Hpp IPs)~ + HPQ IPs)~ = h4” IPs)p 
(29) 

H&p [Ps)~ + HQQ jP& = hf” h)g 

where H~Q E PHQ.. ., and lPsjp E P jPs) . . . . Solving the second of these 
equations for IPs)~ and substituting the result into the first equation, we obtain 
a single equation for the ee or valence part of the positronium state: 

Her [Ps)~ = Al2 IPS)P (30) 

16 



where the effective e’i? Hamiltonian is 

- - 
KS = HPP + HPQ 

1 
k?P. M” - HQ~ 

The second term of H,ff includes all effects from nonvalence Fock states; in light- 
cone perturbation theory it is given by the sum of all diagrams for ee --+ eE having 
no ee intermediate states (i.e. it is “ee-irreducible”). Thus we have (Fig. 6) 

where V& is given by 

veff = 
Tirr (eE + eE) 

[x(1 - s)y(l - y)]l’” 
(33) 

and I&(eE t ee) is the ec-irreducible amplitude for elastic e?? scattering. The 
helicity dependence is implicit in this equation. 

.e 

Figure 6. a) Bound state equation for the ei? wavefunction of positronium. b) 
The eF-irreducible potential. 

One might wonder whether or not this simple equation is also useful for rel- 
ativistic states like light-quark hadrons. For positronium the effective potential, 
V eff x VCoulomb, is little modified by nonvalence Fock states and so this reduc- 
tion to a valence equation is well warranted. However nonvalence states are most 
likely quite important for a light-quark hadron, and therefore V& cannot help 
but be very complex in this case. For example, retardation effects must become 
significant when non-valence states become important, as is evident from the 
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normalization condition for the valence wavefunction: 

(34) 
- - 

-the expectation value of dV&/dM2, a measure of the retardation, equals the 
probability carried by nonvalence Fock states. So usually one is forced to use the 
full coupled-channel equations when analyzing ordinary hadrons. However, as we 
shall see, the valence state plays a special role in high-momentum form factors, 
and so the valence-state equation will be useful in our analysis. - 

3.3. GENERAL PROPERTIES OF LIGHT-CONE WAVEFUNCTIONS 

One major advantage of the Fock-state description of a ha.dron is tha.t much 
intuition exists about the behavior of bound state wavefunctions. So, while the 
task of solving Eq. (2s) remains formidable, there is nevertheless much we can 
say about the hadronic wavefunctions. An important feature that is immediately 
evident from Eq. (28) is tha.t all wavefunctions have the general form 

Consequently ,+lL tends to vanish when 

(36) - 

This is intuitively plausible. In the Fock state expansion we think of the bare 
quanta as being on mass shell but off (light-cone) energy shell: i.e. each parton 

comprising a state with p = (P+, 3,) has 

k, = ( 
XiP+ 

3 k?=m:! 1) (37) 

but the sum over all k,: is not equal to P-. In fact the difference is just 

. . 

.' 

P- - c 
kT-&M2 Zfj + rnf Tf & 

I - 
i P+ - c zip+ - +p+ =p+- (3s) 

i ( ) 

Parameter I is a boost-invariant measure of how far off energy shell a Fock state 
is. Thus Eq. (35) implies that a physical particle has little probability of being 
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in a Fock state far off shell. In general & is large when Zfi or 5% is small--i.e. the 
wavefunction should vanish as Zji + 00 or xi + 0. Formally such constraints 
appear as boundary conditions on the wavefunctions and are important if the 
Hamiltonian is to be well defined (e.g. self-adjoint). These are subtle issues that 
we will not discuss here. Suffice it to note that all wavefunctionsmust satisfy the 
conditions 

(39) 

+n(Xi, i*i7 Xi) + 0 as Xi + 0. 

if the free-particle Hamiltonian is to have a finite expectation value. 

Perturbation theory is a useful source of intuition concerning wavefunctions 
and Fock-state expansions. The electron’s Fock-state expansion, for example, can 
be computed perturbatively. To lowest and first order there are only electron and 
electron-photon components in the physical electron state: e.g. an electron with 
momentum c = (1,O) and positive helicity is described by 

Iphysical el) = let) G-t 

where the electron in ey : x, gl 
> 

has momentum & = (x, cl) and the photon 

has momentum hr = (1 - x, -in). The ey-component of this state is readily 
computed from the light-cone Hamiltonian using ordinary first-order Rayleigh- 
Schrodinger perturbation theory. Schematically this term is given by the expres- 
sion 

c 
I4 (4 1’ I4 

e-f rnz - Pe< 

which is identical in form to the LCPTh amplitude for the diagram in Fig. 7. 
Thus the ey-wavefunctions follow directly from LCPTh: e.g. 

G elyT/et Cx:, ;*I = 
e;tlT(b)&;(kT) *‘YUT(i?) 

rnz - (IS: + xmz)/x(l -x) = 

(41) 

-e(kl - ikz) 
Zj + x2,: ’ 

(42) 

Having computed these wavefunctions, the renormalization constant 22 is fixed 
by the normalization condition for the full electron state; obviously 22 is the 
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probability for finding a bare electron in a physical electron. The wavefunctions 
for an elementary particle like the electron can be used in much the same way 
as the wavefunctions for a composite particle; given the wavefunctions, there is 
little distinction between composite and elementary particles in this formalism. 
Notice that the ey-wavefunctions do not satisfy the boundary conditions discussed 
above, and as a result 22 is not finite. This is of course just the usual ultraviolet 
divergence in QED. As we discuss in the next section, neither of these boundary 
conditions is generally satisfied in the absence of ultraviolet (il -+ co) and 
infrared (x ---f 0) regulators. 

Figure 7. LCPTh amplitude corresponding to the ey-wavefunction for a physical 
electron. 

More generally perturbation theory can be used to compute the high-momen- 
tum behavior of light-cone wavefunctions. The basic ansatz of perturbative QCD 
is that the short distance behavior of the theory is perturbative; only perturba- 
tive interactions are sufficiently singular to contribute at short distances. Conse- 
quently wavefunctions behave in much the same way as perturbative amplitudes 

#2 (in LCPTh) when il + 00. This is evident from our analysis of the non- 
relativistic wavefunction for heavy-quark mesons: the large-q’ dependence of the 
wavefunction is obtained by replacing the meson with an on-shell quark-antiquark 
pair and computing in perturbation theory. A similar analysis in the relativis- 
tic case shows that the pion’s qij wavefunction falls off roughly as l/i: when 

- ;2 I --) 00, just like the LCPTh amplitude for q?j t q*q* that is shown in Fig. Sa. 
Similarly one expects the qqg wavefunction to fall like the perturbative amplitude 
in Fig. 8b-i.e. $I,~J~ N l/\zl] as lZ*l -+ co. 

In addition to determining the large-z* behavior of wavefunctions, perturba- 
tion theory also serves as a guide to modelling such things as the helicity depen- 
dence of wavefunctions. Normally one can say little about the angular-momentum 

#2 This connection can be made precise using the operator product expansion, as we illus- 
trate in later sections. 
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Figure 8. LCPTh diagrams having behavior similar to that of wavefunctions fol 
ii* large. 

content of a model wavefunction, since the angular momentum operators are very 
complicated in light-cone quantization. However perturbation theory can be used 
to produce examples of wavefunctions having particular spin quantum numbers, 
and these can be used to motivate non-perturbative models. For example, to 
see what a pion’s q?j wavefunction might look like, we can treat the pion as an 
elementary particle that couples to the quarks through elementasy couplings like 
$7~5 ii . ?$ or $ysy . d? . ?G. The wavefunction can then be computed pertur- 

- 

batively in much the same way we compute $,y,e above. This wavefunction has 
the correct quantum numbers in the limit where the quark-antiquark interactions 
are negligible, a.nd so it can serve as the starting point for the design of empirical 
wavefunctions to model the pion. Note that such a wavefunction is more sin- 
gular at large momenta than the pion’s true wavefunction; this is the essential 
difference between an elementary particle and a composite particle. 

Further intuition about wavefunctions comes from the physics of nonrela- 

tivistic bound states. In the rest frame, where Ps = P- = A4 and -i;‘l = 0, 
time t and light-cone time r = t + z/c are almost identical for a nonrela.tivistic 
system since the speed of light c is effectively infinite. Consequently the usual 
Schrodinger wavefunction defined at a particular t should be almost the sa.me a.s 
the light-cone wavefunction defined at T M t. To make the connection notice that 
the jth constituent has longitudinal momentum 

k+ = ziA4 = kf + k; rz m; + O(mjv2) + k; (43) 

where the constituent’s energy ko is just its mass m; plus small corrections (due to 
kinetic and potential energies) of O(m;v2) << kf N mjv. Thus the quantity ziA4- 
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mi is effectively equal to k”, and a. Schrodinger wavefunction can be converted to 
a light-cone wavefunction simply by the replacement: kf -+ ziA4 - m,. This is 
also evident when we note that all energy denominators have the form 

- - 
M2 _ c ‘ji,’ mf ENR- c ZTt + (XiM -mmi)2 

i I i 
2772i (44) 

when l~Jl4 - m,/ < nzi. This correspondence indicates that nonrelativistic light- 
cone wavefunctions are sharply peaked at 

. 

2; = "; 
M 

Z*i = 0, (4.5) 

just as Schrodinger wavefunctions are peaked at low & (< m;). This is well 
illustrated by the wavefunction for ground state positronium (or hydrogen) which 
is given by 

when zf, (x~A~ - mJ2 << rnz. Here y - am7 where m, is the reduced ma.ss. 

3.4. RENORMALIZATION 

- 

As we discuss in earlier sections, perturbation theory indicates that hadronic 
wavefunctions do not fall off sufficiently quickly as <z t oo. This leads to 
infinities in the unitarity sum (Eq. (26)), energy expectation values, and in 
the wavefunctions themselves. Of course this is not unexpected given that the 
wavefunctions and the theory are as yet unrenormalized. To make the theory 
finite we must truncate the Fock space by in effect discarding all Fock states with 
light-cone energy /El > A 2. This ultraviolet cutoff can be introduced by using 
Pauli-Villars and related regulators or, equivalently, dimensional regularization. 
These regulators preserve the Poincare and gauge symmetries of the theory. FOI 
our purposes, however, it is simpler and more intuitive to simply truncate the Fock 
space, excluding all sta.tes with 151 or ij greater than some A’. This procedure 
causes no problems in “leading-log” analyses of the sort we are concerned with 
here. The end result is that all loop integrations in LCPTh are finite, and the 
wavefunctions all vanish at large zl. 
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Usually one takes A + 03 when computing. However the key physical char- 
acteristic of renormalizable theories is that this cutoff has no effect on the results 
for any process provided only that A is much larger than all mass scales, energies, 
and so on relevant to the process of interest. So we can compute with finite A. 
This is not to say that states with I&/ > A2 are unimportant-the existence of 
ultraviolet divergences is dramatic evidence to the contrary. Rather it means 
that all low-energy effects due to these very high-energy states can be accounted 
for by redefining the coupling constants, masses, etc. appearing in the effective 
Lagrangian (or Hamiltonian) for the truncated theory-e.g. 

. 
i(‘) = $(ia.y -g(A)A+r - m(A))+ + 1/4F2 + 0 

&.F$ 
A + ... . (47) 

These ba,re parameters vary with A in the usual way, as more or less of the 
high-energy Fock space is absorbed: 

(48) 

In general nonrenormalizable interactions appear as well, but these are suppressed .* 
by powers of l/A, as is suggested by simple dimensional arguments. Also the 
effective Lagrangian can change radically as A passes thresholds for new hea,vy 
quarks, or say for observing quark substructure (if there is any). 

- 

Working with a finite cutoff, the couplings, masses, and wavefunctions of the 
theory are both well defined a.nd well behaved. Furthermore they have a simple 
interpreta.tion. The bare parameters-g(A), m(A). . . -are the effective couplings 
and masses of the theory at energies of order A (i.e. at distances of k l/A). Indeed 
as we shall see, a process or quantity in which only a single scale Q is relevant is 
most naturally expressed in terms of the couplings, masses, wavefunctions, etc. 
of the theory with cutoff A N Q. Of course one must compute with A >> Q, but 
the dominant effect of vertex and self-energy corrections is to replace g(A), m(A), 

$(*I . . . by g(Q), m(Q), G(Q) . . . . Thus as Q is increased, ever finer structure is 
unveiled in the wavefunctions and in the theory. 

The wavefunction T,& (*)(x;, lLi, Xi) h as a multiplicative dependence upon A 

when xi and Zli are held fixed, and when Zli << A”: 
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where Z!*) . 3 IS the usual wavefunction renormalization constant for the jth parton. 

This formula is easily understood by recalling that .Z$*’ is the probability- fol 

finding a “bare” parton in a “dressed” parton. Also it follows that 0 5 Z(*) 5 1. 3 

Furthermore Z!*) ’ 3 generally decreases with increasing A since the effective pha.se 
space, and therefore the probability, for the multi-parton Fock states in a dressed 
parton increases with A. Although the probability shifts from Fock sta,te to Fock 
state with varying A, the total probability is always conserved: 

(50) 

One final modification of theory is required. The pola.riza.tion sum for a gluon 
is singular as the gluon’s longitudinal momentum ks vanishes: 

As a result wavefunctions for states with gluons diverge as kg+ + 0, again contra.ry W 
to the boundary conditions Ey. (39). This singularity is to some ext,ent a.11 
artifact of light-cone gauge. For our purposes it can be regulated by nla.kiug the - _ 
repla.cement : 

(5%) 

Physical amplitudes or cross sections are independent of 5 provided it is s&i- 
ciently small. This implies that gluons decouple when k9$ < 6 for some small 
6. Thus we can use this regulator with a small but non-zero S to obtain wave- 
functions that are well behaved when gluons have vanishingly small longitudinal 
momenta. Typically the cutoff point must be 6 5 (k,)/Q, where (kl) is some 
average of the gluon’s zl, and Q is the momentum scale of the probe. Therefore 
as Q increases, so does the number of “wee” gluons. Notice finally that (kl) 
can never vanish for physical states since very long wavelength gluons cannot, 
couple to a color-singlet state. Thus, with finite S and A cutoffs, all Fock-state 
wavefunctions are well behaved, both as xi + 0 and Zli + co. 
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3.5. CALCULATING 

- - 

In principle the hadronic wavefunctions determine all properties of a. hadron. 
Here we illustrate the relation between the wavefunctions and measurable quanti- 
ties by briefly examining a number of processes. These examples also demonstrate 
the calculational rule for using wavefunctions: i.e. an amplitude involving wave- 

function $&*I, describing Fock state n in a hadron with p = (P’, $L), has the 
general form 

where Ti*) is the irreducible scattering amplitude in LCPTh with the ha.dron 
replaced by Fock state n. If only the valence wavefunction is to be used, Ti”) is 
irreducible with respect to the valence Fock state only: e.g. TL,*) for a pion has 
no qq intermediate states. Otherwise contributions from all Fock states must be 
summed, and Ti*) is completely irreducible. 

?r + pv -. 

The leptonic width of the n* is one of the simplest processes beca.use it 
involves only the qij Fock state. The sole contribution to 7r- decay is from 

(-54) 
where n c = 3 is the number of colors, fx M 93 MeV, and where only the L; = 
S, = 0 component of the general qij wavefunction contributes. Thus we ha.ve 

(55) 

This result must be independent of the cutoff A provided A is large compared 
with typical hadronic scales. This equation is an important constraint upon the 
normalization of the & wavefunction, indicating among other things that there 
is a finite probability for finding a 7r- in a pure & Fock state. 
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Ha.dronic form factor 

The electromagnetic form factor of a pion is defined by the relation 

- - @I- : E’I Jfm 1~ : p) = 2(P + P’)” F (-(P’ - P)“)e (56) 

where J,“, is the electromagnetic-current operator for the quarks. The form factor 
is easily expressed in terms of the pion’s Fock-state wavefunctions by examining 
the p = + component of this equation in a fra.me where e = (1,O) and f’ = 
(1, &). Then the spinor algebra is trivial since ~(&)r+u(Q = 2dm, and 
the form factor is just a sum of overlap integrals that is quite analogous to the 
nonrelativistic result (Fig. 9a): lo 

Here e, is the charge of the struck quark, A2 >> @“, and 

Zli - siql+ {l for the struck quark . 

iii - Xifl for all other partons. 
(58) -’ 

Notice that the transverse momenta appearing as arguments of the first wa\;e- 
function correspond not to the actual momenta carried by the partons but to 
the actual momenta minus zifl, to account for the motion of the final ha.dron. 
Notice also that Tl and il become equal as f’ t 0, and that F, t 1 in this 
limit as a consequence of the unitarity condition Eq. (50). The behavior at large 
f’ is discussed at length in subsequent sections. 

&+A+... 
(4 

Figure 9. Diagrams contributing to the electromagnetic form factor of a hadron: 
a) only terms for ,u = +; b) additional terms for p # +. 
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It is interesting to note that a very different expression is obtained for the 
form factor if one examines some other component of the current, for example 
the ,U = - component. Not only does the momentum dependence of the quark- 
photon become more complicated, but the vertex no longer conserves particle 
number since there are now terms involving transitions q + y* + q + g and 
q + g + y* -+ q, as illustrated in Fig. 9b. These various expressions for the 
form factor must all be equal, and yet there is no simple way of demonstrating 
this fact. The problem is that rotations must be used to relate one expression 
to another, and the rotation operators are complicated in our formalism. The 
equality of these expressions implies a nontrivial relationship between different 
Fock states, a relationship that ought to be incorporated as much as possible into 
empirical models for the pion wavefunctions. 

Note finally that our expression for the pion form factor is actually far more 
general. The helicity-conserving electromagnetic form factor of any hadron has 
precisely the same form. 

Deep inelastic scattering 

The proton’s structure functions are determined to leading order in crS( Q’) by 
the r-ordered diagrams in Fig. 10. Furthermore the only region to contribute in 
this order is c: < Q2 where Q” E fl. Thi s is because the hadronic tiavefunctions - 

are peaked at low zl. This has two important consequences: first, we can neglect 
cl relative to 4;1 to leading order; and second, we can set the ultraviolet cutoff 
A equal to Q since only those Fock states with zl < Q2 are important. The 
structure functions are then 

2~4 Ji(z,Q) = F2h Q) E 
X 

c e: Ga,& Q) 
a 

where, from Fig. 10, 

(59) 

is the number density of partons of type a with longitudinal momentum frac- 
tion x in the proton. (The xb is over all partons of type a in Fock state 12.) 
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This equation leads immediately to a very useful interpretation of the structure 

Figure 10. LCPTh diagranls contributing to the proton’s structure functions for 
deep inelastic scattering. 

function moments: 

1 

J 
dx x~+~G~,~(x, Q) = 

(PI $a7+(iB+)n+1$Cl IP)‘Q’ 

0 
(2Pp+)“+2 (61) 

where the matrix element is between proton states and is evaluated with ultra- 
violet cutoff A = Q, and where the gauge-covariant derivative is D+ = dt in 
light-cone gauge. The Q-dependence of the moments is determined simply by the 
cutoff dependence of matrix elements of (twist-two) local operators! 

4. A PERTURBATIVE ANALYSIS 

In this section we develop the techniques needed to understand exclusive pro- 
cesses with large momentum transfer. This relativistic analysis is very similar to 
the nonrelativistic analysis given in Section 2, and, as in the nonrelativistic case, 
the result is both simple and intuitive. Generally one finds that the amplitudes for 
such processes can be written as a convolution of quark distribution amplitudes 
4(x;, Q), one for each hadron involved in the amplitude, with a hard-scattering 

4’2 amplitude TH. The pion’s electromagnetic form factor, for example, can be 
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written as 3,4,2 

Here TH is the scattering amplitude for the form factor but with the pions re- 
placed by collinear QG pairs-i.e. the pions are replaced by their valence partons. 
The process-independent distribution amplitude4 C&(X, Q) is just the probability 

. amplitude for finding the qQ pair in the pion with xg = x and CX~ = 1 - z: #3 

= P,+ 
J 

dz- ixp+z-/2 -e * 
47r 

(01 iw) & GL(4 i,q (64) 
- c z+ = 21 = 0 

The zl integration in Eq.- (63) is cut off by the ultraviolet cutoff A = Q implicit 
in the wavefunction; only Fock states with energies [El < Q2 are important. - 

The structure of Eq. (62) is very reminiscent of that for the nonrelativistic 
form factor (Eq. (14)). Th e major difference is that here there is a convolution 
over the longitudinal momenta of the partons. In a nonrelativistic meson the 
longitudinal momentum is sharply peaked about x = l/2, and thus the x-y 
dependence of TH plays no role. One can set x = y = l/2 in TH, and factor it 
out of the integral in Eq. (62). Then one needs only Jdx 4, which is just the 
wavefunction evaluated at the origin, to compute the form factor. As far as the 
nonrelativistic meson is concerned the hard subprocess occurs over very short 
distances. The situation is different for a relativistic meson, which is sensitive to 
the fact that the hard subprocess is not really a short-distance reaction. Although 
the volume within which the subprocess occurs is small in the transverse direction 

WLI N l/Q), ‘t 1 can extend over large longitudinal distances: Sz- - l/P: = 
l/m, in the pion’s rest frame. A relativistic meson has structure over such 
distances, and therefore the asymptotic form factor is given by a convolution ovel 

#3 The distribution amplitude is gauge invariant. In gauges other than light-cone gauge, a 
path-ordered “string operator” P exp(Ji ds ig A(s) z must be included between the T ) 
and IJJ. The line integral vanishes in light-cone gauge because A z = A+z-/2 = 0 and so 
the factor can be omitted in that gauge. This (non-perturbative) definition of C#J uniquely 
fixes the definition of TH which must itself then be gauge invariant. 
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longitudinal momentum. Note that the subprocess is still restricted to a region 
very near the light-cone--i.e. Sz2 = 6z+6z- - 651 N -1/Q2. Such “light-cone 
dominated” processes can still be analyzed perturbatively. 

The distribution amplitude is only weakly dependent on Q, as is evident from 
the evolution equation 4’2 (which we derive below): 

Q-&,d4x,Q) = j dy V(x, Y, 4Q2)) MY, Q) (65) 

0 

v(x, y, (rs(Q2)) = as(Q2) 6(x, Y) + &Q", Vi@, Y> + . . . (66) 

The bulk of the Q dependence comes from TH. To leading order in o,(Q’), TH is 
obtained directly from the form factor for y* + qq -+ qij, where the mesons have 
been replaced by collinear qq pairs: 

TH(&Y,Q) = 
%(x, Y 7 Q) 

[x( 1 - 5)y( 1 - y)]]‘” 
(leading order). (67) 

Beyond leading order only the “collinear-irreducible” part of F,q is retained: a,11 
mass singularities are systematically subtracted out since contributions from low 
momenta are already included in the distribution amplitudes. Therefore we can 
neglect all quark and meson masses in TH, leaving Q as the only scale. The 
amplitude must then have the general form 

TH(x, 9, Q) = $ f(x, Y, 4Q")) (6s) 

where n = 2 from simple dimensional arguments. This means that the pion 
form factor falls as l/Q’, up to logarithms of Q. In general the dimension of 
an amplitude is [energy]+ where n is the total number of quarks, gluons, and 
leptons in the initial and final states of the process: e.g. n = 6 - 4 for the pion 
form factor since the process er + e7r involves four partons and two leptons. 
This “dimensional-counting rule” implies that the nucleon form fa.ctor falls off 
roughly like l/Q4 with increasing Q, since there is one additional parton in each 
of the initial and final states of TH relative to the pion case and thus n = 8 - 4. 

Generally the more partons that must be scattered from the initial to the final 
direction, the more powers of l/Q there are in the form factor. 
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Figure 11. The q+irreducible diagrams contributing to the qij form factor 

A second consequence of neglecting masses in TH is that total quark helicity 
is conserved6 since the vector couplings with gluons cannot flip the helicity of 

#4 massless quarks. By its definition 4 carries no helicity, and so the helicity of 
the hadron equals the sum of the helicities of its valence quarks in TH. Thus; 
for example, hadronic helicity is conserved in high-Q2 form factors-i.e. helicity- 
flip form factors such as the nucleon form factor F2 are suppressed by additional 
powers of m/Q. 

In the following sections we derive these results for the pion’s electromag- 
netic form factor; the techniques generalize readily to other large-p* processes. 
We discuss how the distribution amplitudes might be computed nonperturba- *’ 
tively. We examine problems that arise in certain processes due to singularities 
in TH. Finally, we address the critical question of how large Q must be for these 
asymptotic results to hold. We do this by examining competing mechanisms and 
by investigating the self-consistency of perturbation theory. 

4.1. FACTORIZATION-LEADING ORDER ANALYSIS 

The pion’s form factor can be written in terms of its qq wavefunction alone: 

Here T is the sum of all qq-irreducible LCPTh amplitudes contributing to the qij 
form factor for y* + q?j + q?j (Fig. 11). The ultraviolet cutoff is A >> Q. 

#4 The helicity-projection operators for massless quarks are just 1 AZ 75. Noting that, for 
example, that the vertex ~ly“(l - y5)21 equals Ut(l - ys)tyOypu, we see that the vector 
coupling of the gluons with the quarks preserves quark helicity. This would not be the 
case if the gluon was a scalar where, for example, the coupling might be E(l - 75)~ which 
equals zlt(l + -ys)ty’u and flips the quark’s helicity. This same sort of argument can also 
be used to explain why massless neutrinos are always left-handed. 
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Consider first the disconnected part of T (Fig. lla). For the moment we 
ignore renormalization diagrams, and consider only terms where the photon at- 
taches to the quark line. The disconnected part then gives a contribution 

. 
to F,, where eq is the quark’s electric charge. The analysis of this contribution 
follows closely that of the nonrelativistic form factor. The integral is dominated 
by two regions of phase space when Q2 is large since the wavefunctions are sharply 
peaked at low transverse momentum: 

1) \zl/ << (1 - z)Q, where $(*)(x, zl) is large; 

2) 161 + (1 - x)qil << (1 - r)Q, where +(*)*(x, cl + (1 - x)<l) is large. 

Inregionl), ~~canbeneglectedini,(*)*(a.,~~+(l-z)g’i)until I<11 ~(l-r)Q, 
at which point 1c, (‘1 begins to cut off the il integration. Thus in region 1) we 
can approximate Eq. (70) by 

1 (I-x)Q 

eq &XII, 
J 

@)*(x; (1 - x)&) 
J 

d2& (A) 
sti (&I. (71) 

0 

The bulk of the integral comes from lZl[ < (1 - x)Q. Similarly we obtain the 
following contribution from region 2): 

One can easily show that these approximations are valid to “leading-log” order-- 
i.e. up to corrections of 0(1/log(Q’))-g iven that + falls off roughly as l/i: in 
QCD. 

Again as in the nonrelativistic case, we can use the bound-state equation for 
the valence wavefunction (c.f. , Eq. (32)) t o ur f th er simplify these expressions 
by isolating the g’ dependence of the stressed wavefunctions. The equation for 
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v+!J(*)(x, (1 - x)~L) is 

where we have neglected masses in the energy denominator. As above the dom- 
nant contribution here is from Iill < (1 - y)Q, and so we can approximate this 
equation to leading-log order by 

(l-Y)Q 

$j&A)(y,i,). (74) 

It is readily demonstrated that V&(x, (1 -x)<L; y, 0) is f ree of mass singularities in 
#5 light-cone gauge. Consequently all loop momenta are of order Q or larger, and 

perturbation theory can be used to compute V&. To leading order Vef involves 
the exchange of a single gluon between the quark and antiquark. 

Combining Eq. (74) with Eqs. (71) and (72) we arrive at a simple expression 
for the contribution to F, coming from the disconnected part of T (Eq. (70)): 

.w 

1 1 

J J 
da: dy 4i(y, (1 - d&J eq T$%, y, Q) 4oh Cl- 4&b (75) 

0 0 

Here the unrenormalized quark distribution amplitude $0 is defined by 

#5 Mass singularities do occur in Veff(z, (1 - z)<l; y, 0) when using covariant gauges. They 
arise because the external quarks that carry no transverse momentum in this amplitude 
are effectively on energy-shell. In most covariant gauges such a quark couples strongly to a 
nearly collinear gluon, resulting in an integral over the gluon’s transverse momentum that 
is logarithmically sensitive to masses and other low-momentum scales: e.g. s drT/(rj + 
O(m*)). In light-cone gauge the coupling between a gluon and an on-shell quark vanishes 
as the gluon becomes collinear with the qua_rk. This means there is an extra factor r’,/Q 
in the integral over the gluon’s momentum 11, and thus the logarithmic dependence upon 
masses is removed. Indeed all contributions from IT;] << Q are strongly suppressed. The 
only diagrams that lead to collinear singularities in light-cone gauge are ones in which 
a gluon is exchanged between two nearly on-shell quarks (or gluons) that are collinear 
with each other. Such diagrams do not contribute to Vex since they are not two particle 
irreducible. 
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and the hard-scattering amplitude $$) is given by 

Ty = v,ff(q(l - +LY,O) 
1 

-<f(l - x)/x + (x ++ Y>- 
- - 

(77) 

Note that Tg) comes from part of the LCPTh amplitude for y* + qTj t q?j (Fig. 
1TZa). 

(a) x, 01 YI Yq 
\S /I I 

1 -Y, i -Yq, 

_ +J+ yq+... 
I I I I 

(b) 
lb) T, = 

+I-- 
V eff 

I 
= 
$5 I I + . . . 

3-m I 63,5A12 

Figure 12. The unrenormalized hard-scattering amplitude for the pion form 
factor. 

In addition to the disconnected parts, the connected part T, of T contributes 
to Eq. (69) as Q --+ co (Fig. 11 b). By the same reasoning used above, we can 
neglect il and zl relative to <’ in T, to obtain a formula that is identical to Eq. 
(75) but with eq TH (‘) replaced by (Fig. 12b) 

e Tcb) = 
T&, 0; Y > 0; 6) 

* H [x(1 - z)y(l - y)]1’2’ 
(78) 

Again T, is free of mass singularities (in A + = 0 gauge) and can be computed 
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perturbatively. 

Still ignoring renormalization, the otherwise complete result is therefore 

- - 

. where we have now included contributions for the photon attaching to each 
the quark and the antiquark. The unrenormalized hard-scattering amplitude 
lowest order is given by 

of 
in 

T& y Q) = Tj;l) + T;) = ‘& CF as(A2) 
7 7 (1 - s)(l - y)Q” w 

which is just the Born amplitude for a collinear qij pair to scatter with the virtual 

photon (divided by [z(l - z)y(l - Y)]~‘~). 

Finally we must consider the effects of vertex and propagator corrections in 

TH (Fig. 13). Each of th ese corrections involves propagators off energy shell ‘* 

Figure 13. Vertex aud propagator corrections to the hard-scattering amplitude 

by O(Q”) and th ere ore all loop momenta are of order Q or larger (in .4+ = 0 f 
gauge). It is then a straightforward consequence of renormalization theory that 
the propagators and vertices are modified only by the factors 

Z!A)/Z(Q) for propagators 8 t 

(Q) (*) 2; /Zi for vertices 

up to corrections of O((IY~(Q’)), where Z/*) is the usual renormalization constant 
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with ultraviolet cutoff A.#” Thus in leading order 2$ is multiplied by (Fig. 13) 

(82) 

where .Z$) renormalizes quark-gluon vertices, and .Z$*) and Z$*’ renormalize the 
quark and gluon propagators. Here we use the fact that cr, is renormalized by 
2~(Z2/Z1~)2-i.e. that ~,(A2)Z~A~(Z~A~/Z~~F))2 is independent of A. Also the 
photon-quark vertex correction in this amplitude cancels the quark-propagator 
correction by the QED Ward identity. So Eq. (79) is corrected to give 

K(Q2) = eq Td? 9, Q> $(x7 (1 - 4Q) + (4 * 3) 
0 0 

(83) 
where now the leading-order hard-scattering amplitude is 

167r CE‘ 4Q2> 
TH(x7 y’Q) = (1 _ x)(l _ y)Q2 

and the distribution amplitude is given by 

(84) 

(85) 

Since the bulk of the integral in Eq. (85) comes from zf < Q2, we can use Eq. 
(49) to redefine 

where now the il cutoff at I$* 1 N Q is implicit in the definition of the wavefunc- 
tion. Our equations now have the general form proposed in the introduction to 
this section. 

#6 For example, the full unrenormalized quark propagator has the form ~F(A/Q, c~~(A’))/(q. 
y) as Q* = -q* + 00. Since the quark is far off energy shell do is independent 
of masses in this limit. Furthermore the A dependence can be removed by dividing 
with the renormalization constant 2, (*I. Thus the quantity ~F(A/Q, a5(A2))/ZiA’ must 
equal d~(l, aS(Q’))/ZiQ), up to corrections of C?(O~(&)) due to the fact that A/Q is 
not large in the second case. Since d~(l,cr~(Q*)) = 1 + c1(cys(Q2)), the final result is 
~F(A/Q, cr$(A*)) = Z$A’/Z.$Q’, again up to corrections of S(O~(&“)). 
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The major effect of the renormalization corrections is to replace os(A2) by 
(rs(Q2) in the hard-scattering amplitude, and $(*) by G(Q) in the distribution 
amplitude. This is exactly what is expected on the basis of our earlier discussion 
of renormalization. The only physical scale in TH is Q and so a,( Q2) is the natural 
expansion parameter. Furthermore TH only probes structure in the wavefunctions 
down to distances of 0(1/Q). Thus the wavefunction G(Q), defined in a theory 
with cutoff Q, incorporates hadronic structure over all distance scales relevant to 
the physical process. Structure at distances smaller than l/Q is irrelevant except 

_ insofar as it determines (r,(Q2), m(Q). . . . 

. The leading order result for TH is consistent with the dimensional-counting 
prediction for the pion form factor: i.e. TH N l/Q2 up to logarithms of Q. This 
rule also shows why it is tha,t only the valence Fock state is relevant for large 

-- Q. For example, the hard-scattering amplitude for scattering a collinear qqqq 

state has four additional partons and so must fall as 1/Q6; this amplitude has 
many more far off-shell (- Q2) ’ t m ernal propagators than does the qi!j amplitude. 
The same is true of states with additional gluons provided that one is working in 

#7 light-cone gauge. 

4.2. THE QUARK DISTRIBUTION AMPLITUDE 

Everything one needs to know about the pion in order to compute the asymp- 
totic form factor is lumped into the quark distribution amplitude $(x:, Q)P,’ Ob- 
viously C$ is intrinsically nonperturbative. However its variation with Q can be 
studied in perturbation theory. To see this we differentiate Eq. (85) with respect 
to Q to obtain 

#7 A hard-scattering amplitude with additional gluons can contribute to leading order in 
l/Q when covariant gauges are used. For example, adding a single gluon to the q?j hard 
scattering amplitude introduces one additional denominator of c3(Q2). In addition there 
is typically a numerator factor of C3(E q), where E is the gluon’s polarization vector. So 
such an amplitude is suppressed by E . q/Q2 k l/Q in light-cone gauge where E+ = 0. 
However other ga.uges can have E q M &+q- N Q’, in which case the amplitude with an 
additional gluon is not suppressed at all. 
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where 7~ is the anomalous dimension associated with &-- 

Q-.&iQJ = --YF(~&~)) ZiQ) 
- - 

dy 1+ (1 - Y12 
(88) 

=- 
Y 

. 
(The singularity at y = 0 in this equation cancels in the final result because the 
meson is a color singlet.) The first term in Eq. (87) represents the change in 
the probability amplitude $ due to the addition of more qQ states as the cutoff Q 
is increased, while the second term represents the loss of probability from those 

(Q) already present, as 2, decreases. By using the bound-state equation as in Eq. 
(74), we can express ~,!I(*)(x, &) in terms of $(x, Q). To leading order we need 
only consider one-gluon exchange between the quark and antiquark, and this gives 
(Fig. 14) 

where again cys(A2) is converted to a,(Q2) by propagator and vertex corrections. - _ 
Substituting into Eq. (87) we obtain finally the leading-order evolution equation4 

Figure 14. The qij wavefunction for <: = Q2 large. 

for d: 



where the evolution potential is 

v(W/) = 4cF +-Y&t-z) 
.( 

X4--+1-Z 
- - y-1-y. 

Operator A in the potential is defined by 

n ~(Y,Q) - 44y,Q> _ d&Q) 
Y(l - Y> Y(l - Y> x(1 - x)’ 

Also h and h are the helicities of the quark and antiquark (S-, h = 1 for pions). 

The evolution equation completely specifies the Q dependence of $(x, Q): 

given 4(x7 Qo), 4(x, Q) is d t e ermined for any other Q by integrating this equation, 
numerically or otherwise. Still it is instructive to exhibit explicitly the most 
general Q dependence. Using the symmetry V(z, y) = V(y, LC) to diagonalize V, 
the general solution of Eq. (90) is easily shown to be#’ 

n=O 

Q2 ( ) log ~ 
&xl 

-m/zp, 
(93) - 

where#’ 

(n+ l)(n +2) z O. (94) 

By combining the orthogonality condition for the Gegenbauer polynomials and 
the operator definition of C$ (Eq. (64)), we obtain an interpretation for the ex- 

#8 The evolution potential V(z, y) can be treated as an integral operator. Being symmetric 
it has real eigenvalues y,, and eigensolutions &(y) that satisfy s dy V(x, y) w(y)&(y) = 
;in &(z) where integration weight W(Y) s l/(y(l - y)). The eigensolutions must be 
orthogonal with respect to weight W(Z), from which it immediately follows that &(z) 0: 
~(1 - XC) Cz”(2a: - 1) where C,“‘2 1s a Gegenbauer polynomial. It is a straightforward 
exercise to now extract analytic expressions for the eigenvalues. Given the eigenvalues a 
general solution of the evolution equation can be written down as an expansion on the 
complete set of eigensolutions, as we do here. 

#9 Note that k&D is the scale appearing in the running coupling constant; it has nothing 
to do with the ultraviolet cutoff A. Recall also that CF = 4/3 and PO = 11 - 2n,/3 where 
nf is the number of quark flavors. 
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pansion constants in Eq. (93): 

- - 

4(2n+l) ’ 

= (2 + n)(l + n) o J 
dx C;‘2(ix - 1) 4(x, Q) 

(95) 

4(2n + 3, 

= (f!$n)(l+n) I c 

(o,q if& c;/“@+, G I,)(Q) 

-the an’s are just matrix elements of local operators. 

. 

- 

This analysis shows that the distribution amplitude can be expressed as a 
sum of matrix elements of local (twist-two) r1’12 operators. This sum is just the 
operator-product expansion of the operator $(O)r+r5$( z) in Eq. (64). Such an 
expansion is warranted since the separation between the fields is very nearly on 
the light cone: .z~ = Z+Z- - Z’j = 0(l/Q2). The Gegenbauer polynomials also 
appear very naturally in this context, as a consequence of the residual conformal 
symmetry of QCD at short distances. All of the dimensionful couplings in the 
QCD lagrangian can be dropped at very short distances, and so the classical the- 
ory (i.e. tree order in perturbation theory) becomes invariant under conformal 
mappings of the space-time coordinates. This conformal symmetry- is destroyed ~ 
in the quantum field theory by renormalization, which necessarily introduces a 
dimensionful parameter such as the cutoff A. However the evolution potential for 
4 is given by tree diagrams in leading order, and so the leading-order potential 
ought still to be consistent with the requirements of conformal symmetry. One 
such requirement is that local operators that are multiplicatively renormalizable 
must transform irreducibly under conformal transformations. In the case of me- 
son operators conformal symmetry is enough by itself -to uniquely specify the 
structure of the these local operators. As these are the operators that appear 
in the operator-product expansion, conformal symmetry completely specifies the 
structure of the expansion for 4. These ideas do not easily generalize beyond 
leading order.r3 

The operator-product analysis of the distribution amplitude suggests an im- 
portant constraint on 4. The n = 0 Gegenbauer moment of the distribution 
amplitude is proportional to the amplitude for pion decay (c.f. Eq. (55)): 

1 

J 
dxqS(x,Q) = L 

q/K’ 
0 

(96) 

Given the shape of 4(x,&) th is e ua ion normalizes it for any Q. Note that the q t 
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value of this moment is Q independent. This is because the n = 0 operator is just 
the axial-vector current operator. As far as its ultraviolet behavior is concerned, 
this operator is conserved and so its anomalous dimension vanishes: ~~=o = 0. 
Notice also that yn > 0 for all other n. Thus only the n = 0 term in the expansion 
of 4(x, Q) survives when Q becomes infinite: 

4(x, Q) + $x(1- 4 asQ+oo. (97) 

. So-$(x, Q) is completely determined for pions when Q is very, very large. 

Notice finally from Eq. (89) that T$*)(x,&) does in fact fall as l/c!, up to 
logarithms, as & grows. The high-momentum or short-distance behavior of the 
Fock-state wavefunctions is perturbative in nature, and as a general rule is crudely 
that of simple Born amplitudes in light-cone perturbation theory. In particular 
wavefunctions are no2 exponentially damped at large {l, as is frequently assumed 
in phenomenological studies. 

4.3. DETERMINATION OF DISTRIBUTION AMPLITUDES 

Large-p1 exclusive processes, like most other high-energy processes, involve - 
physics both at short distances and at long distances. A special feature of the 
large-p1 processes is that we are able to separate short from long distance physics 
in a relatively simple fashion. This allows us to analyze each regime separately, 
using the tools best suited to that regime. The hard-scattering amplitudes and 
the evolution potentials for distribution amplitudes embody the short-distance 
physics; they are most effectively analyzed using perturbation theory. However 
perturbation theory is largely useless for determining anything about the dis- 
tribution amplitudes beyond their Q-dependence. The distribution amplitudes 
contain the long-distance physics of a large-p1 process, and as such require some 
sort of nonperturbative treatment. 

Given that the distribution amplitude is intrinsically nonperturbative one 
might wonder whether it isn’t just as well to treat the entire process nonpertur- 
batively. This is generally a very bad idea. Any nonperturbative analysis of a. 
large-p1 process would have to deal accurately with QCD dynamics over a huge 
range of momentum scales-e.g. a vast grid would be required in lattice QCD if 
one wanted to accommodate both the relatively small momenta that characterize 
hadronic structure and the very large momenta transferred in the process. Such 
an analysis would be very inefficient. Instead we can use our renormalization- 
group analysis to “divide and conquer” the problem in pieces. First we compute 
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the distribution amplitude $(z, Qa) for some small &a, of order a few GeV, us- 
ing a nonperturbative technique. The range of relevant momentum scales is quite 
modest for this part of the analysis. Then we use the perturbative evolution equa- 
tions to evolve $(z, Q) out to the large values of Q characteristic of the process. 
The evolution equations build ‘up the short-distance structure of the hadronic 
wavefunction and are trivial to apply. Finally we combine the distribution am- 
plitudes with the hard-scattering amplitude, which incorporates (perturbatively) 
the short-distance structure particular to the process. 

. 

We can illustrate the nonperturbative analysis of distribution amplitudes 
with a brief discussion of two such analyses, one using lattice QCD’““’ and 

the other QCD sum rules.r6 Both methods are based upon the behavior of matrix 

elements of the form (01 TI’;(O) I’j(t) 10)cQo’ where each I’;(t) is the spatial avera.ge 
of a local operator like those in Eq. (95): 

rip) f + 
J 

d3iq5,t). (9s) 
V 

By inserting a complete set {In)} of h a d ronic eigenstates between the two oper- 
ators it is easy to see that .w 

(01 ri(t)ri(o) 10)cQo) = x(01 r;(0)In)(Qo) (72jrj(0)10)cQO) emiEnt (99) 
n 

when t > 0. The matrix elements multiplying the exponential in the sum are 
precisely those that determine the moments of the distribution amplitude for 
state In). 

- 

In the lattice analysis ordinary time is analytically continued to euclidean 
time so that it + t, and the cutoff Qo is determined by the lattice spacing. The 
matrix element in Eq. (99) is computed for large t. The sum is then dominated 
by the lowest mass state Ino) that couples both to I; and rj--e.g. the pion for 
operators taken from Eq. (95)-and so for sufficiently large t the expectation 
value has the form 

(01 r;(t) rj(O) Io)cQo’ + (01 ITi Ino) (noI rj(o) lo)(Qo) ,-*lot (100) 

where MO is the mass of state Ino). The moments of the distribution amplitude 
for the lowest-lying state can be read off directly from the large-t behavior of the 
I; l?j-amplitude. 
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QCD sum rules 
16 can be derived for the Fourier transform of the matrix 

element, 

- - Iij(q2) = 
J 

dt eigt (01 IT;(t) r,(O) 10)cQo', (101) 

analytically continued deep into the euclidean region q2 < 0. Amplitude Jij(q?) 
can be computed in two ways as q2 + -oo. First, since the two operators are 
forced together in this limit, the operator product expansion can be used to re- 

- late the amplitude to vacuum expectation values of such local operators as crS J’$ 
. and &UU. Th ese matrix elements are universal and their values are usually 

inferred from other processes. On the other hand, the spectral decomposition Eq. 
(99) can be used to relate 1ij(q2) to th e moments of the distribution amplitudes 
for hadronic states In). In practice the sum over hadronic states is replaced by a. 
sum over a few low lying hadrons together with a continuum contribution approx- 
imated by the formula for free quarks, the threshold being a tunable parameter of 
the model. The moments are extracted by fitting the spectral formula for I;j(q”) 
to its operator product #lo expansion. 

- 

Each of these methods-currently suffers from large systematic uncertainties 
and so one must be cautious in accepting results derived using them. Neverthe- e 
less such results form a reasonable starting point for phenomenological studies. 
Furthermore these methods have played an important role in alerting us to the 
potential complexity of hadronic distribution amplitudes. For example, one might 
have expected a relatively smooth distribution amplitude for the pion, not too 
different perhaps from its asymptotic form ~(1 - x). However the sum rules, for 
example, seem to imply a double-humped distribution z( 1 -x)(2x - 1)“. The sum 
rule predictions for baryons are even more remarkab1e;e.g. 65% of the proton 
momentum is carried by the u-quark with helicity parallel to the proton, while 
the remaining quarks split the remainder in this model. It is unclear how seri- 
ously one should take such predictions, but it is clear that unusual z-dependence 
is a distinct possibility for hadronic distribution amplitudes. It is also clear tha.t 
the reliability of the these nonperturbative techniques, particularly the lattice 
analysis, will improve substantially in the not-too-distant future. 

Note finally that it was essential for our nonperturbative calculations that the 
distribution amplitude have a nonperturbative definition--i.e. in terms of opera- 
tor matrix elements in a cut off field theory. Had the distribution amplitude been 

#10 In actual practice this procedure is modified to employ a Bore1 transform so as to de- 
emphasize the high-mass region. 
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defined in terms of perturbative constructs, it would have been almost impossi- 
ble to carry that definition over into a nonperturbative framework such as that 
provided by lattice QCD. In general it is important to provide a nonperturba.tive 

- - characterization for the contributions omitted from the perturbative analysis of 
a process. 

4.4. HIGHER ORDER ANALYSIS 

. 

The leading-order formula for the asymptotic pion form factor results from a 
series of approximations. One can systematically undo these approximations to 
obtain 17’18 O(as(Q2)) corrections to F,( Q2). F or example in our leading-order 
analysis of the disconnected contribution 

we assumed that large transverse momentum flows through one or the other wave- 
function. We ignored the contribution from the region where large momentum 
flows through both wavefunctions: & N &- + (1 - x)f N (1 - x)qi. The.* 
contribution from the latter region is easily estimated. We can use the bound 
state equation to replace both wavefunctions by a convolution of the perturbative 
potential with the distribution amplitude (Eq. (74)) to obtain a contribution 

1 

JJ 
dy '~~B~(~,(~-~)Q)T~(Y,~,Q)Bo(Y,(~-Y)Q)- (103) 

0 0 

where 

1 

T2(y,z,Q) = dx 
J J 

d2h v,,(.q 0; x, & + (1 - x)&) 

16x3 -( il + (I- x)qy’/x( 1 - x) eq 
Kff(X,LY>O) 

- 

0 
-Zj/x(l - x) . 

The zl integration in this expression must be restricted to the region where both 
il and ZJ- + (1 - x)& are large, because the contributions from the regions where 
one or the other vector is small are already included in the leading-order result. 
One way to restrict the range of zl is to introduce collinear subtractions tha,t 
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remove precisely the contribution included in the leading-order analysis. The 
region where Icl is small is removed by subtracting 

- - 
1 (I-x)Q 

T?(Y,z,Q) = dx 
J J 

d2h K&, 0; x, (1 - 4T.d V&(X, &; Y, 0) 

0 
is -((l - x)&)2/x( 1 - CC) eq -ij/x( 1 - x) . 

where we neglect c; relative to (1 - x)qi and integrate over I;* I < (1 - CC)&, 
just as in the leading-order analysis (c.f. , Eq. (71)). Similarly the region where 

- L+(1-z)gi is small is removed by - . 

1 (l-x)Q 

T12(y,z, Q) = da: 
J J 

d’t& V&, 0; cc, &, veff (xc, -(1 - x)41; Y, 0) - 
16~~ -i:/x(l - x) eq -((l - z)qJ2/x(1 - 2)’ 

0 
(105) 

where we have changed variables so that il + (1 - x)<’ --+ il. The subtracted 
amplitude (Fig. 15a) contains only large momenta when Q is large, and thus 
it can be computed perturbatively and gives an O(c$(Q2)) contribution to the 
hard-scattering amplitude _TH. All masses can be neglected, and no logarithms 
of Q can arise from the zl-integration since Q is the only scale left after the 
subtractions. 

A similar analysis can be applied to the bound state equation to obtain higher 
order corrections to the formula relating the high-<* wavefunction and the distri- 
bution amplitude (Eq. (74)). Th ese corrections lead to additional O(c$) contri- 
butions to TH (Fig. 15b), and to O(CY~) contributions to the evolution potentia.1 
V. In addition to these higher-order corrections, there are corrections coming 
from the one-loop (and higher) qq-irreducible diagrams,-both for TH (Fig. 15~) 
and for V. As discussed in earlier sections, these irreducible amplitudes have no 
sensitivity to low momenta when they are computed in light-cone gauge, and thus 
they are perturbative when Q is large. 

- This procedure can iterated to produce still higher-order corrections to the 
hard-scattering amplitude and to the evolution potential. In this way one es- 
tablishes the self-consistency of the factored perturbative result to all orders in 
perturbation theory. The only complication arises when endpoint and/or pinch 
singularities appear in the hard-scattering amplitude, and these we discuss in the 
next section. 

A systematic analysis of higher order corrections, based upon Mueller’s cut- 
vertex formalism, has been given in Ref. 19. Using this method, the validity of 
the perturbative expression for the meson form factor has been established to all 
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Figure 15. Diagrams contributing to the second-order hard-scattering amplitude 
for the pion form factor. 

orders in perturbation theory. The one-loop corrections have also be& calcula.ted-’ 
for the meson form factor.17’18 

4.5. COMPLICATIONS 

The perturbative analysis of large-p1 processes relies upon the fact that the 
hard subprocess is confined to a small volume near the light-cone. This is a 
consequence not of the kinematics of the process but rather of the dynamical 
behavior of the hard-scattering amplitude TH, all of whose internal propaga.tors 
are typically far off shell (1E1 - Q”). Unfortunately the 2 integrations in the 
perturbative formula can include points where internal lines in TH go on shell. 
In form factors these points show up as singularities in TH at the endpoints of 
the integration--i.e. x = 0 or x = l-and so they are referred to as endpoint, 
singularities.lg Singularities can also occur at intermediate values of x in hard- 

scattering amplitudes for hadronic scattering amplitudes; 20 these are referred to 

#11 as pinch singularities. Perturbation theory breaks down in the vicinity of such 

#ll In the covariant calculation of a Feynman amplitude every internal propagator has singu- 
lar points. Usually these singularities are avoided by deforming the integration cont,ours 
into the complex momentum plane. A singularity that occurs at the endpoint of a con- 
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singularities, and so our perturbative results are jeopardized if large contributions 
come from such regions. 

Remarkably it is just in the endpoint 
19,4 and pinch regions 

21 
that Sudakov 

- - 

. 

form factors appear. In these regions individual quarks (or gluons) tend to scatter 
independently of the other partons comprising the hadrons. An-isolated, nearly 
on-shell quark wants to radiate gluons when it scatters, the amount of radiation 
increasing as the change in the quark’s state of motion becomes more dra.stic. 
In an exclusive process such bremsstrahlung is prohibited, and as a result the 
amplitude is suppressed. This phenomenon is apparent in perturbation theory. 
For example, in computing the electromagnetic form factor of a. single quark one 
obtains double logarithms of Q2 coming from the radia.tive corrections to the 
quark-photon vertex. These exponentiate when summed to all orders to give a 
quark form factor that ultimately falls faster than any power of l/Q. This is the 
Sudakov form factor. Such form factors tend to suppress contributions coming 
from the endpoint and pinch regions. 

Note that double logarithms of Q and Sudakov form factors only appear in 
the vicinity of singularities in TH. In other regions all of the constituents of 
each hadron are involved in the same hard subprocess. The collinear bunches of 
partons representing each ha,dron in TH carry no color charge, and thus the soft 
gluons that normally build up Sudakov form--factors decouple. . * 

In this section we examine the contributions coming from the endpoint and 
pinch regions. We show where these contributions come from and why Suda.kov 
suppression is expected. 

Endpoint Singularities 

Our analysis of the qa contribution to Fr(Q2) for large Q2 depends upon the 
assumption that either zl or zl+ (1 - x)& is O(&) in the overlap integral 

(106) 

-i.e. that large momentum flows through one or the other of the wavefunctions. 
This is certainly the case except in the infinitesimal region where 

1 - x N X/Q WV 

if X is the typical transverse momentum in the wavefunction. Within this “end- 

tour obviously cannot be avoided in this fashion; this is how endpoint singularities arise 
in exclusive amplkudes. In addition it is possible for a contour to be trapped or pinched 
between two singularities. This is how pinch singularities arise. 
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point region” both wavefunctions carry small transverse momentum (- A). The 
meson form factor receives a contribution from this region of order 

- - 1 
b(Q2) - J dx It,b(“)(x,~)1~ w .! 

0 

1+26 

Q 
1-G 

. 

when $(“)(x, A) va.nishes like (1 - x)~ as x + 1. This mechanism, in which 
spectator quarks are stopped rather than turned, was actually the first parton 
model suggested for hadronic form factors. To assess its importance here we 

require information about the q?j wavefunction as x + #la 1. The q? state in the 
pion is far off shell in the endpoint region- 

[El - x2 x(1 - x) N XQ 

-suggesting that perturbation theory might be a reasonable guide to the behavior 
of the wavefunction (Fig. 16). Perturbation theory implies 5 = 1 and thus the 

w 

i 

Figure 16. Born amplitudes whose behavior might be similar to that of the 
hadronic wavefunctions as I + 1. 

endpoint contributions fall as (X/Q)3, down by a full power of X/Q relative to 
the hard-scattering contributions. 

#12 We consider only the valence Fock state here since the phase space in the case of 17 
spectator partons goes like (X/Q)“- small numbers of spectators are favored. 
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The analysis is similar for baryon form factors where 

- - 

1 X/Q 

J J 

24-26 

FEp(Q2) - dxl dx2 1$(*)(x;, X)j2 w 
0 

x 
Q _- 

(1 10) 
l-$ 0 

Perturbation theory again gives S = 1, but here the endpoint contribution seems 
to be suppressed by only two powers of (r,(XQ) re a ive to the hard scattering 1 t 
prediction: 

d(XQ) . FEF rv Q4 - &Q)FHs. (111) 

Endpoint singularities are far more severe in the nucleon form factor than they are 
in the meson form factor. In general they are equally severe in more complicated 
process, such as hadron-hadron scattering. 

In fact the suppression of the endpoint region is probably a good deal stronger 
than these equations indicate. As far as the photon is concerned the struck quark 
is very nearly on shell in the endpoint region since ICI w XQ << Q’. Furthermore 
only the struck quark participates in the hard subprocess in this region; it behaves 
as though isolated from the other quarks over time scales of c3( l/m). Conse- 
quently the endpoint contribution to the amplitude is suppressed by a Sudako\f 1~ 
form factor, and most likely is negligible when Q is sufficiently large. 

Pinch Singularities 

The pinch singularity 20’21’22 is most serious in hadron-hadron scattering. As 
an illustration consider the diagram in Fig. 17a, which contributes to T-T scat- 
tering. Three-momentum conservation requires 

xa + xb = xc + xd 
(112) 

- where cla... i Id are the transverse momenta appearing in the wavefunctions 
for each of the pions, xa . . . xd are the longitudinal momenta, and where the 
relativistic invariants for the process are 

t = -$ (113) 

with ?l. fl = 0. At high energies and wide angles, +‘T and <’ are both large, and 
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so at least one of Zla.. . Z ld must be large for most values of X~ . . . xd. Then, 
as in our analysis of the meson form factor, the wavefunction with large Icl is 
replaced by a gluon exchange to give a hard-scattering amplitude, as depicted in 

- - Fig. 17b (where ~~~ is large). Dimensional counting then implies 

TH 
4 N -pcM;Xa...xd) (114) 

for this contribution. Also the energy denominator in D in Fig. 17a, 

D = (xC-x,)~~+(x~-x,)~~+2(~~~-~~a).Q1+2(~~c-~~~).~*+. . .+it, (115) 

is of O(s) indicating that the two quark-quark scatterings occur within a very 
short time of each other. 

Xa’ xa PQ+ ‘1) + k,a 

1, 

(4 
Id 

(b) 

3-609 6315A16 

Figure 17. a) Diagram contributing to R-B scattering. b) Hard scattering am- 
plitude coming from a). 

Notice however that in the pinch region, 

all wavefunction momenta il(l . . . ild can be small (- X). Furthermore the 
denomina.tor D is U(XJ) s or ess, and can even vanish. Thus the two quark-qua.rk 1 
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scatterings can occur more or less independently, at widely separated points. The 
scattering process is no longer localized, and factorization does not occur. The s 
dependence of the contribution from this region can be readily estimated: a) the 

- - quark-quark scattering amplitudes each give (l/s)‘, by dimensional counting; 
b) phase space as restricted by in Eq. (116) gives a factor (X/&r2; c) the energy 
denominator gives a factor l/D - l/X&. Thus the pinch region contributes 

. which apparently dominates the hard scattering contribution by a factor &. 

Two things work to suppress this pinch contribution. First the number of 
hard scattering amplitudes is much larger than the number of pinch singularity 
diagrams. More importantly, perhaps, radiative corrections to the individual 
quark-quark amplitudes build up Sudakov form factors that increase the effective 
power of l/s to something like 

log log (11s) 

which grows infinitely large as It 1 - s t 00. These corrections do not cancel here- 
because the quarks and antiquarks scatter separately here, and not together as 
color singlets. So the pinch region is probably completely suppressed by Sudakov 
effects when s is sufficiently large. It turns out that a contribution still remains 
from a region intermediate between the pinch region and the hard-scattering 
region.21 Th’ is results in a small correction to the power-law predicted by dimen- 
sional counting. For example, pp elastic scattering at wide angles should fall off 
roughly like s-9.7, rather than s-lo as predicted by dimensional counting. Con- 
siderable progress has been made recently towards a complete analysis of such 

23 
effects. 

- 
Pinch singularities always show up as singularities in the hard scattering am- 

plitude TH(x~, Xb . . .,Q) at points Xa,Xb... away from the endpoints 0 and 1. 
The integrals over x~, Xb . . . are then singular. Not every midpoint singularity in 
TH actually corresponds to a pinch. For example, singularities that are linear- 
e.g. l/(x - c + ic)-do not involve pinches. These cause no problems when 
integrating over 2: the real part of the amplitude is obtained using a principal 
value prescription, while an imaginary part is generated by making the replace- 
ment l/(x-c+ ) ZE -+ -27riS(x - c). When the singularities are more severe they 
must be cut off by explicitly including Sudakov form factors in the pinch region. 
The dimensional-counting rule is modified only in these very singular situations. 
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4.6. How LARGE IS ASYMPTOTIC Q? 

- - 

The perturbative formalism we have described is only valid at large momen- 
tum transfers. A critical question 

24 
then is, How large is large? Here as in an) 

application of perturbative QCD there are really two issues: 1) the convergence 
of perturbation theory; and 2) the relative importance of competing nonpertur- 
bative mechanisms. We examine each in term. 

. 

The perturbative expansion describing a short-distance process in QCD-e.g. 
ao+al as(Q&)/~+. . . -converges quickly if the characteristic momentum Qe~ for 
the process is large compared with the QCD scale parameter AQCD N 200 Mev. 
To determine Qe~ for large-plexclusive processes we can examine the momentum 
flow in the hard-scattering amplitude. The pion’s form factor, for example, is 
given by 

1 1 

Fl,(Q2) M dx 
JJ 

dy {$*(Y, (1 - Y)&) eq Tdx, y, Q) +(x7 Cl- 4Q) + (4 ++ id> 
0 0 

(119) 
where the hard-scattering amplitude is 

TH(x, Y, Q) = 
16~ CF (Ye 

(1 - x)(1 - y)Q2' 
(1’70) 

The running coupling in TH is associated with gluon-exchange between the quark 
and the antiquark as they scatter from the initial to the final direction. Thus it 
is natural to set the scale of this coupling equal to the square of the gluon’s four 

momentum: a, --f os(( 1 - x)(1 - y)Q2) in TH.#~~ The defining relation for Qe~ 
then is obviously 

1 1 

_ 
J J 

da: dy~*a,((1-x)(l-Y)Q2)~= ldx 'dyQI 

(1 - x)(1 - Y> J J 

-(Q:,d 
(1 - x)(l - y) 4. (121) 

0 0 0 0 

A small complication is that the usual perturbative formula for aS(Q2) has an 
unphysical singularity at Q = AQCD, and so the integral on the left-hand-side 

#13 In earlier sections we set the scale equal to Q2. The changes that result from the replace- 
ment Q2 - (1 - x)(1 - y)Q2 are higher order in crS and so are irrelevant at very large 
Q2. However we are now concerned with how small Q2 can be made before perturbation 
theory fails, and for this purpose it is important to use the more physical scale in a,. 
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of this equation is ill-defined. This is easily remedied by redefining the running 
coupling so that 

47r 
- - as(Q2) = ,&, log(c + Q2/A&D) 

(122) 

where c is a constant (- l-3). This is a rather ad hoc remedy, but the ratio 
Q,.,E/& that results is fairly insensitive to both c and Q unless Q is very small. 

The ratio Qe*/Q is clearly quite sensitive to the x-dependence of the distri- 
bution amplitudes, with broader amplitudes giving more emphasis to the region 

XLY - 1 and thus lower Qe~‘s. Assuming the asymptotic dependence x(1 - xc), 
one finds that Qe~/Q FZ 0.2. In this case a form factor with momentum trans- 
fer of say 2 Gev actually probes QCD at scales of order only 400 MeV. The 
effective momentum transfer is smaller still with the broader distribution am- 
plitudes suggested by QCD sum rules (Qe~/Q M 0.1). The running coupling 
constant is of order unity for such small Qe~‘s and so perturbation theory is not 
likely to converge very well, if at all. Some perturbative properties, such as the 
dimensional-counting and helicity-conservation rules, are valid to all orders in 
perturbation theory; these might well be applicable even for such Qe~‘s. However 
it should not be surprising-if predictions for things like the magnitude of the form 
factor are off by factors of 2 or more. (Note,for example, that replacing crs(Q2)_. 
by c~~(Qf,,) more than doubles the perturbative prediction for the form fa.ctor at 
Q = 2 GeV.) 

It has proven difficult to measure meson form factors for Q’s much above a 
couple of GeV. However the proton form factor has been measured out beyond 
5 Gev. Unfortunately the hard-scattering amplitudes for baryon form factors 
tend to be more singular in the low-momentum region than meson amplitudes 
resulting in smaller ratios of Qe~/Q: e.g. one finds that Qe~/Q zz 0.1 for the 

asymptotic distribution amplitude ~1x2~3, and the ratio is smaller by another 
factor of a half to a third for the broader distribution amplitudes predicted by 
sum rules. So existing data for the proton form factor, although more accurate, 

_ still probes much the same region in effective momentum as does the data for the 
pion form factor. 

The ratio Qe~/Q is also relevant to the second important issue-the relative 
importance of nonperturbative contributions. We expect the quark-antiquark in- 
teraction in TH to evolve smoothly from nonperturbative to perturbative behavior 
as Qe~ increases, with the crossover occurring around a few hundred MeV. Con- 
sequently the pion form factor, for example, could be predominantly perturbative 
by Q = 2 GeV since Qe~ is then of order a few hundred MeV. This is despite the 
fact that perturbative interactions bring in factors of cys: the coupling oQ(Q&) 
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is not particularly small when Qe~ is small, and thus it does not suppress such 
interactions much.#14 With protons, perturbative behavior might set in at 3 GeV 
or higher, depending upon the distribution amplitude. 

For larger Q’s one must also worry about nonperturbative contributions com- 
ing from the endpoint region, particularly in the case of baryon form factors and 
scattering amplitudes. Perturbative arguments indicate that such contributions 
are suppressed by Sudakov form factors, but the extent of this suppression at ac- 
cessible Q’s is uncertain. The importance of this region also depends sensitively 
upon the behavior of the hadronic wavefunctions in the endpoint region: it is 
easy to make model wavefunctions in which there is little contribution from the 
endpoint region for Q’s greater than a few GeV;25’26’27 it is also easy to make 
models in which the region is important even at several GeV (ignoring Sudakov 

effects).24 The situation is further complicated in the case of hadronic scattering 
amplitudes by our incomplete understanding of the Sudakov suppression of pinch 
singularities. 

In the light of these uncertainties the best one can do is to assume the validity 
of the perturbative analysis, at least as a qualitative or semi-quantitative guide 
to large-p1 exclusive processes. This model is quite plausibly correct, and in any 
case there is currently no other comprehensive theory of these processes. The 
validity of the perturbative model can then be judged by the extent to which it 
is capable of accounting for the broad range of available data. 

#14 Of course perturbation theory will not converge well if a, is large. When we speak of 
“perturbative behavior” here we are again thinking of behavior that is true to all orders- 
factorization, dimensional counting, helicity conservation. It is important to realize 
that the validity of the factorized form for a large momentum transfer amplitude is not 
necessarily contingent on the applicability of perturbation theory. Indeed there is likely to 
be a region of momentum transfer where factorization, dimensional counting.. are valid 
but where perturbation theory does not converge at all. 
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5. APPLICATIONS OF QCD TO THE 
PHENOMENOLOGY OF EXCLUSIVE REACTIONS 

- - 

. 

In the following sections we will discuss the phenomenology of exclusive re- 
actions as tests of QCD and the structure of hadrons. The primary processes 
of interest are those in which all final particles are measured at large invariant 
masses compared to each other: i.e. large momentum transfer exclusive reactions. 
This includes form factors of hadrons and nuclei at large momentum transfer Q 
and large angle scattering reactions. Specific examples are reactions such as 
e--p + e-p, e+e- + pp which d e ermine the proton form factor, two-body scat- t 
tering reactions at large angles and energies such as r+p + rsp and pp + pp, 
two-photon annihilation processes such as yy + I(+Ii’- or jjp + yy, exclusive 
nuclear processes such as deuteron photo-disintegration yd + np, and exclusive 
decays such as 7r+ --f puss or J/ti + rs~-ro. In this section we will summarize 
the main features of the QCD predictions developed in the previous sections. 

QCD has two essential properties which make calculations of processes at 
short distance or high-momentum transfer tractable and systematic. The criti- 
cal feature is asymptotic freedom: the effective coupling consta.nt a,(Q’) which 
controls the interactions of-quarks and gluons at momentum transfer Q’ va,nishes 
logarithmically at large Q2 since it allows perturbative expansions in os( Q’). ,~ 
Complementary to asymptotic freedom is the existence of fuctorization theoren1.s 
for both exclusive and inclusive processes at large momentum transfer. In the case 
of “hard” exclusive processes (in which the kinematics of all the final state ha.drons 
are fixed at large invariant mass), the hadronic amplitude can be represented as 
the product of a process-dependent hard-scattering amplitude TH(x;, Q) for the 
scattering of the constituent quarks convoluted with a process-independent dis- 
tribution amplitude 4(x, Q) f or each incoming or outgoing hadron.’ When Q2 is 
large, TH is computable in perturbation theory as is the Q-dependence of 4(x, Q). 
We have discussed the development of factorization for exclusive processes in de- 
tail in Section 4. 

Quantum chromodynamics’ has now been extensively tested in high momen- 
tum transfer inclusive reactions where the factorization theorems, perturbation 
theory, and jet evolution algorithms provide semi-quantitative predictions. Tests 
of the confining nonperturba.tive aspects of the theory are, however, either qual- 
itative or at best indirect. In fact QCD is a theory of relatively low mass scales 

@;i;?s - 200 f 100 MeV, < Ici >li2 w 300 MeV), and eventually its most 
critical test as a viable theory of strong and nuclear interactions will involve rel- 
atively low energies and momentum transfer at the interface of the perturbative 
and nonperturbative domain. 
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The understanding of hadronization and the computation of hadron matrix 
elements clearly requires knowledge of the hadron wavefunctions. In Table I 
we give a summary of the main scaling laws and properties of large momentum 
transfer exclusive and inclusive cross sections which are derivable starting from 
the light-cone Fock space basis .and the perturbative expansion for QCD. 

. 

As we have discussed in Section 3, a convenient relativistic description of 
hadron wavefunctions is given by the set of n-body momentum space ampli- 
tudes, $n(xi,Icl,, Xi), i = 1,2, . . . n, defined on the free quark and gluon Fock 
basis at equal “light-cone time” r = t + z/c in the physical “light-cone” ga.uge 
A? E A0 + A3 = 0. (Here xi = k’/p+, Ci xi = 1, is the light-cone momentum 
fraction of quark or gluon i in the n - particle Fock state; Icl,, with Ci Icl, = 0, 
is its transverse momentum relative to the total momentum pp; and X; is its helic- 
ity.) The quark and gluon structure functions G,,H (x, Q) and G,,H (x, Q) which 
control hard inclusive reactions and the hadron distribution amplitudes ~H(x, Q) 
which control hard exclusive reactions are simply related to these wavefunctions: 

Gy,H(x, Q) a C ]nd2,, J ndxi I$n(xi, k1,)126(xq - X) 7 
n 

and 

In the case of inclusive reactions, such as deep inelastic lepton scattering, 
two basic aspects of QCD are relevant: (1) the scale invariance of the underly- 
ing lepton-quark subprocess cross section, and (2) the form and evolution of the 
structure functions. A structure function is a sum of squares of the light-cone 
wavefunctions. The logarithmic evolution of G,(x, Q2) is controlled by the wave- 
functions which fall off as 1+(x, il)i” w os(l;T)/ll-t at large kt. This form is a. 
consequence of the pointlike q --+ gq, g -+ gg, and g ---f q?jsplittings. By taking the 
logarithmic derivative of G with respect to Q one derives the evolution equations 
of the structure function. All of the hadron’s Fock states generally participate; 
the necessity for taking into account the (non-valence) higher-particle Fock states 
in the proton is apparent from two facts: (1) the proton’s large gluon momentum 

fraction and (2) the recent results from the EMC collaboration28 suggesting that, 

on the average, little of the proton’s helicity is carried by the light 29 
quarks. 
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Table I 

Table I Comparison of Exclusive and Inclusive Cross Sections 

Exclusive Amplitudes Inclusive Cross Sections 

Measure 4 in y --+ MM 

$A+B f(ec.ml.) 

n=nA+ng+nc+nD 

TH : expansion in as(Q2) 

End point singularities 

Pinch singularities 

High Fock states 

Measure G in ep -+ !X 

Evolution 

=(z,Q) = 
dlogQZ ~a 

I 
dy P(~/Y) G(Y). 

&nm G(s, Q) = S(I) C 

Power Law Behavior 

nnci = na d- nb + nc + nd 

de : expansion in a,(Q2) 

Complications 

Multiple scales 

Phase-space limits on evolution 

Heavy quark thresholds 

Higher twist multiparticle processes 

Initial and final state interactions 



- - 

. 

In the case of exclusive electroproduction reactions such as the baryon form 
factor, again two basic aspects of QCD are relevant: (1) the scaling of the un- 
derlying hard scattering amplitude (such as 1+ 444 --+ I+ QQQ), and (2) the form 
and evolution of the hadron distribution amplitudes. The distribution amplitude 
is defined as an integral over the lowest (valence) light-cone Fock state. The 
logarithmic variation of 4(x, Q2) ’ d 1s erived from the integration at large 1;1, i.e. 
wavefunctions which behave as $J(x, zl) w c~~(rCf)/rCT at large kl This behavior 
follows from the simple one-gluon exchange contribution to the tail of the va- 
lence wavefunction. By taking the logarithmic derivative, one then obtains the 
evolution equation for the hadron distribution amplitude. 

As we showed in Section 3, the form factor of a hadron at any momentum 
transfer can be computed exactly in terms of a convolution of initial and final 
light-cone Fock state wavefunctions.” In general, all of the Fock states contribute. 
In contrast, exclusive reactions with high momentum transfer Q, perturbative 
QCD predicts that only the lowest particle number (valence) Fock state is required 
to compute the contribution to the amplitude to leading order in l/Q. 

For example, in the light-cone Fock expansion the proton is represented a.s 
a column vector of states Gqgg, v+!J~~~~, Gqpgg9.. . . In the light-cone gauge, AS = 
A0 + A3 = 0, only the minimal “valence” three-quark Fock state needs to be 
considered at large momentum transfer since any additional quark or’gluon forced - 
to absorb large momentum transfer yields a power-law suppressed contribution 
to the hadronic amplitude. Thus at large Q2, the baryon form factor can be 
systematically computed by iterating the equation of motion for its valence Fock 
state wherever large relative momentum occurs. To leading order the kernel is 
effectively one-gluon exchange. The sum of the hard gluon exchange contributions 
can be arranged as the gauge invariant amplitude TH, the final form factor having 
the form 

1 1 

FLI(&~) = 
J J 

[&I [dxl 4L(~j, Q)TH(G, ~j, QMB(G, Q) . 
0 0 

The essential gauge-invariant input for hard exclusive processes is the distri- 
bution amplitude 4H(z,Q). For example &(z,Q) is the amplitude for finding 
a quark and antiquark in the pion carrying momentum fractions x and 1 - z 
at impact (transverse space) separations less than bl < l/Q. The distribution 
amplitude thus plays the role of the “wavefunction at the origin” in analogous 
non-relativistic calculations of .form factors. In the relativistic theory, its depen- 
dence on log Q is controlled by evolution equations derivable from perturbation 
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theory or the operator product expansion. A detailed discussion of the light-cone 
Fock state wavefunctions and their relation to observables is given in Section 3 
and in Ref. 30. 

- - The distribution amplitude contains all of the bound-state dynamics and 
specifies the momentum distribution of the quarks in the hadron. The ha.rd- 
scattering amplitude for a given exclusive process can be calculated perturba- 
tively as a function of os( Q2). S imilar analyses can be applied to form factors, 
exclusive photon-photon reactions, and with increasing degrees of complication; 

_ to photoproduction, fixed-angle scattering, etc. In the case of the simplest pro- 

. cesses, yy + MM and the meson form factors, the leading order analysis can be 
readily extended to all-orders in perturbation theory. 

Figure 18. 
transfer. 

QCD factorization for two-body amplitudes at large momentum 

In the case of exclusive processes such as photo-production, Compton scatter- 
ing, meson-baryon scattering, etc., the leading hard scattering QCD contribution 
at large momentum transfer Q’ = tu/s has the form (helicity labels and sup- 
pressed) (see Fig. 18) 

MA+B+G+D(Q~~&.~.) = 
J 

[d+k(xc,@ h(xd,@ T~(xi;Q%.m.) 

x 4A(%@ &3(%@ 

In general the distribution amplitude is evaluated at the characteristic scale Q 
set by the effective virtuality of the quark propagators. 
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By definition, the hard scattering amplitude TH for a given exclusive process is 
constructed by replacing each external hadron with its massless, collinear valence 
partons, each carrying a finite fraction xi of the hadron’s momentum. Thus TH 
is the scattering amplitude for the constituents. The essential behavior of the - - 
amplitude is determined by TH, computed where each hadron is replaced by its 
(collinear) quark constituents. We note that TH is “collinear irreducible,” i.e. the 
transverse momentum integrations of all reducible loop integration are restricted 
to Ict > O(Q2) since the small Icl region is already contained in 6. If the internal 
propagators in TH are all far-off-shell O(Q2), th en a perturbative expansion in 

- o, ( Q2) can be carried out. 
. 

Higher twist corrections to the quark and gluon propagator due to mass terms 
and intrinsic transverse momenta of a few hundred MeV give nominal corrections 
of higher order in l/Q”. These finite mass corrections combine with the leading 
twist results to give a smooth approach to small Q 2. It is thus reasona,ble tha.t 
PQCD scaling laws become valid at relatively low momentum transfer of order 
of a few GeV. 

5.1. GENERAL FEATURES OF EXCLUSIVE PROCESSES IN QCD 

The factorization theorem for large-momentum-transfer exclusive reactions 
separates the dynamics of hard-scattering quark and gluon amplitudes TH from ‘* 
process-independent distribution amplitudes 4~ (x, Q) which isolates all of the 
bound state dynamics. However, as seen from Table I, even without complete 
information on the hadronic wave functions, it is still possible to make predictions 
at large momentum transfer directly from QCD. 

Although detailed calculations of the hard-scattering amplitude have not been 
carried out in all of the hadron-hadron scattering cases, one can abstract some 
general features of QCD common to all exclusive processes at large momentum 
transfer: 

1. Since the distribution amplitude 4~ is the L, = 0 orbital-angular-momen 
turn projection of the hadron wave function, the sum of the interacting 
constituents’ spin along the hadron’s momentum equals the hadron spin: G 

c Sf = s;. 
iEH 

In contrast, there are any number of non-interacting spectator constituents 
in inclusive reactions, and the spin of the active quarks or gluons is only 
statistically related to the hadron spin (except at the edge of phase space 
2 + 1). 
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2. Since all loop integrations in TH are of order Q, the quark and hadron 
masses can be neglected at large Q2 up to corrections of order N m/Q. 
The vector-gluon coupling conserves quark helicity when all masses are 
neglected-i.e. UJY~UT = 0. Thus total quark helicity is conserved in TH. In 
addition, because of (a), each hadron’s helicity is the sum of the helicities 
of its valence quarks in TH. We thus have the selection rule 

c XH-pH=o, 
initial final 

i.e. total hadronic helicity is conserved up to corrections of order 172/Q 01 
higher. Only (fla.vor-singlet) mesons in the O-+ nonet can ha.ve a two-gluon 
valence component and thus even for these states the quark helicity equals 
the hadronic helicity. Consequently hadronic-helicity conservation applies 
for all amplitudes involving light meson and baryons.31 Exclusive reactions 
which involve hadrons with quarks or gluons in higher orbital angular states 
are suppressed by powers. 

3. The nominal power-law beha.vior of an exclusive amplitude at fixed 8,,,,, is 

(l/Q)‘“-4, where IZ is-the number of external elementary particles (quarks, 

gluons, leptons, photons, . ..) in TH. This dimensional-counting rule5 is - 
modified by the Q” dependence of the factors of o,(Q2) in TH, by the Q’ 
evolution of the distribution amplitudes, and possibly by a small power 
correction associated with the Sudakov suppression of pinch singularities in 
hadron-hadron scattering. 

The dimensional-counting rules for the power-law falloff appear to be ex- 
32’33 perimentally well established for a wide variety of processes. The helicity- 

conservation rule is also one of the most chara.cteristic features of QCD, being a 
direct consequence of the gluon’s spin. A scalar-or tensor-gluon-quark coupling 
flips the quark’s helicity. Thus, for such theories, helicity may or ma.y not be 
conserved in any given diagram contribution to TH depending upon the number 
of interactions involved. Only for a vector theory, such as QCD, can one have a 
helicity selection rule valid to all orders in perturbation theory. 
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(b) 

f 

(C) E 1 - 83 3793*13 
Figure 19 (a) Factorization of the nucleon form factor at large Q’ in &CD. (b) 

The leading order diagrams for the hard scattering amplitude TH. The dots indicate 
insertions which enter the renormalization of the coupling constant. (c) The leading 
order diagrams which determine the Q2 dependence of the distribution amplitude 
4(x, Qh 
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5.2. ELECTROMAGNETIC FORM FACTORS 

Any h&city conserving baryon form factor at large Q” has the form: (see Fig 

W>l 
1 

FB(Q2) = ][&I] /[dx] #b(yj, Q)TH(zi,Yj, Q)dB(zi, Q> > 

0 0 

where to leading order in as( Q2), TH is computed from 3q + y* --P 3q tree graph 
amplitudes: [Fig. 19(b).] 
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and 

is the valence three-quark wavefunction [Fig. 19(c)] evaluated at quark impact 
separation bl N O(Q-I). More detailed formulae for the baryon form factor are 
presented in Appendix I. Since $B only depends logarithmically on Q2 in QCD, 
the main dynamical dependence of J’B(&~) is the power behavior (Q2)-2 derived 
from scaling of the elementary propagators in TH. More explicitly, the proton’s 
magnetic form factor has the form:4 

G(Q2) = p$q2pm (log $)-- 

The first factor, in agreement with the quark counting rule, is due to the ha.rd 
scattering of the three valence quarks from the initial to final nucleon direction. 
Higher Fock states lead to form factor contributions of successively higher order 
in 1/Q2. The logarithmic corrections derive from an evolution equation for the 
nucleon distribution amplitude. The -yn are the computed anomalous dimensions, 

I2 reflecting the short distance scaling of three-quark composite operators. The re- 
sults hold for any baryon to baryon vector or axial vector transition amplitude 
that conserves the baryon helicity. Helicity non-conserving form factors should 
fall as an additional power of l/Q2.6 Measurements34 of the transition form fac- 
tor to the J = 3/2 N(1520) nucleon resonance are consistent with J, = &l/2 

dominance, as predicted by the helicity conservation rule.6 A review of the data 
on spin effects in electron nucleon scattering in the resonance region is given in 
Ref. 34. It is important to explicitly verify that F2(Q2)/Fr(Q2) decreases at la.rge 
Q2. The angular distribution decay of the J/$ t pp is consistent with the QCD 
prediction X, + X, = 0. 

Thus, modulo logarithmic factors, one obtains a dimensional counting rule 
for any hadronic or nuclear form factor at large Q2 (X = X ’ = 0 or l/2) 
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Figure 20. Comparison of experiment35 with the QCD dimensional counting 
rule (Q*)“-‘F(Q”) - con& for form factors. The proton data extends beyond 30 
GeV*. 

where n is the m inimum number of fields in the hadron. Since quark helicity 
is conserved in TH and 4(x;, Q) is the L, = 0 projection of the wavefunction, 
total hadronic helicity is conserved at large momentum transfer for any QCD 
exclusive reaction. The dominant nucleon form  factorthus corresponds to Fl( Q2) 
or G~J( Q2); the Pauli form  factor F2(Q2) is suppressed by an extra power of Q’. 
Similarly, in the case of the deuteron, the dominant form  factor has helicity 
X = X’ = 0, corresponding to dm. 

The comparison of experimental form  factors with the predicted nominal 
power-law behavior is shown in Fig. 20. We will discuss predictions for the 
normalization of the leading power terms in Section 5.6. As we have discussed 
in Section 4, the general form  of the logarithm ic corrections to the leading power 
contributions form  factors can be derived from  the operator product expansion 
at short distance “I” or by solving an evolution equation4 for the distribution 
amplitude computed from  gluon exchange [Fig. 19(c)], the only QCD contribution 
which falls sufficiently small at large transverse momentum to effect the large Q’ 
dependence. 

The comparison of the proton form  factor data with the QCD prediction 
arbitrarily normalized is shown in Fig. 21. The fall-off of (Q2)2G~(Q2) with Q’ 
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is consistent with the logarithmic fall-off of the square of QCD running coupling 
constant. As we shall discuss below, the QCD sum rule 

16 
model form for t,he 

nucleon distribution amplitude together with the QCD factorization formulae, 
predicts the correct sign and magnitude as well as scaling behavior of the proton 

36 
and neutron form factors. 
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Figure 21. Comparison of the scaling behavior of the proton magnetic form 
factor with the theoretical predictions of Refs. 4 and 16. The CZ predictions16 are 
normalized in sign and magnitude. The data are from Ref. 36. 

5.3. COMPARISON OF QCD SCALING WITH EXPERIMENT 

Phenomenologically the dimensional counting power laws appear consistent 
with measurements of form factors, photon-induced amplitudes, and elastic hadron- 
hadron scattering at large angles and momentum transfer.33 The successes of the 
quark counting rules can be taken as strong evidence for QCD since the deriva,- 
tion of the counting rules require scale invariant tree graphs, soft corrections from 
higher loop corrections to the hard scattering amplitude, and strong suppression 
of pinch singularities. QCD is the only field theory of spin f fields that has all 
of these properties. 

As shown in Fig. 22, the data for yp + 7r+n cross section at ~CM = 
7r/2 are consistent with the n,ormalization and scaling da/dt (yp ---f ~+n) 21 
[l nb/(s/lO GeV)7] f(t/s). 
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Figure 22. Comparison of photoproduction data with the dimensional counting 
power-law prediction. The data are summa.rized in Ref. 37. 

The check of fixed angle scaling in proton-proton elastic scattering is shown in 
Figs. 23. Extensive measurements of the pp ---+ pp cross section have been ma.de at 
ANL, BNL and other laboratories. The scaling law s”da/dt(pp -+ pp) 21 coast. 
predicted by QCD seems to work quite well over a large range of energy and angle. 
The best fit gives the power N = 9.7 f 0.5 compared to the dimensional counting 
prediction N=lO. There are, however, measurable deviations from fixed power 
dependence which are not readily apparent on the log-log plot. As emphasized 
by Hendry 38 the .~~~dcr/dt cross section exhibits oscillatory behavior with pi 

(see Section 9). Even more serious is the fact that polarization measurements 
40 

show significant spin-spin correlations (ANN), and the single spin asymmetry 
(AN) is not consistent with predictions based on hadron helicity conservation 

(see Section 6) which is expected to be valid for the leading power behavior.’ 

Recent discussions of these effects have been given by Farrar41 and Lipkin? We 
discuss a new explanation of all of these effects in Section 9. 

As emphasized by Landshoff, the ISR data for high energy elastic pp scat- 
tering at small It I/ s can be parameterized in the form dc/dt - constlts for 
2 GeV2 < ItI < 10 GeV2. This suggests a role for triple gluon exchange pinch 
contributions at large energies where multiple vector exchange diagrams could 
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Figure 23. Test of fixed BCM scaling for elastic pp scattering. The data compi- 
lation is from Landshoff and Polkinghorne. 

dominate. However, from Mueller’s analysisL1 one expects stronger fall-off in 
t due to the Sudakov form factor suppression. This paradox implies that the 
role of the pinch singularity in large momentum transfer exclusive reactions is 

43 not well understood and deserve further attention. As discussed in Section 4.5, 
pinch singularities are also expected to modify the dimensional counting scaling 
laws for wide-angle scattering, but the change in the exponent of s is small and 
hard to detect experimentally. However, Ralston and Pire43 have suggested that 
the oscillatory behavior in the wide-angle pp scattering amplitude results from 
interference between the pinch contributions and the ordinary hard-scattering 
contributions to the pp amplitude. Thus pp scattering may provide a experimen- 

tal handle on pinch contribution. However it is possible that the oscillations are 
specific to particular channels, in which case an alternative explanation is nec- 
essary. We discuss this further in Section 9. Pinch singularities do not arise iu 
form factors, or such photon-induced processes as yy --t Ma,r6 y* + y --+ Ad,” 

y* --f M~...AIN at fixed angleP4 yy + BB, yB + yB, etc.45’46 
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5.4. EXCLUSIVE ANTI-PROTON PROTON ANNIHILATION PROCESSES 

Anti-proton annihilation has a number of important advantages as a probe of 
QCD in the low energy domain. Exclusive reaction in which complete annihilation 
of the valance quarks occur (@ + @, yy, f#$, etc.) necessarily involve impact 
distances bl smaller than l/M, = 5 fm-’ since baryon number is exchanged in 
the t-channel. There are a number of exclusive and inclusive p reactions which 
can provide useful constraints on hadron wavefunctions or test novel features 
of QCD involving both perturbative and nonperturbative dynamics. In several 
cases (pp --+ jl, pp ---f Jf$, jip --+ rr), complete leading twist (leading power 

. law) predictions are available. These reactions not only probe the subprocesses 

444 QQQ + YY? etc., but they also are sensitive to the normalization and shape 
of the proton distribution amplitude &,( i, 2 XZ,X~; Q), the basic measure of the 
proton’s three-quark valance wavefunction. 

The fixed angle scaling laws for the pp channels are: 

f yM (COS ‘% e92PT > 

f Mz( COS 8, &IT) 

& fB%OShenPT) . 
T 

The angular dependence reflects the structure of the hard-scattering perturba.tive 
TH amplitude, which in turn follows from the flavor pattern of the contributing 
duality diagrams. 

It is important to note that the leading power-law behavior originates in the 
minimum three-particle Fock state of the p and p, at least in physical gauge, 
such as A+ = 0. Higher Fock states give contributions higher order in l/s. For 
Fp -+ -@ this means that initial-state interaction such as one gluon exchange are 
dynamically suppressed (see Fig. 24). Soft-gluon exchange is suppressed since the 
incident p or ji color neutral wavefunction in the three-parton state with impact 
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operation b* N 0(1/,/s). Hard-g1 uon exchange is suppressed by powers of Q~( s). 
The absence of a. soft initial-state interaction in these reactions is a remarkable 
consequence of gauge theory, and is quite contrary to normal treatments of initial 
interactions based on Glauber theory. 

Figure 24. Analysis of initial-state interactions in PQCD. 

We will discuss in Section 8.1 another class of exclusive reactions in QCD 
involving light nuclei, such as pd + yn and pd -+ r-p which can probe quark 
and gluon degrees of freedom of the nucleus at surprisingly low energy. We 
will also discuss the “color transparency” of nuclei in quasi-elastic processes like 
j?A + @(A - 1). 
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5.5. ADDITIONAL TESTS OF GLUON SPIN IN EXCLUSIVE PROCESSES 

The spin of the gluon can be tested in a. wide variety of exclusive processes: 

(a) yy + pp, K*K*, . . . . These cross sections can be measured using ese- 
colliding beams. At large energies (s 15 2 - 4GeV2) and wide angles, the final- 
state helicities must be equal and opposite. These processes can also be used as 
a sensitive probe of the structure of the quark distribution 

16 
amplitudes. 

. 

(b) Electroweak form factors of baryons. Relations, valid to all order in as, 
can be found among the various electromagnetic and weak-interaction for factors 
of the nucleons and other baryons. 47 Th ese relations depend crucially upon quark- 
helicity conservation and as such test the vector nature of the gluon. Current data 
for the axial-vector and electromagnetic form factors of the nucleons is in excellent 
agreement with these QCD predictions, although a. definitive test requires higher 
energies. 

(4 TP + “P,PP -+ PP, .... QCD predicts that total hadronic helicity is 
conserved from the initial state to the final state in all high-energy, wide-angle, 
elastic, and quasi-elastic hadronic amplitudes. One immediate consequence of 
this is the suppression of the backward peak relative to the forward peak in 
scalar-meson- baryon scattering. This follows because angular momentum cannot 
be conserved along the beam axis if only the baryons carry helicity, helicity is 
conserved, and the baryons scatter through 180’. Data 

32 
for rp and I<p scattering 

is consistent with this observation. However the hard-scattering amplitudes for 
these processes must be computed before a detailed interpretation of the data is 
possible. 

In the case of pp t pp scattering, there are in general five independent parity- 
conserving and time-reversal-invariant amplitudes M( ++ -+ ++), M (+- t 
+-), M(-+ + +-),M(++ --f +-), and M(-- + ++). Total-hadron- 
helicity conservation implies that M(++ t +-) and M( -- + ++) are power- 
law suppressed. The vanishing of the double-flip amplitude implies ANN = Ass, 
and 

MANN - ALL = 1 (&.,. = 90"). 

Here ANN is the spin asymmetry for incident nucleons polarized normal (?) to 
the scattering plane. ALL refers to initial spins polarized along the laboratory 
beam direction (2) and Ass refers to initial spin polarized (sideways) along y. 
Data at R.-J, = 11.75 GeV/c from Argonne48 appears to be consistent with this 
prediction. 

(d) Zeros of meson form factors. Asymptotically, the electromagnetic form 
factors of charged r’s, K’s, and p(X = 0)' h s ave a positive sign in QCD. In a theory 
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of scalar gluons, these form factors become negative for Q2 large, and thus must 
vanish at some finite Q2 since F(Q2 = 0) = 1 by definition. Consequently the 
absence of zeros in Fr(Q2) is further evidence for a vector gluon. We discuss this 
in detail in the next section. 

5.6. HADRONIC WAVEFUNCTION PHENOMENOLOGY 

. 

Let us now return to the question of the normalization of exclusive ampli- 
tudes in QCD. It should be emphasized that because of the uncertain magnitude 
of corrections of higher order in os( Q2), comparisons with the normalization of 
experiment with model predictions could be misleading. Nevertheless, it this sec- 
tion we shall assume that the leading order normalization is at least approximately 
accurate. If the higher order corrections are indeed small, then the norma.liza- 
tion of the proton form fa.ctor at large Q2 is a non-trivial test of the distribution 
amplitude shape; for example, if the proton wave function has a non-relativistic 
shape peaked at xi N l/3 then one obtains the wrong sign for the nucleon form 
fa.ctor. Furthermore symmetrical distribution amplitudes predict a very small 
magnitude for Q4GL(Q2) at large Q2. 

The phenomenology of hadron wavefunctions in QCD is now just beginning. 
Constraints on the baryon and meson distribution amplitudes ha.ve been recently 
obtained using QCD sum rules and lattice gauge theory. The results are expressed 
in terms of gauge-invariant moments < x7 >= J IIdxi xy $(xi, p) of the ha,dron’s 
distribution amplitude. A particularly important challenge is the construction 
of the baryon distribution amplitude.In the case of the proton form fa.ctor, the 
constants unm in the QCD prediction for GM must be computed from moments of 
the nucleon’s distribution amplitude $(xi, Q). Th ere are now extensive theoretical 
efforts to compute this nonperturbative input directly from QCD. The QCD 
sum rule analysis of Chernyak et 

16,49 
al. provides constraints on the first 12 

moments of $(x,9). U ’ g sm as a basis the polynomials which are eigenstates of 
the nucleon evolution equation, one gets a model representation of the nucleon 
distribution amplitude, as well as its evolution with the momentum transfer scale. 
The moments of the proton distribution amplitude computed by Chernyak et u2., 
have now been confirmed in an independent analysis by Sachrajda and I(ing.50 

A three-dimensional “snapshot” of the proton’s uud wavefunction at equal 
light-cone time as deduced from QCD sum rules at p N 1 GeV by Chernyak 

49 
et al. and King and Sachrajda 5o is shown in Fig. 25. The QCD sum rule 
analysis predicts a surprising feature: strong flavor asymmetry in the nucleon’s 
momentum distribution. The computed moments of the distribution amplitude 
imply that 65% of the proton’s momentum in its S-quark valence state is carried 
by the u-quark which has the same helicity as the parent hadron. 
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Figure 25. The proton distribution amplitude (p,(zi, p) determined at the scale 
p - 1 GeV from QCD sum rules. 

Dziembowski and Mankiewicz2’ have recently shown that the asymmetric 
form of the CZ distribution amplitude can result from a rotationally-invariant CM 
wave function transformed to the light cone using free quark dynamics. They find 
that one can simultaneously fit low energy phenomena (charge radii, magnetic 
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moments, etc.), the measured high momentum transfer hadron form factors, and 
the CZ distribution amplitudes with a self-consistent ansatz for the quark wave 
functions. Thus for the first time one has a somewhat complete model for the 
relativistic three-quark structure of the hadrons. In the model the transverse 
size of the valence wave function is not found to be significantly smaller than 
the mean radius of the proton-averaged over all Fock states as argued in Ref. 
51. Dziembowski et aE. also find that the perturbative QCD contribution to the 
form factors in their model dominates over the soft contribut.ion (obtained by 
convoluting the non-perturbative wave functions) at a scale Q/N z 1 GeV, where 
N is the number of valence constituents. (This criterion was also derived in 
Ref. 52.) 

Gari and Stefanis 53 ha.ve developed a model for the nucleon form factors 
which incorporates the CZ distribution amplitude predictions at high Q’ together 
with VMD constraints at low Q 2. Their analysis predicts sizeable values for the 
neutron electric form factor at intermediate values of Q2. 

A detailed phenomenological analysis of the nucleon form factors for different 
shapes of the distribution amplitudes has been given by Ji, Sill, and Lombard- 

54 Nelsen. Their results show that the CZ wave function is consistent with the 
sign and magnitude of the proton form factor at large Q2 as recently mea.sured 
by the American University/SLAG collaboration36 (see Fig. 26). 

a, Inside Integral 
a 
m mN2=0.3 (GeV/c2)2 

Figure 26. Predictions for the normalization and sign of the proton form factor 
at high Q” using perturbative QCD factorization and QCD sum rule predictions for 
the proton distribution amplitude (from Ref. 54.) The predictions use forms given by 

53 
Chernyak and Zhitnitsky, King and Sachrajda,5’and Gari and Stefanis. 
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It should be stressed that the magnitude of the proton form factor is sensi- 
tive to the x N 1 dependence of the proton distribution amplitude, where non- 
perturbative effects could be important.55 The asymmetry of the distribution 
amplitude emphasizes contributions from the large x region. Since non-leading 
corrections are expected when the quark propagator scale Q2(1 - x) is small, in 
principle relatively large momentum transfer is required to clearly test the pertur- 
bative QCD predictions. Chernyak et al!’ have studied this effect in some detail 
and claim that their QCD sum rule predictions are not significantly changed when 
higher moments of the distribution amplitude are included. 

The moments of distribution amplitudes can also be computed using lattice 
gauge theory.r4 In the case of the pion distribution amplitudes, there is good 
agreement of the lattice gauge theory computations of Martinelli and Sachra- 
jda 

15 
with the QCD sum rule results. This check has strengthened confidence 

in the reliability of the QCD sum rule method, although the shape of the me- 
son distribution amplitudes are unexpectedly structured: the pion distribution 
amplitude is broad and ha.s a. dip at x = l/2. The QCD sum rule meson distri- 
butions, combined with the perturbative QCD factorization predictions, a.ccount 
well for the scaling, normalization of the pion form factor and yy --+ IGl+n4- 
cross sections. 

In the case of the baryon, the asymmetric three-quark distributions are con- 
sistent with the normalization of the baryon form factor at large Q2 and also 
the branching ratio for J/G + pp. The data for large angle Compton scattering 

56 yp t yp are also well described. However, a very recent lattice calculation of 

the lowest two moments by Martinelli and Sachrajda. 
15 

does not show skewing 
of the average fraction of momentum of the valence quarks in the proton. This 
lattice result is in contradiction to the predictions of the QCD sum rules and 
does cast some doubt on the validity of the model of the proton distribution pro- 
posed by Chernyak et aZPg The lattice calculation is performed in the quenched 
approximation with Wilson fermions and requires an extrapolation to the chiral 
limit. 

The contribution of soft momentum exchange to the hadron form factors 
is a potentially serious complication when one uses the QCD sum rule model 
distribution amplitudes. In the analysis of Ref. 24 it was argued tha.t only 
about 1% of the proton form factor comes from regions of integration in which 
all the propagators are hard. A new analysis by Dziembowski et aZ.57 shows 

that the QCD sum rule l6 distribution amplitudes of Chernyak et a1.16 together 
with the perturbative QCD prediction gives contributions to the form factors 
which agree with the measured normalization of the pion form factor at Q” > 
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4 GeV2 and proton form factor Q’ > 20 GeV2 to within a factor of two. In the 
calculation the virtuality of the exchanged gluon is restricted to II;‘1 > 0.25 GeV”. 
The authors assume crs = 0.3 and that the underlying wavefunctions fall off 
exponentially at the x 2 1 endpoints. Another model of the proton distribution 
amplitude with diquark clustering 58 chosen to satisfy the QCD sum rule moments 
come even closer. Considering the uncertainty in the magnitude of the higher 
order corrections, one really cannot expect better agreement between t,he QCD 
predictions and experiment. 

. 

The relative importance of non-perturbative contributions to form fa.ctors is 
also an issue. Unfortunately, there is little that can be said until we have a deeper 
understanding of the end-point behavior of hadronic wavefunctions, a,nd of the 
role played by Sudakov form factors in the end-point region. Models have been 
constructed in which non-perturbative effects persist to high Q.24 Other models 

have been constructed in which such effects vanish rapidly as Q 
25,26,27 

increases. 

If the QCD sum rule results are correct then, the light hadrons are highly 
structured oscillating momentum-space valence wavefunctions. In the case of 
mesons, the results from both the lattice calculations and QCD sum rules show 
that the light quarks are highly relativistic. This gives further indication that 
while nonrelativistic potential models are useful for enumerating the spectrum of 
hadrons (because they express the relevant degrees of freedom), they ma.y not be 
reliable in predicting wave function structure. 

5.7. CALCULATING TH 

The calculation of hard-sca.ttering dia.grams for exclusive processes ill QCD 
becomes increasingly arduous as the number of incident and final parton lines 
increases. The tree-graph calculations of TH have been completed for the meson 
and baryon form factors, as well as for many exclusive two-photon processes such 
as yy t pp for both real and virtual photons and various Compton sca.ttering 
reactions. Further discussion of the two-photon predictions is given in Section 7. 

The most efficient computational methods involve two-component spinor tech- 
niques where the amplitude itself can be converted to a trace. This method was 
first used by Bjorken and Chen5’ for their calculation of the QED “trident” am- 
plitudes for ,uZ + ~P/J. It was further developed by the CALKUL group and 
applied to exclusive processes by Farrar 60 and Gunion 

61 and their co-workers. 

The large number of PQCD tree graph (300,000 for pp scattering) may 
help to explain the relatively large normalization of the pp amplitude at large 
momentum transfer. For example the nominal one-gluon exchange amplitude 

4”CF(Slt)(Ys(t)[FP(t)12 g ives a; contribution only about 10m3 of that required by 
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. 

the large angle pp scattering data. It is clearly necessary to develop highly efficient 
and automatic methods for evaluating multi-pa.rticle hard scattering amplitudes 
TH for reactions such as pp scattering. The light-cone quantization method could 
prove highly effective. In this method one expands the S-matrix in the r-ordered 
perturbation theory. For numerical computations one can use a discrete basis, 
such that in each intermediate state one sums over a complete set of discretized 
Fock states, defined using periodic or anti-periodic boundary conditions. The ma- 
trix elements of the light-cone Hamiltonian H$$Fction are simple to compute. 
In the expansion all Feynman diagrams and all time-orderings are automatically 
summed. 

In principle the perturbative QCD predictions can be calculated systema.ti- 
tally in powers of cr, ( Q2). I n p ractice the calculations are formidable, and thus fai 
only the next-to-leading correction to the pion form factor and the yy + ~7: am- 
plitude have been systematically studied. The two-photon amplitude analysis is 
given by Nizic 

62 
and is discussed further in Section 7. The complete analysis of the 

meson form factor to this order requires evaluating the one-loop corrections to the 
hard-scattering amplitude for rqq + @, plus a corresponding correction to the 
kernel for the meson distribution amplitude. The one-loop corrections to TH for 
the meson form factor have been evaluated by several groups. Because of different 
conventions the results differ in detail; however Braaten and Tse l8 have resolved 
the discrepancies between the three previous calculations. An important feature 
is the presence of correction terms of order e(yC, - $) log[(l - x)(1 - y)Q’] 
which sets the scale of the running coupling constant in the leading order contri- 
bution at Qzff = (1 - x)( 1 - y)Q2. Th’ is is consistent with the expectation tha,t 
the running coupling constant scale is set by the virtuality of the exchanged gluon 
propagator, just as in Abelian QED. This is also consistent with the automatic 
scale-fixing scheme of Ref. 63. Thus a. significant part of the PQCD higher order 
corrections can be absorbed by taking the natural choice for the argument of 
the running coupling constant. The next-to-leading correction to the kernel for 
the meson distribution amplitude has also been evaluated by several groups. A 
surprising feature of this analysis is the fact that conformal symmetry cannot be 
used as a guide to predict the form the results even when the p-function is set to 
zero.13 Th’ is is discussed in further detail in Section 4.2 
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5.8. THE PRE-QCD DEVELOPMENT OF EXCLUSIVE REACTIONS 

. 

The study of exclusive processes in terms of underlying quark subprocesses 
in fact began before the discovery of QCD. The advent of the parton model and 
Bjorken scaling for deep inelastic structure functions in the late 1960’s brought 
a new focus to the structure of form factors and exclusive processes at large 
momentum transfer. The underlying theme of the parton model was the con- 
cept that quarks carried the electromagnetic current within hadrons. The use of 
time-ordered perturbation theory in an “infinite momentum frame”, or equiva- 
lently, quantization on the light cone, provided a natural language for hadrons 

64 as composites of relativistic partons, i.e. point-like constituents. As discussed 

in Section 3, Drell and Yan lo introduced Eq. (57) for current matrix elements 
in terms of a Fock state expansion at infinite momentum. (Later this result was 
shown to be an exact result using light-cone quantization.) 

Drell and Yan suggested that the form factor is dominated by the end-point 
region x Z 1. Then it is clear from the Drell-Yan formula that the form factor 
fall-off at large Q- ’ is closely related to the x + 1 behavior of the hadron structure 
function. The relation found by Drell and Yan was 

F(Q2) - & if F~(x, Q”) N (1 - x)211-l. 

Gribov and Lipatov 
65 

extended this relationship to fragmentation functions 
D(z, Q2) at z --f 1, taking into account cancellations due to quark spin. Feyn- 

66 
man noted that the Drell-Yan relationship was also true in gauge theory models 
in which the endpoint behavior of structure functions is suppressed due to the 
emission of soft or “wee” partons by charged lines. However, as discussed in 
Section 4, the endpoint region is suppressed in QCD relative to the leading per- 
turbative contributions. 

The parton model was extended to exclusive processes such as hadron-hadron 
scattering and photoproduction by Blankenbecler, Brodsky, and Gunion 

67 
and 

by Landshoff and Polkinghorne.!’ It was recognized that independent of specific 
dynamics, hadrons could interact and scatter simply by exchanging their common 
constituents. These authors showed that the amplitude due to quark interchange 
(or rearrangement) could be written in closed form as an overlap of the light- 
cone wavefunctions of the incident and final hadrons. In order to make definite 
predictions, model wavefunctions were chosen to reproduce the fall-off of the form 
factors obtained from the Drell-Yan formula. Two-body exclusive amplitudes in 
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the “constituent interchange model” then take the form of “fixed-angle” scaling 
laws 

where the power N reflects the power-law fall-off of the elastic form factors of 
the scattered hadrons. The form of the angular dependence f(O,,) reflects the 
number of interchanged quarks. 

. 

Even though the constituent interchange is model was motivated in part by 
the Drell-Yan endpoint analysis of form factors, many of the predictions and 
systematics of quark interchange remain applicable in the QCD analysis. ” A 
comprehensive series of measurements of elastic meson nucleon scattering reac- 
tions has recently been carried out by Baller et a1.!’ at BNL. Empirically, the 
quark interchange amplitudes gives a reasonable account of the scaling, angular 
dependence, and relative magnitudes of the various channels. For example, the 
strong differences between Ir’+p and K-p scattering is accounted for by u quark 
interchange in the Ir’+p amplitude. It is inconsistent with gluon exchange as the 
dominant amplitude since this produces equal scattering for the two chanuels. 
The dominance of quark interchange over gluon exchange is a surprising result 
which eventually needs to be understood in the context of QCD. 

The prediction of fixed angle scaling laws laid the groundwork for the deriva.- 
tion of the “dimensional counting rules.” As discussed in Ref. 5, it is natural 
to assume that at large momentum transfer, an exclusive amplitude factorize as 
a convolution of hadron wavefunctions which couple the hadrons to their quark 
constituents with a hard scattering amplitude TH which scatters the quarks from 
the initial to final direction. Since the hadron wavefunction is maximal when the 
quarks are nearly collinear with each parent hadron, the large momentum trans- 
fer occurs in TH. The pre-QCD argument went as follows: the dimension of TH is 
[Lnm4] where n = ?2A + ng + nc + ?ZD is the total number of fields entering TH. In 
a renormalizable theory where the coupling constant is dimensionless and masses 
can be neglected at large momentum transfer, all connected tree-graphs for TH 
then scale as [1/&‘jne4 at fixed t/s. This immediately gives the dimensional 

counting law’ 

In the case of incident or final photons or leptons n = 1. Specializing to elastic 
lepton-hadron scattering, this also implies F(Q2) - 1/(Q2)““-’ for the spin a.v- 
eraged form factor, where nH is the number of constituents in hadron H. These 
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results were obtained independently by Matveev et aL5 on the basis of an “a.uto- 
modality” principle, that the underlying constituent interactions are scale free. 

As we have seen, the dimensional counting scaling laws will generally be 
modified by the accumulation of logarithms from higher loop corrections to the 
hard scattering amplitude TH; the phenomenological success of the counting rules 
in their simplest form thus implies that the loop corrections be somewhat mild. .4s 
we have seen, it is the asymptotic freedom property of QCD which in fact makes 
higher order corrections an exponentiation of a log log Q2 series, thus preserving 
the form of the dimensional counting rules modulo only logarithmic corrections. 

. 

6. EXCLUSIVE e+e- ANNIHILATION PROCESSES 

The study of time-like hadronic form factors using e+e- colliding beams can 
provide very sensitive tests of the QCD helicity selection rule. This follows be- 
cause the virtual photon in e+e- -+ y* + hAhB always has spin fl along the 

beam axis at high energies. #15 A g 1 - n u ar momentum conservation implies that the 
virtual photon can “decay” with one of only two possible angular distributions 
in the center-of-momentum frame: (l+cos28) for 1 AA - XB I= 1, and sin’8 for 
1 AA - &j I= 0, w h ere XA,$ are the helicities of hadron hA,B. Hadronic-helicity 
conservation, Eq. (7), as required by QCD greatly restricts the possibilities. It 
implies that AA + XB = 2xA = -~XB. Consequently, angular-momentum conser- 
vation requires 1 AA I = I XB I= $ for baryons and I AA I= I XB (= 0 for mesons; 
and the angular distributions are now completely determined: 

da 
-( dcos6 

e+e- + BB) 0: 1 + cos2 0( baryons), 

da 
- e+e- + MM) cx sin2 B(mesons). 
dcos0 ( 

It should be emphasized that these predictions are far from trivial for vector 
mesons and for all baryons. For example, one expects distributions like sin” 8 
for baryon pairs in theories with a scalar or tensor gluon. Simply verifying these 
angular distributions would give strong evidence in favor of a vector gluon. 

#15 This follows from helicity conservation as well, which is a well-known property of QED 
at high energies. The electron and positron must have opposite helicities; i.e. ye + % = 0, 
since it is the total helicity carried by fermions (alone) which is conserved, and there are 
no fermions in the intermediate state. In the laboratory frame (- p, = - + E), their 
spins must be parallel, resulting in a virtual photon with spin fl along the beam. 
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The power-law dependence on s of these cross sections is also predicted in 
QCD, using the dimensional-counting rule. Such “all-orders” predictions for QCD 
allowed processes are summarized in Table II.6’70 Processes suppressed in QCD 
are also listed there; these all violate hadronic-helicity conservation, and are sup- 
pressed by powers of m2/s in QCD. This would not necessarily be the case in 
scalar or tensor theories. 

Table II 

. 

Exclusive channels in e+e- annihilation. The ILA~BT* couplings in allowed processes are -ie(pA - pg)‘F(s) 

for mesons, -iec(pB)7“G(s)u(pA) for baryons, and -ie’c PyPp‘&cPp~F’~7(s) for meson-photon final states. Similar 

predictions apply to decays of heavy-quark vector states, such as $J, $‘, . . , produced in e+e- collisions. 

Angular distribution .$$g=+; 

Allowed 

in QCD 

e+e- + K+K-, Ii+K- 

e+e- -9 p+p-(0), Ii’+IC*- 

e+e- --) T’Y(*~), ~7, ~‘7 

e+e- -p(dz3)~(~~),nK,... 

e+e- + p(&$)z(~f),?iA... 

e+e- 4 A(&k)h(rfi),y*f,... 

Suppressed 

in QCD 

e+e- -+ p+(O)p-(kl), r+p-, Ii+Ii*-, 

e+e- 4 p+(*l)p-(*l), . . 

e+e- -p(*&)ij(&f),pE,Ah,... 

e+e- -p(&i)ii(&$),A&... 

e+e- + A(*$)b(*g), . 

sin* 0 

sin* e 

1 + cosz e 

i + cos* e 

I +cos2e 

i t cos2 e 

I + cos2 e 

sin’ e 

sin 28 

i + cos2 e 

sin2 e 

< c/s3 
< c/s3 
< c/s5 
< c/s5 
< c/s5 

Table II * 

All of these perturbative predictions assume that s is sufficiently far from 
resonance contributions. 

Notice the eSe- -+ lrp, 7rw, IM’, . . . . are all suppressed in QCD. This oc- 
curs because the y - 7r - p can couple through only a single form factor - 
,~yru,lr),~)p~)pbP)FXp(S) - and this requires 1 X, I= 1 in eSe- collisions. 
Hadronic-helicity conservation requires X = 0 for mesons, and thus these ampli- 
tudes are suppressed in QCD (although, again, not in scalar or tensor theories). 
Notice however that the processes e+e- -+ y7r,yq,yv’ are allowed by the helicity 
selection rule; helicity conservation applies only to the hadrons. Unfortunately 
the form factors governing these last processes are not expected to be large, e.g. 

&r,(s) - ?fx/s. 
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These form factors can also tell us about the quark distribution amplitudes 
$~(zi, Q). For example sum rules require (to all orders in CY~) that 7r+7rW, K+tK-, 
and p+p- (helicity-zero) pairs are produced in the ratio of fi : j$ : 4fi - 
1 : 2 : 7, respectively if the n,K, and p distribution amplitudes are of similar 
shape. These ratios must apply at very large energies, where all distribution 
amplitudes tend to 4 0: ~(1 - z). On the other hand, the kaon’s distribution 
amplitude may be quite asymmetric about z = $ at low energies due to the 
large difference between s and u,d quark masses. This could enhance Ir’+K- 
production. (Distribution amplitudes for r’s and p’s must be symmetric due to 
isospin.) The process e+e- + li’~Ks is only possible if the kaon distribution 

amplitude is asymmetric; #I6 the presence or absence of K~lr’s pairs relative to 
I(+K- pairs is thus a sensitive indicator of asymmetry in the wave function. 

6.1. J/G DECAY TO HADRON PAIRS 

The exclusive decays of heavy-quark atoms (J/$, $‘, . ..) into light hadrons 

can also be analyzed in QCD.71 The decay T/J -+ pp, for example, proceeds via 
diagrams such as those in Fig. 27. Since $‘s produced in e+e- collisions must 
also have spin fl along the beam direction and since they can only couple to 
light quarks via gluons, all the properties listed in Table II apply to +,, $‘, T, Y’, . . . 
decays as well. Already there is considerable experimental data for the I,!J and $’ 
decays.72173 

6315A63 \ 

Figure 27. Quark-gluon subprocesses for 1c, - BB. 

#lS For example, this amplitude vanishes under the (stronger) assumption of exact flavor- 
SU(3) symmetry. This is easily seen by defining G” parity, in analogy to G parity: 
Gu = Cexp(ixUz), h w ere the CJi are the isospin-like generators of SU(3), which connect 
the Ice and Fe. The final state in e+e- + KtKs has positive G” parity, while the 
intermediate photon has negative G” parity. Gu parity is conserved if SU(3), is exact, 
and e+e- - KLKS then vanishes. 
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Perhaps the most significant are the decays $, ?,!” + pp, n?i, . . . . The predicted 
a,ngular distribution l+ cos2d is consistent with published data. 73 Th’ is is im- 
portant evidence favoring a vector gluon, since scalar- or tensor-gluon theories 
would predict a. distribution of sin20 + O(oS). D imensional-counting rules can be 
checked by comparing the 1c, and $’ rates into pp, normalized by the total rates 
into light-quark hadrons so as to remove dependence upon the heavy-quark wave 
functions. Theory predicts that the ratio of branching fractions for the pp decays 
of the $ and G’ is 

8 ‘(” + “) - Qe+e- 
w + Pa 

, 

where Q,t,- is the ratio of branching fractions into ese-: 

B($’ t e+e-) 
Qe+e- = B( J,G ---$ e+e-) = 0.135 f 0.023 . 

Existing data suggest a ratio (IM~~,/M$)~ with n = 6 f 3, in good agreement, 
with QCD. One can also use the data for $ ---f pp, Ax, ZZ, . . . . to estimate the 
relative magnitudes of the quark distribution amplitudes for baryons. Correcting 
for phase space, one obtains &, - 1.04(13) & - 0.82(5) 4: - 1.08(S) 4~ - 
1.14(5) 4~ by assuming similar functional dependence on the quark momentum 
fractions xi for each case. 

As is well known, the decay I/’ + ~+7r- must be electromagnetic if G-parity is 
conserved by the strong interactions. To leading order in Q~, the decay is through 
a virtual photon (i.e. I,!’ --f y* + 7rr$7r-) and the rate is determined by the pion’s 
electromagnetic form factor: 

where s = (3.1GeV)*. Taking F,(s) N (1 --s/m;)-’ gives a rate I’($ + rTTs‘7r-) - 
0.0011 I’($ + p+p-), which compares well with the measured ratio 0.0015(7). 
This indicates that there is indeed little asymmetry in the pion’s wave function. 

The same analysis applied to 1c, + li’+li’- suggests that the kaon’s wave 
function is nearly symmetric about x = i. The ratio P($ t KSK-)/I’(ll, -+ 
7r+r-) is 2 f 1, which agrees with the ratio (f~/f~)~ N 2 expected if r and I< 
have similar quark distribution amplitudes. This conclusion is further supported 
by measurements of II, t KLKS which vanishes completely if the I< distribution 
amplitudes are symmetric; ex,perimentally the limit is I’(+ + KLII(s)/I’($ --+ 
K+K-) 5 4. 

82 



6.2. THE T-p PUZZLE 

We have empha.sized that a central prediction of perturbat,ive QCD for exclll- 
sive processes is hadron helicitly conservation: to leading order in l/Q, the total 
helicity of hadrons in the initial sta.te must equal the tota. helicit of hadrons ill 
the final sta.te. This selection rule is independent of any photon or lepton spin ap 
pearing in the process. The result follows from (a) neglecting quark ma.ss terllls. 
(b) the vector coupling of ga.uge particles, a.nd (c) the dominance of valence Fock 

states with zero a.ngular momentum projectionF The result is true in each order 
of perturbation theory in cyS. 

Hadron helicity conservation a.ppears relevant to a puzzling anomal~~ in the 
exclusive decays J/T+!? and $’ + pr. It’*?? and possibly other \i’ector-Pseudoscalai 
(VP) combinations. One expects the J/T& and $1’ mesons to deca.y to hadrons 
via three gluons or, occasionally, via a single direct. photon. In either case the 
deca.y proceeds \?a Iq(O)l”, where q(O) is t,he wave function at t,ht origili in the 
nonrela.tivistic quark model for CC. Thus it is reasonable to expect on the basis of 
perturba,tive QCD tha.t for any final hadronic state 12 that the branching fract,ions 
scale like the branching fractions into e+e-: 

Usually this is true, a.s is well documented in Ref. 74 for RIFT”, 27;+.)7:-7;“. 
7rrs7r-w, and 3~+37r-?r’, ha.dronic channels. The startling exceptions occur for /KY 
and I<*?? where the present experimental limits 74 are QPr < 0.0063 and Qrl.,r;< 
0.0027. 

- 

Perturbative QCD quark helicity conservation implies’ Qpa E [B(Q’ -+ 
p)/B( J/4 --+ pi)] I Qete- [A4J,,/Afd,, !I6 Tl lis result includes a form factor sup- 
pression proportional to [A!,,,, /M,,I]” and a.n additional two powers of the mass 
ratio due to helicity flip. However, this suppression is not nearl>- large enough to 
account for the data.#17 

From the standpoint of perturbative QCD, the observed suppression of ~11” --7 
V P is t,o be expected; it is the J/q!, that is anomalous.75 The $’ obeys the pertur- 
bative QCD theorem that total hadron helicity is conserved in high-moment urn 

#17 There is the possibility is the these form fact,ors are dominated by end-point contributions 
for which quark masses may be less relevant. Such t.erms are expected to be st.rongl> 
suppressed by quickly falling Sudakov form factors. This could also explain the rapid 
falloff of the i: - A - p form factor wit,11 increasing Mi. 
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transfer exclusive processes. The general validity of the QCD helicity conserva.tion 
theorem at charmonium energies is of course open to question. An alternative 
model 

76 based on nonperturbative exponential vertex functions, has recently been 
proposed to account for the anomalous exclusive decays of the J/T). However, 
helicity conservation has received important confirmation in J/lc, -+ pp where the 
angular distribution is known experimentally to follow [l + cos2 01 rather than 
sin2 8 for helicity flip, so the decays J/t) --t 7rp, and Ir’r seem truly exceptional. 

The helicity conservation theorem follows from the assumption of short-range 
point-like interactions among the constituents in a hard subprocess. One way in 
which the theorem might fail for J/$ t gl uons --$ up is if the intermediate gluons . 
resonate to form a gluonium state 0. If such a state exists, has a ma.ss near that, 
of the J/$, and is relatively stable, then the subprocess for J/g -+ rp occurs 
over large distances and the helicity conservation theorem need no longer a,pply. 
This would also explain why the J/G decays into xp and not the G’. 

Tuan et a1.75 
.77 

have thus proposed, following Hou and Son], that the en- 
hancement of J/$ --) Ir’*ff and J/T) + pi decay modes is caused by a quan- 
tum mechanical mixing of the J/lc, with a Jpc = l-- vector gluonium state 0 
which causes the breakdown of the QCD helicity theorem. The decay width for 
J/$ t ~T(K*??) via the sequence J/$ -+ U -+ p~(lrl*??) must be substan- 
tially larger than the deca,y width for the (non-pole) continuum process J/G -+ 3 
gluons -+ pr(K*x). In the other channels (such as p;ij,pj%r”,2~%r-~o, etc.), 
the branching ratios of the 0 must be so small that the continuum contribution 
governed by the QCD theorem dominates over that of the 0 pole. For the case of 
the $J’ the contribution of the 0 pole must always be inappreciable in comparison 
with the continuum process where the QCD theorem holds. The experimental 
limits on Q,,* and QK.r are now substantially more stringent than when Hou 
and Soni made their estimates of MO, I?o+.~~ and I’O+K.r in 1982. 

A gluonium state of this type was first postulated by Freund and Nanlbu78 
based on 021 dynamics soon after the discovery of the J/lc, and +’ mesons. In 
fact, Freund and Nambu predicted that the 0 would decay copiously precisely 
into pi and K*?T with severe suppression of decays into other modes like c+te- 
as required for the solution of the puzzle. 

Branching fractions for final states h which can proceed only through t,he 
intermediate gluonium state have the ratio: 

It is assumed that the coupling of the J/ll, and $’ to the gluonium state scales 
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as the eSe- coupling. The value of Qh is small if the 0 is close in mass to the 
J/G. Thus one requires (MJ,$ - Mo)~ + i I& 2 2.6 Qh GeV2. The experimental 

limit for QK.~ then implies [(hfJl$ - f’Pf~)~ + a I’&]“” 5 80 MeV. This implies 
1 hfJ/$, - MD I< 80 MeV and l?o < 160 MeV. Typical allowed values are MO = 
3.0 GeV, ro = 140 MeV or MD = 3.15 GeV, re, = 140 MeV. Notice that the 
gluonium state could be either lighter or heavier than the J/t). The branching 
ratio of the 0 into a given channel must exceed that of the J/$. 

It is not necessarily obvious that a J PC = l-- gluonium state with these 
parameters would necessarily have been found in experiments to date. One must 
remember that though 0 -t pr and 0 --f I<*?? are important modes of decay, at 
a mass of order 3.1 GeV many other modes (albeit less important) are available. 
Hence, a total width I’0 !? 100 to 150 MeV is quite conceivable. Because of 
the proximity of Mu to MJ,+, the most important signatures for an 0 search via 
exclusive modes J/+ -+ IC*rh, J/lc, + prh; h = 7r~, 77, q’, are no longer available 
by phase-space considerations. However, the search could still be carried out 
using $’ + IC*i’hh, $’ + prh; with h = ~7r, and 7. Another way to search for 
0 in particular, and the three-gluon bound states in general, is via the inclusive 
reaction $’ --t (or) + X, where the 7r7r pair is an isosinglet. The three-gluon 
bound states such as c3 should show up as peaks in the missing mass (i.e. mass 
of X) distribution. 

The most direct way to search for the 0 is to scan pp or e+e- annihilation 
at fi within - 100 MeV of the J/$, trigg ering on vector/pseudoscalar decays 
such as np or ZIP. 

The fact that the pr and li’*x channels are strongly suppressed in $’ decays 
but not in J/t) decays clearly implies dynamics beyond the standard charmonium 
analysis. The hypothesis of a three-gluon state 0 with mass within E 100 MeV 
of the J/+ mass provides a natural, perhaps even compelling, explanation of this 
anomaly. If this description is correct, then the $’ and J/$ hadronic deca.ys not 
only confirm hadron helicity conservation (at the $’ momentum scale), but they 
also provide a signal for bound gluonic matter in QCD. 

6.3. FORM FACTOR ZEROS IN QCD 

The exclusive pair production of heavy hadrons ]Qra,), jQrQ2Qs) consisting 
of higher generation quarks (Q; = t, b, c, and possibly s) can be reliably predicted 
within the framework of perturbative QCD, since the required wavefunction input 

7g is essentially determined from nonrelativistic considerations. The results can be 
applied to e+e- annihilation, yy annihilation, and W and Z decay into higher 
generation pairs. The normalization, angular dependence and helicity structure 
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ca,n be predict.ed away from threshold, allowing a detailed stud), of t.he basic 
elements of hea.vy qua.rk hadronization. 

. 

A particularly striking fea.ture of the QCD predictions is the existence of a 
zero in the form fa.ctor and e+e- annihilation cross section for zero-helicity hadroll 
pair production close to the specific timelike value q2/4M$ = mh/hf where ml, 
and me are the heavier and lighter quark masses, respectively. This zero refiects 
the destructive interference between the spin-dependent and spin-indepetldent 
(Coulomb exchange) couplings of the gluon in QCD. In fact, a,11 pseudoscalar 
meson form factors are predicted in QCD to re\.erse sign from spacelike to timelike 
asymptotic moment,um transfer because of their essentialI>, monopole fornl. For 
1121, > he the form factor zero occurs in the physical region. 

To leading order in l/q’, the production amplitude for hadron pair product iolr 
is given by the factorized form 

where [&:;I = 5 (CrL1 zk - 1) nr=, dxk and 11 = 2, 3 is the number of qunl~lis 
in the valence Fock state. The scale p is set from higher order calculations. but 
it reflects the minimum momentum transfer in t,he process. The main cl>~namical 
dependence of the form factor is controlled 1~~. the hard scattering amplit.ude Ijj 
which is computed by replacing each hadron by collinear constituent.s P/’ = cc;Pf;. 
Since the collinear divergences are summed in $H, TIN can be syst~ematicall;~ 
computed as a perturbation expa,nsion in ~~~(4’). 

The distribution amplitude required for heavy hadron production dH(si; q’) 
is computed as an integral of the \;alence light-cone Fock wavefunction up to 
the scale Q’. For the case of heavy quark bound states, one can assume that 
the constituents are sufficiently non-relativistic that gluon emission, liigller FOCli 

sta.tes, and retardation of the effective potential can be neglected. The anal)G 
of Section 2 is thus relevant. The quark distributions are then controlled by a 
simple nonrelativistic wa.vefunction, which can be taken in the model form: 

This form is chosen since it coincides with the usual Schrijdinger- Coulomb wa\~- 
function in the nonrelativistic limit for hydrogenic atoms and has the correct 
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large momentum behavior induced from the spin- independent gluon couplillgs. 
The wavefunction is peaked at the mass ratio xz = ??Zi/nfH: 

where (kz) is evaluated in the rest frame. Normalizing the navefunction to unit 
probability gives 

c” = 12&r ((u3))5/‘?n2;(?721 + 7m) 

where (e,?) is the mean square relative velocity and 772, = nz~m~/(m~ + ml) is 
the reduced ma.ss. The corresponding distribution amplitude is 

It is easy to see from the structure of TH for eSe- 
- 

-+ MM that the spect.ator 
quxk pair is produced with moment~um transfer squared y”xSyS = 4112:. Thus 
heavy hadron pair production is dominated by dia.grams in which the primar;. 
coupling of the virtual photon is to the heavier quark pair. The perturbati1.e 
predictions are thus expected to be accurat,e even near threshold t.o lea.ding order 
in a,(4m?) where rn,e is the mass of lighter quark in the meson. 

The lea.ding order eSe- production helicity amplitudes for higher generation 
meson (A = O,Z!L~) and baryon (A = &l/2, &3/Z) 1 3airs are computed in Ref. 79 
as a function of 9” and the quark masses. The analysis is simplified by using the 
pea.ked form of the distribution amplitude, Eq. (6). In the case of meson pairs 

the (unpolarized) e+e- annihilat,ion cross section has the general form #la 

#lS Fx;i.(q’) is the form factor for tile production of two mesons which have bot,l~ spill a~ltl 
helicity (Z-component of spin) a.s X and 1 respectively. There a.re two Lorentz and gaug(‘ 
invariant fornl factors of vector pair production. However, one of them turns out to lx 
the same as the form factor of pseudoscalar plus vect,or production multiplied by M,f. 
Therefore the differential cross section for the production of two mesons with spiu 0 or 1 
can be represented in terms of three independent form factors. 
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- 4(1 + P’) Re (~~,1(q2)1;;:,(q2)) + 4jF’0.~(g’)1’ 

3P2 
+ a(1 - p’) 

(1 + cos2 a)lFo,1(q2)l’ 1 
where (I” = s = 4lz&?j’ a,nd the meson velocity is 3 = 1 

form fact’ors ha\e the general form 

4M’ 
H The productjion ---2--. 

Y 

where A and B reflect the Coulomb-like and transverse gluon couplings; respec- 
tively. The results to leading order in o, are given in Ref. 79. In general A and 
B have a slow loprithmic dependence due to the $-evolution of the distributioil 
amplit,udes. The form factor zero for the case of pseudoscalar pair production 
reflects the numera.tor structure of the rljl’ amplitude. 

For the peaked wavefunction. 

If ml is much greater than In2 then the er is dominant and changes sip at 
q2/4A4i = m1/%72~. The contribution of the e:! term and higher order contril)li- 
tions are small and nearly constant in the region where the 61 term changes sigi~; 
such contributions can displace slightly but not remove the form factor zero. 
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These results also hold in quantum electrodynamics; e.g. pair production 01’ 
muonium (p - e) atoms in e+e- annihilation. Gauge theory predicts a zero a.t 
iIj2 = m,/k,. 

. 

These explicit results for form factors also sho\v that the onset of the leading 

power-law scaling of a form factor is controlled by the ratio of the A and B terms: 
i.e. when the transverse contributions exceed the Coulomb ma.ss-domina.ted con- 
tributions. The Coulomb contribution to the form factor can also be comp~~tecl 
directly from the convolution of the initial and final wavefunctions. 7’11~s. C’OW 
trary to the claim of Ref. 24 there a.re no extra factors of a,(y’) \vhich suppress 
the “hard” versus nonperturbative contributions. 

The form factors for the hea,vy hadrons are normalized by the constraint’ that 
the Coulomb contribution to the form factor equals the total hadronic charge at 
q2 = 0. Further, by the correspondence principle, the form factor should agree 
with the standard non-relativistic calcula.tion at small momentum transfer. .411 
of these constraints a.re satisfied by the form 

l6?4 2 

( >( 
s 2 

&$(q2) = e1 -- (q? + y2)2 m; l - 4$;i ‘,::y > 
+ 1 H 2 . 

.4t large q2 the form factor can also be written as 

where f,lf = (67”/aAl~,)‘/’ ’ IS the meson decay constant. Detailed results for I;‘J’ 
and B,Bc production a.re gi1.e in Ref. 79. 

At low relative velocity of the hadron pair one also expects resonance contri- 
butions to the form fa.ctors. For these heavy systems such resonances could be 
related to qqijij bound states. From Watson’s theorem, one expects any resonance 
structure to introduce a final-sta.t.e pha.se factor, but not destroy the zero of the 
underlying QCD prediction. 

.i\na.logous ca.lculations of’ the baryon form fa.ctor, reta.ining the constituent 
mass structure ha.ve also been done. The numerator structure for spin l/2 Lar~~~lls 
has the form 

A+Bq'+c$. 

Thus it is possible to have two form factor zeros; e.g. at spacelike and timelikc 
values of q’. 
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Although the measurements are difficult and require large luminosity, the 
observation of the striking zero structure predicted by QCD would provide a 
unique test of the theory and its a.pplicability to exclusive processes. The onset 
of lea.ding power behavior is controlled simply by the ma.ss pa.rameters of tile 
theory. 

7. EXCLUSIVE yy REACTIONS 

Two-photon reactions have a number of unique features which are especially. 
important for testing QCD, especially in exclusive channels: 

80 

. 
1. Any even charge conjugation hadronic state can be created in the annihi- 

lation of two photons-an initial state of minimum complexity. Because 
yy annihilation is complete, there a.re no specta.tor hadrons to confuse res- 
onance analyses. Thus, one has a clean environment for identifying the 
exotic color-singlet even c’ composites of quarks a,nd gluons I@J >, 199 >. 

1999 h lm >, hm >, ... which a.re expected to be present. in the f’e\\. 
GeV mass range. (Because of mixing, the actual mass eigensta.tes of Q2c’U 
ma.y be complica.ted admixtures of the various Fock components.) 

2. The mass and polarization of each of the incident virtual photons can be 
continuously va.ried, allowing highly detailed tests of theory. Because a 
spin-one state ca.nnot couple to two on-shell photons, a J = 1 resonance 
ca.n be uniquely identified by the onset of its production with increasing 
phot,on n~ass.81 

3. Two-photon physics plays an especially importa.nt role in probing d>nan- 
ical mecha.nisms. In the low momentum transfer domain, my reactions 
such as the total annihilation cross section and exclusive vector meson pail 
production can give important insights into the nature of diffractive reac- 
tions in QCD. Photons in QCD couple directly to the quark currents at 
any resolution scale (see Fig. 28). Predictions for high momentum trans- 
fer yy reactions, including the photon structure functions, F~(x, Q2) and 
Fl(n:, Q2), high PT jet production, and exclusive channels are thus much 
more specific than corresponding hadron-induced reactions. The pointlikc 
coupling of the annihilating photons leads to a host of special feat,ures whiclr 
differ markedly with predictions based on vector meson clominailce iriotlels. 

4. Exclusive yy processes provide a window for viewing the wa\:efurictions 01’ 
hadrons in terms of their quark and gluon degrees of freedom. In tile case 01 
yy annihilation int,o hadron pairs, the angular distribution of the produc- 
tion cross sect’ion direct1.y reflects the shape of the distribution amplitude 
(valence wavefunction) of each hadron. 
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hadrons 

6-88 6069A6 

. 
Figure 28. Photon-photon annihilation in QCD. The photons couple directly to 

one or t~wo quark currents. 

Thus far experiment has not been sufficientl!. precise to measure the logaritll- 
mic modification of dimensional count,ing rules predicted by QCD. Perturbat i\,c, 
QCD predictions for -fy exclusive processes at high momenturn transfer a.nd lrigll 
in\:ariant pair mass provide some of the most severe tests of the t,heory..s’ A siinplc, 

but still very import,ant example4 is the Q’-dependence of t,he reaction ?*? -+ $4 
where A4 is a pseudoscalar meson such as the q. The invariant amplitude contains 
only one form factor: 

It is easy. t,o see from po\ver counting at, large Q’ that the clorilinant a111plit II~IO 
(in light-cone gauge) gives J’?,,(Q’) - l/Q’ and arises from dia.grams (see Fig. 
29) which ha1.e the minimum path ca.rrging Q’: i.e. dia.grams in which there is 
only a single quark propagator between the two photons. The coefficient of l/Q’ 
involves only the two-particle qij distribution amplitude $(x, Q), which e\.ol\.es 
loga~rithmically on Q. Higher particle number Fock states give higher power-la\\ 
falloff contributions to the exclusive a.mplitude. 

The TPC’/?*, da.ta.83 sho\vn in Fig. _ 30 a.re in st.riking agreement Lvitll thcb 
predicted QCD power: a fit to the data gives F,,,(Q’) - (l/Q’)” \rith 11 = 
1.05f0.15. Data for the 71’ from Pluto ancl the TPC/~~Y experiments gi1.c sirllilar 
results, consistent with scale-free behavior of the QCD quark propagator and tlrcx 
point coupling t,o the quark current for both the real and virtual phot,ons. III tlr(~ 
ca.se of deep inelastic lepton scattering, the observation of Bjorken sca.ling tests 
these properties when both photons are virtual. 

The QCD power law prediction? FyV(Q2) - l/Q’, is consistent with dimen 

sional count,ing5 a,nd also emerges from current algebra arguments (when botll 
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Figure 29. Calculation of the y - 11 transition form factor in QCD from the 
valence q?j and qqg Fock stat.es. 
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Figure 30. Comparison of TPC/yy dataa for the y - 17 and y - 11' transition 
form factors with the QCD leading twist prediction of Ref. 82. The VMD predict.ions 
are also shown. See S. Yellin, this meeting. 

photons are very virtua.l).84 On t’he other ha,nd, the l/Q” falloff is also expect 4 ~II 
vector meson dominance models. The QCD and VDM predictions can be reaclil!. 
discriminated by studying boy* t 11. In V&ID one expects a product of ~O~III 
factors; in QCD the falloff of the amplitude is still l/Q’ where Q’ is a. lineal, 
combination of QT and Qi. It is clearly very important to test this essential 
feature of QCD. 

Exclusive two-body processes yy -+ HP at large s = KY7 = (ql + qz)‘! and 
fixed 0,‘;;: provide a particularl!; importa.nt la.boratory for testing QCD; siuctr t 11~s 
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large momentum-tra.nsfer beha.vior, helicit,y structure. and often even the absolut(~ 
normalization can be rigorously predicted. 82’56 Tl le angular dependence of so111(’ 

- 
of the my -+ HH cross sect,ions reflects the shape of the hadron distribution 
a,mplitudes $!)H(,l:i, Q). The ?xyx~ t Hz amplit,ude can be written a.s a factoriz(x1 
form 

. where TX,) is the hard scattering helicity amplitude. To leading order T x 

a(c~~/I+‘,f,)” and da/dt - T,T,~~~~‘l)l’+:!)f(B,,,,) 1 w lere 12 = 1 for mc’son and 72 = 2 f’ol 

baryon pairs. 

Lowest order predictions for pseudo-scalar and vector-meson pairs for each 
helicity amplitude are given in Ref. 82. In each case the helicities of the hadron 
pa,irs are equa.1 and opposite to leading order in l/11,“. The norma.lizat,ion and an- 
gular dependence of the leading order predictions for ye annihilation into charged 
meson pairs are almost model independent; i.e. they are insensitive to the ljrecise 
form of the meson distribution amplitude. If the meson distribution amplitudes 
is symmetric in Y and (1 - J). then the same quantitJ7 

1 

J 

cl,r Q~(J> Q) 
. (1-r) 

0 

controls the r-integration for both F,(Q”) and to high accurac)- ill(?r + ~$7;~). 
Thus for charged pion pairs one obtains the relation: 

g (YY + 7r+7r-) N 41F,(s)l” 

g h-t 4 /“+/L- ) - 1 - cos4 u,,,, . 

Note that in the case of charged kaon pairs, the asJ,mmetry of the distril)ut ioll 
amplitude may give a sma.ll correction to this relation. 

The sca.ling behavior, angular behavior, and normalization of t.h(t A/-/ escl~ 
sive pair production react.ions are nontrivial predictions of QCD. Recent hlark II 
meson pair data and PEPA/PEPS datas5 for separated xs7r- a,nd J<+tK- ]“‘(‘- 
duction in the range 1.6 < W’,, < 3.2 GeV nea,r 90” are in satisfactory agreelnellt 
with the normalization and energy dependence predicted by QCD (see Fig. 31). 
In the case of T”7r” product.ion. the cos O,,,, dependence of the cross sect ioll (::III 
be inverted to determine the .x-dependence of the pion distribution amplit ucl(~. 
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The wa.vefunction of hadrons containing light and heavy quarks such as the: Ii. 
D-meson are likeI>. to be asymmetric due to the dispa.rity of the quark masses. III 
a. ga.uge theory one expects that the wavefunction is maximum when the qual’l<s 
have zero relative velocity; this corresponds to z; 0: ?nil where 1721 = ki + 77)'. 

An explicit model for the skewiilg of the meson distribution amplitudes based 011 
QCD sum rules is given by Benyayoun and 86 Chernyak. These authors also appl!, 
their model to two-photon exclusive processes such as my -+ K+A’- and obtain 
some modification compared to the strictly symmetric distribution amplitudes. 
If the same conventions are used to label the quark lines, the calculations of’ 
Benyayoun and Chernyak are in complete agreement with those of Ref. $2. 

The one-loop corrections to the hard scattering amplitude for meson 1)ail.s 
have been calculated b\- 

62 
Nizic. The QCD predictions for mesons colltainillg 

admixtures of the lug) Foci; stat.e is given by Atkinson, Sucher. and 
56 

TsoI<o.~. 

The perturbative QCD analysis 1la.s been extended to bar).ol?-pair product ioll 
in comprehensive a.nalyses by Farrar ef 

60,56 
al. and by Gunion et 

61,56 
(~1. Pretlic 

tions are given for the “sidewa3.s” Compton process 3’3 t pj?, Ax pair procluc- 
tion, and the ent,ire decuplet set of baryon pair sta.tes. The arduous calculation 
of 80 yy t qqqyqq dia.grams in TH required for calculating 33 -+ BB is great]!- 
siiilplified bJ. using two-coliiponent spiuor techiiiques. The doubly. cllargc>tl _1 j)aii. 
is predicted to ha.ve a fairly. small normalization. Experimentally- such re.~ona~lcc 
pa.irs may be difficult to identify. under the continuum background. 

The norma.lization and angular dist,ribution of the QC’D predictions for prot OII- 
antiproton production shown in Fig. 32 depend in detail on the form of’ the 
nucleon distribution amplitude, and thus provide severe tests of the model form 
derived by Chernyak, Ogloblin, and Zhitnitsky 

49 from QCD sum rules. 

,411 important check of the QCD predictions can be obtained by colnbillillg 
data front 23 -+ J@ and the a.unihila.tion rea.ct.ion. pi -+ ~7: \vitll largc~ a11gIo 
Clompton scatt,ering yp + yp. The a.vailable data 8T for large angle C'oniptoii 

scattering (see Fig. 33). for 5 C:eI/.’ < s < 10 Gel,” are consistent jvit11 tlrc, 
dimensional counting scaling prediction, s’da/dt = f(O,,). In general. conlpal’- 
isons between channels related by crossing of the hlandelstam \.ariables place a 
severe constraint. on the angular dependence and analytic form of the undcrl>.ing 
QCD exclusive amplitude. Furthermore in @ collisions one can study timelikc~ 
photon production into eSe- and examine the virtual photon mass dependenct, 
of the Compton amplitude. Predictions for the y2 dependence of the 111, + --;-,* 
anlplitude can be obtained 1);. crossing the results of Gunion and 

56 
Millers. 

The region of applicabi1it.y of the leading power-law predictions for y7 1 
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Figure 31. Compa.rison of ye --. ~+7r- and my - I<+I<- meson pair production 
data with the parameter-free perturbative QCD prediction of Ref. 82. The theor\ 
predict,s the n’ormalizahon and scaling of the cross sections. The data are from the 
TPC/: 7 

85 
collal~oration. 

@ requires that one be beyond resonance or tjhreshoid effects. It presumabl~~ 
is set by the scale where Q”G’,(Q’) is roughl). consta.nt, i.e. Q’ > 3 Cc\“. 

Present mea.surements may thus be too close to threshold for meaningful tests! 
It should be not’ed that unlike the ca.se for charged meson pair production. tllc 
QCD predictions for baryons are sensitive to the form of the running coupling 
constant and the endpoint behavior of the wavefunctions. 

- The QCD predictions for my --+ HH can be extended to the case of OII(: 
or two \:irtua.l photons, for mea.surements in which one or both electrons arc. 
tagged. Because of the direct coupling of the photons to the quarks, the QT all(l - 
Qz dependence of the 72 + HH amplitude for transversely polarized photons is 
minimal at 11:’ large and fixed O,,, , since the off-shell quark and gluon propa.ga t OLS 
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Figure 32. Perturbative QCD predictions by Farrar and Zhang for t,he cos(8,,,,) 
dependence of the yy -+ pp cross sect,ion assuming t,he King-Sachrajda (KS), Chernyak ( 
Ogloblin, and Zhit.nit,sky (COZ)4y, and original Chernyak and Zhitnit.sky (CZ) I6 forIlls 
for the prot.on dist,ribution amplitude, dp(zi% &), 
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Figure 33. Test. of dimensional counting for Compton scat,tering for 2 < I?;‘, < 
G Ge1? 

in TH already transfer hard momenta; i.e. the 2-r coupling is effectively local for 
Q;, Q; < pt. The y*y* - - + BB and MM amplitudes for off-shell photons 

have been calcula.ted by Millers a.nd 
56 

Gunion. In each ca.se, the predictions she\\ 
skong sensitivit?- to the form of the respect,ive baryon and meson distribution 
amplitudes. 

We also note that photon-photon collisions provide a wal. to me;~surtr t ire 

running coupling constant in an exclusi\.e channel, independent of the f’or~rr of’ 
ha,dronic distribution amplitudes. ” Tl re photon-meson transition forrrr f’acto~~s 
Fy-hi( Q2), Ad = TO, 7j”, f, etc., are mea.surable in tagged ey -+ c’A1 rcactio~~s. 
QCD predicts 

o,(Q') = -!- FdQ’) 
4~ Q’IF,,.(Q”)I’ 

where to lea.ding order the piorr distribution amplitude enters both nunrerat 01’ 
and denominator in the sa.me manner. 

The complete calculations of the tree-graph structure (see Figs. 3-1. 35. :3(i) - 
of both yy t MM and yy t BP amplitudes has now been completed. Ontr 
caa use crossing to compute TH for pp + yy to leading order in oS($-) from tlro 
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calculations reported by Farrar, Maina and Neri 
56 and Gunion and Millers.50: Es- 

amples of the predicted angular distributions are shown in Figs. 37 and 38. 

Figure 34. Application of QCD to two-photon produhion of meson 
0” pairs. 

Figure 35. Nest-to-leading perturbative contribution to TH for the process 2-I - 
Ma. The calculation has been done by Nizic.sg 

As discussed in Section ‘3: a. model form for the proton distribution alnplitud(B 
has been proposedby C’hern~~al; and Zhitnitsky 

IG 
based on QCU sum rulc~ \<~llic.l~ 

leads to normalizat,ion and sign consistent with the measured proton form fact 01 
(see Fig. 21). The CZ sum rule analysis ha.s been confirmed and extended 1,~. 

King and 
50 

Sachrajda.. The CZ proton dist’ribution amplitude yields predictiollh 
for yy t PI, in rough a.greement with the experimental normalization, althougll 
the production energy is too low for a clear test. It should be noted that lllllil<(’ 

9s 



Figure 36. Leading diagrams for y + y + j? + p calculated in Ref. 50; 

meson pair production 89 the QCD predictions for baryons are highly sensit i1.e 
to the form of the running coupling constant and the endpoint behavior of t.lle 
wavefunctions. 

It is possible tha.t dat’a from pi &&ions a.t energies up to 10 Ge\’ could 
grea.tly clarify tl le question of whether the perturba.tive QCD predictions are reli- 
able a.t modera.te momentum transfer. As emphasized in Sect.ion 4. an inlport a11t 
check of the QCD predictions can be obtained by combining data front 11~ + A,?. 
yy --f @ with large angle Compton scattering yp t yp. This comparison checks 
in detail the a.ngular dependence a.nd crossing behavior expected from the the- 
ory. Furthermore, in pjj collisions one can even stud). time-like photon production 
into e+e- and examine the virtual photon mass dependence of the Compton alli- 
plitude. Predictions for the q” dependence of the pp --+ yy* amplit,ude can be 
obtained by crossing the results of Gunion and 

56,61 
Millers. 
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L Figure 37. QCD prediction for the scaling and angular distributiou for 7 + -, - 
j5+p calculated by Farrar el al.? The dashed-dot curve corresponds t.o 4A’/s = 0.0016 
and a maximum running coupling constant (Y:~* = 0.8. The solid curve corresponds 
to 4A’/s = 0.016 and a maximum running coupling constant oaaz = 0.5. The da.slled 
curve corresponds t,o a fixed oS = 0.3. The results are very sensit,ive to the endpoint 
behavior of the proton distribution amplitude. The CZ form is assumed. 

8. QCD PR.OCESSES IN NUCLEI 

The least-uuderstood process in QCD is ha.dronizatiorl - the nlrcllallislll 
which converts quark and gluon quanta to color-singlet integrally,-charged lladrotls. 
One way to study ha.dronization is to perturb the environment by introducing a 
nuclear medium surrounding the hard-scattering short distance reaction. This i:, 
obviously impractical in the theoretically simplest processes - eSe- or 13 aulli- 
hilation. However, for large momentum tra.nsfer reactions occurring in a nuclcal. 
target, such as deep inelastic lept.on scattering or massive lepton pair productiol1. 
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Figure 38. QCD predichon for the scaling and angular distribut,ion for A, + 7 - 
p + 1) calculat,ed by Gunion. Sparks and Millers.56’61 CZ distribution amplitudes arc 
a.ssumed. The solid and running curves are for real photon annihilation. The dasl~ed 
and dot-dashed curves correspond to one photon spa.ce-like, with Qz/s = 0.1. 

the nuclear medium provides a nontrivial perturba.tion to jet evolution tlirougll 
the influence of initial- and/or final-state interactions. In the case of large momc~~- 
turn transfer qua.siexclusive reactions, one can use a nuclear target to filter and 
influence the evolution a.nd struct,ure of the hadron wavefunctions thcmsel\xs. 
The physics of such nuclear react’ions is surprisingly interest,ing and subtle ---~ 
involving concepts and novel effects quite orthogonal to usual expectations. 

The nucleus thus plays two complimentary roles in qua.ntum cllromod?,llalllics: 

1. 

. 

A nuclear target can be used as a control medium or background field to 
modify or probe qua.rk a,nd gluon subprocesses. Some novel examples are 
cola?. trnnspawncy. the predicted tra.nsparency of the nucleus to hadrolls 
participating in high-momentum transfer exclusive reactions, and fot,/ncllior, 
zone phenomena, the absence of ha.rd, collinear, target-induced racliatioll 1~~. 
a quark or gluon interacting in a. high-momentum transfer inclusive reaction 
if its energy is large compared to a scale proportiona. to the length of the 
target. (Soft radiation and elast,ic initial-state interactions in the nucleus 

st’ill occur.) Conlesctrzcf with co-lno\ring spectators go ha.s been discussed as 
a mechanism which can lead to increased open charm hadroproduction. but 
which also suppresses forward charmonium production (relative to lept 011 
pairs) in heavy ion collisions.” There are also interesting special fea.tures of’ 
nuclear diffractive a.mplitudes - high energy’ hadronic or electromagnetic 
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3 I. 

react,ions which leave the entire nucleus intact and give nonaddit ive contri- 
butions to the nuclear structure function at low z~j. The Q’ dependence of 
diffractive y*cp t pop is found to have a  slope in the t -dependence exp 211 

where b  = b(Q’) is of order 1  - 2  GeTI-‘, much smaller tha.n expect,ed on 
the basis of vector meson.dominance and t-channel fa.ctorization. 

Conversely, the nucleus can be studied as a  QCD structure. At short dis- 
tances nuclear wavefunctions and nuclear interactions necessarily in\,ol\-ca 
hidden COLON, degrees of f reedom orthogonal to the channels described 1,~. 
the usual nucleon or isobar degrees of freedom. At asymptotic ~iioii~ent IIIII 

transfer, the deut,eron form factor and distribution amplitude a.re rigor,- 
ously calculable. One can also derive new types of testable scaling la\vs for 
exclusive nuclear amp litudes in terms of the reduced amplitude formalism. 

8.1. EXCLUSIVE NUCLEAR REACTIONS - REDUCED AhIPLITuDEs 

.4n ultimate goal of QCD phenomenology is to describe the nuclear force alld 
t,he structure of nuclei in t,erms of quark and gluon degrees of freedom. Explicit 
signak of QCD in nuclei have been elusive, in part because of the fact that a,n 
effective Lagrangian containing meson and nucleon degrees of f reedom must bc 
in some sense equivalent to QCD if one is lim ited to low-energ\* probes. On tllc> 
other hand, an  effective local field theory of nucleon and meson fields cannot 
correctly describe the observed off-shell falloff of form fact)ors, vertex amp litudes. 
Z-graph d’ g  Ia rams, etc. because ha,dron compositeness is not taken into a.ccoullt. 

W e  have a.lrea.dy ment ioned the prediction Fd( Q’) - l/Q” which comes from 
simple qua.rk counting rules, as well as perturbative QCD. One cannot expect this 
asymptotic prediction to become a.ccurate unt,il \.erj. large Q’ is reached since the 
momentum tra.nsfer has to be shared bjr at, least. six constituents. Howe\.er there is 
a  simple way to isola.te the QCD physics due to t’he compositeness of the nucleus. 
ndt the nucleons. The deuteron form fa.ctor is the probabilit.3. amp litude for t 11~~ 
deuteron to scatt,er from I> to 1, + q  but rerna,in intact. Note that for \-anishing 
nuclear binding energy cd + 0, the deuteron can be regarded as two nucleons 
sharing the deuteron four-momentum (see F ig. 39). The momentum e is lim ited 
by the binding and can thus be neglected. To  first approxima.tion the proton alld 
neutron sha.re the deuteron’s moment,um equally. Since the deuteron form fact,or 
contains the probability amp litudes for the proton and neutron to scatter from 

p/2 to p/2 + ql-, ‘7. it is natural to define the reduced deuteron form factor 
9  ‘2 ‘9 3 

hi@‘) = FdQ”) 
FIN (y) FIN (y)' 
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The effect of nucleon compositeness is removed from the reduced form factor. 
QCD then predicts the scaling 

i.e. the same scaling law as a meson form factor. Diagrarnmat.ically. the es- 
tra power of l/Q’ comes from the propagator of the struck quark line, the 011~ 
propagator not contained in the nucleon form factors. Because of hadrou he- 
licity conservation, t,he prediction is for the leading helicity-conserving deutcron 
form factor (X = X’ = 0.) As shown in Fig. 40, this scaling is consistent \\.ith 

experimentj for Q = pi 2 1 GeV.g4 

e e’ 

A 

$P f P’ 

P 
+p ip’ 

p+9= P’ 

5446,410 

Figure 39. Application of the reduced amplitude formalism to the deuteron form 
factor at large momentum transfer. 

The distinction between the QCD and other trea.tments of nuclear amplitudes 
is pa.rticula.rly clear in the rextion yd -+ ?a~?; i.e. photodisintegration of tllcb 
deuteron at fixed center of mass angle. Using dimensiona.l counting, the leadirlg 
power-1a.w prediction from QCD is simply g(yd -+ np) - ,fi F(B,,). Agail) I\‘(‘ 
note that the virtual momenta a.re partitioned among many yua.rks and gluolls. 
so that finite mass corrections will be significant a.t low to medium energies. 
Nevertheless, one can test the ba,sic QCD dynamics in t.hese reactions taking into 
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account much of the finite-mass, higher-twist corrections by using the “reduced 
g2’g3 amplitude” formalism. Thus the photodisintegration amplitude contains tire 

proba.bility amplitude (i.e. nucleon form fa.ctors) for the proton and neutron to 
each remain intact after absorbing momentum transfers p, - 1/2yd and y, - 1 /;)JI~, . 
respectively (see Fig. 41). After t,he form fa.ctors a.re remo\red, the remaiuiug 
“reduced” a.mpli tude should scale as F( Oc,,,)/~~~. The single inverse power oi 
transverse momentum PT is the slowest conceiva.ble in any theory, but it is the 
unique power predicted by PQCD. 

2 83 
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Figure 40. Scaling of he deut.eron reduced form factor. The data. are sulnlllarized 
in Ref. 92. 

d 
9-66 6125Al 

Figure 41. Const.ructiou of the reduced nuclear amplitude for two-body inela.stic 
92 deut,erou reactions. 

The prediction that f(O,,) is energy dependent at high-momentum transfer 
is compared with experiment in Fig. 4 2. It is particularly striking to see the QCD 
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prediction verified at incident photon lab energies as low as 1 GeV. A comparison 
with a standard nuclear physics model with exchange currents is also shown for 
comparison a.s the solid curve in Fig. 42(a). The fact that this prediction falls 
less fast than the data suggests that meson and nucleon compositeness are uot 
taken to int,o account correct,ly: An ext,ension of these data to other a.ngles and 
higher energy would clearly be very valuable. 

An important question is whether the normalization of the yd -+ p ampli- 
tude is correctly predicted by perturbative QCD. A recent analysis 1~~. Fujita 98 

shows that mass corrections to the leading QCD prediction are not significant in 
the region in which the data. show scaling. However Fujita also finds that in a 
model based on simple one-gluon plus quark-interchange mechanism, norlnalizctl 
to the nucleon-nucleon scattering amplitude, gives a photo-disintegration ampli- 
tude with a normalization an order of magnitude below the da.ta. Howe\~r this 
model only allo\\rs for diagrams in which the photon insertion acts 0111~. on tllc: 
quark lines which couple to the exchanged gluon. It is expected t,ha.t including 
other diagrams in which the photon couples to the current of the other four quarks 
will increase the photo-disintegration amplitude by a large factor. 

I I 
0 Previous Work 
l This Expt. 

0,,,.=90° 

I 
(a) 
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I I 
0.6 &36.9' ' 

I 1 I 1 I 

0 ,= u-----& 

u.6 I= 143.10 

Figure 42. Comparison of deut,eron photodisintegrat,ion data with the scaling 
prediction which requires f’(O,,) to be at most logarithmically dependent on energy 
at large momentum transfer. The data in (a) are from the recent experiment of Ref. 95. 
The nuclear physics prediction shown in (a) is from Ref. 96. The data in (b) are from 
Ref. 97. 
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The derivation of the evolution equation for the deuteron and other multi- 
quark states is given in Refs. 99 a,nd 93. In the case of the deuteron, the evolut,ion 
equation couples five different, color singlet states composed of the six quarks. 
The leading anomalous dimension for the deuteron distribution amplitude allcl 
the helicity-conserving deuteroti form factor at asymptotic Q” is given in Ref. 99. 

There are a. number of relat.ed tests of QCD and reduced amplitudes which 
require ji beams g3 such as ~(1 --+ yn and j%! -+ T-P in the fixed O,,,, region. 
These rea.ctions are particularly interesting t,ests of QCD in nuclei. Dimellsional 
counting rules predict the asymptotic behavior g (@! --+ r-p) - (P>j12 .f(o,,,,) 
since there are 14 initial and final quanta. involved. Again one not& that the 
j%l -+ T-P amplitude contains a factor representing the probability amplitude (i.e. 
form factor) for the proton to remain intact aft,er absorbing momentum tra.nsfcr 
squared i = (p - 1/211~)’ and the XX time-like form factor at i = (is + 1/2~1,,)‘. 
Thus M,n,,-, - I;;n;(i) F~.&(S) l ,, where M, has the same QCD scaling 
properties as quark meson scat.tering. One thus predicts 

The reduced amplitude scaling for -id --+ ~12 a.t large angles and ~1‘ X 1 Gr,\,’ 
(see Fig. 42). 0 ne thus espect,s similar precocious scaling behavior to hold l’o1 
$ t ‘ir-1’ and ot,hcr j?d exclusive reduced anlplitudes. Recent, anal!xs 1,~. 
Kondratyuk and Sapozhniltovl”” show that, standard nuclear physics wavef’uuc- 
tions a,nd interactions cannot explain the magnitude of the da.ta for two-body 
a.nti-prot,on a.nnihilation rea.ctions such as pd + T-P. 

8.2. COLOR TRANSPARENCY 

A striking feat,ure of t,he QCD description of esclusi\re processes is ‘Lcolor 
transpa.rency:“The only part of the hadronic wavefunction t.hat sca,tters at large 
momentum transfer is its \ra.lence Fock sta.te where the quarks are at small rela- 
tive impa.ct separation. Such a fluctuation ha.s a small color-dipole moment’ and 
thus has negligible intera.ctions with other hadrons. Since such a state sta:.s small 
over a distance proportional to its energy, this implies that quasi-elastic hadrow 
nucleon scattering at large momentum transfer as illustrated in Fig. 43 can 
occur additively on all of t,he nucleons in a nucleus with minimal attenuation 
due to elastic or inelastic final state interactions in the nucleus, i.e. the nu- 
cleus becomes “transparent.” By contrast., in convent.iona.l Glauber scattering. 
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Figure 43. Quasi-elastic pp scattering inside a nuclear target. Normally one 
expects such processes to be at,tenuated by elastic and inelastic interactions of the 
incident proton and the final state interaction of the scattered proton. Perturbative 
QCD predicts minimal attenuation; i.e. “color transparency,” at large momentum 
transfer? 

one predicts strong, nearly energy- independent initial and final state attenua- 
tion. A detailed discussion of the time  and energy scales required for the va.lidity 
of the PQCD prediction is given in by Farrar et al. and Mue ller in Ref. 7. 

A recent experiment lo1 at BNL measuring quasi-elastic pp  + pp scatter- 
ing at 8,, = 90” in various nuclei appears to confirm the color transparency 
prediction-at least for plab up to 10 GeV/c ( see F ig. 44). Descriptions of elastic 
scattering which involve soft hadronic wavefunctions cannot account for the data. 
However, at higher energies, pl&, N 12 GeV/c, normal attenuation is observed in 
the BNL experiment. This is the same kinematical region E,, py 5  GeV where 

lo2 the large spin correlation in ANN are observed. Both features may be signaling 

new s-channel physics associated with the onset of charmed hadron production 
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43 
or interference with Landshoff  pinch singularity diagrams. W e  will discuss these 
possible solutions in Section 9. Clearly, much more testing of the color trans- 
parency phenomena is required, particularly in quasi-elastic lepton-proton sca.t- 
tering, Compton scattering, antiproton-proton scattering, etc. The cleanest test 
of the PQCD prediction is to check for m inimal attenuation in large moment.um 
transfer lepton-proton scattering in nuclei since there are no complications from 
pinch singularities or resonance interference effects. 

In Section 5.4 we emphasized the fact that soft initial-state interactions Al, -+ 
&! are suppressed at high lepton pair mass. This is a  remarkable consequence of 
gauge theory and is quite contrary to normal treatments of initial interactions 
based on G lauber theory. This novel effect can be studied in quasielastic PA -+ 
?f? (A - 1) reaction. in which there are no extra hadrons produced and the 
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Figure 44. Measurements of the transparency ratio 

near 90’ on Aluminum.lolConventional theory predicts that T should be small and 
roughly constant in energy. Perturbative QCD7 predicts a monotonic rise to T = 1. 

produced leptons are coplanar with the beam. (The nucleus (A - 1) can be left 
excited). Since PQCD predicts the absence of initial-state elastic and inelastic 
interactions, the number of such events should be strictly additive in the number 
2 of protons in the nucleus, every proton in the nucleus is equally available 
for short-distance annihilation. In traditional G lauber theory only the surface 
protons can participate because of the strong absorption of the ;is as it traverses 
the nucleus. 

The above description is the ideal result for large s. QCD predicts that 
additivity is approached monotonically with increasing energy, corresponding to 
two effects: a) the effective transverse size of the F wavefunction is bl N l/G , 
and b) the formation time for the or is sufficiently long, such that the Fock state 
stays small during transit of the nucleus. 

The color transparency phenomena is also important to test in purely hadronic 
quasiexclusive antiproton-nuclear reactions. For large PT one predicts 
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& (PA -+ T+T- + (A - 1)) 21 c Gp,~(y) $ @P -+ r+r-) , 
PEA 

where Gp/~ (Y > is the probability distribution to find the proton in the nucleus 
with light-cone momentum fraction y = (p” + p”)/(& + pi), and 

fkos ecm) - 

The distribution G,,A (y ) can also be measured in eA + ep(A - 1) quasiexclusive 
reactions. A remarkable feature of the above prediction is that there are no cor- 
rections required from initial-state absorption of the p as it traverses the nucleus? 
nor final-state interactions of the outgoing pions. Again the basic point is that 
the only part of hadron wavefunctions which is involved in the large pT reaction is 

h&L N o(l/PT)). i.e. the amplitude where all the valence quarks are at small 
relative impact parameter. These configurations correspond to small color singlet 
states which, because of color cancellations, have negligible hadronic interactions 
in the target. Measurements of these reactions thus test a fundamental feature 
of the Fock sta.te description of large m exclusive reactions. 

Another interesting feature which can be probed in such reactions is t,he 
behavior of GP,A(y) for y well away from the Fermi distribution peak at y - 

mN/MA. For y --+ 1 spectator counting rules lo4 predict G,,A ( y) w (1 - y )‘“‘-’ = 
(1 - y)“A-7 where N, = 3(A - 1) is the number of quark spectators required 
to “stop” (yi --) 0) as y --+ 1. This simple formula has been quite successful 
in accounting for distributions measured in the forward fragmentation of nuclei 
at the BEVALAC.lo5 Color transparency can also be studied by measuring 
quasiexclusive J/G production by anti-protons in a nuclear target pA + J/4( A - 
1) where the nucleus is left in a ground or excited state, but extra. ha.drons 
are not created (see Fig. 45). The cross section involves a convolution of the 
j!ip -+ J/G subprocess cross section with the distribution Gp,A(y) where y = 

(p” + p3)/(p> + pi) is the b oost-invariant light-cone fraction for protons in the 
nucleus. This distribution can be determined from quasiexclusive lepton-nucleon 
scattering !A + .l?p(A - 1). 

In first approximation pp -+ J/lc, involves qqq + qqq annihilation into three 
charmed quarks. The transverse momentum integrations are controlled by the 
charm mass scale and thus only the Fock sta.te of the incident antiproton which 
contains three antiquarks at small impact separation can annihilate. Aga.iu it 
follows that this state has a relatively small color dipole moment, and thus it 
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Figure 45. Schematic representation of quasielastic charmonium production in 
j?A reactions. 

should have a  longer than usual mean-free path in nuclear matter; i.e. color 
transparency. Unlike traditional expectations, QCD predicts that the pp anni- 
hilation into charmonium is not restricted to the front surface of the nucleus. 
The exact nuclear dependence depends on the formation time  for the physical 1~ 
to couple to the small QQll configuration, 7~ 0: EP. It may be possible to study 
the effect of finite formation time  by varying the beam energy, EP, and using 
the Fermi-motion of the nucleon to stay at the J/$ resonance. Since the J/ii, is 
produced at nonrelativistic velocities in this low energy experiment, it is formed 
inside the nucleus. The A-dependence of the quasiexclusive reaction can thus be 
used to determine the J/$- nucleon cross section at low energies. For a  normal 
hadronic reaction PA + HX, we expect A,ff N A1i3, corresponding to absorption 
in the initial and final state. In the case of PA + J/v) X one expects Ae~ much 
closer to A1 if color transparency is fully effective and g( J/$ Iv) is small. 

9. SPIN CORRELATIONS IN 
PROTON-PROTON SCATTERING 

One of the most serious challenges to quantum chromodynamics is the be- 
havior of the spin-spin correlation asymmetry ANN = /$&$j$$## measured 

in large momentum transfer pp  elastic scattering (see F ig, 46). At plab = 11.75 
GeV/c and O ,, = r /2, ANN rises to 2  SO%, corresponding to four times more 
probability for protons to scatter with their incident spins both normal to the 
scattering plane and parallel, rather than normal and opposite. 

The polarized cross section shows a  striking energy and angular dependence 
not expected from the slowly-changing perturbative QCD predictions. However, 
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Figure 46. The spin-spin correlation ANN for elastic pp scattering with beam 
and target protons polarized normal to the scattering plane. 106 ‘ANN = 60% implies 
that it is four times more probable for the protons to scatter with spins parallel rather 
than antiparallel. 

the unpolarized data is in first approximation consistent with the fixed angle scal- 
ing law s % ia/dt(pp ---t pp) = f(Oc~) expected from the perturbative analysis 

(see F ig. 23). The onset of new structure 
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at s 21  23 GeV2 is a  sign of new 
degrees of f reedom in the two-ba.ryon system. In this section, we will discuss a  
possible explanation lo3 for (1) th e  o  b  served spin correlations, (2) the devia.tions 
from fixed-angle scaling laws, and (3) the anomalous energy dependence of a.b- 
sorptive corrections to quasielastic pp  scattering in nuclear targets, in terms of a. 
simple mode l based on two J = L  = S = 1  broad resonances (or threshold en- 
hancements) interfering with a  perturbative QCD quark-interchange background 
amplitude. The structures in the pp --t pp  amplitude may be associated with the 
onset of strange and charmed thresholds. If this view is correct, large angle pp 
elastic scattering would have been virtually featureless for plab 2  5  GeV/c, had it 
not been for the onset of heavy flavor production. As a  further illustration of the 
threshold effect, one can see the effect in ANN due to a  narrow 3F3 pp resonance 
at ,/s = 2.17 GeV (pi& = 1.26 GeV/ c associated with the pA threshold. ) 

The perturbative QCD analysis2 of exclusive amplitudes assumes that la.rge 
momentum transfer exclusive scattering reactions are controlled by short distance 
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quark-gluon subprocesses, and that corrections from quark masses and intrinsic 
transverse momenta can be ignored. The main predictions are fixed-angle scaling 
laws’ (with small corrections due to evolution of the distribution amplitudes, the 

6 
running coupling constant, and pinch singularities), hadron helicity conservation, 
and the novel phenomenon, “color transparency.” 

As discussed in Section 8.2, a test of color transparency in large momentum 
transfer quasielastic pp scattering at 8,, _ N r/2 has recently been carried out at 

BNL using several nuclear targets (C, Al, Pb).“’ The attenuation at plab = 10 

GeV/c in the various nuclear targets was observed to be in fact much less than 
that predicted by traditional Glauber theory (see Fig. 44). This appears to 
support the color transparency prediction. 

The expectation from perturbative QCD is that the transparency effect should 
become even more apparent as the momentum transfer rises. Nevertheless, at 
pl& = 12 GeV/ c, normal attenuation was observed. One can explain this sur- 
prising result if the scattering at pl&, = 12 GeV/c (Js = 4.93 GeV), is dom- 
inated by an s-channel B=2 resonance (or resonance-like structure) with mass 
near 5 GeV, since unlike a hard-scattering reaction, a resonance couples to the 
fully-interacting large-scale structure of the proton. If the resonance has spin 
S = 1, this can also explain the large spin correlation ANN measured nearly at 
the same momentum, pi&, = 11.75 GeV/c. C onversely, in the momentum range 
pl& = 5 to 10 GeV/ c one predicts that the perturbative hard-scattering ampli- 
tude is dominant at large angles. The experimental observation of diminished 
attenuation at plab = 10 GeV/c thus provides support for the QCD description 
of exclusive reactions and color transparency. 

What could cause a resonance at Js = 5 GeV, more than 3 GeV beyond the 
pp threshold? There are a number of possibilities: (a) a multigluonic excitation 

such as jqqqqqqggg), (b) a “hidden color” color singlet lqqqqqq) excitation,“’ 
or (c) a “hidden flavor” IqqqqqqQq excitation, which is the most interesting 
possibility, since it is so predictive. As in QED, where final state interactions give 
large enhancement factors for attractive channels in which Zcr/v,,l is large, one 
expects resonances or threshold enhancements in QCD in color-singlet channels 
at heavy quark production thresholds since all the produced quarks ha.ve similar 

log velocities. One thus can expect resonant behavior at M’ = 2.55 GeV and 
M’ = 5.08 GeV, corresponding to the threshold values for open strangeness: 
pp + AK+p, and open charm: pp + A,D”p, respectively. In any case, the 
structure at 5 GeV is highly inelastic: its branching ratio to the proton-proton 
channel is BPP 21 1.5%. 

A model for this phenomenon is given in Ref. 103 In order not to over com- 
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plicate the phenomenology; the simplest Breit-Wigner parameterization of the 
resonances was used. There has not been an attempt to optimize the parameters 
of the model to obtain a best fit. It is possible that what is identified a single 
resonance is actually a cluster of resonances. 

The background component of the model is the perturbative QCD ampli- 
tude. Although complete calculations are not yet available, many features of 
the QCD predictions are understood, including the approximate sv4 scaling 
of the pp + pp amplitude at fixed 0,, and the dominance of those ampli- 
tudes that conserve hadron helicity.! Furthermore, recent data comparing dif- 

ferent exclusive two-body scattering channels from BNL33 show that quark in- 

terchange amplitudes 
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dominate quark annihilation or gluon exchange contri- 
butions. Assuming the usual symmetries, there are five independent pp helicity 

amplitudes: $1 = M(++,++), 42 = M(--,++), $3 = M(+-, +-), $4 = 

M(-+,+-), $5 = M(++,+-). The helicity amplitudes for quark interchange 

have a definite relationship: 
40 

&(PQCD) = 2&(PQCD) = -2$,(PQCD) 

= 4TCF(qF(u)[f - m + (u H i)]ei6 i 
u-m: 

. 

The hadron helicity nonconserving amplitudes, &(PQCD) and &,(PQCD) are 
zero. This form is consistent with the nominal power-law dependence predicted by 
perturbative QCD and also gives a good representa.tion of the angular distribution 

“’ over a broad range of energies. Here F(t) is the helicity conserving proton 
form factor, taken as the standard dipole form: F(t) = (1 - 2/m:)-“, with 
m$ = 0.71 GeV2. As shown in Ref. 40, the PQCD-quark-interchange structure 
alone predicts ANN 2~ l/3, nearly independent of energy and angle. 

Because of the rapid fixed-angle s -4 falloff of the perturbative QCD ampli- 
tude, even a very weakly-coupled resonance can have a sizeable effect at large 
momentum transfer. Th e ar e empirical values for ANN suggest a resonant 1 g 
pp + pp amplitud e with J = L = S = 1 since this gives ANN = 1 (in absence of 
background) and a smooth angular distribution. Because of the Pauli principle, 
an S = 1 di-proton resonances must have odd parity and thus odd orbital angu- 
lar momentum. The the two non-zero helicity amplitudes for a J = L = S = 1 
resonance can be parameterized in Breit-Wigner form: 

&(resonance) = 12~ 
1 P(s) 

J”dt,i(8cm) M* ” 
Pcm 

E -I cm ;r ’ 
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ds 
$4 (resonance) = - 1271. - 

f r?(s) 

Pcm 
d~l,l(ecm)M* _ E -r cm ;I- * 

(The 3F3 resonance amplitudes have the same form with d$, r replacing dir r.) 
As in the case of a narrow resonance like the Z”, the partial width into nu- 
cleon pairs is proportional to the square of the time-like proton form fa.ctor: 
rpp(s)/r = BPPIF(S)J2/IF(M*2)12, corresponding to the formation of two pro- 
tons at this invariant energy. The resonant amplitudes then die away by one 
inverse power of (E,, - M’) relative to the dominant PQCD amplitudes. (In 
this sense, they are higher twist contributions relative to the leading twist per- 
turbative QCD amplitudes.) The model is thus very simple: each pp helic- 
ity amplitude 4; is the coherent sum of PQCD plus resonance components: 

4 = WQCD) + W resonance). Because of pinch singularities and higher-order 

corrections, the hard QCD amplitudes are expected to have a nontrivial phase; 
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the model allows for a constant phase 6 in 4(PQCD). Because of the absence 
of the $5 helicity-flip amplitude, the model predicts zero single spin asymmetry 
AN. This is consistent with the large angle data at Plab = 11.75 GeV/c.“’ 

At low transverse momentum, pi 5 1.5 GeV, the power-law fall-off of $( PQCD) 
in s disagrees with the more slowly falling large-angle data, and one has little guid- 
ance from basic theory. The main interest in this low-energy region is to illustrate 
the effects of resonances and threshold effects on ANN. In order to keep the model 
tractable, one can extend the background quark interchange and the resonance 
amplitudes at low energies using the same forms as above but replacing the dipole 
form factor by a phenomenological form F(t) cx e-1/2pJl’l. A kinematic fa.ctor of 

JSl2Pcm is included in the background amplitude. The value p = 0.85 GeV-’ 

then gives a good fit to da/dt at 8,, = 7r/2 for J&b 5 5.5 GeV/c.‘13 The normal- 
izations are chosen to maintain continuity of the amplitudes. 

The predictions of the model and comparison with experiment are shown in 
Figs. 47-52. The following parameters are chosen: C = 2.9 x 103, 6 = -1 foi 
the normalization and phase of $(PQCD). The mass, width and pp branching 
ratio for the three resonances are A4; = 2.17 GeV, Id = 0.04 GeV, Bfi”” = 1; 
A4,’ = 2.55 GeV, PS = 1.6 GeV, B, pp = 0.65; and M,’ = 5.08 GeV, PC = 
1.0 GeV, Bip = 0.0155, respectively. As shown in Figs. 47 and 48, the deviations 
from the simple scaling predicted by the PQCD amplitudes are readily accounted 
for by the resonance structures. The cusp which appears in Fig. 48 marks the 
change in regime below pl&, = 5.5 GeV/c where PQCD becomes inapplicable. It 
is interesting to note that in this energy region normal attenuation of quasielastic 
pp scattering is observed.“’ The angular distribution (normalized to the data 
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at 19,~ = 7r/2) is predicted to broaden relative to the steeper perturbative QCD 
form, when the resonance dominates. As shown in Fig. 49 this is consistent with 
experiment, comparing data at plab = 7.1 and 12.1 GeV/c. 

r 2 1o-2 

2 2 1o-3 

o 1o-4 

$ 10‘ 5 

12.87 

6 8 10 12 14 

P,,, WV/c) 5914A3 

Figure 47. Prediction (solid curve) for du/&(pp --+ pp) at. Ocnl = x/2 compared 
with the data of Akerlof e2 al.‘13 The dotted line is the background PQCD prediction. 

12-87 
P,,, WV/c) 

Figure 48. Ratio of da/dt(pp - pp) at t9,, = x/2 to the PQCD prediction. The 
data’13 are from Akerlof et al. (open triangles), Allaby el al. (solid dots) and Cocconi 
el al. (open square). The cusp at pi&, = 5.5 GeV/c indicates the change of regime 
from PQCD. 

The most striking test of the model is its prediction for the spin correlation 
ANN shown in Fig. 50. The rise of ANN to N 60% at plab = 11.75 GeV/c is cor- 
rectly reproduced by the high energy J=l resonance interfering with $(PQCD). 
The narrow peak which appears in the data of Fig. 50 corresponds to the onset 
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Figure 49. The pp -, pp angular distribution normalized at Ocm = x/2. The dat,a 
are from the compilation given in Sivers e2 al., Ref. 32. The solid and dotted lines are 
predictions for p{ab = 12.1 and 7.1 GeV/c, respectively, showing the broadening near 
resonance. 

of the pp + pA( 1232) channel which can be interpreted as a uuuuddqq resonant 
state. Because of spin-color statistics one expects in this case a higher orbital mo- 
mentum state, such as a pp 3F3 resonance. The model is also consistent wit.11 the 
recent high-energy data point for ANN at pl&, = 18.5 GeV/c and p$ = 4.7 GeV” 
(see Fig. 51). Th e d t h a a s ow a dramatic decrease of ANN to zero or negat,ive val- 
ues. This is explained in the model by the destructive interference effects above 
the resonance region. The same effect accounts for the depression of ANN for 

plab E 6 GeV/c shown in Fig. 50. The comparison of the angular dependence 
of ANN with data at plab = 11.75 GeV/ c is shown in Fig. 52. The agreement 

with the data 
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for the longitudinal spin correlation ALL at the same plab is 
somewhat worse. 

The simple model discussed here shows that many features can be naturally 
explained with only a few ingredients: a perturbative QCD background plus res- 
onant amplitudes associated with rapid changes of the inelastic pp cross section. 

- The model provides a good description of the s and t dependence of the differ- 
ential cross section, including its “oscillatory” dependence ‘15 in s at fixed 19,,,,. 
and the broadening of the angular distribution near the resonances. Most in- 
portant, it gives a consistent explanation for the striking behavior of both the 
spin-spin correlations and the anomalous energy dependence of the attenuation 
of quasielastic pp scattering in nuclei. It is predicted that color transparency 
should reappear at higher energies (pl,b 2 16 GeV/c), and also at smaller angles 

(dcm % 60') at plab = 12 GeV/ c where the perturbative QCD amplitude domi- 
nates. If the J=l resonance structures in ANN are indeed associated with heavy 
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Figure 50. ANN as a function of p/&, at 8,,,, = x/2. The dat.a. 113 are from 
Crosbie ei al. (solid dots), Lin et al. (open squares) and Bhatia et al. (open triangles). 
The peak at p/&, = 1.26 GeV/c corresponds to the pA threshold. The data are 
well reproduced by the interference of the broad resonant structures at the strange 
(p{& = 2.35 GeV/c) and h c arm (PI&, = 12.8 GeV/c) thresholds, interfering wit.h a 
PQCD background. The value of ANN from PQCD alone is l/3. 

0.8 

0.6 

0.4 
ANN 

0.2 

0 

-0.2 
12 14 16 18 

l-88 
P lab 

(GeV/c) 
5914A7 

Figure 51. ANN at fixed p$ = (4.7 GeV/c)“. The data point113 at. p/a6 = 18.5 
GeV/c is from Court e2 al. 

quark degrees of freedom, then the model predicts inelastic pp cross sections of 
the order of 1 mb and lpb for the production of strange and charmed hadrons 
near their respective thresholds.‘16 Thus a crucial test of the heavy quark hy- 
pothesis for explaining ANN, rather than hidden color or gluonic excitations, is 
the observation of significant charm hadron production at pi& > 12 GeV/c. 

Recently Ralston and Pire 
43 

have proposed that the oscillations of the pp elas- 
tic cross section and the apparent breakdown of color transparency are associated 
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Figure 52. ANN as a function of transverse momentum. The data 
106 are from 

Crabb el al. (open circles) and O’Fallon el al. (open squares). Diffractive contributions 
should be included for pc 5 3 GeV2. 

with the dominance of the Landshoff pinch contributions at Js N 5 GeV. The 
oscillating behavior of da/& is due to the energy dependence of the relative phase 
between the pinch and hard-scattering contributions. Color transparency will dis- 
appear whenever the pinch contributions are dominant since such contributions 
could couple to wavefunctions of large transverse size. The large spin correlation 
in ANN is not readily explained in the Ralston-Pire model. Clearly more data 
and analysis are needed to discriminate between the pinch and resonance models. 

lO.CONCLUSIONS 

- 

The understanding of exclusive processes is a crucial challenge to QCD. The 
analysis of these reactions is more complex than that of inclusive reactions since 
the detailed predictions necessarily depend on the form of the hadronic wavefunc- 
tions, the behavior of the running coupling constant, and analytically complex 
contributions from pinch and endpoint singularities. Unlike inclusive rea.ctions, 
where the leading power contributions can be computed from an incoherent prob- 
abilistic form, exclusive reactions require the understanding of the phase and spin 
structure of hadronic amplitudes. These complications are also a virtue of exclu- 
sive reactions, since they allow a window on basic features of the theory which are 
extremely difficult to obtain in any other way. The perturbative QCD analysis 
is based on a factorization theorem so that only one distribution amplitude is 
required to describe the interaction of a given hadron in any large momentum 
transfer exclusive reaction. In some cases the predictions for exclusive processes 
in PQCD are completely rigorous in the sense that the results can be derived to 
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all orders in perturbation theory. In particular the PQCD results for the pion 
form factor, the transition form factor FrK(Q2), and the yy + r~ amplitudes are 
theorems of QCD and are as rigorous as the predictions for Rete-(s), the evolu- 
tion equations for the structure functions, etc. Although the perturbative QCD 
analysis is complex, it is hard to imagine that any other viable description would 
be simpler. At this point there is no other theoretical approach which provides 
as comprehensive a description of exclusive phenomena. 

The application of perturbative QCD to exclusive processes has in fact been 
quite successful. The power laws predicted for form factors and fixed angle scat- 
tering amplitudes have been confirmed by experiment, ranging from the theo- 
retically simplest reactions y*y t 77 to the most complicated reactions such as 
pp --+ pp. The application to nuclear exclusive amplitudes such as the deuteron 
form factor and yd --+ np have also been surprisingly successful. Taken together 
with input from distribution amplitudes predicted by QCD sum rules, the sign 
and magnitude of the meson form factors, the yy -+ 7r+r-, ITsI<-, the Compton 
amplitude yp t yp and the proton form factor are all apparent, though model 
dependent, successes of the theory. 

The fact that PQCD scaling laws appear to hold even at momentum transfer 
as low as 1 GeV/c suggests that the QCD running coupling constant is rathel 
slowly changing even at momentum transfers of order 200 MeV. Barring a con- 
spiracy between non-perturbative and perturbative contributions, the evidence 
from exclusive reactions is that A$$’ is of order 100 MeV or even smaller. 
Alternatively the running coupling constant may “freeze” at the low effective 
momenta characteristic of exclusive processes. Thus the analysis of exclusive 
reactions provides important information on the basic parameters of QCD. 

As we discussed in Section 8.2, recent BNL data for pp quasi-elastic scat- 
tering in nuclei at 8,, = $ shows that the number of effective protons in the 
nucleus rises with the momentum transfer as predicted by color transparency- 
at least up to plab = 10 GeV/c. Th is remarkable empirical result clearly rules 
out any description of exclusive reactions based on soft wavefunctions. The ob- 
servation of the onset of color transparency in quasi-elastic pp -+ pp scattering 
appears to be an outstanding valida.tion of a fundamental feature of perturbative 
QCD phenomenology. The tests of color transparency address directly the cen- 
tral dynamical assumption of the perturbative analysis, that exclusive reactions 
at high momentum transfer are controlled by Fock components of the hadron 
wavefunction with small transverse size. 

However, in direct contradiction to PQCD expectations, the BNL data. at 
higher momentum, pl&, = 12 GeV/c, indicates normal Glauber attenuation. Be- 
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cause of the importance of this and other anomalies and the challenges they pose 
to the theory, we have devoted several sections of this article to these topics a.nd 
their possible resolution. 

. 

The successes of fixed-angle scaling laws could of course be illusory, perhaps 
due to soft hadronic mechanisms which temporarily simulate the dimensional 
counting rules at a range of intermediate momentum transfer. If such a descrip- 
tion is correct, then the perturbative contributions become dominant only at 
very large momentum transfer. Quantities such as Q2Fx(Q2) would drop from 
the present plateau to the PQCD prediction, but at a high value of Q”, much 
higher than the natural scales of the theory. An important question is whether a 
soft hadronic model can also account for the normalization of the cross sections 
for other exclusive processes besides form factor measurements. For example, 
consider hadronic Compton amplitudes such as yp --+ yp or yy -+ x+T-. As we 
have shown in Section 7, the data appear to scale in momentum transfer accord- 
ing to the perturbative QCD predictions. One can consider a simple model where 
the hadronic Compton amplitude is given by the product of a point-like Comp- 
ton amplitude multiplied by the corresponding hadronic form factor. This model 
predicts da/dt(yp --f yp) 21 5 pbfGeV2 at s = 8 GeV2, O,, = ~r/2 compared to 
the experimental value of 300 pb/GeV2 ( see Fig. 33). The same simple model 
predicts a(yy -+ rr+n-) 21 0.1 nb at s = 5 GeV2 compared to the experimental 
value of 2 nb (see Fig. 31). 

The above estimates are also characteristic of the soft-scattering models in 
which the end-point large x regime dominates so that the Compton amplitude is 
given by the sum of coherent point-like quark Compton amplitudes with zg N 1 
multiplied by the electromagnetic form factor. Again one has the problem tha.t 
the normalization of data for large angle Compton scattering is one to two orders 
of magnitude larger tha,n predicted. In contrast, in the perturbative QCD de- 
scription there are many more contributing coherent hard scattering a.mplitudes 
for Compton scattering tha.n lepton-proton scattering, so the large rela.tive ma.g- 
nitude of the proton Compton cross section can be accounted for. In the case 
of large angle pp scattering, the large normalization of the data relative to that 
obtained by simply multiplying form factors can be understood as a consequence 
of the many coherent contributions to TH for this process. We also emphasize 
that the observation of color transparency in the BNL experiment implies mini- 
mal attenuation of the incident and outgoing protons and thus appears to exclude 
any model in which the full size of the hadron participates in the hard scattering 
reaction. 

Questions have been raised recently 24 
on a number of questions concerning 

the application of perturbative QCD to exclusive reactions in the momentum 
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transfer range presently accessible to experiment. The issues involved are very 
important for understanding the basis of virtually all perturbative QCD predic- 
tions. The debate is not on the validity of the predictions but on the appropriate 
range of their applicability because of possible complications such as nonperturba.- 
tive effects. The questions raised highlight the importance of further experimental 
tests of exclusive processes. 

As we have discussed in this article, there are, in addition to the numer- 
ous successes of the theory, a number of major conflicts between perturbative 
QCD predictions for exclusive processes and experiment which can not be rea.dily 
blamed on higher contributions in o,(Q2). F or example, the helicity selection rule 
appears to be broken in rp + pop scattering at large angles, the J/$ t r’p and 
J/+ t KK’ decays. The strong spin correlations seen in large angle pp scatter- 
ing at Js = 5 GeV are not explained by PQCD mechanisms. Color transparency 
appears to fail at the same energy. Small but systematic deviations or oscillations 
are observed relative to the PQCD power-law behavior. In each case, the data 
seems to indicate the intrusion of soft non-perturbative QCD mechanisms such as 
resonances perhaps due to gluonic or color excitations or heavy quark threshold 
effects. The presence of contributions from Landshoff pinch singularities may also 
be indicated. 

Thus exclusive reactions still remain a challenge to theory. A crucial require- 
ment for future progress is the computation of hadron light-cone wavefunctions 
directly from QCD. Unfortunately it appears very difficult to obtain much more 
than the leading moments of the distribution amplitude from either lattice gauge 
theory or QCD sum rules. The discretized light-cone quantization method re- 
viewed in Appendix III shows promise, but so far solutions have been limited 
to QCD in one space and one time dimension. The computation of hadronic 
structure functions, magnetic moments, and electroweak decay amplitudes also 
require this non-perturbative input. The detailed understanding of the rela.tive 
role of perturbative and non-perturbative contributions to exclusive amplitudes 
will unquestionably require a fuller understanding of the hadronic wavefunctions. 

Much more theoretical work is also required to compute the hard scattering 
amplitudes for experimentally accessible exclusive processes, and to understand 
in detail how to integrate over the pinch and endpoint singularities, taking into 
account Sudakov suppression in the non-Abelian theory. The computerized alge- 
braic methods now available can be used to compute the hard-scattering quark- 
gluon amplitude TH for processes as complicated as pp + pp and the deuteron 
form factor. Ea.ch Feynman diagram which contributes to TH represents a par- 
ticular overlap of the participating hadron wavefunctions. Considering the un- 
certainties in the wavefunctions and the myriad number of diagrams contributing 
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to pp scattering, even getting the correct order of magnitude of the large angle 
cross section would be a triumph of the theory. Computations of the higher order 
corrections to high momentum transfer exclusive reactions will eventually also be 
needed. 

More precise predictions for color transparency is needed, particularly ep 
quasi-elastic scattering in nuclei. The analysis requires computing the detailed 
parameters which control the color transparency effect due to smallness of the 
participating Fock state amplitude, and by uncertainties involving the role of 
formation zone physics, which controls the length of time the hadron can stay 
small as it traverses the nucleus. 

The experimental study of exclusive reactions is also in its infancy. Much 
more experimental input is required particularly from ep, yp, jip, and yy initial 

-++ states. Ratios of processes such as yy + pp and A++A can isolate important 
features of the baryon wavefunctions. The ratio of the square transition form 
factor for y*y + 7r” to the pion form factor provides a wave-function indepen- 
dent determination of os(Q2). It is importa,nt to confirm the color transparency 
phenomena, particularly in the simplest channels such as ep quasi-elastic scatter- 
ing. It is important to verify that both elastic and inelastic initial and final state 
interactions are suppressed in the nucleus. Once this phenomena is valida.ted it 
can be used as a “color filter” to separate soft and hard contributions to a large 
range of exclusive reactions. 

We have emphasized in this article that the correctness of the PQCD descrip- 
tion of exclusive processes is by no means settled. There is now a strong cha.llenge 
to design decisive experimental and theoretical tests of the theory. If the theory 
survives, the reward is high: through exclusive rea.ctions we can explore both the 
behavior of QCD and the structure of hadrons. 

APPENDIX I 
BARYON FORM FACTORS AND EVOLUTION EQUATIONS 

- The meson form factor analysis given in Section 3 is the prototype for the cal- 
culation of the QCD hard scattering contribution for the whole range of exclusive 
processes at large momentum transfer. Away from possible special points in the 
xi integrations a general hadronic amplitude can be written to leading order in 
l/Q2 as a convolution of a connected hard-scattering amplitude TH convoluted 
with the meson and baryon distribution amplitudes: 
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and 

The hard scattering amplitude TH is computed by replacing each external 
hadron line by massless valence quarks each collinear with the hadron’s momen- 
tum p’ Z xc;pg. For example the baryon form factor at large Q” has the form416 

GM(&~) = [dx][dy]~*(Yi,~)TH(x,Y; Q2)+(X,Q) 
J 

where TH is the 3q + y -+ 3q’ amplitude. For the proton and neutron we have to 
leading order [CB = 2/3] 

TP = 
1 ‘cZd*“C’; 

(Q’ + Al;)” T1 

T,, = 128T2ci [Tl - T2] 
3(Q2 + M,2)2 

where 

Tl = _ 4~3~3Q~) %(l - x1)(1 - y1>Q2> 
x3(1 - xd2 yap - y1)2 

+ MwQ”) as ((1 - x1)(1 - yl)Q”) 

x2(1 - x1)2 j/2(1 - y1)” ’ 

_ @2y2Q3) 4x3y3Q2) 

x2x3(1 - x3) yZy3(1 - yl) 

and 

T2 = _ ~s(xcl~lQ~) as(x3~3Q~) 

21x3(1 - Xl) YlY3(1 - Y3) . 

Tl corresponds to the amplitude where the photon interacts with the quarks (1) 
and (2) which h ave helicity parallel to the nucleon helicity, and T2 corresponds 
to the amplitude where the quark with opposite helicity is struck. The running 
coupling constants have arguments Q” corresponding to the gluon momentum 
transfer of-each diagram. Only the large Q2 behavior is predicted by the theory; 
we utilize the parameter A40 to represent the effect of power-law suppressed terms 
from mass insertions, higher Fock states, etc. 
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The Q2-evolution of the baryon distribution amplitude can be derived from 
the operator product expansion of three quark fields or from the gluon exchange 
kernel, in parallel with derivation of Eq. (90). The baryon evolution equation to 
leading order in crS is6 

x1x2x3 { gJ(xi, Q) + i$J(xi, Q)} = 2 ][dy]V(xi, yi)J(yt, Q). 
0 

Here 4 = x1x2x3$,< = log(logQ2/A2), CF = (nz - 1)/212, = 4/3, Cg = (rzc + 
1)/2n, = 2/3, p = 11 - (2/3)nf, and V(xi, yi) is computed to leading order in 
crS from the single-gluon-exchange kernel [see Fig. 19(b)]: 

V(Xi, yi) = 2xix2x3 C o(yi - xi)S(xk - Yk): ( 
4l ii 

x’ i ij 
A 

+ ~ 

i#i 3 8 yi - Xi 
> 

. = V(Yi7Xi) . 

The infrared singularity at xi = yi is cancelled because the baryon is a color 
singlet. 

The evolution equation automatically sums to leading order in cr,(Q’) all of 
the contributions from multiple gluon exchange which determine the tail of the 
valence wavefunction and thus the Q2-dependence of the distribution amplitude. 
The general solution of this equation is 

d(XC;, Q) = x1x2x3 z a, (h$)-‘” kCxi> 7 

where the anomalous dimensions 7n and the eigenfunctions $n(xi) sa.tisfy the 
characteristic equation: 

x1x2x3 (-7, + 9) k(Xi) = 9 Jidy] V(xi, yi) &(yi) . 

0 

A useful technique for obtaining the solution to the evolution equations is to 
construct completely antisymmetric representations as a polynomial orthonormal 
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basis for the distribution amplitude of multiquark bound states. In this way one 
obtain a distinctive classification of nucleon (N) and delta (A) wave functions 
and the corresponding Q2 dependence which discriminates N and A form factors. 
This technique is developed in detail in Ref. 117. 

Taking into account the evolution of the baryon distribution amplitude, the 
nucleon magnetic form factors at large Q2, has the form 436 

GM(Q2) -+ ““F2’ s bnm (l%$)y.x-y’ [ 1 + 0 (as(Q2), $)] , 
, 

where the 7n are computable anomalous dimensions of the baryon three-quark 
wave function at short distance and the b,, are determined from the value of the 
distribution amplitude 4~(a, Qz) t g a a iven point Qi and the normalization of 7’~. 
Asymptotically, the dominant term has the minimum anomalous dimension. The 
dominant part of the form factor comes from the region of the z, integration where 
each quark has a finite fraction of the light cone momentum. The integrations 
over xi and yi have potential endpoint singularities. However, it is easily seen 
that any anomalous contribution [e.g. from the region x2, x3 - 0(m/Q),xr - 
1 - O(m/Q)] is asymptotically suppressed at large Q2 by a Sudakov form factor 
arising from the virtual correction to the ?jyy vertex when the quark legs are 
near-on-shell [p” - c3( 17x&)] ?lg This Sudakov suppression of the endpoint region 
requires an all orders resummation of perturbative contributions, and thus the 
derivation of the baryon form factors is not as rigorous as for the meson form 
factor, which has no such endpoint singularity.rg 

One can also use PQCD to predict ratios of various baryon and isobar form 
factors assuming isospin or SU(3)-fl avor symmetry for the basic wave function 
structure. Results for the neutral weak and charged weak form factors assuming 
standard SU(2) x U(1) symmetry are given in Ref. 47. 

APPENDIX II 
LIGHT CONE QUANTIZATION AND PERTURBATION THEORY 

In this Appendix, we outline the canonical quantization of QCD in AS = 0 
gauge. The discussion follows that given in Refs. 4 and 51. This proceeds in 
several steps. First we identify the independent dynamical degrees of freedom in 
the Lagrangian. The theory is quantized by defining commutation relations for 
these dynamical fields at a given light-cone time 7 = t + z (we choose T = 0). 
These commutation relations lead immediately to the definition of the Fock sta.te 
basis. Expressing dependent fields in terms of the independent fields, we then 
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derive a light-cone Hamiltonian, which determines the evolution of the state space 
with changing 7. Finally we derive the rules for r-ordered perturbation theory. 

The major purpose of this exercise is to illustrate the origins and nature of 
the Fock state expansion, and of light-cone perturbation theory. We will ignore 
subtleties due to the large scale structure of non-Abelian gauge fields (e.g. ‘instan- 
tons’), chiral symmetry breaking, and the like. Although these have a profound 
effect on the structure of the vacuum, the theory can still be described with a 
Fock state basis and some sort of effective Hamiltonian. Furthermore, the short 
distance interactions of the theory are unaffected by this structure, or at least 
this is the central ansatz of perturbative QCD. 

Quantization 

The Lagrangian (density) for QCD can be written 

where Fp” = PA” - d”Afi + ig[Ap, A”] and iDp = iP - gAp. Here the gauge 
field A@ is a traceless 3 x 3 color matrix (Afi E C, AafiTa, Tr(TaTb) = 1/2Sab, 

[T”, Tb] = icabcTc,. . .), and the quark field $I is a color triplet spinor (for sim- 
plicity, we include only one flavor). At a given light-cone time, say r = 0, the 

i independent dynamical fields are $* s A*$ and Al with conjugate fields i$+ 
and a+Al, where A* = yOy*/:! are projection operators (.~+A- = 0, A$ = 
A*, A+ + A- = 1) and i)* = do f d3. Using the equations of motion, the 
remaining fields in l can be expressed in terms of $I+, A;: 

A+ = 0 . 

29 
= A- + (;a+)2 ~ { [id+A;, A;] + 24 Ta ++ Ta} , 

with p = y” and Er’l = ~“7. 
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To quantize, we expand the fields at 7 = 0 in terms of creation and annihila- 
tion operators, 

++(x) = J d;;;;;; c (b(& X) u+(k, x) e-ik.2 

k+>O .A 

+ d+(& A) ?I+(& A) eik- 
> 

) T = x+ = 0 

Al(x) = 
J 

7 = x+ = 0 ( 

k+>O 

with commutation rela.tions (k = (Ic+, il)): 

{b& WY b+(p, x,} = {d@-, A), d+(p, x’i} 
= a@, 4, [ a+ (27 XI,] 
= 16n3 k+ S3@ - p_) SAA, , 

{b,b} = {c&d} = . . . = 0 , 

where X is the quark or gluon helicity. These definitions imply canonical com- 
mutation relations for the fields with their conjugates (7 = x+ = ys = 0, : = 
(x-, Xl), . . .): 

{ dJ+k>, T&g)} = A+ S3(ic - y> 7 

[A’(g), a+~i(y)] = i@j b3(g - y) . 

The creation and annihilation operators define the Fock state basis for the 
theory at 7 = 0, with a vacuum IO) defined such that b IO) = d IO) = a IO) = 0. 
The evolution of these states with r is governed by the light-cone Hamiltonian, 
HLC = P-, conjugate to T. The Hamiltonian can be readily expressed in terms 
of $+ and Al: 

HLC = Ho + v , 
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where 

Ho = Jd3x{Tr(&A~&A~) +~~(i~*.al+lrm)~(ia,.a,+am)i,} 

CJ dk+ d” kl 
= 

167r3 k+ 
a+(& A) a@, A,$ + b+(k, A> b(lc, A> 

x 
colors 

x k: + m2 
+ d+(k, A) b(k, A) Ic !. 

k+ 
;+“’ + constant 

is the free Hamiltonian and V the interaction: 

V= d3x J I 
(29 Tr (iPA”v [&,2,]) - %Tr ( [AT q [A,, I%/]) 

with&=$-+++(--,$asg t 0) and ,$p = (0,x-,A:) (-+ Ah as g + 0). The 
Fock states are obviously eigenstates of Ho with 

It is equally obvious that they are not eigenstates of V, though any matrix el- 
ement of V between Fock states is trivially evaluated. The first three terms in 
V correspond to the familiar three and four gluon vertices, and the gluon-qua.rk 
vertex [Fig. 53(a)]. Th e remaining terms represent new four-quanta interactions 
containing instantaneous fermion and gluon propagators [Fig. 53(b)]. All terms 
conserve total three-momentum k = (k +, zl), because of the integral over g in 
V. Furthermore, all Fock states other than the vacuum have total k+ > 0, since 
each individual bare quantum has I;+ > 0. Consequently the Fock state vacuum 
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3-83 3-83 4507A26 4507A26 

. 
Figure 53. Diagrams which appear in the interaction Hamiltonian for QCD on 

the light cone. The propagators with horizontal bars represent “instantaneous” gluon 
and quark exchange which arise from reduction of the dependent fields in At = 0 
gauge. (a) Basic interaction vertices in &CD. (b) “Instantaneous” contributions. 

must be an eigenstate of 11 and therefore an eigenstate of the full light-cone 
Hamiltonian. 

Light-Cone Perturbation Theory 

We define light-cone Green’s functions to be the probability amplitudes tha.t 
a state starting in Fock state Ii) ends up in Fock state If) a (light-cone) time r 
later 

(fli) G(f, i; T) = (ffe-iHLcr/2(i) 

=2 J de - e-i’r’2 G(j, i; c) (jli) , 
27r 

where Fourier transform G(f, i; E) can be written 

VI4 G(f7 i; 6) = (f 1 E _ HL: + i. 
+ 

1 i) 

( I f 1 1 
V 

1 
= 

E - HLC + iO+ 
+ 

6 - Ho + iO+ E - Ho + iO+ 

1 1 1 
+ 

c - Ho + iO+ 
V 

6 - Ho + iO+ 
V 

c - Ho + iO+ 
+. 

The rules for r-ordered perturbation theory follow immediately when (E 
is replaced by its spectral decomposition. 

.i . I) 
- Ho)-] 

1 hr dk’ d2k1i cJn In 1 &yXi) (72 : ~i;,Xil = c - Ho + iO+ n x 1;d I;+ , E - C(k2 + m2)i/k+ + iO+ 3 I 
i 
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The sum becomes a sum over all states n intermediate between two interactions. 

To calculate G(f, i; c) perturbatively then, all r-ordered diagrams must be 
considered, the contribution from each graph computed according to the following 
rules: 

1. Assign a momentum kp to each line such that the total ks, kl are conserved 
at each vertex, and such that k2 = m2, i.e. k- = (k2 + m2)/k+. With 
fermions associate an on-shell spinor. 

k++@n+iil& 
){ 

x(T) x =T 
x(l) x =I 

or 

( ks - pm + 61. il 
x(1> x =f 

x(T) X =I 

where x(T) = l/fi(l,O,l,O) and ~(1) = l/fi(O,l,O,-l)T. For gluon 
lines, assign a polarization vector EP = (0, 2;~. 2*/k+, Zl) where El(T) = 
-l/&(l,i) and <l(J) = l/fi(l,-i). 

2. Include a factor 0(k+)/k+ for each internal line. 

3. For each vertex include factors as illustrated in Fig. 54. To convert incom- 
ing into outgoing lines or vice versa. replace 

in any of these vertices. 

4. For each intermediate state there is a factor 

t- C k- +iO+ 
interm 

where c is the incident P-, and the sum is over all particles in the interme- 
diate state. 

5. Integrate s dk+d2k1/16 7r3 over each independent k, and sum over internal 
helicities and colors. 

6. Include a factor -1 for each closed fermion loop, for each fermion line that 
both begins and ends in the initial state (i.e. 5. . . u), and for each diagram 
in which fermion lines are interchanged in either of the initial or final states. 
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Vertex Factor 

’ g”(c) lb d”) 

’ dh’a-pb).C;Gz’Eb 

+ cyclic permutations} 

;x; g2{Eb’ccc~.E~+E~.EcEb.~~} 

Color Factor 

Tb 

Tb Td 

Te Te 

3-83 4507A25 

Figure 54. Graphical rules for QCD in light-cone perturbation theory. 

As an illustration, the second diagram in Fig. 54 contributes 

(times a color factor) to the qq --+ qq Green’s function. (The vertices for quarks 
and gluons of definite helicity have very simple expressions in terms of the mo- 
menta of the particles.) The same rules apply for scattering amplitudes, but with 
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propagators omitted for external lines, and with e = P- of the initial (and final) 
states. 

Finally, notice that this quantization procedure and perturbation theory 

(graph by graph) are manifestly invariant under a large class of Lorentz transfor- 
mations: 

1. boosts along the 3-direction - i.e. ps + Kp+, p- -+ Ii’-‘p-, pl --+ pl 
for each momentum; 

2. transverse boosts - i.e. p+ + p+, p- -+ p- + 2pl . &I + p+Q:, pl -+ 
pl + pSQl for each momentum (Ql like K is dimensionless); 

. 
3. rotations about the 3-direction. 

It is these invariances which lead to the frame independence of the Fock state 
wave functions. 

APPENDIX III 
A NONPERTURBATIVE ANALYSIS OF EXCLUSIVE REACTIONS- 

DISCRETIZED LIGHT-CONE QUANTIZATION 

Only a small fraction of exclusive processes can be addressed by perturba- 
tive QCD analyses. Despite the simplicity of the eSe- and yy initial state, 
the full complexity of hadron dynamics is involved in understanding resonance 
production, exclusive channels near threshold, jet hadronization, the hadronic 
contribution to the photon structure function, and the total eSe- or yy annih- 
lation cross section. A primary question is whether we can ever hope to confront 
QCD directly in its nonperturbative domain. Lattice gauge theory and effective 
Lagrangian methods such as the Skyrme model offer some hope in understanding 
the low-lying hadron spectrum but dynamical computations relevant to yy an- 
nihilation appear intra.ctable. Considerable information 

16 
on the spectrum and 

the moments of hadron valence wavefunctions has been obtained using the ITEP 
QCD sum rule method, but the region of applicability of this method to dynam- 
ical problems appears limited. 

Recently a new method for analysing QCD in the nonperturbative domain 
has been developed: discretized light-cone quantization (DLCQ). ‘18 The method 
has the potential for providing detailed information on all the hadron’s Fock 
light-cone components. DLCQ has been used to obtain the complete spectrum 
of neutral states in QED8 and QCD ‘lg in one space and one time for any mass 
and coupling constant. The QED results agree with the Schwinger solution at 
infinite coupling. We will review the QCD[l+l] results below. Studies of QED in 

3+1 dimensions are now 
120 

underway. Thus one can envision a nonpert,urbative 
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TABLE III 

Table III. Comparison Between Time-Ordered and r-Ordered Perturbation Theory 

Ecjual 7 = t + z 

k” = dz- (particle mass shell) k- = k: + m3 
k+ 

(particle mass shell) 

C k conserved C il, k+ conserved 

Mab = Vab + c vat 
c 1. k--& k- + ic Vcb 

n! time-ordered contributions 

FOCI states $n(Zi) 

k+ > 0 only 

Fo& states $n(Zli, z;) 

Z=$,i$Zi=l, ~~~i=O 
i=l 

(0 < Xi < 1) 

& = p” - 2 kf 
i=l 

& = p+ p- - 5 k; 
i=l > 

=M-Qij-yxj 
i=l 

=w-gk~ I”“); 
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method which in principle could allow a quantitative confrontation of QCD with 
the data even at low energies and momentum tran.sfer. 

The basic idea of DLCQ is as follows: QCD dynamics takes a rather simple 
form when quantized at equal light-cone “time” r = t + z/c. In light-cone ga.uge 
A+ = A0 + A* = 0, the QCD light-cone Hamiltonian 

HQCD = ffo + gH1 + g’H2 

contains the usual 3-point and 4-point interactions plus induced terms from in- 
. stantaneous gluon exchange and instantaneous quark exchange diagrams. The 

perturbative vacuum is an eigenstate of HQCD and serves as the lowest state in 
constructing a complete basis set of color singlet Fock states of Ho in momentum 
space. Solving QCD is then equivalent to solving the eigenvalue problem: 

as a matrix equation on the free Fock basis. The set of eigenvalues {Al’} rep- 
resents the spectrum of the color-singlet states in QCD. The Fock projections 
of the eigenfunction corresponding to ea,ch hadron eigenvalue gives the qua.rk 
and gluon Fock state wavefunctions +n(~i, 1;1;, A;) required to compute structure 
functions, distribution amplitudes, decay amplitudes, etc. For example, as shown 
by Drell and Yan,” the form-factor of a hadron can be computed at any momen 
turn transfer Q from an overlap integral of the ?+!J~ summed over particle number 
IX. The eSe- annihilation cross section into a given J = 1 hadronic channel can 
be computed directly from its $qq Fock state wavefunction. 

The light-cone momentum spa.ce Fock basis becomes discrete and amenable 
to computer representation if one chooses (anti-)periodic boundary conditions for 
the quark and gluon fields along the z- = z - ct and ZL directions. In the case of 
renormalizable theories, a covariant ultraviolet cutoff A is introduced which limits 
the maximum invariant mass of the particles in any Fock state. One thus obtains 
a finite matrix representation of Hg& which has a straightforward continuum 
limit. The entire analysis is frame independent, and fermions present no special 
difficulties. 

Since HLC, P +, FL, and the conserved charges all commute, HL,~ is block 
diagonal. By choosing periodic (or antiperiodic) boundary conditions for the basis 
states along the negative light-cone $(z- = +L) = z!z$(z- = -L), the Fock basis 
becomes restricted to finite dimensional representations. The eigenvalue problem 
thus reduces to the diagonalization of a finite Hermitian matrix. To see this, 
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note that periodicity in z- requires P+ = %It” , k+ = 9 ni , cycl 11; = Ii. 
The dimension of the representation corresponds to the number of partitions of 
the integer Ii’ as a sum of positive integers n. For a finite resolution K, the 
wavefunction is sampled at the discrete points 

The continuum limit is clearly K --f co. 
. One can easily show that P- scales as L. One thus defines P- E &H . 

The eigenstates with P2 = M2 at fixed P+ and pl = 0 thus satisfy HLC IqI) = 
KHIQ) = M2 IQ), independent of L (which corresponds to a Lorentz boost 
factor). 

The basis of the DLCQ method is thus conceptually simple: one quantizes the 
independent fields at equal light-cone time r and requires them to be periodic 
or antiperiodic in light-cone spa.ce with period 2L. The commuting operators, 
the light-cone momentum P + = 91’ and the light cone energy P- = &H a.re 
constructed explicitly in a Fock space representation and diagonalized simulta- 
neously. The eigenvalues give the physical spectrum: the invariant mass squared 
J42 = P”P,. The eigenfunctions give the wavefunctions at equal r and allow one 
to compute the current matrix elements, structure functions, and distribution 
amplitudes required for physical processes. All of these quantities are manifestly 
independent of L, since M 2 = PsP- = HI<. Lorentz-invariance is violated by 
periodicity, but re-established at the end of the calculation by going to the con- 
tinuum limit: L + oo, II’ + 00 with P+ finite. In the case of gauge theory, 
the use of the light-cone gauge A + = 0 eliminates negative metric sta.tes in both 
Abelian and non-Abelian theories. 

Since continuum as well as single hadron color singlet hadronic wavefunctions 
are obtained by the diagonalization of HLC, one can also calculate scattering 
amplitudes as well as decay rates from overlap matrix elements of the interaction 
Hamiltonian for the weak or electromagnetic interactions. An important point is 
that all higher Fock amplitudes including specta.tor gluons are kept in the light- 
cone quantization approach; such contributions cannot generally be neglected in 
decay amplitudes involving light quarks. 

The simplest application of DLCQ to local gauge theory is QED in one-space 
and one-time dimensions. Since A + = 0 is a physical gauge there are no photon 
degrees of freedom. Explicit forms for the matrix representation of HQED are 
given in Ref. 8. 
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The basic interactions which occur in HLC(QCD) are illustrated in Fig. 53. 

Recently Hornbostel ‘I9 has used DLCQ to obtain the complete color-singlet spec- 
trum of QCD in one space and one time dimension for NC = 2,3,4. The hadronic 
spectra are obtained as a function of quark mass and QCD coupling constant (see 
Fig. 55). Where they are available, the spectra agree with results obtained earlier; 
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Figure 55. The baryon and meson spectrum in QCD [l+l] computed in DLCQ 
for NC = 2,3,4 as a function of quark mass and coupling constant.‘lg 

in particular, the lowest meson mass in SU(2) g a rees within errors with lattice 

Hamiltonian results.121 The meson mass at NC = 4 is close to the value obtained 
in the large NC limit. The method also provides the first results for the baryon 
spectrum in a non-Abelian gauge theory. The lowest baryon mass is shown in 

136 



Fig. 55 as a function of coupling constant. The ratio of meson to baryon mass as 
a function of NC also agrees at strong coupling with results obtained by Frishman 

122 
and Sonnenschein. Precise values for the mass eigenvalue can be obtained by 
extrapolation to large Ii’ since the functional dependence in l/K is understood. 
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Figure 56. Representative baryon spectrum for QCD in one-space and one-time 
dimension.11g 

As emphasized above+ when the light-cone Hamiltonian is diagonalized for a 
finite resolution K, one gets a complete set of eigenvalues corresponding to the 
total dimension of the Fock state basis. A representative example of the spectrum 
is shown in Fig. 56 for baryon states (B = 1) as a function of the dimensionless 
variable X = l/(1 + nm”/g2). Antiperiodic boundary conditions are used. Note 
that spectrum automatically includes continuum states with B = 1 . 
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Figure 57. The meson quark momentum distribution in QCD[l+l] computed 
using DLCQ. ‘lg 
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Figure 59. Contribution to the baryon quark momentum distribution from qyqQ 
states for QCD[l+l].llg 

The structure functions for the lowest meson and baryon sta.tes in SU(3) at 
two different coupling strengths m /g = 1.6 and m /g = 0.1 are shown in F igs. 
57  and 58. Higher Fock states have a  very small probability; representative 
contributions to the baryon structure functions are shown in F igs. 59  and 60. 
For comparison, the valence wavefunction of a  higher mass state which can be 
identified as a  composite of meson pairs (analogous to a  nucleus) is shown in F ig. 
61. The interactions of the quarks in the pair state produce Fermi motion beyond 
x = 0.5. Although these results are for one time  one space theory they do suggest 
that the sea quark distributions in physical hadrons may be highly structured. 

In the case of gauge theory in 3+1 dimensions, one also takes the ‘i; = 
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Figure 61. Comparison of the meson quark distributions in the qq@ Fock sate 
with that of a continuum meson pair state. The structure in the former may be due 
to the fact that these four-particle wavefunctions are orthogonal.‘lg 

(2s/Ll)nl as discrete variables on a  finite Cartesian basis. The theory is covari- 
antly regulated if one restricts states by the condition 

c kfi + mf 
a= , 

i Xi 

where A is the ultraviolet cutoff. In effect, states with total l ight-cone kinetic 
energy beyond A2 are cut off. In a  renormalizable theory physical quantities are 
independent of physics beyond the ultraviolet regulator; the only dependence on 
.A appears in the coupling constant and mass parameters of the Hamiltonian, 
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consistent with the renormalization group. 123 Th e resolution parameters need t.o 
be taken sufficiently large such that the theory is controlled by the continuum 
regulator A, rather than the discrete scales of the momentum space basis. 

There are a number of important advantages of the DLCQ method which have 
emerged from this study of two-dimensional field theories. They are as follows: 

1. The Fock space is denumerable and finite in particle number for any fixed 
resolution I<. In the case of gauge theory in 3+1 dimensions, one expects 
that photon or gluon quanta with zero four-momentum decouple from neu- 
tral or color-singlet bound states, and thus need not be included in the Fock 
basis. 

2. Because one is using a discrete momentum space representation, rathei 
than a space-time lattice, there are no special difficulties with fermions: 
e.g. no fermion doubling, fermion determinants, or necessity for a quenched 
approximation. Furthermore, the discretized theory has basically the sa.me 
ultra,violet structure as the continuum theory. It should be emphasized tl1a.t. 
unlike lattice calculations, there is no constraint or relationship between the 
physical size of the bound state and the length scale L. 

3. The DLCQ method has the remarkable feature of generating the complete 
spectrum of the theory; bound states and continuum states alike. These can 
be separated by tracing their minimum Fock state content down to small 
coupling constant since the continuum states have higher particle number 
content. In lattice gauge theory it appears intractable to obtain informa.- 
tion on excited or scattering states or their correlations. The wavefunctions 
generated at equal light cone time have the immediate form required for rel- 
ativistic scattering problems. In particular one can calculate the relativistic 
form factor from the matrix element of currents. 

4. DLCQ is basically a relativistic many-body theory, including particle num- 
ber creation and destruction, and is thus a basis for relativistic nuclear and 
atomic problems. In the nonrelativistic limit the theory is equivalent to the 
many-body Schrodinger theory. 

Whether QCD can be solved using DLCQ - considering its large number of 
degrees of freedom is unclear. The studies for Abelian and non-Abelian gauge 
theory carried out so far in 1+1 dimensions give grounds for optimism. 
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