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- - ABSTRACT 

We describe a non-perturbative method to solve the 
Hamilton-Jacobi equation for invariant surfaces in phase space. 
The problem is formulated in action-angle variables with a gen- 
eral nonlinear perturbation. The solution of the Hamilton- 
Jacobi equation is regarded as the fixed point of a map on the 
Fourier coefficients of the generating function. Periodicity of the 
generator in the independent variable is enforced with a shoot- 
ing method. We present two methods for finding the fixed point 
and hence the invariant surface. A solution by plain iteration 
is economical but has a restricted domain of convergence. The 
Newton iteration is costly but yields solutions up to the dynamic 
aperture. Examples of lattices with sextupoles for chromatic 
correction are discussed. 

INTRODUCTION 

This paper discusses a method to calculate approximate in- 
variant surfaces (tori) for nonlinear dynamical systems. The 
surfaces are found from a numerical solution of the Hamilton- 
Jacobi equation.lm3 

The theory is outlined in the next section. Several examples 
of solutions in two degrees of freedom are given in the following 
section. Finally results are summarized. 

THEORY 

The- Hamiltonian describing single particle motion in trans- 
verse phase space for a storage ring or synchrotron can be writ- 
ten in action-angle variables asp 

H(@,I,s) = sl(s).I+ V(@,I,s) ) (1) 
where a(s) = (l/h(s), 1//32(s)), 1 = (11,I2), and * = (41,rb2) 
for the two transverse dimensions. The Hamiltonian is periodic 
in s with periodicity C, the circumference of the ring. The per- 
turbation considered here is due to sextupoles used for chromatic 
correction, 

V(z, y, s) = qz3 - 32y3) 
3! 

. 

The perturbation is expressed in action-angle variables through 
the transformations 

I = [allpI( cos $51 , 

pz = -[‘%/Pl(s)]f[sinh +w(s)cosdll . 
(3) 

The y and p, have similar transformations. 

To derive the Hamilton-Jacobi equation (HJE) consider a 
canonical transformation of the second type F2 from the old 
variables (@,I) to the new variables (Q, J): 

F2(9,J,s)=@.J+G(Q,J,s) . (4) 
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This gives the transformation equations 

!I! = 9 + GJ(@, J,s), 
I = J + Go(@, J,s), 

I?(‘@, J, s) = H(@, J + Gs, s) 

(5) 
(6) 

t G,. (7) 

Subscripts indicate partial differentiation. The Hamilton-Jacobi 
equation is just the requirement that the new Hamiltonian be 
independent of the new angle variables: 

fi(J,s)=s2.(J+G*)+G,+V(@,J+G*,s) (8) 

Solutions to the HJE that are periodic in @ and s give the 
invariant surface I(@, s; J) according to Eq. (6) The ne\v ac- 
tions J are constant. 

If G is represented as a Fourier series in 41 and &. the HJE 
for the Fourier coefficients gm for m = (ml, m2) # 0 is 

&gm + ii2 mg, + &(J, s; g) = 0 , (9) 

where the vector of Fourier coefficients is written g = {gm} and 

V,(J, s; g) = 
J 

2 

Ge-‘;YQV(@, J + Gs, s) , 

&,(a, J,s) = c img,(J,sjP’* . - 
(10) 

rnES 
The set of modes used for the numerical calculation is S. ., - - 

The first two terms of Eq. (9) can be consolidated by using 
the integrating factor eim.X, where xi(s) = s,” du/p,(u) is the 
phase advance. The new vector k, = eim’X(‘)gm is the solution 
to 

&km = -e’m’X(S)V,(J, s; g(k)) . (11) 

Note that the k, are constant between nonlinear elements. 
They have a modified periodicity k,(C) = e2”N’“km(0) which 
follows from gm(C) = gm(0). 

The numerical integration of Eq. (11) from 
is the map U on the initial conditions 

k(C) - k(0) = U(k(0)) 

The periodicity of the k(s) and Eq. (12) define a 
problem 

= Am(W)) . 

an initial value 

(12) 

boundary value 

(13) 

The solution to Eq. (13) is the fixed point of the map A(k) 
and is constructed to be the periodic solution to the original dif- 
ferential equation, Eq.(ll). This fixed point is found by simple 
iteration for small betatron amplitudes and by Newton’s itera- 
tion’ at large amplitudes near unstable regions of phase space. 
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TABLE I - Single Cell of the ALS 

C=16.4m, l/l2 of ring, v,=l.l8973, vy=0.6S158 

Parameters at beginning of element 

1 NAME 1 POSITION 1 STRENGTH 1 LENGTH 1 TWISS PARAMETERS ( PHASE I 

. 

In Newton’s method F(h) = h - A(h) = 0 is solved by the 
iteration 

0 = Fm(hi) + c Dmn(hi) . (hi+’ - hi),. (14) 
n 

The Jacobian of the map is D,, = dF,/dh,. Its calculation 
by divided differences is adequate but requires two evaluations 
of the map for each independent, complex Fourier amplitude. 
In two dimensions, the number of independent amplitudes is 
2Mr-kfz + nfr + A42 if modes are chosen for lmil 5 A4, with 
i -= 1,2. At typical values of Mi = 16 this gives-an excessive 
number of modes. 

However using Broyden’s formula 
6-7 

to update the Jaco- 
bian, and selecting only the numerically significant modes for the 
mode set S reduces the computation time. Broyden’s formula 
gives an estimate for, the Jacobian D’+’ at the next iteration 
given the Jacobian D’ at hi. 

D 
i+l = D, + [F(h’+l) - F(h’) - D’(h’+’ - h’)](h’+’ - hi)T 

Ilh 
r+l _ hi112 

(15) 
The resulting Newton-Broyden iteration does not converge 

as fast as the real Newton iteration, but it has the advantage 
that the next Jacobian is given after only one more evaluation 
of the map. Only one full divided difference calculation of the 
Jacobian is done at the start of the iteration. 

Furthermore, using only modes that contribute significantly 
to the evaluation of Ga reduces the number of map evaluations 
that must be done for the first Jacobian calculation. Modes are 
selected with values of Ilrnhrnll/llJII above a cut-off. All other 
modes are consistently ignored. 

Once the gm(se) are known the invariant surface I(*, so; J) 
is given according to Eqs. (6) and (10). 

NUMERICAL RESULTS 

In. this section the design for a single cell of the Berkeley 
Advanced Light Sources (ALS) is analyzed. See Table I for 
parameters of the single cell design. It has been studied with 
the one dimensional HJE technique3 but the problem is much 
more difficult in two dimensions because of the large number of 
modes. 

Figure 1 is a stability diagram for the ALS cell. It gives 
initial positions in z and y of stable (+) and unstable (*) tra- 
jectories. The trajectories were tracked for 5000 turns 

by means of a 4th-order symplectic integration9 of the equations 
of motion in the sextupoles. Trajectories that grew larger in 
amplitude than some cut-off are unstable and those that did 
not are stable. The points A and B correspond to the invariant 
surface solutions discussed below. 
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11,11111,11,,,11,,,,1,,- 

0 5 10 15 20 

x (mm) 

Fig. 1 Stability Diagram for single cell ALS 

In case A, the invariant surface is found for the constant 
action Jr=J2=5 x IO-‘m. It gives initial displacements in (.r> y) 
of 3.5mm and 2.lmm, respectively, for 41 = 42 = 0. A sur- 
face of section of the invariant torus, corresponding to a sin- 
gle value of s, is plotted” as Ii(@,s; J) for i = 1,2. See 
Figs. 2 and 3 . The map is evaluated by a 4th-order Runge- 
Kutta algorithm using 2 steps per magnet. The mode set is 
selected from the set with lmil 5 13, the selection criterion 
being Ilrnhmll/llJII 2 10e6. This yields 65 modes of the 364 
independent modes in the truncated mode set. Convergence 
of the Newton-Broyden iteration is gauged with the parameter 
T;+~ = II/j+’ - h’ll/llh’jf, for the (i + 1)-th iteration. The it- 
eration converges quickly, by about 6.4 x 10m4 per iteration, to 
the final value of r3 = 4.03 x 10-l’. Agreement of the invari- 
ant surface with the points (@‘,IT) found from the tracking 
code is excellent. The difference between the surface and the 
points was quantified as 6, = CL, ll,“J(@y) - Is[/(NJ,) and 
similiarly for the y plot. For this case, 6, = 4.43 x 10m5 and 
by = 4.56 x 10m5, with N = 600. 

2 
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Fig: 2 Case A, 51 = J2 = 5 x lo-‘m , X  Action 

I / 

Fig. 3 Case A, 51 = J2 = 5 x 10m7m, Y  Action 

In case B, the invariant surface for Jl=J2=5 x 10e6m gives 
initial displacements of 12.4mm and 6.9mm in (r,y) for 41 = 
$2 = 0. See Figs. 4 and 5 for the plots of the surface of section. 
This case requires more steps in the Runge-Kutta evaluation of 
the map and more selected modes than the previous case, as is 
typical of cases close to unstable regions of phase space. The 
evaluation of the map is performed with 6 Runge-Kutta steps 
per magnet. There are 127 modes selected for Ilrnhmll/llJII 2 
2 x 10m5. The iteration converged much more slowly than the 
previous case taking 14 iterations to reach ~14 = 3.56 x 10-13, 
decreasing by 0.15 each iteration. Agreement with tracking is 
still good: 6, = 1.83 x 10m3 and 6, = 1.66 x 10m3. 

At’small amplitudes simple iteration converges and requires 
much less computation time. For the above cell convergence 
occurs around Jl=J2=5 x lo-‘rn or z=lmm, y=0.6mm. 

SUMMARY 

The Hamilton-Jacobi equation was solved numerically for 
the invariant surface in two degrees of freedom. Several examples 
were given and a convenient way to plot the results was shown. 
For solutions at large amplitude, mode selection and Broyden 
updating of the Jacobian were employed to save considerable 
computing time. 
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Fig. 4 Case B, JI = 52 = 5 x lo-‘m , X  Action 
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Fig. 5 Case B, 51 = J2 = 5 x 10e6m, Y  Action 
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