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-1 ABSTRACT 

A map to describe propagation of particles through any sec- 
tion of a nonlinear lattice may be represented as a Taylor expan- 
sion about the origin in phase space. Although the technique 
to compute the Taylor coefficients has been improved recently, 
the expansion may fail to provide adequate accuracy in regions 
where nonlinear effects are substantial. A representation of the 
map in angle-action coordinates, with the angle dependence 
given by a Fourier series, and the action dependence by poly- 
nomials in I’i2, may be more successful. Maps of this form are 
easily constructed by taking Fourier transforms of results from 
an arbitrary symplectic tracking code. Examples are given of 
one-turn and two-turn maps for the SLC North Damping Ring 
in a strongly nonlinear region. Results for accuracy and speed 
of evaluation of the maps are quite encouraging. It seems fea- 
sible to make accurate maps for the SSC by this method. 

1. INTRODUCTION 

Symplectic maps to describe linear motion are easy to con- 
struct an-d are used every day in analysis and operation of ac- 
celerators. Maps to describe nonlinear motion are more difficult 
to manag& Although nonlinear maps have been used success- 
fully for certain purposes, mainly to represent the approximate 
effect of one or a few nonlinear elements,“” they have not be- 
come a standard teol of the trade. This situation may be due 
to the lack of a simple method to construct maps of adequate 
accuracy and scope. The present paper describes an extremely 
easy procedure for constructing accurate maps with the help-of 
any tracking code. 

For the study of circular machines, maps describing one full 
turn are of special interest. (More generally, n-turn maps could 
be interesting, n being a small integer or a rational number). 
A full-turn map could provide economical long-term tracking, 
provided that one evaluation of the map takes less time than 
element-by-element tracking through one turn. This should 
happen for sufficiently large lattices, since complexity of the 
map-(the number of terms required to represent it in some ex- 
pansion) does not, in general, increase with the length of the 
lattice. Another application of full-turn maps (of great impor- 
tance in my view) occurs in a scheme to study invariant surfaces 
in phase space and to derive long-term bounds on the motion.3 
One can find an equation for determination of the invariant 
surface that refers only to the map, making no reference to the 
underlying Hamiltonian. This formulation avoids the multiple 
integrations through the lattice that are needed to solve the 
same problem by the Hamilton-Jacobi method.4 

Since the ultimate goal is to study the dynamic aperture, 
a really useful map should be accurate in regions of large am- 
plitude and strong nonlinearity. In such regions an analysis of 
stability is especially sensitive to errors, so that one should be 
scrupulous in maximizing accuracy of the map for a given ex- 
penditure of computational resources. 

A general M  takes a phase space point z at orbital location 
s to a point z’ at orbital location s’: 

M  (z; s,s’) = z’ . (1.1) 
The usual practice has been to represent M  as a power se- 
ries in the components of z, a Taylor expansion about the ori- 
gin in phase space. Recently Berz5 has introduced a technique 
which allows one to compute Taylor coefficients of much higher 
order than was possible previously. In spite of this advance 
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in technique, I believe that the Taylor series is not the appro- 
priate tool for representing the map at large amplitude. Rather 
than using only the values of the map and its derivatives at z = 
0, and making a long extrapolation, one should use values of the 
map in the actual large-amplitude region of interest. Those val- 
ues are readily determined by any tracking code. The problem 
of constructing a formula for the map is then a problem of inter- 
polation of values at points close to the orbits of interest, rather 
than extrapolation from points far away. It is useful to view 
the problem in angle-action coordinates. For transverse motion 
in two degrees of freedom the angle @  = (41, 42) and action 
I = (11 , 12) are related to Cartesian phase space coordinates x = 
(11,52), p = (~1, p2) through the lattice functions p, as follows: 

Xi = [21ipi(S)]“2 COS$i , (1.2) 

pi = ~: = - [21i/pi(S)]1’2 [Sinq$ - f&(S) COSQi] . (1.3) 

Primes denote derivatives with respect to arc length s on the 
reference orbit. 

On a typical orbit, the action I has relatively little varia- 
tion (for linear motion, none at all), while the angle @  covers 
the full interal (0,27r). Consequently, in constructing a map by 
interpolation, one should expect to need fewer mesh points in 
I than in a, provided that the map is intended to be accurate 
only in a band in action space, 

I@‘“) < 1; < pax) . (1.4) 
By restricting the ma; to such a baid, and using several maps 
if necessary to cover different bands, one gains in accuracy and 
in speed of evaluation of the map. Note that such a strategy is 
not possible in the approach using Taylor series. 

2. REPRESENTATION OF THE MAP 

The map to describe evolution of orbits from location s to 
location s’ will be written as 

@=++A(I,ft+,s’) , (2.1) 
I’= I+B (I,@;s,s’) . (24 

Henceforth the arguments s, s’ are suppressed, since fixed val- 
ues such as s = 0,s’ = C are contemplated, where C is the 
circumference of the reference orbit. In accord with the def- 
inition of @ ‘, the functions A,B must be 2a-periodic in each 
4;. It is therefore natural to represent them by Fourier series. 
As in the computation of invariant surfaces, one finds that a 
sparse set of Fourier modes is dominant. For a given accu- 
racy, mode numbers up to some maximum have to be included, 
but for many mode numbers below that maximum the Fourier 
coefficients are negligible. Thus, it is efficient to represent A 
and B in a form such as 

A (I, a) = c A, (I) eim’* , (2.3) 
rnE.5 

where the set 5’ includes all m  for which IA,1 is greater than 
some E times the largest lA,I. 

To calculate the Fourier coefficients Am(I) (say for a one- 
turn map), the function a’ - @  = A(1, a) is evaluated at fixed 
I on a uniform mesh in a, 

~i=~, n=O,l,..., N-l. (2.4) 
The evaluation is done by running a tracking code for one 
turn, using Eqs. (1.2) and (1.3) to translate from Cartesian to 



action-angle variables. The values on the mesh provide the data 
for a Fast Fourier Transform, which yields the coefficients A,. 
A small technical problem arises because @ ’ is computed mod- 
ulo 27r, which means that when a is varied, either component of 
@  can reach 27r and then suddenly jump to zero. Of course, one 
do= not wish to take the Fourier transform of a discontinuous 
function. Values of an equivalent function without jumps must 

c, first be constructed. That is easy to do: if 4: drops by a large 
fraction of 27r (say 80% of 2~) when $j is moved from one point 

-to the next on the mesh (2.4), then (6: is incremented by 2~. 
Repeating the calculation for many values of I, one finds 

that the Fourier coefficients are smooth functions of I without 
much structure, usually monotonic, over the region encountered 
on-a typical orbit. I have experimented with two ways to rep- 
resent these functions: (a) interpolation by polynomials in the 
variables [i = I,?12, and (b) spline interpolation in the same 
variables. In examples studied to date, choices (a) and (b) usu- 
ally gave similar results, although (a) worked considerably bet- 
ter in the example reported below. The programming required 
for (a) is extremely simple. In one dimension, the polynomial 
approximation of the Fourier coefficient is given in Lagrange 
form as 

&z(O = 2 Am(LPs(O , (2.5) 
a=1 

where the Lagrange factors are 

(2.6) 

Thus, theapproximating polynomial passes through the correct 
values Am(Isj at .the mesh points & = I, ‘12. According to 
the work of numerical analysts,5 one should avoid a uniform 
distribution of .mesh points, which can give surprisingly bad 
results in the limit of large n. Following the discussion of de 
Boor,6 I have used the expanded Chebyshev points, namely, 

cs = ; [h + &a + (& - &J 
cos [&(2s - l)] 1 cos M  ’ 

(2.7) 

- s = 1,2, . ..) Ib . 
In two dimensions with polynomial interpolation the complete 
expression for the @  component of the map is 

@ ’ = CB + c 
1 
2 2 A, (II,, Izt) X!‘) (61) /\i2) ((2) 1 eim’* , _ _- m&9 s=l t=1 

where X(‘) 
(2.8) 

is the Lagrange factor for mesh points [ii’. Thus, 
the dataSthat fully characterize the map are the complex coeffi- 
cients A,, B, at action values corresponding to the Chebyshev 

*points. The set S of included modes is actually different for 
each of the four components of the map, usually being smaller 
for the (Ir,Iz) components than for (+I,&). 

3. EXAMPLE:  SLC NORTH DAMPING RING 

.As an example, maps for the SLC North Damping Ring 
were constructed. The maps cover a region of phase space of 
this machine that was explored in an accompanying paper.’ The 
interpolation polynomials are sixth degree in each variable <i, 
with minimum and maximum interpolation points at the ends 
of the intervals 

1.5 x 1O-6 5 I1 5 3.25 x 10-6, 1O-6 5 I2 5 2.5 x 1O-6 , 
(3.1) 

where actions are expressed in meters. The Fourier modes are 
chosen from an initial set in which Imrl, lm2l < 11. For each 
of the four components of the map, all modes with coefficients 
greater than lo-’ of the largest coefficient are retained, this 
selection being made at the maximum values of the actions. 
For a one-turn map this yields a total of 223 coefficients to 
describe all four components of the map; for a two-turn map 

there are 246. The initial, unselected set had 972 independent 
coefficients; (not all Fourier coefficients are independent, due to 
reality conditions). 

The tracking code used to compute the map coefficients was 
based on Ruth’s fourth-order symplectic integrator.* The code 
was run with one fourth-order integration step per sextupole 
magnet. A short test with two steps per magnet produced map 
coefficients that were the same to seven or eight digits. Of 
course, the code produces a symplectic time evolution, modulo 
round-off error, whatever the number of integration steps. 

To check accuracy of the n-th iterate of the map, its value 
was compared to the corresponding value obtained from the 
tracking code. The discrepancy 6(n) between the map and 
tracking at the n-th turn is defined as 

The coordinates from tracking have superscript t, those from 
the map do not. 

Table 1 shows values of 6(n) for one-turn and two-turn 
maps, for an orbit with initial conditions 41 = 42 = ‘O,Ir = 
I2 = 2 x 10m6 m. This orbit lies on an invariant surface that is 
displayed graphically in Figs. 1 and 2 of Ref. 7. Since the surface 
is far from being planar, the motion is highly nonlinear. The ac- 
tions cover most of the intervals (3.1). For the one-turn map the 
discrepancy at one turn was 6(l) = 5.3 x 10e8, whereas for the 
two-turn map the discrepancy at two turns (i.e., at the first it- 
eration of the map) was 6(2) = 2.9 x 10w8. Table 1 gives the dis- 
crepancies at 1oP turns, with p = 1, . . . , 4. It is remarkable that 
the discrepancy is still quite small at 10000 turns. It is likely 
that the orbit generated by the map stays close to the correct in- 
variant surface for many turns beyond 10000, since it is usual for 
phase error to build up faster than amplitude error. That is, the 
orbit generated by the map might lie close to the surface, with- 
out having the correct angular location Q  at a particular turn. 

Table 1: Discrepancy 6 between Map and Tracking Code 

n = Number 6(n) 
of Turns One-Turn Map 

6(n) 
Two-Turn Map 

4. SYMPLECTIC CONDITION 

Evidently the maps of this example satisfy the symplectic 
condition to high accuracy, since they agree very well with the 
underlying symplectic tracking program. As will be explained 
presently, it is also possible to create a map that is exactly sym- 
plectic. One hears the opinion that some loss in accuracy can 
be afforded provided that symplecticity is exact. In particu- 
lar, a symplectic map might give some phase error while still 
producing almost the correct structures in phase space (invari- 
ant tori, resonance islands, chaotic regions). Hard evidence for 
this premise may be scarce. To check the idea, one could cal- 
culate the distance between the orbit of a proposed symplec- 
tic map and an accurate, previously established invariant torus. 
Phase error would be innocuous in this test. The invariant torus 
can be obtained from tracking data by the fitting procedure of 
Ref. 7. 

To make the map exactly symplectic, it has to be defined 
implicitly in terms of a generating function G(1, ip’; s, s’) which 
satisfies the initial condition G(1, a’; s,s) = 0. With partial 
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derivatives denoted by subscripts, the map (a, I) 3 (@,I’) is 
defined by the equations 

-6 = f@’ + GI (I, a’; s, s’) , (4.1) 

I’=I+Gs+,@‘;s,s’) . (4.2) 
T-valuate the map, one has to solve the nonlinear equa- 

%  tion (4.1) for @ ‘, then substitute in (4.2) to obtain I’ as well. 
This step is not as difficult as it might appear, since one already 
has a good guess for the solution @ ’ of (4.1) from the explicit 

-map (2.1) constructed above. It is only necessary to refine that 
guess by iteration, say by an application of Newton’s method. 
Such a program was carried out in Ref. 9 in a one-dimensional 
example; one evaluation of the symplectic map took 60% longer 
than one evaluation of the explicit but nonsymplectic map. 

The generator can be found by numerical integration of the 
Hamilton-Jacobi equation, as in Ref. 9. It may also be obtained 
from the functions A, B already constructed, in such a way that 
the map induced by the generator is approximately the same as 
(2.1), (2.2), but of course exactly symplectic. This latter deriva- 
tion of the generator uses a Fourier inversion method similar to 
that of Ref. 9; details will be published elsewhere. 

5. COMPUTATIONAL COST 

Results concerning computation time to iterate the map 
seem favorable, even though not much has been done to opti- 
mize computing. On the IBM 3081 at SLAC the time for one it- 
erzion of the one-turn map described above is about five times 
greater than the time to track for one turn with the underly- 
ing tracking code. Since the ring has 72 sextupoles, tracking 
by a map would go faster than element-by-element tracking in 
a ring with~more than 5 x 72 = 360 sextupoles, provided that 
a map with the same number of terms would suffice. In a ring 
as big as the Superconducting Super Collider (SSC), a factor of 
iOOOO/SSO x 28 would be gained by this reckoning. Actually, 
much bigger gains can be anticipated, since evaluation of the 
sum (2.8) is a very simple computational problem which un- 
doubtedly can be handled with great efficiency through better 
programming and hardware. Currently, most of the comput- 
ing time is absorbed in the sums over s and t, which could be 
sp-eeded up through vector processing. 

The outlook for the cost of constructing maps is perhaps 
not quite as favorable, but still quite reasonable. It took the 
equivalent of 28224 turns of element-by-element tracking to con- 
struct the one-turn map described above, and twice that much 
for the two-turn map. Once the map is available, however, it 
can be used to track economically (for large rings) from any ini- 
tial condition within its domain of validity, and, more impor- 
tantly, be used to study invariant surfaces. Furthermore, one 
could make maps for several values of momentum, and interpo- 

. late between them to treat chromatic effects and synchrotron 
motipn. Similarly, tune space could be explored economically 
by interpolating maps for several tunes. 

Construction of accurate maps for the SSC by the present 
method seems entirely feasible. The latest symplectic tracking 
code for the SSC, due to J. Irwin and Y. Yan, would require less 
than 1.5 min. on the Cray XMP to make a two-dimensional map 
like that described above (Fourier modes with Jmr 1, Irn2I < 11; 
Gth-degree polynomials for action dependence). This figure 
is for the full SSC lattice, including random multipoles to 
eighth order and possible magnet misalignments. To include 
synchrotron motion, it would probably be sufficient to create 

maps for 5 to 10 values of momentum. Thus, one can expect to 
create maps for the SSC in less than 15 minutes of Cray time, 
that would accurately describe betatron motion in strongly non- 
linear regions, and also account for synchrotron motion. 

It is not yet clear as to whether there would be a cost ad- 
vantage in using an implicit symplectic map. Since it takes 
considerably more time to evaluate the implicit map, it might 
be wiser to use the explicit map with enough terms to satisfy 
the symplectic condition to the desired accuracy. 

The question of whether one should work with a one-turn 
map or a multi-turn map deserves continued study. In Table 1, 
the one-turn and two-turn maps show comparable accuracy at 
the n-th turn of tracking. Tracking by the two-turn map goes 
almost twice as fast (not exactly twice, because there are a few 
more Fourier modes), but the map takes twice as long to con- 
struct. Using the two-turn map, one might be able to study 
invariant surfaces in the neighborhood of a closed orbit of pe- 
riod two. Also, one can imagine a bootstrap operation in which 
a one-turn map, say, could be used to generate a map for many 
turns. 

6. CONCLUSION 

Maps expressed in angle-action coordinates, with the angle 
dependence given by a Fourier series and the action dependence 
by polynomials in I ‘f2, have a number of advantages. They are 
easy to construct, accurate, and economical to evaluate. They 
should lead to a powerful method to study invariant surfaces 
and long term stability. 
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