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ABSTRACT 

We evaluate the longitudinal coupling impedance of a 
toroidal chamber with rectangular cross section in the frequency 
domain below the synchronous resonant modes. With infinite 
wall conductivity the impedance is purely reactive and consists 
of a “space charge” term, proportional to rV2, and a “curva- 
ture” term which survives at large 7. The curvature term is 
well represented as a quadratic function of frequency, namely 

f = iz, (A)’ [,,I3 (X)‘] ) 

where h is the height of the chamber, R is the trajectory ra- 
dius and v = wh/c. The constants A and B are of order 1. 
Thus, ImZ/n from curvature is typically a very small fraction 
of an ohm below the resonance domain, which begins where 
u > (R/h) 112 . Consequences for beam stability, if any, arise 
from high frequency resonances, which can produce values of 
several ohms for Z/n. 

1. INTRODUCTION 

We considei a smooth toroidal vacuum chamber of rectan- 
gular cross section, as shown in Fig. 1. A beam circulating in 
such a chamber can excite resonant modes of the whole cham- 
ber that have phase velocity equal to the particle velocity. As is 
discussed in Refs. 1 and 2, these synchronous resonant modes 
are at frequencies greater than w = nw,, where w,, = PC/R is 
the revolution frequency for particles on a trajectory of radius 
R, and 

n = a&f2 hw’i2 I . 
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Fig. 1. Smooth toroidal vacuum chamber with r&angular 
cross section. 
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Here the beam is assumed to be centered in the chamber, 
which has height h and width w. Thus, the synchronous res- 
onances are typically at rather high frequencies, for instance 
withh=w=3cmand/?=l,wehave j=w/27r>lOOGHz 
for R > 12 m. Such frequencies are beyond the frequency spec- 
trum of a typical bunch, if the charge distribution is smooth (a 
Gaussian or the like). Small ripples on a bunch could give high 
frequency components, however, and it is therefore not excluded 
that a very large vacuum chamber impedance at high frequency 
could be detrimental to beam stability. Resonant impedances in 
the present model are indeed large. In Fig. 2 we show a graph 
from Ref. 1 giving the real part of Z(n,nw,)/n for a chamber 
having roughly the dimensions of the SLC damping rings. Here 
Z(n,w) is the longitudinal coupling impedance at longitudinal 
mode number n and circular frequency w, for resistive cham- 
ber walls with the resistivity of aluminum. Since Z/n for the 
damping rings is thought to have a broad band value of around 
2.5 ohms in the region of a few GHz, the value of 36 ohms at 
the first resonance is rather startling. 
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Fig. 2. The real part ojZ(n, nw,)/n in the high frequency 
resonance region. 

The present work is concerned with a question that was not 
treated thoroughly in Refs. 1 and 2; namely, the behavior of the 
longitudinal coupling impedance at frequencies from zero up to 
the first synchronous resonance. Since the problem is treated in 
great detail in a forthcoming paper: we shall merely summarize 
results. 

2. LONGITUDINAL IMPEDANCE AT LOW 
AND INTERMEDIATE FREQUENCIES 

It is convenient to work with a dimensionless variable pro- 
portional to frequency, 

wh 2*h 
y=-=- , 

C x (2.1) 

where h is the height of the chamber and X is the wavelength. 
The previous papers”’ treated the region u > (R/h)‘12 and also 
a small region near u = 0. We are presently concerned with the 
interval 

0 < u < (R/h)‘f2 . (2.2) 
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The electromagnetic fields are expressed in terms of Bessel 
functions, in the cylindrical coordinates shown in Fig. 1. The 
impedance has a fairly involved expression in terms of the cross 
products of Bessel functions. In order to make that expression 
understandable, or even to compute it numerically, one has to 
invoke asymptotic expansions of Bessel functions. The mat- 
ter of choosing appropriate expansions has previously caused 
some confusion. We have found that Olver’s uniform asymp- 
totic expansions are appropriate for v > (R/h)‘i2, while the 
Debye expansions suffice for v < (R/h)‘i2. The manipulations 
and estimates required to pick out the significant terms of the 
impedance are somewhat complicated, but the result is remark- 
ably simple. 

For the present study, we took the chamber to be perfectly 
conducting, since it seems likely that resistive wall effects have 
the same order of magnitude as in the case of a straight beam 
tube. Consequently, the impedance in the subresonant region 
is purely imaginary. It consists of a part which vanishes as 
Y -2 in the high energy~limit 7 + co, usually called the “space 
charge” term, and a part that survives at large -y, which we call 
the “curvature” term. The space charge term, defined through 
Eqs. (4.14) and (4.23) of Ref. 3, has the same order of magnitude 
as that for straight beam tube. As usual, it diverges logarith- 
mically when the beam approaches an ideal line charge. The 
curvature term is finite in the limit of a line charge. Its value in 
that limit is, to a good approximation, 

n 

1 - exp{-2rr(b- R)/h) 

- exp{-2*(R - a)/h)] 

x [I-3(92] + 0.05179-0.01355 !! 
01 

= iZo(-$)2[A-3b(f)2]+p , * 2 

+p 

where Z, = 120n ohms is the impedance of free space, and the 
geometric parameters are as defined in Fig. 1. The constants a 
and h are nearly equal to 1. The term p, defined in Eq.(4.24) of 
Ref. 3, vanishes exponentially as the aspect ratio w/h increases, 
and is negligible for w/h 1 2. 

By numerical evaluation, we find that even when p is not 
negligible, it is very nearly a quadratic function of u. It may 
then be combined with the first term of Eq. (2.3) to give the 
simple general result 

qn, w?) 
n 

= iZo(-&)' [A-3B(X)2] , 

u < (R/h)‘12 . (2.4) 

For typical parameters, the dimensionless coefficients A, B are 
of order unity. For R = 5.7 m and p = 1 we find the following 
values: 

A = 0.7153 , B = 0.6714 , (w = 0.02 mh = 0.02 m) 
A=1.009 , B = 0.9766 , (w = 0.02 mh = 0.01 n) 
A = 0.2531 , B = 0.2117 , (w = 0.01 mh = 0.02 m) (2.5) 

The first example of Eq. (2.5) corresponds roughly to the pa- 
rameters of the SLAC damping-rings. For this example, we plot 
ImZ/n in Fig. 3. The dashed curve is an essentially exact evalu- 
ation of the impedance using high order asymptotic expansions, 
while the solid curve is from Eq. (2.5). The quadratic formula 
in Eq. (2.4) fits the exact evaluation to three digits. 
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Fig. 3. Reactive longitudinal impedance due to curvature 
in the subresonant domain. Parameters are for the first 

example of Eq. (2.5). 
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Since A/B is close to 1, the reactive impedance.has a zero 
near v = n/3’f2. This is to be compared with the lowest TE 
cutoff, which for a straight rectangular tube lies at 

=, h>w, 
U= 

*h/w, h <w. 
(2.6) 

Since Z is positive imaginary at v = 0, a zero is expected; Z 
must be negative imaginary just before the first resonance. 
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