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ABSTRACT 

The symmetries of the chromatic correction sections in the Stanford Linear Collider 

Final Focus System allows a high-resolution determination of the pulse-to-pulse e’ 

energy fluctuations by exploiting the information from beam position monitors 

(BPMs) in regions of large dispersion. By correlating this signal with other BPMs, 

one can infer the dispersion function, as well as spatial components of transfer 

matrices anywhere in the arcs and the Final Focus System without interrupting 

the normal machine operation. We present results from data samples which were 

recorded during both periods of stable machine operation and periods when the 

linac energy was intentionally varied. 
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1. Introduction 

The Final Focus System (FFS) [1,2] in the Stanford Linear Collider (SLC) is a com- 

- - plex optical system which allows strong demagnification of the beams at the interaction 

point. This requires not only a careful minimization of higher order aberrations using 

a dedicated chromatic correction section(CCS) [3] , sketched in fig. 1, but also a precise 

matching of the dispersion function at the entrance of the FFS. The input dispersion is 

. measured by varying the energy in the linac and recording the correlated beam motion 

at strip-line beam position monitors (BPMs) in the FFS. An online matching package [4] 

fits the results and predicts the strengths of four corrector quadrupoles in the dispersion- 

matching section of the FFS. Although this is an efficient tool for dispersion correction, 

it is not suited for dispersion monitoring purposes because it interrupts normal machine 

operation and physics data-taking. In this paper, we describe a complementary scheme 

which allows an online nondisruptive measurement of dispersion functions by exploiting 
.m, 

natural fluctuations of the beam energy. This allows, for the first time, monitoring of . - 

the stability of the dispersion match. The scheme is based on the information of CCS 

BPMs at positions where both dispersion and ,8 functions are large; i.e., BPMs with 

high sensitivity to energy and orbit fluctuations. It takes advantage of the opposite 

symmetry of betatron and off-energy orbits in the CCS: betatron oscillations cancel in 

the sum, whereas energy fluctuations cancel in the difference of the readings from two 

corresponding BPMs. 

2. Geometric and chromatic components 

We use TRANSPORT [5] no a ion t t to represent propagation of a beam from point 

(A) to point (B), 

X@) = R11x(A) + Rlzx’(A) + l&j6 , (1) 
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where X is the transverse beam position, X’ is the beam angle with respect to the design 

trajectory, and 6 (E Ap/p) is th e rat f t ional beam momentum deviation, which we shall 

throughout this paper identify with the fractional energy deviation since the SLC beams 
- - 

are ultrarelativistic. R is the transfer matrix from point (A) to point (B), where we have 

neglected coupling between the two transverse directions X and Y. 

The CCS is designed to correct lowest-order chromatic aberrations of the beam using 

four dipole, eight quadrupole, and eight sextupole magnets, as shown in fig. 1. These 

are arranged as two identical -1 telescopes such that local geometric aberrations due 

to sextupoles are cancelled. Given this symmetry, the two-by-two beam transfer matrix 

from BPM (A) in the first telescope to BPM (B) in th e second (see fig. 1) is the negative 

identity matrix: 

R(J-) = -I . (2) 

This holds for both transverse directions. For illustration, the nominal horizontal beta 

and dispersion functions of the FFS are shown in fig. 2. From (1) and (2), a simple 

relation for the beam energy deviation is found: 

6 
~(4 + x(B) 

= 
Rl6 

. (3) 

The R16 element from BPM (A) to BPM (B) is ar 1 g e and well known (460 mm), since 

it is almost completely determined by the two CCS dipoles B2 in fig. 1. 

Transporting the dispersion at BPM (A) to BPM (B) we have: 

Y+A) + p) = RI6 , (4) 

where ~(~1 and 7(B) are the total horizontal dispersion functions at BPMs (A) and (B), 

respectively. Nominally (i.e., in the case of a perfect dispersion match at the entrance to 
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the FFS), th ese two values are identical (230 mm). However, beam dispersion, due to a 

mismatch upstream, will upset this equality such that the sum in (4) remains constant. 

- - Given the equal nominal dispersion values at BPMs (A) and (B), subtraction of 

the two BPM signals will exactly cancel the nominal dispersive component of the beam 

position. We write the position at BPM (A) as the sum of a pure betatron component 

(independent of S), Xg , and a pure dispersive component, then use (2) to write the 

.. position at BPM (B): 

x(4 = x/j + 7+A)6 
x(B) = + + yp)6 . 

Now we define AX as the difference between the BPMs readings: 

AX E 
~(4 -x(B) - 

2 
= X,+Aqs , ’ 

(5) 

(6) 

-iv _ 
where 

,+A) - ,+B) 
ALE 2 , (8) 

which represents the component of the dispersion at BPM (A) due to an upstream mis- 

match. In order to separate Xa from 6 in (7), we assume AY,I is not time-dependent over 

a period of one set of measurements and calculate it from the correlation of S with AX: 

Xg = AX- (AX 46 
P2) * 

(9) 

The measurement of trajectory angles at BPMs (A) and (B) require the information 

of another pair of BPMs in the CCS, indicated by the labels (C) and (II) in fig. 1. They 
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are separated from BPMs (A) and (B) by simple drift spaces of known length As M 2.4 m. 

The angular information at BPMs (A) and (B) then becomes 

x’(A) = x(C) _ x(A) 
and x’(B) = x(D) - xw 

As As- ’ 

and in analogy to (7) and (8) we derive 

AX’ E 
x’(A) _ x’(B) 

2 
= Xb$A?j’6 , 

(10) 

(11) 

where Xi is the angular component of the energy uncorrelated-betatron motion and Aq’ 

is the angular dispersion mismatch at BPM (A): 

Aq’ = 77 ‘(A) - $W 
2 * (12) 

As in (9), An’ can be experimentally derived from the correlation between AX’ and 6 

under the assumption that the dispersion mismatch does not change during the measure- .- 

ment : 

Xb = AX’ - (A/$% . 

In summary, we can measure the quantities 6, AX, AX’ on a pulse-to-pulse basis. In 

addition, we can derive the pure energy uncorrelated betatron fluctuations Xp, X& from 

these measurements assuming that the dispersion mismatches Aq, A$ at BPM (A) are 

constant over a single period of data taking. 

F 

3. Resolution and systematic errors 

The resolution of the 6 signal in (3) is limited by the BPM resolutions. For the 

CCS, this corresponds to a value of around 20 pm. From (3) we therefore derive for the 

limiting resolution of 6 to be u!“) x 6 x lo-‘. This is small compared to the natural 

fluctuations of the beam energy which is typically of the order of 1 x 10W3. 
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Several systematic errors can, in principle, affect this resolution. Possible sources 

include unstable dispersion-matching conditions (e.g., due to orbit fluctuations in sex- 

tupoles), lattice errors in the CCS, and BPM calibration errors. All of these were ana- 
- - 

lyzed quantitatively. Given the tolerances on the FFS components [6], none of these are 

expected to approach the value for a* (res). Systematic effects are therefore negligible. 

The resolution of Xp is also limited by BPM resolutions, and slightly dependent 

on \A7 I-. For all reasonable values of IA771 we find crFea) < 30 pm. The horizontal 

Twiss parameters at BPMs (A) and (B) are ,OtA) = /3tB) x 2 km, CY(~) = crtB) M 300, 

and therefore, given the emittance of 300 prneprad, a one-sigma betatron fluctuation 

corresponds to a position variation of x 800 pm and an angular variation of = 100 prad. 

This provides a good Xa resolution since the BPMs are sensitive to less than 4% of the 

spatial betatrons&e of the beam. The resolution of Xb is worse by a factor x 2 because 

of-the relatively short drift distance of As x 2.4 m between BPMs (A) and (B). 

4. BPM data acquisition 

An offline FORTRAN data acquisition program has been written which gathers data 

from BPMs throughout the SLC and writes it to disk. The X position, Y position, and 

beam intensity is sampled for 850 BPMs [including the CCS BPMs (A), (B), (C), and 

(II)] once every few seconds. The sample rate is chosen by the user, and is typically 

one sample every x 5 seconds. Presently data is collected interactively over short time 

- periods where typically 100 samples are saved to a disk file for subsequent analysis. In the 

future, the monitoring process will run continuously, with the data stored in a circular 

buffer. We will also store dynamically updating moments of the BPM data which will 

be used for fast online fitting of lattice parameters as described in the next chapter. 
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5. A monitoring application 

The correlation of the measured betatron fluctuations Xp and energy fluctuations S 

with the position measurements of BPMs in any region of interest can be exploited for - - 

a fast measurement of the dispersion function and elements of the transfer matrix. Let 

Xc’) be the beam position measured at any BPM [labelled “(;)“I. Using (1) and the 

definition of XB and Xb, we can interpret this quantity in two ways: 

Xc') - $'?x(A) + @i)xl(A) + R(,t:i)6 - 

or 

x(i) = R!;4:')xp + R($'i)x; + ,(i)s . 

(144 

W) 

Both equations allow measurement of the transfer-matrix elements Rif”) and R$$“. The 

energy correlations, however, determine the lattice dispersion R,, (A’i) between BPMs (A) 
v 

and (i) in (14a), but the dispersion function ~(~1 [ i.e., the total lattice dispersion-between - 

the source of energy jitter in the linac and BPM (Q] in (14b). Equation (14b) is therefore 

most useful for a fast judgement of the total dispersion mismatch at the entrance of the 

FFS, while (14~) allows the investigation of the local lattice dispersion near to the CCS 

and the sources of mismatches within the FFS. 

In fig. 3, we present a simulation of this procedure. We generated 100 trajectories 

_ with energy fluctuations of 0.4% and relatively large betatron motions of four times the 

betatron size of the beam. All BPM readings were smeared according to a resolution of 

20 pm. The results from properly error-weighted fits [7] to (14~) and (14b) are in good 

agreement with the input lattice for all BPMs inside the FFS. 

Reducing the amplitude of the betatron fluctuation, however, quickly leads to numer- 

ical instabilities due to resolution limitations for many of the FFS BPMs. It is therefore 

7 



useful to reduce the number of fitted parameters in (14~) and (14b). One possibility is 

to average the measurements over the angular information at BPM (A): 

X(4,6 = 
R$ki) + aHA) R(A:i) X(A) + 

dx@) l2 1 [ R$t:i) + a~?(~) R(A:i) 6 86 l2 1 (154 

It is hence possible to measure 77 (‘1 (A:i) and certain linear combinations of R,, and Ritz’), 

or RI;:‘) and RI;:‘) with (15~) and (15b), respectively. The correlation parameters in 

these linear combinations can, in principle, be extracted from the data itself under the 

assumption that they are stable during a single BPM monitoring period. 

Figure 4 shows as an example the correlation terms in (15~) reconstructed from a 

data sample taken during normal machine operation. The measurements are in good 

(A:i) agreement with a linear combination of R,, and Rif’), or R$t”) and $$‘) which &re 

obtained from fits of the nominal lattice parameters to the data and are superimposed 

in the figure. 

Finally, averaging (15u,b) over all betatron fluctuations yields a direct relation for 

the dispersion function: 

(X(‘) j I6 = $Ai)6 . (16) 

- This simple one-parameter relation allows very stable fits. In fig. 5, we present the 

measurement of the dispersion function in the FFS during a period where the beam 

energy at the end of the linac was intentionally varied by f0.3%. The very clean high 

precision measurement reveals a dispersion mismatch at the entrance of the FFS. This is 

confirmed in fig. 6, which shows the correlation of AX with 6, which according to (7) and 

(8) is the dispersion mismatch at BPM (A). Th e result of the fit is A.77 = -81 mm f7 mm. 
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The dispersion function in the arc was derived for the same data set and is displayed 

in fig. 7. An example of a measurement of the FFS dispersion function during normal 

machine operation is presented in fig. 8. This measurement was made at a time when the 

dispersion was fairly well matched’through the FFS. The resolution-of the measurement 

is satisfactory although the dispersion function is derived solely from natural fluctuations 

in the beam energy. 

This method has also been successfully tested in the damping ring to linac transport 

lines (RTL). Th ere are similar optical symmetries and appropriate BPMs to provide a 

high resolution C~RTL, in both the electron and the positron RTLs. This method allows 

monitoring of the dispersion match at the end of the RTLs, and therefore detection of 

residual dispersion in the linac. 

6. Present hardware limitations 

At present, the range of applications for the described monitoringscheme is limited 

due to the fact that most of the BPMs in the arcs and the FFS are read out in a 

multiplexed mode. This means that only a fraction of the available BPMs will be read on 

exactly the same beam pulses as BPMs (A) and (B) which define the energy fluctuation 

via (3). This may influence the dispersion measurements in a systematic way if the 

natural energy fluctuations follow a fixed pattern in time. An example is shown in 

fig. 9 where the mean reconstructed absolute value of the dispersion [via (IS)] at the arc 

- BPMs is displayed as a function of the multiplex-channel for a data sample taken during 

stable machine operation. As can be seen, the measurement from channel 1 [i.e., the 

channel on which BPMs (A) and (B) are being read out] is in good agreement with the 

expected value of 34 mm while all other channels show systematic deviations originating 

from the interference of a time-structure of the energy fluctuations with the fixed delays 

between adjacent pulses. Similar limitations exist for the measurements of betatron orbit 
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fluctuations using BPMs (A), (B), (C) and (D). 

We plan to modify the software and hardware such that at least the information for 

- BPMs (A), (B), (C) and (D) in the CCS is available on all pulses of a multiplexer scan. 

This will further increase the reliability and applicability of the new monitoring scheme. 

7. Conclusions 

. 
Noninterfering online monitoring of dispersion functions and lattice parameters has 

been successfully tested at the SLC. The scheme is based on trajectory parameters mea- 

sured by four BPMs in the CCS at points of large /?- and q-functions. These measure- 

ments have high resolution and small systematic errors since they are insensitive to details 

of the CCS optics. 

At present, BPM multiplexing in the arcs and FFS presents an obstacle to purely 

passive dispersion measurements. However, this can be overcome by BPM hardware 
.m 

additions and software modifications. In the future we hope to continuously read BPMs 

and use running moments to quickly display the FFS and arc dispersion with minimum 

data storage. 
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Figure Captions 

Fig. 1. Schematic of the chromatic correction section of the FFS. The positions of the four 

BPMs-(A), (B), (C) and (D)-are indicated. 

Fig. 2. Nominal horizontaJ /3 function and dispersion function in the FFS. The positions 

of the four BPMs-(A), (II), (C) and (D)-are indicated. 

Fig. 3. Reconstructed FFS lattice parameters from simulated BPM data for 100 orbits 

with varying energy and trajectories. The data points are the results of the fits. 

The solid lines are the non&al lattice parameters used for the orbit generation. 

Fig. 4. Linear combinations of the FFS lattice parameters obtained from two-parameter 

fits to a data sample taken during normal machine operation. Superimposed (solid 

lines) are the best fits to the data using the nominal lattice parameters. 

Fig. -5. Dispersion function in the FFS obtained from a data sample with large energy 

fluctuations introduced intentionally at the end of the linac. The solid line is the 

nominal dispersion function. 

Fig. 6. Fit of the dispersion mismatch at BPM (A) for the data shown in fig. 5. 

Fig. 7. Dispersion function in the north arc obtained from the data sample used in fig. 5. 

The nominal dispersion is indicated as a solid line. 

Fig. 8. Dispersion function in the FFS from a data sample taken during normal machine 
- 

operation. The solid line represents the nominal dispersion. 

Fig. 9. Dependence of the average reconstructed absolute value of the arc dispersion on 

the BPM multiplexer channel. The data sample is identical with that used in fig. 8. 

The nominal value of 34 mm is also indicated. 
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