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ABSTRACT 

The problem of bunch lengthening in electron storage rings 
has been treated by many people, and there have been many 
experiments. In the typical experiment, the theory is used to 
determine the impedance of the ring. What has been lacking 
thus far, however, is a calculation of bunch lengthening that 
uses a carefully calculated ring impedance (or wakefield). 

In this paper we begin by finding the potential well distor- 
tion due to some very simple impedance models, in order to il- 
lustrate different types of bunch lengthening behavior. We then 
give a prescription for extendin 
the turbulent regime once the t %  

potential well calculations into 
reshold is known. Then finally, 

using the wakefield calculated in Ref. 1 for the SLC damping 
rings, combined with the measured value of the threshold given 
in Ref. 2, we calculate bunch lengthening for the damping rings, 
and compare the results with the measurements. 

1. POTENTIAL WELL DISTORTION 

The self-consistent beam current distribution in an electron 
machine, below the turbulent threshold, is given by3 

with as the natural bunch length, pr, the slope of the rf voltage 
at the position of the bunch and I& the transient induced 
voltage. In our notation a smaller value of t signifies an earlier 
point in time, with t = 0 the synchronous point for a low current 
beam. The induced voltage I& is given by 

00 
i’&(t) = - 

I 
W(t’)l(t - t’) dt’ , (2) 

0 

with W(r) the longitudinal Green function wakefield. The value 
of the normalization constant K in Eq. (1) is such that the 
complete. integral of I(t) is equal to the total charge in the 
bunch Q. If we know the Green function wakefield then Eq. (1) 
can be solved numerically to give the current distribution of 
the bunch in the presence of wakefields. Since Vind at time t 

depends only on the current at more negative (earlier) times, 
the solution of Eq. (1) is straightforward if we begin at the 
head of the bunch (where I.&,+ = 0) and proceed toward the 
tail. Taking the derivative of both sides of Eq. (1) yields an 
alieinative form of it: 

In what follows, all distances will be given in terms of us. 
Thus the independent variable becomes z = t/or,. Of partic- 
ular interest will be the rms length u,, the full-width-at-half- 
maximum ZFWBM, and the centroid shift (z) of the current 
distribution. The ratio of the first two quantities is a mea- 
sure of the similarity of the distribution to a Gaussian. Due 
to energy conservation, the third quantity, when multiplied by 
-V,fuo, gives the higher mode losses. 

2. SOME SIMPLE IMPEDANCE MODELS 

Over a frequency interval, the impedance of vacuum cham- 
ber elements can often be characterized by a simple electrical 
circuit element-an inductor, a resistor, or a capacitor. In this 
section we study the potential well distortion when the whole 
ring can be character&d by these simple models. 
*Work supported by the Department of Energy, contract 

DE-AC03-76SF00515. 

2.1 An Znductive Impedance 

The SLC damping ring impedance is dominated by 
objects~uch as shallow transitions, shallow cavities, bellows, 
or bumps in the vacuum chamber-that can be modelled by 
an inductor over a range of bunch lengths.’ For a purely induc- 
tive object the induced voltage is given by k&d = -LdIfdt, 
with the constant L the inductance. We note that this model is 
non-physical in that it is lossless. Although the solution of the 
potential well problem for an inductive impedance is given in 
Ref. 3, we present it here again in order to complete our picture 
of bunch lengthening in storage rings. 

For a purely inductive impedance, Eq. (3) can be written as 
I =Y -- 

y= 1+y ’ 
with prime denoting the derivative with respect to z = t/as. 
The normalized current is given by y = ~V/(ecr,?); the normal- 
ized charge P (the complete integral of y) equals LQ/(Qoi). 
The normalized induced voltage Vind I I’&,d/(tirjljos) = -y’. 

The numerical solution of Eq. (4), for several values of I, 
is shown in Fig. l(a). Note that the charge distribution for a 
perfect inductor is symmetric about z = 0 (since there are no 
lo&es) and is more bulbous thad a Gaussian distribiition. From 
Eq. (4) it is apparent that the solution is parabolic wherever 
y > 1. In Fig. l(b) we display o. and z~w~~/2.355 (the 
dashes) as functions of F. For large currents oz varies roughly 
as r113. 
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Fig. 1. An inductive impedance: (a) the bunch shape for several 
values of bunch population, and (b) the bunch length variation 
as a function of current. 

2.2 A Resistive Zrnpedance 

Deep cavities, such as the rf cavities of the damping rings, 
tend to be resistive or somewhat capacitive to a beam over the 
normal range of bunch lengths. For an ideal resistive object, 
the induced voltage can be written as I&d = -IR, with the 
constant R the resistance. Note that an ideal resistor is also 
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not physical; there must be a phase shift, even if slight, be- 
tween the bunch current and the induced voltage of a vacuum 
chamber object. For a resistive impedance, Eq. (3) becomes 

Y’ = -(x + Y)Y , (5) 
with y = Rl/(Qoo) and r = RQ/(pc$). Note that Vi”d = -y. 

Fig. 2(a) displays the solution to Eq. (5) for several values 
of r, 4s the current is increased the bunch tilts forward (up 
the rf wave) by an ever increasing amount, in order to compen- 
sate for the increased, higher mode losses. Fig. 2(b) shows oz 
and xrw~~/2.355 (the dashes). We see that the bunch length 
increases only very slowly in a resistive machine. The dots give 
the centroid shift (x) of the bunch. It can be approximated by 
(z) = -F/(2,/?), which is th e centroid shift, assuming that the 
bunch shape does not change with r. We note that Papiernik 
et a/: have s.olved the potential well problem for the impedance 
of a pillbox cavity, ?ni have obtained very similar results. 
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Fig. 2. A  resistive impedance: (a) the bunch shape for several 
values of total charge and (b) the change of bunch length and 
centroid position (dots) with current. 

2.3 A Capacitive Impedance 

The wakefield of very short bunches in deep cavities is some- 
what capacitive. For an ideal capacitive vacuum chamber ob- 
ject, the induced voltage is proportional to the integral of the 
current; with constant of proportionality -l/C, and C the ca- 
pacitance. This model is unphysical in that it predicts that the 
energy loss of a bunch depends only on the total charge Q, and 
not on the peak current. For a purely capacitive impedance, 
Eq. (3) becomes 

2 
y’ = -y[x + 

J Y(x’) dx’l , (6) 

with y = l/($‘r,C) and l? = Q/(i’;fa&). The solution to 
Eq. (6) closely approximates a Gaussian that has been short- 
ened and shifted. Since the energy stored in a capacitor is 
Q2/2C, the centroid shift is given by (x) = -r/2. Figure 3 
shows the bunch length dependence on r. By substituting a 
gaussian into Eq. (6), we can arrive at an analytical approxima- 
tion of the bunch shortening, which for small current becomes 
a,=i-rr/*. w e note that bunch shortening has not been 
observed in storage rings, except at low currents in SPEAR, 
when the ring had many rf cavities.5 
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Fig. 3. Bunch shortening for a capacitive impedance. 

3. THE INSTABILITY THRESHOLD 

At some bunch population, there is an instability. The ef- 
fect of this instability in an electron storage ring is to increase 
the energy spread of the equilibrium distribution. This is ob- 
viously a nonlinear process. As the bunch length increases, the 
bunch peak current decreases which decreases the longitudinal 
forces. Radiation damping then serves to reduce the bunch 
length. The competition between radiation damping and quan- 
tum excitation together with longitudinal instability leads to 
some equilibrium energy spread. The bunch length is related 
to this via the rf voltage plus potential well distortion. 

Boussard’ conjectured that the longitudinal instability in a 
bunched beam is due to a coasting-beam-like instability within 
the bunch. Qualitatively, the argument goes as follows: Con- 
sider an impedance which induces an instability which has a 
wavelength small compared to the bunch length. If the growth 
time of the instability is short compared to a synchrotron oscil- 
lation period, then the center of the bunch looks like a coasting 
beam except, of course, that it ha a high peak curr%t. There- 
fore, to estimate the threshold for instability one might use the_ 
coasting beam threshold’ but replace I by Ipeak. 

The issue of the applicability of a coasting beam instability - 
criterion to a bunched beam was studied in detail by J. M. Wang 
and C. Pellegrini! They found that one obtains a coasting beam 
like instability condition provided that: 

1. The impedance is broad band relative to the bunch spec- 
trum (Fourier transform of the line density). 

2. The growth rate is much greater than wb (fast blowup). 
3. The instability occurs at wavelengths much shorter than 

the bunch length. 
Actually, the threshold which they obtain looks like the 

threshold for a coasting beam, but it has a different interpreta- 
tion. It is a sufficient condition for no fast blowup. They also 
show that one obtains the usual type of coasting beam stability 
boundary except, of course, the boundary is for fast blowup. 
The “threshold” condition for a Gaussian bunch is’ 

In Eq. (7), we have substituted the peak current for a Gaus- 
sian distribution. In this equation, Us must be interpreted as 
the actual bunch length. Since we have only a sufficient condi- 
tion for fast instability, we only use Eq. (7) for scaling purposes. 
Unfortunately, we know of no reliable calculation of the precise 
threshold, although this should be possible using techniques in 
Ref. 8. 

To proceed, we take the threshold from experimental data, 
and akove the threshold we use Eq. (7) to scale the energy 
spread as 

N 113 

0, = UC0 - [ 1 Nth 
(8) 

Potential well bunch lengthening is then used to calculate the 
bunch form in a self-consistent manner. 



4. BUNCH LENGTHENING IN THE SLC 
DAMPING RINGS 

The SLC damping rings have many changes in vacuum 
chamber cross-section. In an earlier paper’ the longitudi- 
nal wakefields of the different vacuum chamber elements were 
computed for a short-l mm-Gaussian bunch using T. Wei- 
land’s computer program TBCI.’ All the individual contribu- 
tions were then added up, giving a pseudo-Green function wake 
that represents the entire ring (see Fig. 4). By substituting this 
function into Eq. (1) we can calculate the current distribution 
up to the turbulent threshold current. Knowing Nib we can 
extend the calculation to higher currents if we replace uo by 
UO(N/N~~)‘/~ in Eq. (1). 
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Fig. 4. The wakejield of a 1 mm Gaussian bunch in the SLC 
damping rings, and our Green junction (dots). 

We need to keep two things in mind when using our wake- 
field. First, since it represents the response to a 1 mm Gaussian 
brunch, it will. be unable to resolve variations in bunch shape 
over distances that are short compared to 1 mm. But this lim- 
itation Should not be a problem for our calculations because 
(i) cc0 is large compared to 1 mm, (ii) the bunch becomes even 
longer at higher currents, and (iii) we expect the bunch forms 
to be smooth. Second, in order for us to use the wake as a 
Green function, the front of it needs to be modified so that it 
is zero for t < 0. We have evidence that the results (presented 
below) are not very sensitive to the details of this modification, 
provided that the changes are localized near t = 0 and that the 
area under the curve remains unchanged. For our calculations, 
we have chosen to reflect the leading tail to the back, and then 
to add it to the existing wake (see the dotted curve of Fig. 4). 

Figure 5 displays the bunch lengthening and centroid shift 
calculation results for the SLC damping rings when Vrr = 
0.8 MV. (The rf frequency is 714 MHz.) Length dimensions are 
again given in units of uo (at this rf voltage cog = 5 mm). As 
for the inductive model, the distribution is more bulbous than 
a Gaussian. If we take the effective inductance of the ring to 
be 50 -r&l (see Ref. 1) we find that at N = 1.5 x 10” u, = 1.33 
and IPWHM = 3.69 for the inductive model, which compare 
well with the values of, respectively, 1.38 and 3.93 found here. 
(To approximate the resistive behavior as well would require a 
more complicated model.) From Fig. 5(b) we see that there is 
a significant amount of higher mode losses. 

Energy spread measurements performed on the North 
damping ring found that Nth sz 1.5 x 10” at V,f = 0.8 MV.2 
Taking this threshold value, the bunch lengthening calcula- 
tions were extended into the turbulent regime (indicated by the 
dashes in Fig. 5). We see that at N = 3 x 10” the rms bunch 
length is increased by 70%. Very precise measurements of the 
bunch shape as function of current have also been performed 
at V,f = 0.8 MV, using the bunch compressor of the Ring-to- 
Linac (RTL) transfer line and a downstream digitizable video 
screen.2 In addition, the synchronous phase dependence on cur- 
rent has been measured. The results of these measurements are 
indicated by the plotting symbols in Fig. 5. 

Finally, in Fig. 6 we present the bunch shapes for 
bunch populations of N = 0.7, 1.2, 2.1 and 2.9 x 10”. 
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Fig. 5. (a) Bunch lengthening, and (b) the centroid shift calcu- 
lated for the SLC damping rings at V,f = 0.8 MV. The symbols 
indicate the measurement results. 
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Fig. 6. The calculated damping ring bunch shapes for several 
current values, when V,f = 0.8 MV. Superimposed on Ihe curves 
are measurement results. 
The abscissas give z = t/so, the ordinates are y = IZo/(plioo) 
with ZO = 377 R. Superimposed on the curves are the digitized 
measurement results. The fluctuations in the data (especially 
at the peaks) are due to nonuniformity in the response of the 
screen. Considering that there are no fit parameters, the agree- 
ment between the data and the calculations is quite good. 
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