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The topological particle is first quantized and its spectrum is found to be given by 
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I. Introduction 

Approximately one year ago, Witten [l] wrote a collection of three papers on topo- 
- - 

logical quantum field theories (TQFT’s). Th ese are theories which-only exist quantum 

mechanically; as there is no classical physics associated with them. Up to a possible sur- 

face term, the entire Lagrangian is obtained from the gauge fixing of a local symmetry. The 

only observables in these theories are topological invariants. By definition, these invariants 

are independent of the choice of points on the manifold. Thus the quantum field theories 

from which they are obtained should arise as the second quantization of a particle whose 

coordinates may be arbitrarily chosen. This particle will be called a topological particle 

(TP). Its existence is only quantum mechanical and will be derived from a very simple 

BRST gauge fixing of a topological symmetry (TOPSY). 

To- verify that the second quantized TP gives the TQFT’s on n-manifolds, the com- 
.M. 

plete procedure must be carried out. However, the primary stage in that process, namely _ 

the first quantization, will quickly lead to the identification. The physical states will be - - 

shown to be given by H*(M), the de Rah m cohomology ring on the space-time manifold, 

M. Two points must be kept in mind. First, for the cohomology arguments used here, we 

will assume that M is compact and orientable. Should M not be compact, the wavefunc- 

tions must be compactly supported. Secondly, the phrase “physical states” will be used 

euphemistically. They are only physical in the sense of BRST-cohomology. Unless the 

TOPSY is broken they are not to be associated with real propagating degrees of freedom. 

The (anti-)gh OS s t and TP coordinates extend the target manifold to a space over 

which the analogs of superfields may be constructed. These will be field representations of 

the TOPSY algebra. They will have D/2-forms and the complete set of ghost fields of the 

D-dimensional space-time TQFT as their components. The components of the polynomials 

in the fields on this extended space may then be used to compute the topological invariants. 
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So the framework of first quantization immediately leads to a generalization of all even- 

dimensional TQFT’s; futhermore, as will be discussed below, also to odd-dimensional 

TQFT’s. - - 

As topological theories, they contain no local physics. Nevertheless, their renormaliz- 

ability properties and relationship to supersymmetry may prove to be interesting from the 

physical point of view. If there is to be local physics, the topological symmetry from which 

they areconstructed (via BRST gauge fixing), must be broken. We will also address this 

possibility here. Rather than directly examining TOPSY breaking in the space-time theo- 

ries (topological Yang-Mills, gravity, etc.), we will address the question in terms of the first 

quantization. As the TOPSY is a BRST symmetry, we will see that spontaneous TOPSY 

breakdown is not possible. Apart from the question of space-time TOPSY breaking, the 

procedure used may offer a novel way of studying spontaneous supersymmetry breaking, 

when-applied to the super-particle (as opposed to spinning particle). 

The action for topological quantum mechanics (TQM) was given ‘in ref. [2] 
.w, 

in the _ 

context of stochastic quantization. Its relationship to supersymmetric quantum mechanics - 

was pointed out and a potential was introduced. A related treatment for the non-linear 

sigma model of the TP was given in refs. [3,4]. The spectrum of the theory with a 

one-dimensional target space was given in ref. [5]. 

In section II, the action and global symmetry algebras of the TP action will be given. 

We will find that the TOPSY algebra is a twisting of the supersymmetry algebra of the 

N=2 spinning particle. As all of the information we will need may be obtained from the 

theory on a flat target manifold, M, we will assume the latter only for simplicity.’ The 

space-time spectrum of states obtained from the first quantization will be given in section 

III. We will see that the physical states are in one to one corresponsence with the states 

’ Although this fixes the topology ,of M, the calculations to follow may also be carried out 

on a curved target manifold. 
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of the space-time TQFT’s. Thus the quantization suggests a classification scheme for 

TQFT’s in arbitrary space-time dimensions. The ghost field of the TP multiplet will be 

used as a Grassmann coordinate in a manner similar to the use of the spinor coordinates - - 

of superspace. However, this coordinate will be an anti-commuting vector, not a spinor. 

Fields over this “topospace” will be constructed out of component fields which contain 

the space-time TQFT multiplets. This will be done in section IV. It will also be shown 

there that this extended space provides a convenient way of constructing the topological 

invariants. A Morse theoretic counting of the states will be given in section V. Such 

a construction explicitly allows us to see how the topological spectrum depends on the 

gauge fixing function. A discussion of TOPSY breaking will be given in section VI. It will 

be argued there that spontaneous TOPSY breaking is not possible. However, breaking the 

symmetry via topology changing mechanisms may be possible. Conclusions are given in 

section VII. 
9, 

II. Topological Particle and the TOPSY Algebra 

To begin, we must gauge fix the local, topological symmetry whose BRST transfor- 

mation is 

where 6 is the BRST operator realized as 8 = [;Q, ] in terms of the BRST charge, Q. 

The object za is the space-time coordinate of the particle mapping the world-line, C, to 

space-time, 5 : C --+ M. It is assumed that C is connected so that it is either R or S1 . 

The object X” is a real anti-commuting ghost field. Both xa and X” are functions over the 

world-line. The one-cycle $ dxaA,(z) = s d TPA, is invariant under eqn. (2.1) ifidA = 0. 

A simple gauge fixing is i” E 0, where the dot denotes differentiation with respect to the 
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world-line’s coordinate, r. We would expect that the canonical momentum conjugate to 

xa ispa cx k”. Heuristically, the gauge fixing constraint would then imply that pa IQ) = 0, 

_ -where ]a) is an element of the wavefunction sector and will be some space-time tensor. On 

fields this would imply that dfl = 0 ( w h ere d is the exterior derivative on M) and/or the 

adjoint to this equation. 

As we will eventually study TOPSY breaking we will need a mechanism for introducing 

.a potential term into the gauge fixed Lagrangian. To this aim, a more interesting gauge 

slice is 

ia + A”(x) = 0 . (2.2) 

This was used in the construction of the non-linear sigma model in refs. [3,4]. We may think 

of A”(x) as a vector field on M, i.e. A-E T(M). Th en the slice defines an integral curve on 

M. Once again, the left-hand-side of eqn. (2.2) is the familiar conjugate momentum. We 

expect that all physical fields will be closed and/orco-closed. One could also imagine other 

gauge fixings; to SD for example. H owever, this would not lead to any propagating fields 

in the Lagrangian. Any reasonable gauge fixing must include a derivative with respect to 

the C coordinate. A single such derivative will lead to the usual kinetic terms. Notice that 

the statement P, = 0 means that the little group is the full Lorentz group. In this section, 

we will keep A arbitrary (requiring dA # 0 means starting with a zero Lagrangian). In 

the next section, we will set A = 0 for simplicity. For the discussion of TOPSY breaking, 

‘it will be taken to be A = dW, for some scalar function W(x). Let us now proceed with 

the required analysis. 

Follow the BRST gauge fixing procedure and define a gauge fixing plus Faddeev-Popov 

ghost lagrangian 

L= - i@“(ia + A&) + +wBa)] 

= B”(i, + A=(x) + $cq,Ba) + ip”(i. + XbA,,a) . 
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Here pa is the real anti-ghost, B, is the real BRST auxiliary field and os is the gauge 

fixing constant. In general, a space-time metric must be introduced in order that the inner 

product be well defined. However, a flat target manifold will be assumed for calculational - - 

simplicity. In reading off the second line, the additional relations 8p” = iB”, 8B, = 0 and 

eqn. (2.1) have been used, along with Aa,b E B. When B is integrated out of eqn. (2.3), 

we quickly obtain 

c = [i” + AaAa] + @“ia + ipaXbAa,b - &,A, . 
00 

P-4) 

This is suggestive of a spinning particle. Notice that the last term is a surface term when 

A = dW. If the classical Lagrangian is JZO = &gaAa, then only the first three terms above 

contribute to ,CT E fZ0 + L. In this section, we will primarily work with eqn. (2.3). 

With the canonical momenta P, = B, conjugate to x, and II’ = -i/3” conjugate to 

X,, we find the Hamiltonian to be 

H = -?poP2 - A. P - iPaXbA,,b . (2.5) _ 

This suggests that the canonical choice for CXO is CYO = -1. The BRST charge is 

Q = YB, . (2.6) 

Its action on the fields in eqn. (2.3) is given by 

- 
[i&,x”} = A” , [i&,X”} = 0 , 

(2.7) 
[iQJ”} = iB” , [iQ, B”} = 0 . 

To see that eqn. (2.6) indeed g ives this result compute and replace the Poisson brackets 

‘by the usual (anti-)commutators to find [x0, Pb] = iqab and {X”, /3’} = qab. With these 

relations, eqn. (2.7) f 11 o ows immediately. Also notice that the reality of the fields implies 

that Q is real. 
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In principle, it is possible to add terms of the form i(something) to eqn. (2.3). The 

“something” here contributes a potential, for example. The fields /3” and xa are the only 

ones which transform under Q. Contributions to the charge Q can come only from the 

appearance of world-line derivatives of these fields. Whenever there is an ka factor in the 

Lagrangian, it contributes isomorphically to both Pa and Q. Introducing a aa term will 

mean that B, is no longer auxiliary. The BRST procedure is invalidated by this. So Q 

wil1 always be proportional to P. The importance of this point will be manifest in the 
. 
discussion of spontaneous TOPSY breaking (see section VI). 

There is an additional charge we will need. This is the hermitean ghost number charge 

given by 

6 = i$((p”X, - Aapa) . (2.8) 

It assigns ghost numbers (eigenvalues of iG> to the fields via 

[iG,Xaj = 0 , [iGJa} = Xa , 

- 
t2.9 

iiG,Pa) = -Pa 9 [iii?, B,} = 0 . 

Look at the first line of eqn. (2.3). Covariantize it with respect to a background - 

world-line metric. Take its variation with respect to this field. This then implies that the 

Hamiltonian is 

H = [is, AI , A G ipa(&xOPa + Au) . (2.10) 

This can be quickly checked by explicitly using eqn. (2.7). Define & - i2A with &* = Q, 

-then IQ, &I = 2H along with Q2 = Q2 = 0. Make the “twistings” Qi E -&(Q + Q) and 

Q2 - i-&(Q - Q). Then the TOPSY 1 b a ge ra of the Q;, H and 6 operators is 

[G,W = 0 , [Qi,HI = 0 7 

[Qi,Qj} = 2Hbij , [6,&i} = -eijQj * 
(2.11) 

Equation (2.11) is the algebra of N=2 supersymmetry in one-dimension. The ghost number 

charge E is to be identified with the O(2) charge of the N=2 theory. This result is in 
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agreement with the demonstrations [6] that the D=4 topological Yang-Mills theory may 

be obtained from twisting the D=4, N=2 super Yang-Mills theory. It has also been shown 

_ _ [7] that the p--f unction (in particluar, the coefficient) of the two theories are identical. For 

purposes of comparison with the N=2 theory, it is useful to define $1” E -&(A” - as/?“) 

and T@ z i-$(Xa + osPa). Then, for example, the O(2) generator M cc +;&?a may be 

identified with 6 quite readily. 

We have learned that Q indeed has the correct ghost number assignment and that & 

has the ghost number of an anti-BRST charge. Furthermore, as (B = P) + -(B = P), 

X + /3 and p + -A under reflection, it follows that Q + -& and & + Q if cyo = -1. 

Henceforth, this choice for (~0 will be taken. 

With the algebra (2.11), we are now in a position to use the Hodge theory arguments of 

ref. [I] relating the Q-cohomology to the Hamiltonian ground-states. The following results 

are useful to keep in mind: Hamiltonian eigenstates ({]a); HISI) = El;) and QISZ) z 0)) _ 

are trivial in cohomology unless E = 0. Consequently, the physical subspace must satisfy - - 

Hlphys) = 0. Fu h r ermore, &]phys) = 0 up to zero-norm states if the physical subspace is 

of positive definite metric. Observe that these results are all consequences of the TOPSY 

algebra. 

Yet another interesting feature of eqn. (2.11) is that the TOPSY algebras of the 

.space-time TQFT’s are also given by this equation [l]. Thus we may interpret eqn. (2.3) 

as either the Lagrangian for the TP or as a one-dimensional realization of the symmetry 

algebra of TQFT’s. In the same way, the superparticle algebra (as opposed to the spinning 

particle’s algebra) is the same as that of the space-time theory. 

To further characterize the structure of TQFT’s, it is useful to study the global space- 

time symmetries (apart from the BRST symmetry) of the Lagrangian (2.3). The construc- 
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tion of the PoincarC algebra is standard. For the Lorentz generator, one readily finds 

J ab = xbpbl _ iP[QXbI , (2.12) 

from &,X0 7 Wabxb and 6,x” = Wab&. The transformation on X” was chosen so that 

6, commutes with the TOPSY transformations. Keep in mind that Pa vanishes only on 

physical states. These generators act on the TP multiplet as 

[pa,xb] = -irlab 7 [Pa,Xb] = 0 9 [Pa,Pb] = 0 7 

[Jab, XC] = irlc[aXb] 7 [Jab,kl = iV,[ab] 7 

[Jab,Pcl = iqc[aPb] . (2.13) 

The Poincare algebra is then easily computed and found to be the usual one. One can also 

show that the elements of the TOPSY algebra commute with the P and J generators. 

.As a representation of the D=4 Clifford Algebra of the (anti-)ghosts, take the set of 
.w( 

P-matrices of ref. [7]: 

pa = $p , A” = ‘r= , 
Jz 

F” = (r”,-I?) , 

r" =l, r1 = ~~ gia2 , (2.14) 

r2 = ia2@l , r3 = f9@iia2 , 

{ri, rjj = -2sij , [ri,rj] = =zEijkrk . 

The ai are the Pauli matrices. With this, the “Lorentz spin” generator of the D=4 TQFT 

has as its components: 

. M’J = ie ijkrk 
, 

Moi = -iri . (2.15) 

There is clearly a close relationship between the N = 2 spinning particle and the TP. 

However, an important difference lies in the fact that the TOPSY charge is independent 
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of A. This will lead to a major difference in the respective symmetry breakdowns. Fur- 

thermore, it must be stressed that the TOPSY algebra of the space-time TQFT is the 

same as that of the TP. The on-shell spectra of the space-time TQFT’s is given by the 
- 
first quantization of the TP. Let us now look at the Hilbert space ofthis particle. 

III. Topological Spectrum 

To investigate the spectrum of the theory, we turn to the seminal work of Kugo and 

Ojima [8]. Physical states are defined by the condition Q]phys) E 0 mod null (Q-exact) 

states. As follows from ref. [8], Q]phys) = 0 im p oses the gauge fixing condition B, = Pa = 

0 on the wavefunctions of physical states since 0 = (phys][Q, Pa}]phys) = (phys]B,]phys). 

As we saw in the previous section, we must also impose H(phys) = 0. Let us now see what 

states satisfy these constraints. In this and the next section, we will take A = 0 for cl%ity. 

In principle, the quantization is similar to that of the N=2 spinning particle [9,10,11b]. 

We will follow the analysis for that theory. There are, of course, important differences 

between the two theories. For example, the vacua and constraints differ. The “fermions” 

here carry non-zero ghost number. The space-time physics drastically differs between the 

two theories. 

Define [ll] the ghost vacua 10)~ and 10)~ by the conditions 

LlO)x = P”lO>p = 0 , 

x(oIqx = p(W>p = 0 , 

~(OIO)X = 1 - 

The ghost numbers of these vacua are 

(3.1) 

(3.2) 



where D is the dimension of space-time. The ghost sector contains states built from either 

of the following: 

- - 
ING = -p 47 k),l...,k = A,, ** A,, IO)p , 

where NC labels the ghost number. 

(3.3) 

The wavefunction sector (Ilk)) is built out of the coordinate and momentum vacua 

IO), and 10)~. Th ese must satisfy the conditions 

xa lO>z = PJO)p = 0 , 

An element of the state vector space is obtained from the tensor product of states given 

by eqn. (3.3) and wavefunction states built out of the x and P vacua. They will be 

labelled as IQ, NC), where s1 labels the wavefunction. Schematically, a state is of the from 

I%%) = fl(x)lO)~lNo). It s b ra state is built out of the opposite ghost vacua and th<,(O] 

bra. This assures a finite inner product [ll]. The physical subspace is given by the BRST _ 

cohomology class (kerQ/imQ) modulo zero norm states. 

A zero ghost number state in D=4 space-time dimensions is 

IKO) = &b(x)lo)PB"Pblo)x - (3.5) 

Due to the anti-symmetry of the p’s, F is a 2-form. The condition &IF, 0) = 0 leads to 

aa&, = 0 . (3.6a) 

The anti-BRST charge is realized on IF,O) as QIF,O) = -;~~aFb,lIO)pp”pbpclO)X Re- 

quiring (0, FIQIF,O) to be zero yields 

$zFbc] = 0 . (3.6b) 
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If F were exact, this would be interpreted as the Bianchi Identity. One can generalize these 

expressions to k-forms. It is then learned that Q acts on a wavefunction as 6 and & as d. 

- _ So H = ;[Q,Q} = $(6d+d6) g ives the realization of the Hamiltonian on wavefunctions to 

be half the Laplacian, A, on k-forms. Imposing HIF, 0) = 0 as the Hamiltonian physical 

state constraint requires 

AF = 0 . (3.6~) 

‘Clearly, (3.6 a is the sourceless Maxwell equation if F is exact. On the other hand, for ) 

eqn. (3.5) not to be a null state, F must not be exact. In addition to F = 0 as a solution 

of these two equations, we may also have F = f*F. In fact, on a compact, oriented 

four-manifold with only one solution to these equations, F must be self-dual by Poincard 

duality. The D=4 topological Yang-Mills theory [l] is obtained by gauge fixing to (anti- 

)self-dual solutions. Another interesting gauge fixing is the F = 0 (only if H1(M, R) # 0 

as in the Bohm-Aharanov Effect) condition [12]. fh e other NC = 0 state is obtained+rom 

eqn. (3.5) with /3 t--f X. It is dual to the state above. Consequently, it also leads to eqn. 
- _ 

(3.6) but with (a) t) (b). 

For even D dimensions (and curved manifolds in general), the condition that H and 

Q annihilate physical states is satisfied by a zero ghost number D/2-form, wg/z, which is 

harmonic and co-closed2 

AWD/Z = hD/2 = 0 . (3.7) 

The 6 here is the adjoint of d and should not be confused with the BRST’s 8.” Now 

on a compact and oriented manifold, a form is harmonic if and only if it is closed and 

co-closed. So H = 0 already implies Q = 0. Furthermore, for wg/z to be a wavefunction 

2 If we were using the 10)~ ghost vacuum, uD/2 would have to be closed. The BRST charge 

is realized as Q M d, on wavefunctions in this sector. 
3 Although the former is a realization of the latter on wavefunctions in the 10)~ vacuum 

sector. 
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in the BRST cohomology, it must not be co-exact. Had we worked in the ,&vacuum, 

wg/p would be harmonic, closed and not exact. Hence it must be a member of the O/2- 

de Rahm cohomology class. The number of such forms is equal to the kth Betti number 
- - 

G bk = dimH”(M). Only th ose D/2-form states exist for which the HDj2(M) is non- 

trivial. From Poincare duality it may be inferred that wg/z is self-dual when bDi2 = 1. 

An interesting result of this construction is found when we look at the NI; # 0 sectors. 

Once again, let us restrict ourselves to D = 4. The NC = +l state is 
. 

p&+1) = Qa(m)Pp=lqA , (34 

with @ being an anti-commuting l-form. Application of the spin generator from eqn. 

(2.12) to this state yields that it is indeed a Lorentz vector. The condition Ql\k, +l) = 0 

leads to eqn. (a) below and HIq,+l) = 0 leads to (b): 

(a) 6QJ = 0 , (b)-A\I, = 0 . . 43.9) 

For GJ not to be a null state, it must not be co-exact. Equation (3.9b) implies (3.9a) along _ _ 

with 

+@b] = 0 - (3.9c) 

We recognize this as the primary ghost equation in the linearized topological theory of flat 

connections. Equation (3.9a) is the gauge fixing slice for the D=4 ghost symmetry. The 

solution to Ql*, +l) = 0 is eqn. (3.9c). The NC = 2 state, 

l@,+2) = wlo>Plo>x , (3.10) 

unconditionally satisfies QIQT, +2) = 0. Of course, this is a consequence of the fact that 

6(0 - form) = 0. The vanishing of the Hamiltonian leads to 

f-J@=o. (3.11) 
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This is to be identified as the equation of motion of the secondary ghost field of the D=4 

linearized topological theory. The statement that @ is harmonic must be supplemented by 

the condition that it not be co-exact. 

These results may be generalized to arbitrary even D dimensions. In general, the 

ghost tower will consist of graded k-forms of degree k = D-iNG (where NC is also the 

space-time ghost number) which are elements of Hk(M). Put differently, all form states 

of degreek-= l,..., D carry a ghost number charge NC = !$ - k. There are also states 

dual to these, but with opposite ghost number. 

States from the N=2 spinning particle similar to the NC # 0 sector arise when the 

global O(2) y s mmetry of the supersymmetric theory is not gauged [13]. However, the anti- 

commuting field there is a spin-i field. Also, F may be exact there. The physical spectrum 

of a spinning particle theory is not given by a super-charge cohomology. The ground 

states of the ungauged supersymmetric theory only has to satisfy Q = H = 0. However, 
W( 

the topological spectrum is composed of those states which are elements of the BRST _ 

cohomology. The Hodge Decomposition Theorem tells us that on compact manifolds, 

there is an isomorphism between the harmonic k-forms and H’(M, R). So that the zero- 

energy spectra of the two theories are isomorphic. This isomorphism is true only for the 

ground state. As the BRST charge, Q, annihilates all physical states and H = [&,A}, 

all of the physical states of a TQFT are “zero-energy” states. Supersymmetric states go 

beyond the zero-energy state to include excited states for which Qlboson) = /fermion) and 

vice-versa. 

IV. Topospace and TQFT Invariants 

There is another way to realize the physical states of the previous section. This is 
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in terms of fields which are functions over the space of the x’s and X’s. In analogy with 

superfields, these fields will be called topof ields. Topofields will give a field representation 

of the TOPSY algebra. In this section, we will assume an extension of the linearized - - 

results of the previous section to a full non-linear theory. Then if D = 4, the 2-form F is 

a curvature on a G-bundle with gauge group G and covariant exterior derivative, D. 

The coordinates (x4, Xb) will be the coordinates of topospace, a supermanifold. Con- 

sider theTaylor series expansion of a scalar topofield, S(x, X) in four dimensions: 

s(+) = a(X) + in=% + iX=X”F,b(x) + . . . . (4.1) 

The ghost number of S is given by @ to be 2. Successive component fields in the expansion 

decrease in ghost number by 1. Under a BRST transformation, Q = -iX4D4, this topofield 

transforms as &t-S = [;Q,S}: 

bQ,S(x, A>} = ~=DD,@ + ix4xb~4\k; + i~4~b~cz>4Fbc +’ . . . . 14.2) 

We then read off, when S is off-shell, 

A  

&rFab = D[,*b] , etc. 

The object 8~ denotes the space-time TOPSY transformation. Observe that 8~ is not 

nilpotent. The algebra closes up to a gauge transformation with parameter a. 

In four dimensions, the expansion in eqn. (4.1) should be taken to terminate at the 

2-form. At present, the only justification for this is the following observation. Consider 

-S to be on-shell. Poincare duality (on compact and orientable manifolds) tells us that if 

the expansion were continued to include the next two forms, they would be dual to the 

first two. For example, in D=4, the S-form G would be given by *d acting on a O-form. 
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(This bears close resemblance to supersymmetry where placing a chiral constraint on a 

scalar super-field means that some of the upper components in the superfield are defined in 

terms of space-time derivatives of the lower components.) Off-shell, the component fields 
- - 

are not required to be elements of H’k( M) and so Poincare duality no longer holds. Thus, 

in principle the expansion continues up to a D-form. However, terminating the expansion 

at the D/2-form gives the known transformation laws, etc. In fact, eqn. (4.3) gives the 

BRST transformations of the positive ghost number multiplet of the topological Yang-Mills 

theory [l]. P resumably, the forms of degree greater than D/2 are auxiliary. In the fully 

gauged fixed path integral they may be integrated out and replaced by their equations of 

motion. 

The general form of the space-time BRST transformations on the k-form fields of the 

topological multiplet in even D-dimensions is 

,. 
bTwk = ?bk-l . (4.4) 

The O-form, ws, is BRST invariant. As discussed in section III, the ghost number of the - 

k-form is NC = 4 - k. From the structure of eqn. (4.4), it is obvious why wg is invariant. - - 

It is interesting to note that the original TOPSY [I] which started the BRST analyzes: 

iA, = Q4(x), d oes not directly appear in this sequence. It would, however, appear 

indirectly if F were an exact form. Although F must be an element of H2(M) on-shell, 

there is no such restriction off-shell. 

Recall the anti-commutation relation: [p,, Xb} = 6, , b from which we realize the anti- - 

ghost Pa as Pa E & E -iD,. This Grassmann derivative provides for a more convenient 

way of defining the component fields. This is by the projection technique 

@(x> = Sk, u 7 , 

*4(x) E D4SI , 

iFa&) - j@[4Db]sI , 
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in even dimensions. The slash, 1, means take X = 0 after the operation is performed. With 

this, let us see how the descendants of the (0, D)-f orm4 given by polynomials in @ arise in 

the topospace formalism. Consider a polynomial, W(S). D ff i erentiate it with respect to - - 

A, and define 

wk G t!dx=l A dxa2 A -. . A dxak D,, D,, -. - D,, W . (4.6) 

By -construction, it is a k-form on M. One can show that 

. [Q,Wk+l}l = ikdWkl , 

[Q J , wk}I = 0 , 
ck 

(4.7) 
where ck is a homology k-cycle. Take W(S) = $!Y(S2) as an example. Project it to 

components to find that on four-manifolds (D” E Di,, D,, - . - D,,]): 

TV; E &D2WI = Tr($\k A Q + i@ A F) , (4.8) - 

wi G &D3WI = Tr(iQ AF) , 

w,” - $D4WI = Tr($F A F) . 

These k-forms, wkNG, carry a ghost number charge NC. Their k-cycle integrals are the 

Donaldson maps: Hk(M) + H4-‘(M) as constructed in ref. [l]. One can construct the 

generalized Donaldson invariants on any even dimensional, compact and oriented manifold 

from eqn. (4.6), WN E hTr(SN), eqn. (4.5) and th en computing the correlation functions 

of the resulting expressions. Whether or not these are zero would have to be ascertained 

on an individual basis. For the general case, Tr denotes a suitable inner product which is 

.independent of the metric on M. To construct the invariants of the odd D-manifolds, one 

4 The notation (k, NG) * d’ t m lea es that the form is of degree k on M and its degree on the 

gauge orbit space is NC, the ghost nu’mber. When the second quantized theory is gauge fixed 

to a particular field configuration, the gauge orbit space becomes the moduli space, M. 
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must first carry out the construction for the even (D + l)- manifold and then dimensionally 

reduce them. In this way, for example, the W’s of the three dimensional Yang-Mills-Higgs 

- - [3,14] and supersymmetric Yang-Mills Higgs [15] theories, are easily realized. 

Now let us instead work on the dual topospace with coordinates (x4, /3’). Consider 

a Taylor series expansion of a D/2-form topofield in terms of the Grassmann anti-ghost 

coordinate, pa: 

F(x,~) = F(x) + ipA@ + ipApA@ -t . . . , (4.9) 

where the expansion terminates at the O(pD/“) t erm whose coefficient is a O-form. The 

D=4 expansion terminates at the O-form a, the secondary ghost field with NC = 2. As the 

order in ,!? increases, the ghost number of the component field increases. The topofield .F 

is the curvature of the Weil algebra system of ref. [3,16]. In the context of the first work 

in ref; [lS], the dual topospace is the product manifold r = M x d/G. Here d/G is the 
-, 

gauge orbit space with gauge group G. By the Kunneth formula, the de Rahm cohomology - 

on F is given by H*(r) = H*(M) 8 H*(d/G) with Hk(f) y+E=,H’(M) 8 H”(d/G). - 

In a second quantized theory, with the TOPSY gauge fixed, d/G is the moduli space M. 

The IVkN”s of eqn. (4.2) are found by the projection of W(F) = $Z’r(.F2) in a manner 

similar to their derivation in the (x4, Xb) topospace. 

It would be of interest to determine the relationship between the topospace construc- 

tion introduced here and the extended moduli space of the second reference in [l]. This will - 

not be investigated here. However, the following observations may prove useful. Assume 

that in the second quantized theory, one has gauge fixed to a certain field configuration. 

Consider a basis, e14 (I = 1, . . . , NM) for the deformations of the gauge fixing function of 

the TP. Write the “zero modes” of the ghost field, X4, as an expansion in this basis: 

A” G Ng<&. + (non - zero modes) . (4.10) 
I=1 
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Then as ref. [l], the e14 are a basis for the tangent space of the moduli space. With this, 

. Ia D4=ae4 v7 where an inverse for e1 has been assumed: e4’eIb G 64b. Consequently it 

is easy to see that eqn. (4.6) becomes - 

ik a d Wk = e/l A . . . A d& - . . . - 
a[11 a('kw ' 

(4.11) 

where da’ E dx4e I 4 with the a1 being the bosonic coordinates of the moduli space. To- 

gether, the coordinates cz’ and <I are the even and odd coordinates of extended moduli 

space. The measure on this space is [l] dp = dNM udNM [ and we interpret NM as the 

dimension of moduli space. 

The (4,0)-form IV: in D = 4 is the Pontryagin density. It is well known that it 

may be written as an exterior derivative of the Chern-Simons (CS) S-form. Then on the 

boundary of the 4-manifold one has a CS density. An action in 2 + 1 dimensions built 

out of the CS density is an aZt& idem of the TQFT’s. It is metric independent but not 
.m 

invariant under the TOPSY: 6A = $. Whatsmore, it exists classically. As is well known, 

it is straightforward to construct higher (odd) d imensional analogs of them. One starts _ 

with the nth Chern character: 522, = Tr(F”) which may be written as Rz,, = dWzn-r. 

However, the wzn-r are no longer quadratic in fields (even in the U(1) theory). They are 

higher order in derivatives, also. If one were to use them as a Lagrangian, they would be 

interacting field theories without a kinetic term. With the results of this section, it is easy 

to obtain higher dimensional analogs of the D=3 CS action. They are simply realized by 

assuming a (D+l) oriented manifold with a boundary and taking the surface term from 

Sz; = J,IAI = lNmAI. (4.12) 

Here I G dm is an exact (D + 1)/2-f orm. The action is invariant under 6m = dA. For 

example, the D=5 version is SD=~ = j’ d5xB A dB, where B is a 2-form. Notice that 

these higher dimensional extensions are not constructed from connections on a G-bundle. 
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They are free field theories, independent of the metric on the manifold and may be exactly 

soluble (see ref. [17] and references therein). 

V. Morse Theoretic Counting of Physical States 

Morse-theory offers a simple counting of the physical states given in section III. De . 

Rahm cohomology tells us the number of states, but we will see how Morse theory relates 

this counting to the function W(x). In this section, we will take eqn. (2.4) with A = dW 

for our Lagrangian. 

According to ref. [8], an observable, 0, must satisfy 

[Q,Ol = 0 . (5-l) 

The Hamiltonian and BRST charges are examples of trivial observables, since they both 

(anti)-commute with the BRST charge and vanish on physical states. In fact, it is easy to 

convince oneself that the only non-trivial observable in the one-dimensional field theory is 

the identity operator: 0 = 1. The vacuum expectation value of this operator is given by the 

partition function. It is the analog of the Witten index and was shown by standard Morse 

theoretic arguments to be given by the Euler Characteristic of M [3,4]. It is computed 

[4] from eqn. (2.4) to be the sign of the determinant of the Hessian of W, [Hp(W)lab = 

&abw(,, summed over all the non-degenerate critical points, p: 

2=x 
detH,(W) 

p ]detH,(W)] = x(M) . (5.2) 

Path integral methods based on eqn. (2.4), with A = dW, were earlier used to compute 

‘this index [18]. 

Just as 2’~(-1)~ is a natural index in the supersymmetric particle theory, there is 

such an index here. It measures the difference between the number of states of even and 

19 
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odd ghost number and arises from the following identity: 

Tr(efnG) = Tr( -1)N” = neven - n&d E A . (5.3) 

This A is not to be confused with the Laplacian. The quantity n,,,, (no&-J) is the number 

of physical states with even (odd) ghost number. From section III we know that the 

number of physical states (which are also all zero-energy states) of a given ghost number, 

‘NG, is equal to the k th Betti number of the manifold . The wavefunctions of these states 

are forms of degree k = sD-2Nc)j f or some even space-time dimension D. It then follows 

that 

A = Z’T(-~)~~ = (-1)D’2x(-1)kbk = (-l)D’2x(M) , (5.4) 
k 

where bk is the k th Betti number of. the compact and oriented manifold M. The last 

equality follows from de Rahm cohomology theory. Consequently, the index is given by 
.w 

A = (-1) D/22 = (-l>Wx detH,(W) 

p Id%w)l 
= (-l)Dl’E(-l)‘p . (5.5) - 

- _ 
P 

The object i, is called the index of the critical point, p, it is the number of negative 

eigenvalues of HP(W) and is invariant under coordinate changes. 

It is useful to introduce some results from Morse theory [19] which underly the equa- 

tions above. The PoincarC Polynomial, P(M, t), and the Morse Series 

_ 

are related by 

P(M,t) E xtkbk , M(W,t) = Ct’p , F-6) 
k P 

POW - NW, t> = (1 + t>&(t) , (5.7) 

where Q(t) is a polynomial with non-negative coefficients. This is a remarkable formula as 

it relates cohomology (P(M, t)) to the properties of some non-degenerate function, W, on 
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M. It gives the Morse Inequalities. A function for which P(M, t) and M(W,t) are equal 

is called a perfect Morse function. Examples of P( M, t) have been given by Bott [19a]: 

- - P(RD,t) = 1 , FySD,t) = 1 + tD , 

P(CPD,t) = 5 t2m , (5.8) 
m=O 

P(M x N,t) = P(M,t)P(N,t) . 

Clearly, 

P(M,-1) = M(W,-1) = (-1)Oj2A , (5.9) 

is manifested in eqns. (5.4) and (5.5). Consider the case when t = +l. The Poincare 

Polynomial evaluates to 

P(M,+l) = xbk = N , 
k 

(5.10) 

the total number of physical states: N E n,,,, +n,dd. As N is not a topological invariant, 

it is expected to depend on topology. The number of even and odd physical states depend 
.m 

separately on P(M, +l) and the Euler Characteristic. Morse theory tells us some more - 

useful information. Consider the case where W is a perfect Morse function. There is - - 

a principle which gives the criteria under which W is such a function. It is called the 

Lucunary Principle. It simply says that if M(W, t) is such that the product of any two 

consecutive coefficients in its expansion is zero, then W is a perfect Morse function for 

the manifold, M. Under these circumstances, the numbers of even and odd ghost number 

states are simply given by - 

~c-3 
if D = 41 , 

n(edii) = #(e”:‘p,) if D = 4Z+ 2 . (5.11) 

The quantity #,,,, (#,,dd) is the number of critical points of W for which i, is even (odd) 

‘and&Z+. 

For most potentials of physical interest (such as the sombrero potential), there exists 

a submanifold of critical points. For example, suppose W defined on RD is such that 
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dW = 0 implies that xz = 1 (properly normalized). Then there is a connected submanifold, 

n/ c M, of critical points given by SD-l. Such a submanifold is called [19a] a non- 

degenerate critical manifold for W if and only if dW = 0 along n/ and detHN( W) # 0. - - 

Here the Hessian is computed with respect to coordinates normal to n/. Choose a set of 

points yA Z (y~,yd)sothatn/islocallygivenbyyd=Ofor~=dim(~)+l,...,D-l. 

Evaluate the Hessian at the yA. The index of this critical manifold, ih/, which is the 

number of negative eigenvalues of Hn/( w), is constant along hf. The Morse Series is then 

defined by a sum over the critical manifolds: 

M(W,t) = c @P(N,t) = cc t(‘N+k)bk(N) . (5.12) 
Jv Af k 

Here bk(n/) d enotes the Betti number of the compactly supported cohomology on N with 

real coefficients. The Morse Inequalities hold under a technicality which is that the normal 

bundle, V(N), of n/ is such that its restriction to negatives eigenvalues (V(N) - V+(N) @ 

V-(N)) is orientable. Under these circumstances and if W is a perfect Morse functiomthe 

number of even and odd ghost number states is given less transparently by 

n(:::) = +xx[l f (-1)(D’2+‘n’+k)]bk(N) . 
n/ k 

(5.13) 

Due to Lorentz invariance, this is not the complete story. The function W is a scalar 

under space-time Lorentz transformations; but the z’s transform. In computing the critical 

points of W, one must be careful to mod out by SO(D - 1,l). Such a counting is the 

realm of Equivariant Morse Theory [19a]. The solution to this problem is to restrict the 

computation to the space M/SO(D - 1,l) and then carry out the Morse counting. This 

is a simplified result which is valid only for those cases in which there is no stabalizing 

subgroup. 
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V. Constraints on TOPSY Breaking 

Spontaneous and dynamical supersymmetry breaking in supersymmetric quantum 
- - 

mechanics were studied in ref. [20]; Th e critical points of the potential were used to 

determine whether or not supersymmetry was broken. We have seen the relationship 

between the TP and the N=2 spinning particle. It is then natural to ask if it is possible to 

break the TOPSY. This question was asked before [3] f or one-dimensional target manifolds 

Equation (2.4) will be the Lagrangian for this section. 

A symmetry is broken if an operator, 0, exists for which (60) # 0. Any observable 

is BRST invariant by definition. Let us also look at the other operators which transform 

under the fermionic symmetry. For example, a Goldstone fermion [21] arises from sponta- 

neous symmetry breaking because the term into which the spinor field transforms has a oe2r. 

Our vacuum is given by the bra-p(O].(O] and the ket ]O)p]O)x. It is translationally invari- 

a&: Ehp)Pp)x = 0. Now recall that Q = XaPa is-the TOPSY charge. If (Ol[Q, O}lOr# 0 

then &IO) # 0 and the vacuum cannot be translationally invariant. The spontaneously 

broken theory would be ill-defined. Consider some examples keeping in mind that the vezl 

of the /3’s and X’s is zero since X”]O)p]O)x = 0 and P(O]~(O]~~ = 0. Now the only operators 

which are not BRST invariant are pa, Q, E and za. The BRST anti-commutator of Q is 

[Q, Q} = 2H. With th e properties of the vacuum, one has (H) = 0. Similarly, [Q, 6) is 

proportional to Q with a vez) (Q) = (X”P,) = 0. S o we are left with [Q, j3”) = B”. Recall 

that the BRST auxiliary field is given by B, = Pa, so once again ([Q, pa}) = (B”) = 0. 

Given an operator O(x), the veo of its BRST commutator is zero since X annihilates the 

vacuum ket. TOPSY cannot be spontaneously broken. This is understandable since it is 

a BRST symmetry. 

We saw that the TOPSY algebra is a twisted D=l, N=2 supersymmetry algebra. 

Then how is it that TOPSY cannot be spontaneously broken, but the supersymmetry 
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can be broken? The answer is that Q and Q are not supersymmetry charges. They can 

be combined to give supercharges by: Qk E -(-l)‘/“-&(& - (-)kQ). Make a similar 

defintion for the supersymmetric “fermions”: - - $, = -(-1)‘/L-&(,f?” - (-)“A”). Then the 

supersymmetry transformations are: 

[;Qi,x”} = +i , 
(64 

.Thus ([Qi,-$T}> # 0 if (dW) # 0 at th e minimum of the “potential” in eqn. (2.4). 

Ordinarily, Lorentz invariance would prevent a uev for dW. For a one-dimensional space- 

time, Lorentz invariance is not a problem and in that case supersymmetry is spontaneously 

broken. 

Although it is not possible to spontaneously break the TOPSY symmetry, it is possible 

to break the anti-BRST symmtery under the same conditions for supersymmetry breaking. 

To see this, consider the anti-con-rmutator 

[&,A”} = P” - 2d”W . (6.2) - 

Take the target manifold to be a product, M = Y x S1 where Y is (D - 1)-dimensional. If 

only the derivative of W in the S’ direction is non-zero at the minumum of the potential, 

then the vez) of the anti-commutator is non-zero and Lorentz invariant. 

Given that it is not possible to spontaneously break TOPSY, we must search for other 

mechanisms to break the symmetry if the hope for local physics is to be kept alive. It is well 

known that for judicious choices of the function W, the supersymmetry of supersymmetric 

quantum mechanics can be dynamically broken [20]. Th is is because the condition QQ = 0 

(Q is a supercharge and \k is a supersymmetric wavefunction) has the solution (in the 

case D=l) q(x) = *(O)exp [i Jo2 dyW(y)o3]. Th’ IS is a state only if @ is normalizable. 

Otherwise, no such state exists and supersymmetry is dynamically broken by quantum 

corrections. In the TOPSY case, we have that the BRST charge must vanish on any 
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physical state. However, as we have seen above, there is no potential contribution to this 

charge, even beyond tree level. So we simply have the condition of section III, namely the 

wavefunction must be co-closed. The independence of the BRST charge on the potential - - 

implies that perturbative effects cannot break the TOPSY. 

There is another form of symmetry breaking through which one may imagine breaking 

the TOPSY. It is known [22] that topology change breaks global symmetries. The TOPSY 

is $ BRS-T -symmetry. BRST symmetries are global symmetries of a gauge fixed action. 

However, it appears that if one global symmetry of a field theory is broken by topology 

change, all of its global symmetries are so broken [23]. Apart from the BRST symmetry, 

TQFT’s also have global ghost number and scaling symmetries. Breaking the last of these 

symmetries may be a undesireable feature for the resulting field theory. Nevertheless, we 

will neglect the latter in the discussion to follow. 

First, let us clarify the meaning of topology change in the context of a theory whose 
.m 

observables are topological invariants. It is useful to recall some definitions. Topological 

spaces are topologicdy equivalent if and only if they are homeomorphic to each other. . 

Given a property which is endemic to all of these spaces, that property is called a topological 

invariant. In distinguishing between spaces which are or are not topologically equivalent, it 

is sufficient to find a topological invariant of one of the spaces which is not an invariant for 

the other [24]. After all, topology characterizes the properties of spaces which are invariant 

under homeomorphisms. By definition, topology change subverts the topological class of 

the manifold. A typical example is taking a sphere and putting a handle (wormhole) on it. 

Such a transformation falls outside of the TOPSY discussed above. Thus the possibility of 

the breaking of TOPSY via topology change should be thought of from the point of view 

‘that the symmetry is just another global symmetry of a theory. 

If there is a classical Lagrangian for a given TQFT, it must be metric independent. 

Thus any topology change cannot occur classically. The manifestation of wormholes as 
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quantum fluctuations is apparent in wormhole physics [22]. In a TQFT, a metric is in- 

troduced in order to define inner products in the gauge fixing procedure. In a topological 

gravity theory [1,7], one would have to integrate over this metric. The path integral in- 

cludes a sum over all topologies. 

A wormhole, which connects two space-time points, x and x’, contributes an additional 

term to the effective Lagrangian. Then by the arguments of ref. [22], that term violates 

any continuous global symmetries of the original Lagrangian. The respective conserved 

currents may flow through the wormhole; therebye becoming non-conserving. The TOPSY 

may be broken in ths way. 

Removing the constraint that the BRST charge vanish on physical states would lead 

to a spectrum of propagating particles which are no longer constrained to be elements of 

the de Rahm cohomology classes. As there was no classical physics in the unbroken TQFT, 

these-real particles would appear from a spectrum of virtual particles as though they were 
.w 

spontaneously created from nothing. There would be something from nothing. Breaking _ 

the TOPSY by this mechanism is intriguing and its detailed study may be rewarding. In _ _ 

fact, if the symmetry breaking effects of wormholes does not alter the renormalizability of 

a theory, then it is conceivable that the broken topological gravity theory would yield a 

renormalizable quantum gravity theory. 

VII. Conclusion 

To summarize, the topological particle has been first quantized for even dimensional 

-manifolds. The symmetry algebra is that of a twisted N=2 spinning particle. The spectrum 

is given by the de Rahm cohomology ring of the compact and oriented manifold. A 

topospace, whose coordinates are the x’s of the manifold and the Grassmann ghosts of 
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the topological symmetry (TOPSY), was used to deduce the BRST transformations of the 

space-time fields in the spectrum. Polynomials in a (0, N/2)-form on the space M x d/G, 

where d/G is the moduli space in the second quantized theory, immediately led to a 
- - 

generalization of the Donaldson invariants on compact and orientable N-manifolds. Some 

of the results of Morse theory were used to count the number of even and odd ghost 

number states. It was found that if a perfect Morse function is used in the gauge fixing 

of the TOPSY, there is a simple counting of these states. Finally, a discussion of TOPSY 

breaking was presented. As the symmetry is a BRST symmetry, it cannot be spontaneously 

broken. Furthermore, TOPSY breaking akin to the dynamical supersymmetry breaking 

of ref. [20], fails. However, in summing over all topologies in the partition function of a 

topological gravity theory, it is conceivable that a topology change can break the TOPSY; 

as it is a global (BRST) symmetry. 

Based on the results of this work, there are many questions still to be answered. Chief 

among these is the role of topology change in TOPSY breaking. The connection bet%een 

Weil homorphisms, topospace and the moduli spaces [25] is worthy of further study. Also, - _ 

it may be of interest to first quantize the topological string of ref. [26] and look for TOPSY 

breaking there. A Morse theoretic counting similar to that of section V may offer some 

physical insight into the work of ref. [27]. Th ere, a counting of the number of critical 

points on symplectic manifolds (whose coordinates are maps from R x [0, I]) was given. 
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