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_ 1. Introduction 

The search for underlying principles which classify the variety of possible string 

compactifications leads us naturally to study the basic symmetry algebras of the 

string world surface. In the viewpoint on string compactification that is now gen- 

erally accepted, the world surface of the string carries a conformally invariant 

two-dimensional quantum field theory. The excitation spectrum of this theory de- 

termines the spectrum of particles in space-time, and, in this way, the geometry of 

space-time itself. To determine the possibilities for space-time geometry, then, we 

must understand the representations of two-dimensional conformal symmetry. It is 

clear that any complete two-dimensional conformal field theory can be decomposed 

into irreducible representations of the conformal algebra. And it is equally clear 

that, for the purpose of constructing constraints of real generality, this is the most 

general structure that any two disparate compactifications share. 

We may obtain a more constrained classification problem by considering two- 

dimensional theories that are invariant under extended conformal algebras. Con- 

. . formal supersymmetry, as one example of such an extension, appears naturally -. . 
in theories of superstrings. In the heterotic string theory, for example, the right- 

moving sector of fields must be N=l supersymmetric for simple consistency. Spe- 
. 

cific schemes for obtaining realistic compactifications, including compactification 

on Calabi-Yau manifolds, produced world-surface theories in which this algebra -. - 
was further extended to L1y21 N=2. S ,, u sequently a general argument was given [31 

that this extension always appears if the spacetime theory that the string produces 

is at least N=l supersymmetric in four dimensions. Irreducible representations of 

the N=2 superconformal algebra, then, provide at least some of the ingredients 

needed to construct a realistic string model of Nature. 

The unitary irreducible representations of the N=2 superconformal algebra 

were characterized by Boucher, Friedan and Kent (BFK),141 using results on the 

determinant of inner products in an N=2 module derived by themselves and by 

several other authors.15-71 BFK showed that, for central charge c < 3, there exists 
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only a discrete series of unitary- representations, with 

3n c=- 
n-l-2’ 

n=1,2,... , (14 

in precise analogy to the unitary discrete series of the simple conformal algebra. 

But BFK also found unitarity constraints on the representations for c > 3, in the 

form of an allowed domain in the space of conformal dimension and U(1) charge. 

(We will present the precise restrictions in Section 5.) Subsequently, Zamolod- 

chikov and Fateev[” and Qiu[” gave a manifestly unitary construction of the dis- 

crete series, building the generators by combining a free boson with fields belonging 

to the SU(2) p arafermion algebra characterized earlier by Zamolodchikov and Fa- 

teev!lol 

There has been no similarly general construction of the represkntations with 

c > 3, though many specific examples of such representations have been ana- 
, lyzed [11-131 However, Lykken [“I did d’ lscover a generalization of the parafermion 

constr_uction of the discrete series which led to new discrete series, with central. - 
. . 

- ‘I charges of the form 

3k 
‘= k-2’ (1.2) 

where the parameter k ran over a series of rational numbers. These new series 

converged on the limiting value c = 3 from above. -- - 

In this paper, we will explain the new series discovered by Lykken, and place 

these and the c < 3 unitary series within a general picture of the N=2 supercon- 

formal representations. We will show that, for c > 3, the generators of the N=2 

superconformal algebra can be used to construct the two-dimensional current al- 

gebra of the group SO(2,l) ( or, equivalently, of the group SU(1, 1) or SL(2, R)*). 

We will find that the rational number k in Lykken’s construction is replaced by a 

real number k which may vary continuously subject to some simple inequalities. 

* SL(2, R) current algebra has also played a key role in recent analysis of two-dimensional 
[I51 quantum gravity. 
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We can then understand the various classes of N=2 superconformal representations 

as derived from different classes of’affine SO(2,l) re p resentations. The unitarity 

domains found by BFK also follow straightforwardly from the SO(2,l) picture. 

For c < 3, the global group of the current algebra becomes S0(3), and we recover 

the well-known relation between the N=2 discrete series and the representations 

of SU(2) current algebra which follows from the fact that both may be built from 

Zamolodchikov-Fateev parafermions. In essence, our analysis simply generalizes 

this connection to the remaining N=2 representations. 

.- 

. . 

Our arguments will be laid out as follows: In Section 2, we will review the N=2 

superconformal algebra and derive the associated current algebra. In Section 3, we 

will study the representations of S0(2,1) current algebra; we will show that, while 

the complete current algebra cannot have unitary representations, we can identify 

conditions under which a coset construction ,90(2,1)/U(l) can be unitary! We 

will then give an elementary proof of the unitarity which applies to most classes of 

sw, ww) -P re resentations. In Section 4, we will complete our demonstration 

of the unitary of the coset representations, by applying a determinant formula for 

current algebra representations due to Kac and [I71 Kazhdan. In Section 5, we will 

relate the conditions for unitarity of the modules constructed in Section 3 to the 

results of BFK on N=2 superconformal representations. Finally, in Section 6, we 

will set out some ideas on the significance of this current algebra picture for the 

-. - problem of classifying N=2 superconformal field theories. 

We would like to note one novel feature of our analysis, which we feel should 

have many generalizations in the study. of conformal field theory. In ordinary field 

_ theory, one does not normally encounter non-compact internal symmetry groups. 

For such groups, the finite-dimensional representations are necessarily non-unitary; 

to work with unitary representations, one must accept that these are infinite- 

dimensional. In two-dimensional conformal models, this is hardly an objection, 

--+ A different coset construction, the quotient of SO(2,l) current algebra by its Virasoro 
subalgebra, has recently been studied by Balog, et [ls1 al.. These authors showed that their 
construction is generally non-unitary. 
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since the representations are already infinite-dimensional. The fact that the ad- 

joint representation of a noncompact group is not unitary implies that the current 

algebra representations all contain states of negative norm. However, it is highly 

plausible that these states can be eliminated by a coset construction G/H, where 

H is the maximal compact subgroup of the noncompact group G. We conjecture 

that for any such G/H model, there are unitary representations for a continuous 

range of values of the central charge. This conclusion generalizes one for which we 

supply the proof in Sections 3 and 4 of this paper; however, the resolution of the 

more general question is beyond the scope of our analysis here. 

2. How N=2 superconformal symmetry creates currents 

: 

Let us begin by relating the N=2 superconformal algebra to a current algebra. 

This is most easily done by studying the operator products of holomorphic fields. 

The- N=2 algebra is generated by the stress tensor T(z) and two supersymmetry 

currents 5”;(z) distinguished by their charges under a U( 1) current J(z). ?$ and, 
. . i J are primary conformal fields of dimension t and 1 which obey among themselves 

the operator product relations 

43 J(4JW = (z _ q + * * * 
-- - 

J($~‘&u) = f 

TFf(*)TFf(w) - O(z -w) . 
(24 

Up to an overall normalization, the operator product of J with itself is ex- 

actly that of d,~, where cp(z) is a free scalar field. This identification implies the 

equivalence of these two operators. Thus, the N=2 generators decompose into two 
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mutually commuting sectors, one of which contains the free field +CJ. Then 

J(z) = i 
J 

f &y ; T(z) = -;(a*y)” + T+(z) * (2.2) 

T4 is an energy-momentum tensor with central charge C~C, = c - 1. In order to 

reproduce the N=2 algebra (2.1), th e remaining generators must decompose as 

follows: 

where $, $t are holomorphic fields, primary with respect to 7’4 and of dimension 

A$ = $(c - I)/ c, with the operator product relations 

$(z)q5t(w) = (2 - w)-+[1 + (2 - w)2 * +4(w) + * * .] 

(2.4) 

vwfw) rv O((z - w)1-3/c) . 

It is-natural to think of $, $t as a generalized form of the parafermions defined by 

Zamolodchikov and Fateev.[r” In fact, (2.4) ’ p is recisely the generalized parafermion 
. . -. algebra identified by Lykken in ref. 14. This algebra makes sense independently of 

its origin in the N=2 algebra, since the detailed form of the first line of (2.4) follows 

just from the assumption that T+ is the leading nontrivial operator appearing in 

this operator product. 

-- - 
Zamolodchikov and Fateev showed that, for c < 3, one could could convert 

the parafermion algebra to a current algebra of SU(2) by adding back a new free 

boson. Let us follow an analogous procedure here. Let 4(z) be a free scalar field, 

and define 

J3(z) = - ; a,$, 
J 

2c 
where k = - 

c-3 * 

Then let 

(2.5) 

J+(z) = ~/%$(z),fi~ , . J-(z) = &,bt(z)e-fi4 , (2.6) 

These relations clearly make sense for c > 3; their continuation to c < 3 (with 



fi --+ -4m g ives the construction of Zamolodchikov and Fateev. The fields 

defined in (2.5), (2.6) are holomorphic fields of dimension l-currents! They obey 

the operator product relations 

J3(z)J3(w) = 
-iI, 

(2 “w,2 + . . . 

J3(z)J*(w) = f ’ 
(z - 4 

J*(w) + ..e 
(2.7) 

J+(z)J-(w) = (* -kw)2 - (z ” w) J3W + *-. 

J*(z)J*(w) N O(1) . 

It is useful to compare these relations to the commutation relations of the 

global SO(2,l) lg b a e ra. This algebra has three generators J1, J2, J3, with metric 

I 
gij = 

. . 
i . and commutation relations 

( 1 

1 

-1 

[J”, ~j] ” = Pk Jk , 

with $23 = +l. If we set 
-- - 

Jf = J1fiJ2 > 

the commutation relations take the form 

[J3, J*] = fJ* , [J+, J- = -2J3. 

We can see, then, that (2.7) is of the standard form 

ik ij 
JWJW = (z2_yw)2 + 

if’jkJ”(w) + 
(z-w) -** 

(2.8) 

w > 

(2.10) 

(2.11) 

(2.12) 

OT a Kac-Moody algebra based on the group SO(2,l). The constant k defined in 

(2.5) may be recognized as the central charge of this algebra. 
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For c < 3, the sign of the-k in (2.5.) h g c an es; if we redefine k = 2c/( 3 - c), 

we revert to the current algebra of Su(2). The N=2 discrete series corresponds 

to positive integer values of k for the SU(2) algebra; these are the only values for 
P31 which that algebra has unitary representations. 

3. Unitarity of SO(2,1)/U(l) modules 

_- 

If we are to make use of this current algebra construction in building uni- 

tary representations of the N=2 algebra, we must first learn how to build unitary 

representations of the current algebra generators. There are in fact no unitary 

representations of the full SO(2,l) current algebra, since, as we will see below, the 

moments of J3 create states with negative norm. This problem is the result of the 

appearance of the indefinite metric (2.8) in the operator product algebra, and so 

is a general difficulty associated with non-compact groups. But, fortunately, the 

. . 

analysis of N=2superconformal representa,tions requires only the unitarity of coset 

representations in which the action of J3 is set equal to zero. In this section, we 

will construct these representations and find the conditions under which they are 

unitary. 

_ For this discussion, it will be useful to define the moments of Ji(z) 

By standard manipulations, we can convert (2.7) into commutation relations for 

the moments 

[J:, J;] = -;knb(n + m) 

[Jz, JI;I] = knS(n + m) - 2Jz+, . 

(3.2) 

Using the Sugawara construction, we can form bilinears in the JA which generate 

8 



. .- 

a Virasoro algebra. The Virasoro generators are moments of the stress tensor 

T(z) = &gij : J”(z)J~(z) : . (3.3) 

The factor (-2) in the denominator is the value of the SO(2,l) Casimir operator: 
&mn Ej 

mn = .-zgij. The central charge of the Virasoro algebra is 

3k 
’ = k-2’ (3-4) 

This value of c should be the same as that for the corresponding N=2 algebra, 
- 

since our construction subtracts and then adds back a free bosom this is confirmed 

by the relation in eq. (2.5) between k and the N=2 central charge. We will need 

the explicit form only for Lo: 

Lo = ;(J$J; + J,-Jo’) - (J;)2 

+ -g (JZ-~J; + JI,J; 

(3.5) 
-2JtmJ;) . 

1 m=l - . 

Using these elements, we can build up a representation of the S0(2,1) current 

algebra by the following standard procedure: Begin with a unitary irreducible rep- 

resentation of the global group S0(2,1) at the lowest LO level of the representation, 
-- - 

then form the higher levels by acting in all possible ways with the J’,, n > 0. The 

states at the lowest Lo level satisfy JA I$) = 0, for n > 0. Using this statement 

and (3.5), we can compute the value of Lo for these states: 

J2 Lo = - 
k-2’ 

where 

52 = ;(J~+J; + J;J,+) - (J:)~ 

is the quadratic Casimir operator of the global group. 

(3.6) 

(3.7) 
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The classification of states at the lowest level is given by the representation 

theory of SO(2,l); 1 t 1191 e us briefly review that theory here. If we are concerned 

only with the representations of SO(2,l) (or its double cover SU(1, l)), we should 

restrict the eigenvalues of Jo3 to be integers (or half-integers). Most references on 

SO(2,l) consider only these special cases. However, it will be important for us 

to work more generally in the universal cover of SO(2,l) and allow Jo3 to have 

an arbitary fractional part. This fractional part is not changed by the action 

of the SO(2,l) g enerators. To classify SO(2,l) p re resentations, we will consider 

- 

separately states with Ji = $0 ( mod 1) for each value ~$0 in the interval 0 < $0 < 1. 

Because SO(2,l) is noncompact, its unitary representations are infinite-dimen- 

sional. Nevertheless, they are straightforward to construct. As in SU(2), the 

operators Jz, Ji are ladd er operators which change the eigenvalue of Jo3 by one 

unit. Let us first consider representations containing a state Irni with Ji = m, 

such that m > 0 and Im) has positive norm. Then the next state up in the ladder 

is Jo+ Im), and-this state has norm 

. . 11 J,+ Im) II2 = (ml Jr J,s Im) = (ml J;J,- + 2J,3 b> 
- ‘I w9 

> 2m(mIm) > 0. 

The last line follows from the ‘fact that JCJ, is a positive operator. Thus, this 

.next state and, by induction, all states in the ladder with J,f > m, have positive - 
norm. A similar argument implies that, if we had started with m < 0, then all 

states below m on the ladder would have positive norm. 

Now return to the state Im), m > 0, and consider the lower states on the ladder 

which are obtained by repeatedly applying JF. There are two possibilities: Either 

some state in the sequence has zero norm, terminating the ladder, or the sequence 

continues indefinitely. A zero norm state appears if Ji IQ) = 0 for some state I!) 

in the ladder. Then 

~~ le) = [J$J; - J,“(J,” - i)] le) = -e(e - 1) le) . (3.9) 

10 



Since e = n + 40 for some integer n, the terminating representations for fixed 40 

appear at discrete values of J2. Similarly, we can identify representations with 

negative Ji that terminate at their upper boundary; these also have discrete J2. 

The last family of unitary representations are those which do not terminate in either 

direction. For these representations, J2 is not quantized. However, the requirement 

that no states in the representation have negative norm implies a set of inequalities 

for J2, of which the strongest is obtained at the state I&), corresponding to the 

smallest positive value of Ji on the ladder. We must insist that 

0 < IIJ,- I$o) II2 = ($01 J$J,- 140) 

= (401 J2 + J,“(J,” - 1) PO> = [J” + $o($o - I)] ($0 I 40) . 
(3.10) 

This implies a lower bound J2 > C$O( 1 - ~$0). 

BY this analysis, the irreducible unitary representations of ~0(2,1) fall into 

four-classes: 

1: Identity: The trivial representation IO). This representation has J2 = 0 and 

J; IO) = 0. 

2. Discrete Series @: Representations of the form { Ilc + &)}, k = n, (n + l), 

* - -7 n > 0, such that J[ In + 40) = 0. These representations have J” = 

-(n + $o>(n - 1 + $0). 

3. Discrete Series VO, : Representations of the form { Ik + $o)}, k = -n, -(n + l), 

. * *, n 2 1, such that JO+ I-n + 40) = 0.’ These representations have J2 = 

-(n - 40)(n - 1 - $0). 

4. Continuous Series C: Representations of the form { Ik + $o)}, k = --co, . . . , 

co. These representations have J2 > $o(l - $0). 

The spectrum of J2 for fixed $0 is shown in Fig. 1. 
- 

-We now use each of these unitary irreducible representations as a base to build 

up a representation of the SO(2,l) current algebra. Let us begin by discussing the 
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module built on a base in the discrete series Dn . + The analysis is quite similar for 

all of the other cases. 

Consider, then, applying the Lo raising generators Ji, to states in a represen- 

tation in 27:. We label this representation by e, the Jo3 value of the lowest-weight 

state in the base. We must assume that the state le), the lowest-weight state in the 

base, has positive norm. The module is unitary if it follows that all other states 

have positive norm. We showed above that all states in the base have positive 

norm if e > 0. A second elementary condition is given by considering 

11 JI, le) II2 = (!I J1+JI1 I[) = (k - al> (e I l) . (3.11) 

Thus, the state at the first Lo excited level with smallest Ji has positive norm only 

if k > 2L The chain of states ( JI1)” It) f orm the left-hand boundary of the current 

algebra representation, as shown in Fig. 2. One can easily compute the norms of 

the higher states in this series and verify that all are positive if the condition k > 2! 

is met. Actually, the whole set of conclusions follows from the positivity of norms. 

in the base representation by application of the Weyl symmetry 

(3.12) 

of the SO(2,l) current algebra. -- - 

However, even if the boundary states all have positive norm, the interior of 

the current algebra representation always contains states of negative norm. The 

simplest example is 

(3.13) 

The minus sign here comes directly from the indefinite sign of the metric (2.8). 

- Since.the minus sign in (3.13) is associated with the U(1) part of the current 

algebra, we might hope to obtain a unitary module if we remove all states created 
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by moments of the U( 1) current+ this defines a module for the coset SO(2, l)/U( 1). 

Let us test this idea in the first nontrivial case: Ji = !, at the first excited level in 

Lo. The complete current algebra contains two states with these quantum numbers: 

J!l It) and JI1 Jz It). Th e coset is defined to contain only states of highest weight 

under the U(1) current algebra, that is, only states I$) such that Jz I$) = 0 for all 

n > 0. The one linear combination satisfying this restriction is 

I$) = 4l J5 1-e) - k JI1 J; 1-t) ; 11 I$) )I2 = 2kl(k - 2l)(k - 2) . (3.14) 

- 
Thus, the one state that lies in the coset module does have positive norm, provided 

that we impose the further restriction k > 2. 

We will now demonstrate that the three conditions e > 0, k > 2Q, k > 2 suffice 

to establish the unitarity of the coset module. Note that this result stands in clear 

contrast to the situation for coset current algebras built from a compact Lie group 

such as SU(2). In that case, both k and 2.!? are restricted to integer values. In the. 

case.we consider here, k and e can vary continuously and independently, as long 

as the three basic inequalities are satisfied. In the compact case, the quantization 

of Ic can be understood in an alternative way by representing the current algebra 

as a two-dimensional sigma model and identifying k with the quantized coefficient 

of a Wess-Zumino term. But in the noncompact case that we consider here, the 

corresponding Wess-Zumino coefficient is not quantized, since ~3(SO(2,1)) = 0. 

Our argument is based on the trick used by Kac to prove the unitarity of the 

standard SU(2) current algebra modules. [18] Let IX) b e a state with J,f = 112 located 

on the Nth level of Lo above the base. This state obeys 

(xl Lo Ix) = { - ‘(f:;) + N} (x I x) . (3.15) 

By inserting the explicit form for Lo given by (3.5), we can rearrange (3.15) into 
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the identity - 

[(k -.2)N + m(m - 1) - !(e - l)] . 
(3.16) 

We will now show that the norm of Ix) is positive by proving that both the nu- 

merator and the denominator of (3.16) are positive. 

Let us first analyze the denominator. The case N = 0, m = 4? is the lowest- 

weight state It) itself, which has positive norm by assumption. Aside from that 

case, the denominator is manifestly positive if k > 2 and m 2 !. For states with 

m < e, we may apply the Weyl symmetry (3.12) to relate them to states with 

m > e in a module where ! is replaced by ( f k - J!), or we may argue more directly 

as follows: The structure of the current algebra representation (Fig. 2) implies 

that if m < e, then e - m 5 N. With this in mind, let us rewrite the denominator 

in terms of p = (l - m). It becomes 

[(k - 2W -P) + P(P - 1) + (k - WP] , (3.17) 

which is manifestly positive under these conditions if p > 0. Thus, the denominator 

is positive for all states (except. I!)) in the representation. 

-- - 
To prove that the numerator in (3.16) is positive, we proceed by induction. Of 

course, because of the minus sign that appears, we can prove positivity only for 

states that are highest-weight under the U(1) current algebra, Jz Ix) = 0 for all 

n > 0. We will show that, for states of this type at Lo level N, the numerator is 

positive if it is positive for all such states at all lower levels, and for all smaller 

values of J,f. To begin, use the highest-weight condition to rewrite the quantity as 

(xl [c J_‘,J; + C JI~J,+] lx) . 
P10 PZl 

(3.18) 

This expression would be manifestly positive if we could insert between each J-, 

and Jp a complete set of positive-norm states. Since possible intermediate states 
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lie either at lower Lo levels or at lower Ji (and since, for fixed Lo in this module, 

the Jo3 eigenvalues are bounded from below), this manipulation would prove the 

induction step as stated above. However, some possible intermediate states are 

not highest-weight under the U(I) current algebra and thus need not have positive 

norm. 

We can remedy this difficulty by inserting projection operators that restrict 

. the intermediate states to be positive. Let P be the projection operator onto 

highest-weight states.of the U( 1) current algebra. Since all states of the theory can 

be built by applying operators J!, to the highest-weight states, and since these 

operators obey the simple algebra of raising and lowering operators, we have the 

completeness relation 

1=P+C 
n>O 

-1 

J”,P-Jz 

. . (3.19) -. 
We may insert this expression for the sum over intermediate states in (3.18). This 

produces an infinite sum of terms in which a typical one has the form 

This expression can be simplified by commuting the factors of 

right, and annihilating them against the states IX), to produce 

Jz to the left and 

lx’ 
[ 
5 (- f) m n1 .1. n, Jfjp+nl+...+n,,,~PJ~n~+...+n~ 

I 

In this way, (3.18) can be brought into the form 

I4 . (3.21) 

- - 

(xl ~~‘XY)J_+~PJ; + ~&+ddJ,PJ,+ Ix> 7 
Pa P21 1 (3.22) 
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where y = 2/k and - 

FP(y) = 2 f,(Y) , (3.23) 
q=o 

for fo(y) = 1 and 

MY) = c 9 c nl. .'. nm * 6(nl + n2 + * - * + nm - q) . (3.24) 
m>O 12, >0 

If F’(y) is positive, we can now carry out the induction argument n the manner 

_- explained above. 

It is easy to put &(y) ’ t in 0 a more explicit form. We first compute fq(y), using 

the generating function 

f(Y?> = 2 fq(Y>zq 
q=o 

= O” C-Y>” . . - ‘I c --[-log(1 - z)lrn 
m! 

m=O 

= (1 - z)Y . 

Now we may reexpand in z to find (q > 0) 
-- - 

f,(Y) = -;. (1 - Y)( 

Thus, by induction on p, 

l- i)... ( l- x> . 
q-1 

&(y)= (1-y)(l-$...(l-F). 

(3.25) 

(3.26) 

(3.27) 

This is positive for y < 1, that is, k > 2. Our inductive argument is now complete. 

Note that all of the correction terms, f,(y) for q > 0, are negative, so the outcome 

of our analysis was actually rather delicate until the last stage. 
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We have now proved that an S0(2,1)/U( 1) coset module built on a 27: discrete 

series representation is unitary for continuous values of k and e. We required only 

that k > 2, plus the additional restrictions .! > 0, k > 2!. For D; discrete 

series representations, the proof goes in exactly the same way and demonstrates 

unitarity in the region e < 0, k > -2-L The coset modules built on the identity 

representation (f = 0) and on the e = k/2 representation also can be shown to be 

unitary by this method. 

Finally, we must consider coset modules built on continuous series represen- 

tations. The inductive argument given above breaks down, because for fixed Lo, 

these modules have no lower bound on Ji, so J,‘J{ terms in the numerator are 

not under control. The argument is only sufficient to demonstrate that, if the 

module has positive norm states for sufficiently large positive or negative values of 

Ji, then the entire module has positive norms. We have not found a simple way 

to demonstrate this last point. In the next section, we will apply some heavier 

technical machinery to this question and prove that modules built on continuous 

series representations of S0(2,1) are also unitary for k > 2. 
. . 

i . 

4. An SO(2,l) determinant formula 

In this section, we will take a different approach to the proof of unitarity for 

coset modules of SU(2,1)/U(l). Th e s an ar method for analyzing the unitarity t d d 

of representations of the conformal and superconformal algebras is to study the 

determinant of inner products of states at a given Lo level. That method can be 

applied also to S0(2,1) current algebra and its cosets. Kac and Kazhdan [171 have 

given a straightforward general determinant formula for representations of current 

algebra. From this formula, we can see easily that there are no states of negative 

norm in the coset representations built from continuous series representations of 

SO(2,l). This resolves the problem left at the end of the previous section. 

- To begin the analysis, let us give a precise definition of the determinants we 

will investigate and compute their explicit form at some low levels. We label by 
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DN the determinant of inner products of all states in an S0(2,1) current algebra 

representation with Jo3 = m and lying at an Lo level N above the base. It is useful 

to think of these of all of these states as being built by applying products of the 

J1, and Jof to the state Im) in the base, and to compute their inner products in 

terms of (m 1 m) (which we set equal to 1). 

The individual inner products clearly depend on m and k; they also depend on 

the value of J2 in the base representation, through relations of the form: 

(ml J,‘J,- Im) = J2 + m(m - 1) . 
_- 

Let us define, for n > 0, 

,‘7-, = J2 + (m - n + l)(m - n)~, J+n = J2 + (m + n - l)(m + n) . (4.2) 

These give, respectively, the value of (Jo+ Jc) acting on the state Im - n + 1) and 

thevalue of (JCJ,‘) t' g ac m on Im + n - 1). These quantities vanish when the next 

-state along the chain, in the direction they indicate, is null. Of course they are 
- ‘. 

positive when J2 lies in the range of the continuous series and vanish only when 

J2 is continued to the range of the discrete series. 

As an example, consider the case of level N = 1. At this level, there are three 

states, which we write: -. - 

J-s1 J,j- b) , JI, Jo+ Im) , J:l Im) . (4.3) 

Their inner products are readily computed using the algebra (3.2), and one finds 

for the determinant 

D1 = -2(k - 2)L1,7+1 (J” + ;(; - 1)) . (4.4) 

To apply.this result to a unitarity argument, we must pull the formula apart into 

contributions from specific levels of the U(1) current algebra. Among the three 
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states in (4.3), t wo linear combinations are annihilated by Jf, and one state may 

be written as a current algebra descendant: I:1 Im). These states are at La level 

0 and 1, respectively, with respect to the U(1) current algebra. It is apparent that 

the state at level 1 is orthogonal to the two states at level 0. More generally, any 

two states are orthogonal if they lie at different levels of the U(1) current algebra. 

Thus the determinant DN will factorize: Let D$’ be the determinant of inner 

products of the states at level N of the SO(2,l) re p resentation which are at level 

q of the U(1) current algebra. Then 

_- N 

DN = 
rI 

D$$ . 
q=o 

(4.5) 

The term DE) is the determinant of inner products of the states in the coset module 

w2, wv), and so this is the object of primary interest to us here. For the 

level 1 example-above, Dir) = jlJtl Im) /I2 = -ak. Dividing (4.4) by this factor, 

we see- that D(10) is a product of factors each of which is positive when k > 2 and 

. . 
- ‘I J2 is-in the range of the continuous series. 

This example illustrates the general strategy of our unitarity argument. It is 

apparent by inspection of (3.2) that as k + co with J2, m held fixed, all states 

of the coset module have positive norm. Thus, if there exists a region of (k, J2) 
(0) -- - extending to large k in which the determinants DN are strictly positive, the norm 

of each individual state of the coset module must remain positive in this region. 

This is just the same strategy applied by BFK14’to the determinant formula for 

the N=2 supersymmetry algebra to demonstrate unitarity for c > 3. We will show 

explicitly that DE’ is positive in the region k > 2, J2 > &(l - &), that is, the 

region of k > 2 and continuous series SO(2,l) representations at the base. This will 

close the gap left in the the unitarity argument given above. The reader may verify 

that the zeros of our determinant formula indicate further unitary coset modules 

Gntaining null states, and that these are precisely the coset representations built 

on DO,+ and 29, representations which we analyzed in the previous section. 
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As a preliminary, we should simplify further the decomposition (4.5). The 

states of level N and U(1) 1 eve1 q are created by applying operators J!, to the 

states of level (N - q) and U(1) level 0. Thus, D$’ can be assembled from Dg!, 

and the determinant d, of inner products at of states at level q built on a normalized 

primary state in the U( 1) current algebra generated by J3. To be more precise, we 

must define a set of multiplicity functions. Let p(n) be the number of partitions 

of the integer n. This number-theoretic function is well-known to give the number 

of states at level n in the theory of one free boson. More generally, let us denote 

by pk(n) the number of states at level n in a theory of k free bosons. There are 

p(n) states at level n of a U(1) current algebra representation. In an S0(2,1) 

representation, barring the presence of null states, the states may be counted as 

deriving from moments of the three fields J +, J-, J3, and so the number of states 

at level n is pa(n). Similarly, we may count the states at level n and U(1) level 

0 by dropping all terms involving moments of J3; this leaves pz(n) states. Thus, 

applying all possible level q combinations of moments of J3 to the states at level 

(N - p) and U( 1) level 0 gives 

D$’ z.z . (d,)y2(N-q’ (Dg!q)P(q) . (4.6) _ 

-. - 
The factor d, is very simple: 

d, = C(-k)‘tq) , WI 

where C is a positive numerical constant and r(n) gives the number of factors of 

J$ in all states at level n. The generalization rk(n) to a system with k generators 

till appear below. Thus we can use (4.6) together with (4.5), to compute the 

reduced determinant Dg’ recursively level by level. 
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At a general level, the determinant DN is given by the following formula: 

DN = (-1)'3(N)CN(k - 2)73(N) fi (J-nJ+n) P3(N'n) 
n=l 

* fi [J2 + (;(k - 2) + q)(;(k - 2) + +)]p3(N-rs) , 

W) 

T,SZl 
M<N 

- 

where CN is a positive numerical constant and the exponent P3(N, n) is defined 

implicitly below. This formula can be obtained as a special case of the formula for 

the level N determinant in current algebra representations obtained by Kac and 

Kazhdan as Theorem 1 of ref. 17. We have made’two simple modifications of their 

result. These account for the fact that Kac and Kazhdan have stated their result 

for a highest-weight representation, in which the base terminates, while we need 

the result for a continuous representation in the base. First, Kac and Kazhdan 

normalize the highest weight state, I!) in a D$ representation, to 1, while we 

prefer-to normalize the state Im) = (J$)“-[ It) to 1. The factors of J-,3+, in, 

- ‘- (4.8). correct this convention. Specifically, we need one factor of 3+n for every 

appearance of the state (Jo+)” I m in enumerating the states contributing to DN, ) 

and similarly for J-n. We may then compare the inner products directly for D$ 

and C current algebra modules. In general, a different number of states contribute 

-- - to DN in the two cases. However, the counting of states at level N and Ji = m 

is identical between the two cases if, in the D$ case, m 2 (N $ e). When this 

condition is met, the exponents in the Kac-Kazhdan formula become independent 

of m and the whole formula depends on J 2, k, and m simply as a polynomial. In 

addition, the states contributing to DN can be matched one-to-one between the Q 

and C cases, and the individual inner products are identical functions when written 

as polynomials in J 2, k, and 172. Thus, the evaluation of the Kac-Kazhdan result 

for m 2 (N -Q), after the change in normalizations, gives directly the determinant 

of inner products in a continuous SO(2,l) coset module. This is the formula (4.8). 

The various determinants D$’ can be determined recursively from (4.8) by the 
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strategy that we have outline&above. The result is 

D(O) = 
N 

DNk-‘dN)(k _ q7dN) fi (,JJ+~)‘~(~‘~) 

n=l 

. fi [J’ + (;(k - 2) + F)(;(k - 2) t f$)]P2(N-“) , 
T.SZl 

T.S<N 

(4.9) 

. . 

where DN is a positive numerical constant. The factors in the first line are positive 

when k > 2 and J2 is in the region of the continuous series. The factors in the 

second line are positive when k > 2 and J2 > 0. Thus, the determinant of inner 

products of coset modules SO(2, 1)/U(l) is always positive for continuous series 

representations under the condition k > 2. As we have argued above, this implies 

the unitarity of these representations and completes our general analysis of the 

unitarity domains. Note that for each type of global SO(2,l) representation that 

gives rise to a unitary coset module (except for the trivial cases e = 0, k/2), all of 

the primary states in the module have strictly positive norm; there are no nontrivial 

null states. 

5. Unitary representations of the N=2 algebra 

-- - Now that we have constructed unitary modules for the coset SO(2,1)/U(l), 

we can combine these with the state space of a free boson to construct unitary 

representations of the N=2 superconformal algebra. The arguments of Section 2 

imply that the most general representation of the local N=2 current algebra with 

c > 3 can be obtained in this way. Thus, we should obtain a complete picture of 

the domain of unitary N=2 representations for c > 3. 

The representation theory of the superconformal algebra is often discussed in 

terms of the moments of the operators T, Y’:, and J; these are usually named 

L,, G:, and JI;, r espectively. In order to specify the commutation relations of 

the moments, one must specify the boundary conditions on 5”:. Taking TF to be 
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antiperiodic around the origin defines the Ramond algebra. In that case, n, r, and 

k are all integers. Taking TF to be periodic gives the Neveu-Schwarz algebra; in 

this case, n and k are integers, but r runs over half-integers. Fortunately, these two 

algebras are not really distinct, since if L,, G$, Jk satisfy the Neveu-Schwarz alge- 

bra, we can construct an algebra corresponding to an arbitrary (complementary) 

moding of the G* by writing: 1201 

&Ia = G;t , @;-, = G,, 

in = Ln - aJn + za26(n) , jn = Jn - is(n) . 
(5.1) 

We will discuss our results below in the language appropriate to the Neveu-Schwarz 

algebra. The analogous results for the Ramond algebra and other modings of this 

class may be obtained by applying the transformation (5.1). BFK’43 also discuss a 

‘twisted’ algebra in which one supercharge is moded by integers and the other by 

half-integers. Our analysis does not’ generalize simply to that case. 

Our general method will be to begin with the local operators that create 

highest-weight states of an SO(2,l) * p ie resentation, remove the dependence on 
i . 

the boson 4, and restore a dependence on the boson 9 in such a way as to produce 

an operator that creates highest-weight states of the N=2 superconformal algebra. 

Let a(z) be an operator which creates a state in the base SO(2,l) representation 

of the current algebra module. Such a state is annihilated by Ji for all n > 0. 

-. - With the expansion of Ji(z) in (3.1), th’ is implies the operator product relations 

J+(z)@(O) - ++(o) 7 J-(z)@(O) - $0) 7 J3(z)‘D(0) N tJ@(O) . 

(5.2) 
The last of these relations implies tha,t, if Q creates a state with Ji = m, this 

operator depends on C$ through 

%here the opera,tor Q lives entirely in the (generalized) parafermion theory. Using 

(2.6), we see that the singularities in (5.2) correspond to the following singularity 
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structure of parafermion operators: 

$(z)6(0) - 2-l+? ) Il’(z)q)) N *-l-Y . (5.4) 

On the other hand, an operator Q(z) which creates a highest-weight state of the 

N=2 algebra obeys the operator product relations 

by virtue of the fact that the moments G: and J, of TFf and J annihilate the 

highest-weight state for r, n > 0. To restore (5.4) to the form (5.5), we define 

@(z) = O(*)e”qfi~ ) (5.6) 

with 

3 
-q = -$. 
c (5.7) 

By (2.2), q is the U( 1) charge of the highest-weight state of the N=2 representation. 

Thus,-each individual state in the base SO(2,l) representation of a current algebra 

module gives rise to an irreducible representation of the N=2 algebra. If the current 

algebra coset module is unitary, the N=2 representation is also unitary. 

Let us work through this construction more explicitly for the base states of a 

current algebra representation built on a representation in the discrete series D$. 
-. - 

Let the lowest-weight state on the base be IQ, and label the higher states as 1-e + n). 

For each n, we should find a unitary irreducible representation of the N=2 algebra. 

Following the procedure sketched above, we begin with the operator Q(z) which 

creates the state le + n). We divide out the dependence on 4, as in (5.3), and then 

add back an exponential of 9, with charge given by (5.7): 

q = -i.f(l-t-n) = - i(F)+n(f-i) 
[ 1 . (5.8) 

mote that q is negative for these representations. According to (3.6), the original 

operator @ created states with Lo = -e(e - l)/(k - 2). The final operator @ thus 
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creates states with the Lo value 

h = -v- 1) 
k _ 2 t &U+ n)2 t izq2 

=- l(! - 1) + (e + n)2 
k-2 k-2 ’ 

(5.9) 

This formula for h can be simplified to 

h = (n + k)/yI - i(g - 1)(n2 + n) . (5.10) 

For each fixed c > 3, this formula gives a line segment in the (q, h) plane. Because 

0 < (2e/ k) < 1, this segment is bounded by the points 

n2 c 
from : q = -n(i - 1) , h = ~(3 - 1) 

n2 
to : q = -S - n(S - 1) , h = (n + i)i + ~(5 - 1) . 

(5.11) 

In Fig. 3, we plot this set of line segments, together with their reflection (-q) -+ q. 

These segments with q > 0 give the location of the representations formed in an 

analogous way from the base states of D; discrete series representations. 

-. - These results are in precise agreement with the general constraints derived by 

BFK. 141 Those authors found that, for c > 3, unitary representations of the N=2 

algebra lie in a domain in the (q, h) pl ane bounded by just the line segments (5.11). 

The boundary segments correspond to modules built on I h, q) in which the leading 

state in the multiple operator product 

q<o: (T$)n+l Ikq) ; q>o: (Tj4n+1 lb q> (5.12) 

& null. In our construction, this condition follows from the fact that the base 

representation of the original SO(2,l) module terminates at 1-e). BFK found that 
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modules with such null states were unitary for q values beginning at the intersection 

of each segment with the previous one and ending on the parabola 

2(;-l)h+q2=o. (5.13) 

These are precisely the limits we have derived in (5.11). 

_- 

The Weyl symmetry (3.12) implies that the boundary N=2 representations 

can be derived in another way. We begin with the operators Q, which create the 

states (JIl)” I[) on the left-hand boundary of a DL representation. These states 

are annihilated by J[ but not by JF, so the operator products of the Ji with @ 

have the singularities 

J+wP> 

Now- define 

with. 

Z-~@+(O), J-(z)@(O) N z°K(0), J3(z)@(0) N cl ; %(O) . 

(5.14) 

tq*) = (@,-v-&o) . ehE ) (5.15)’ 

$f! - n) $ Eq = 1 . (5.16) - 

-. - These operators @ satisfy the N=2 highest weight conditions (5.5). They create 

states with Jo = q and Lo = h, where 

h = r”,“:;’ ] + n + $(l- n)2 -I- kiq2 . 

It is not difficult to show that these relations reproduce the q > 0 branches of 

(5.10), with the endpoints again correctly given by (5.11). 

Finally, let us consider N=2 representations built from the coset modules with 

&tinuous series SO(2,l) representations at the base. These C representations are 

characterized by the value of the Casimir operator J2 and the fractional part $0 of 
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the Jo3 eigenvalues. Choose the original operator <P in our construction to be the 

operator which creates the base state with Ji = m = (n + 40). This operator can 

be carried through the steps from (5.2) to (5.7); this produces an N=2 primary 

field which creates states of Jo = q and Lo = h, where h is given, analogously to 

W’L by 

h= &(J2 t m2) . (5.18) 

For each value of q, J2 (and therefore also h) varies continuously from a lower bound 

to infinity. To determine the region of the (q, h) pl ane covered by such continuous 

representations, we need to compute the lower bound on h as a function of q. Since 

the base SO(2,l) p re resentation is unitary, the lower bound on J2 depends on the 

fractional part of m: J2 > $o(l - 40). Thus 

h > kc; - 1) [4oP - 40) t (72 + 40)2] 

= (5 - 1) [(TX + i)(n + $0) - i(n2 + n)] , 

(5.19) 

while q is given by 

4 7 -(i-l)(nt&). (5.20) 

The boundary of (5.19) is just the line segment (5.10). As $0 is varied from 0 to 1, q 
.-. _ 

sweeps over the region from the beginning of the nth segment to the beginning of the 

(n t 1>st segment. That is, the N=2 representations formed from the continuous 

series of SO(2,l) p re resentations cover completely the interior of the boundary 

shown in Fig. 3. Thus, our correspondence gives a manifestly unitary construction 

of all of the unitary representations of the N=2 algebra identified by BFK for c > 3. 
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6. Is N=2 superconformal symmetry solvable? 

We have seen in the previous sections how SO(2,l) current algebra provides a 

unified construction of the unitary representations of the N=2 algebra with c > 3. 

However, we have not yet discussed how to combine such representations into 

modular invariant, crossing symmetric, conformal field theories. In this section we 

explore whether the connection to SO(2,l) can help in this regard. At present we 

have no definite answer to the question, and parts of this section will be rather 

speculative. 

- We have shown that the SO(2,l) current algebra, the algebra of SO(2,l) 

parafermions defined by (2.4)) and the N=2 superconformal algebra for c > 3 are 

all related by addition or subtraction of a free boson, so a solution to any one 

of the three would solve them all.. Correlation functions of highest-weight fields 

for the three algebras differ only by multiplication by correlation functions of free 

boson exponentials. The analogous observation for c < 3 representations has been 
PI exploited extensively by Zamolodchikov and Fateev, [=I Qiu, Gepner[12’211 and, 

othersy3’241 who have used the solution of SU(2) current algebra due to Knizhnik 

and Zamolodchikov,[251 and Fateev and Zamolodchikov P61 to calculate quantities 

of interest in the N=2 discrete series. So one might try to solve SO(2,l) current 

algebra with the same goals in mind. 

-. - One possible approach to SO(2,l) current algebra would be to construct the 

four-point correlation functions of highest weight fields. For SU(2) current al- 

gebra, this calculation can be done in two quite different ways. Unfortunately, 

both seem to fail in the noncompact case. The method of refs. 25, 26 uses the 

Sugawara expression for the stress tensor to derive a differential equation for the 

four-point functions which is a matrix in the group representation space. In our 

case, this matrix equation becomes infinite-dimensional. An alternative approach 

is to study the four-point function of parafermion highest-weight fields, and to ap- 

ply the stress-tensor method to derive a differential equation for this object. This 

method has been used by Mussardo, et 1271 aE., in the Ising model (22 parafermions), 
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and the method generalizes to the higher level SU(2) parafermions. However, in 

all of these cases, the stress tensor method gives a closed system of equations only 

by virtue of the fact that the SU(2) p arafermion algebra contains nontrivial null 

states, which follow from the null states of global SU(2) representations. We have 

seen that these null states do not appear in SO(2,l). We believe that these dif- 

ficulties are essential and stem from the fact that the tensor products of highest- 

and lowest-weight SO(2,l) p re resentations that contain the identity also contain 

infinitely many continuous-series representations. Thus, new methods are neces- 

sary to compute correlation functions in SO(2,l) current algebra, though we have 

some hope that these methods may be found through the group theory of SO(2,l). 

An alternative approach to c > 3 superconformal field theory would be to 

construct modular-invariant partition functions from combinations of the charac- 

‘, 

ters of the supersymmetry algebra. It is important to note that for c > 3 one 

cannot build a modular-invariant partition function from a finite number of N=2 

representations. This result is a generalization (due to E. Verlinde 1281) of Cardy’s 

result 12’1 that for c > 1 one needs an infinite number of Virasoro primary fields. 

- ‘. One compares the r -+ ioo behavior of the partition function (dominated by the 

contribution of the identity operator) 

,-J L edmr/6 
7 7- + ice, (6.1) - 

- with that obtained by a modular transformation from the behavior as T -+ 0. The 

latter is controlled by the growth of the characters of the representations of the 

chiral algebra, if there is a finite number of representations. For the N=2 algebra, 

the Neveu-Schwarz characters are 14’ (if there are no null states) 

x(q) z.z qh-ci24 n co (l + qn-1’2)2 = q”-c/24+‘/819dd 

n=l (1 - da T3(d ’ (6.2) 

where q = e2aar. So their maximum growth is - e Ki/4r as IT --+ 0. Including the 

Lntiholomorphic characters and transforming to the r + ioc region, the maximum 

growth is 2 N earm’i2, which is incompatible with eq. (6.1) unless c < 3. 
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[3?1 In a rational conformal field theory, the partition function is organized into 

- 

a finite number of characters by some chiral algebra. From the above argument the 

N=2 superconformal algebra is not large enough to provide such an organization 

for c > 3. So one approach to defining solvable N=2 superconformal field theories 

for c > 3 is to find larger chiral algebras containing the N=2 algebra. Kazama 

and Suzukil131 have recently provided a wealth of such theories using coset (G/H) 
PA constructions. Tensor products of N=2 theories with c < 3 also provide solvable 

N=2 theories with c > 3. We would like to ask whether there are theories solved by 

extensions of the N=2 algebra that are connected in a natural way with SO(2,l). 

One possible clue in this direction is provided by the recent relations found PL321 

between N=2 superconformal invariance and the theory of quasi-homogeneous 

complex analytic 1331 singularities. One may consider each possible. singularity as 

a polynomial in fields forming the superpotential for a class of N=2 supersym- 

metric Landau-Ginsburg theories. Since the superpotential is not renormalized, 

f ‘. 

renormalization-group flows stay within this class of Lagrangians. For an ap- 

propriate choice of the kinetic term, one can find a renormalization-group fixed 

point, which then corresponds to an N=2 superconformal field theory. Many of 

the properties of this superconformal theory, such as the central charge c and the 

U(1) charges q of the chiral N-2 superfields, may be inferred directly from the 
[31,321 superpotential. Since chiral superfields are just those for which G -. - +; IQ O1‘ 

G-, I@) = 0, th ese correspond to representations on the lowest boundaries of the 
-2 

BFK diagram for which h = dx%q. Thus, a subset of the N=2 representations 

appearing in the theory is specified completely. 

Singularities are partially characterized by their modality, which is the num- 

ber of deformations preserving the singularity type, and those with modality less 

than three have been 1331 classified. Those of modality zero are classified by the 

A, D, E Dynkin diagrams of simply-laced, simple Lie algebras, or alternatively by 

&e discrete subgroups of Su(2). Th e correspond to the c < 3 modular-invariant y 

N=2 superconformal theories. The modality one singularities consist of three with 
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c = 3 that have been identified 13L321 as orbifolds of complex tori, a set of fourteen 

“exceptional” singularities, and an infinite set of “hyperbolic” singularities. The 

exceptional set is related to the existence of certain exceptional discrete subgroups 

of SO(2,l). For th e f ourteen exceptional singularities one finds that c always has 

the form 31c/(lc - 2) with k an integer, and )qj = 2t/(k - 2) where e runs over a set 

of integers and half-integers between 0 and k/2.* This suggests that there might be 

a natural description of the associated N=2 theories in terms of SO(2,l) current 

algebra. 

- 
Furthermore, many of the exceptional unimodal singularities are direct prod- 

ucts of modality zero singularities, and the corresponding N=2 theories are in these 

cases tensor products of c < 3 models, which have been solved exactly! Thus we 

know the exact partition functions. of many of the c > 3 theories.corresponding 

to exceptional singularities, and can describe their operator content in terms of 

the SO(2,l) q uantum numbers J2 and J3, using the relations found in Section 

5. An N=2 primary field in the tensor product has the form Q, = n a;, where 

the component fields Qr; are not necessarily primary under the component N=2’ 
. . 

- ‘I algebras. From its conformal dimension h = C h; and charge q = C q;, and eqs. 

(5.7), (5.18), we can compute 

J2 = (k - 2)h - [+(k - 2)q12, J3 = -;(k - 2)q. (6.3) - 

-- - 

To understand how an N=2 superconformal field theory might be solved using 

a particular singularity, we need to be able to describe the values of J2 and C#I~ that 

occur, and their multiplicities. (Each state is labelled by a left-moving and a right- 

moving J2 and 40, of course.) For the tensor product examples, we have found 

* We thank C. Vafa and E. Martinet for pointing this out to us. 
t It has been conjectured [34-361 that all rational conformal field theories have G/H con- 

structions where G, H are compact Lie groups. Tensor products of c < 3 models certainly 
fall into this class, with G/H = (SU(2) x U(l)/U(l))“. However, if one can determine _ 
the properties of the superconformal field theories associated with the other exceptional 
singularities, and if they turn out to be rational, it will be interesting to see whether they 
are consistent with the conjecture, as the choice of G, H is not obvious here. 
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that $0 is always an integer or half-integer, and J2 is always either an integer or an 

integer plus l/4. In fact, the values of J2 for the (infinite number of) continuous 

series representations that appear are all equal, modulo (Ic - 2), to J2 for one of the 

finite number of discrete series representations that appear, for which J2 = e( 1 - !) 

with 2& E Z, 0 5 2e 2 lc. We still lack the required description of the multiplicities, 

however. 

It is easy to see that continuous series representations are always present in the 

tensor product partition function. For example, the linear combinations of U(1) 

currents J” that are orthogonal to the sum J = C Ji are primary under the total 

N=2 algebra, with h = 1 and q = 0, hence J2 = Ic - 2. It is also worth observing 

that spectral flow from one Neveu-Schwarz representation to another (through the 

deformation (5.1)) 1 eaves J2 fixed and corresponds to shifting 53 by one unit within 

the same SO(2,l) representation. 

Finally we note that it may not be necessary to organize a conformal field the- 

ory into a finite set of primary fields under some chiral algebra, in order to solve 

it. A ‘free boson on a circle of irrational radius is such an example, in which the’ 

partition function contains a discrete but infinite set of characters of the Virasoro 

algebra. So one might try to directly construct modular-invariant partition func- 

tions from the characters (6.2) and the characters [3731 for the N=2 representations 

with additional null states. This type of approach was considered for the case of the 

N=4 superconformal algebra in ref. 38. Restricting to N=2 representations with 

J2. and 40 belonging to a discrete but infinite set (as in the tensor product examples 

described above) might simplify the problem of constructing modular invariants. 

We have tried such a construction in the parafermion system, but without success 

to date. 

- 

In summary, we have described a connection between N=2 superconformal field 

theories with c > 3 and SO(2,l) current algebra, which we believe will prove useful 

in better understanding the former, though exactly how remains to be seen. 
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FIGURE CAPTIONS 

1) Spectrum of J2 for unitary representations of SO(2,l) with Jo3 = C#IO (mod 

2) Current algebra representation built on a discrete series representation of 

SO(2,l). The number in each circle indicates the multiplicity of states at 

that value of (Lo, J,“). 

3) Unitarity boundaries on the (q, h) plane for c = 7. 
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