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ABSTRACT 

The SLAC design for a next-generation linear collider with 
center-of-mass energy of 0.5 to 1.0 TeV requires that multiple 
bunches (- 10) be accelerated on each RF fill. At the beam 
intensity (- 1O’O particles per bunch) and RF frequency (11 to 
17 GHz) required, the beam would be highly unstable trans- 
versely. Using computer simulation and analytic models, we 
have studied several possible methods of controlling the trans- 
verse instability: (1) using damped cavities to damp the trans- 
verse dipole modes; (2) adjusting the frequency of the dominant 
transverse mode relative to the RF frequency, so that bunches 
are placed near zero crossings of the wake; (3) introducing a 

... .- cell-to-cell spread in the transverse dipole mode frequencies; and 
(4) introducing a bunch-to-bunch variation in the transverse fo- 
cusing. The best cure(s) to use depend on the bunch spacing, 
intensity, and other features of the final design. 

1. INTRODUCTION 

In this paper, we address the problem of transverse instabil- 
ity of a train of bunches in a high energy linac. The main moti- 
vation for accelerating multiple bunches per RF fill is to obtain 
higher luminosity for a given expenditure of RF energy. The 
optimal bunch spacing, bunch charge, and number of bunches 
depend upon many factors other than just the need to be able 
to control the beam breakup. There is a serious constraint on 
charge per bun&, due to pair creation at the interaction point.“’ 

. . Another strong constraint is imposed by the need to keep the 
i ’ . bunch-to-bunch energy variation sufficiently small: Our general 

approach has been to look for the most feasible cure (or com- 
bination of cuies) for the instability, given bunch spacing and 
charge that are largely determined by such factors as these. 

2. METHODS OF ALLEVIATING 
THE INSTABILITY 

ye h&e examined the following possible cures for the trans- 
verse instability: 
Damped cavities. Theoretical and experimental studies show 
that it is possible to construct damped acceleration cavities that 
significantly reduce the Q’s of the transverse dipole wake modes.’ 
One way to construct such cavities is to cut axial slots through 
the irises of structure and couple these slots to radial waveguides. 
Transverse mode Q’S as low as 10 can be obtained in this way, 
although very precise machining of the slots will be required. 
Measurements have shown that there is no significant adverse 
effect of such slots on the accelerating mode. Another type of 
damped cavity has side-coupled slots that go into the cavity 
without cutting the irises. These slots perturb the accelerating 
mode to some extent, but do not transmit it. The Q’s of the 
transverse modes can be as low as about 40 in this case. 
Placing the bunches near wake zero crossings. If the transverse 
wake is strongly dominated by its fundamental mode, then it has 
zero crossings that are approximately equally spaced. Therefore 
it is possible to place all,the bunches in a train near zero crossings 
of the wakefield, if the ratio of the frequency of the fundamental 
dipole mode to the frequency of the accelerating RF is tuned to 
satisfy: 

1 
5 nXwA = m&f = e , (1) 

l Work supported by the Department of Energy, contract DE- 
AC03-76SF00515. 

where P is the bunch spacing, m  and n are integers, and X,f and 
Xwr are the wavelengths of the RF and the fundamental dipole 
wake mode. 
Spread in frequency of each tmnsverse dipole mode. One might 
also consider an RF structure in which the frequencies of corre- 
sponding transverse dipole modes differ from cell to cell. This 
is the case, for example, in the existing SLAC linac, where the 
mode frequency spread is a few percent: The frequency spread 
results in a reduction of the effective Q  of each mode. 
Bunch-to-bunch variation of tmnsverse focusing. Using a sys- 
tem of time-varying quadrupoles, one could introduce a small 
spread in the focusing functions k, of the bunches, so as to par- 
tially cancel the wake force due to preceding bunches. This is 
essentially the BNS damping mechanism’ applied to multiple 
bunches. However, the focusing spread needed to produce a sig- 
nificant effect is large; we have discussed this cure elsewhere’ as 
a possible adjunct to other methods. 

3. SIMULATION PROGRAM FOR BEAM 
BREAKUP IN LINACS 

As the basis for our computer simulations, we have derived 
an integral representation for the transverse offset of each bunch, 
assuming adiabatic acceleration and smooth focusing. We con- 
sider point bunches of charge N particles per bunch, with in- 
terbunch spacing P. The acceleration is assumed to be linear: 
7 = 70 + Gs, where 7 is the particle energy divided by the rest 
energy m$, and G is a constant. We use the smooth-focusing 
approximation k(s) = l/p(s) for the focusing function, where 
B(s) is the “averagen betatron function at longitudinal position 
s. The smooth focusing function of bunch n is taken to be: - 

k,,(s) = 5 ‘k”(O) . 
[ I 

For the main linacs of the collider, we will assume p = l/2. 
but for other linac subsystems* (e.g., injector linacs) it may be 
desirable to maintain more uniform k, namely p zz 0. 

The transverse dipole wake function is a sum of modes of 
the following form: 

I<, z W,(t) = CWm sin(K,o) exp -2~ 
( > 

, (3) 
m  m  

where z is the distance behind the exciting bunch; li, is the 
wavenumber and Qm is the quality factor of mode m, and the 
W,‘e are constant coefficients. Units of W,(z) are V/Cotil/m’. 
The equation of motion (in one transverse plane) for the offset 
z,, of bunch n is: 

7(s) 4 + r’(s) xi, + -r (4 k; (s) xn 

= $ 2 UT, [(n - j)P] 5, (s) . '(4) 
j=l 

Here primes denote derivatives with respect to s. If we assume 
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. .- 
the WKB solution 5. EXAMPLES 

5.1. Linac Parameters 

For illustration, we consider a main linac with accelerating 
frequency 17.1 GHz, length 3 km, initial energy 16 GeV, and 
final energy 500 GeV. The beta function is taken to be 3.2 m 
at the beginning of the linac and scales as ~‘1~. Keeping the 
bunch-to-bunch energy variation as rmall as possible imposes a 
relation between the number of particles per bunch, X, and the 
bunch spacing L (Ref. 3): 

_- 

. . 
i 

as the motion for the first bunch, and drop a term with rapidly- 
oscillating integrand, one can show (Ref. 7) that the solution for 

- the transverse motion of bunch n may be written: 

. 
I”(S) = 70 9 

n (0) J[ 1 73 
expl-GhJs', @I 

0 

x E WJ(n - j)Pj*j(s')ds'} [-$$I L?e exp[+W~,O)1 T 
+I 

(6) 
-where 

t+f~&,s’) L jk&“)ds” 
9’ 

(7) 

is the phase advance of bunch n between s’ and s. A computer 
program LIXACBBU was written to numerically integrate the 
equations for zn(sj. 

4. VERY STRONGLY DAMPED WAKE 

If the wake is so strongly damped that a bunch only sees 
a significant wake from the immediately preceding bunch, we 
can use a simple “daisy chain’ model to estimate the transverse 
blowup of each bunch in the train. Let us assume that the 
focusing function is the same for all bunches and scales according 
to Eq. (2) with p = l/2. Then, one may show that the equations 
of motion can be written as if there were no acceleration (see 
Ref. 7): 

I;’ + kiz, = 0 

2’. + k;z, = Ne2Mi(l)I -1 03) 
Eo 

n (n>l) , 

where ko and EO are the focusing function and energy at the 
beginning of the linac, and the longitudinal coordinate s is to 
be interpreted ss an ‘effective length” -- - 

v* 
k(s)ds for 7 > y0 (9) 

0 

Assuming z](s) = aleitS where al is a constant, one finds solu- 
tions In = a,(s)eit8, where 

a. (8) = 2 y a”-j(0) , (10) 
j=O ' 

and we have defined 

u ~ Ne*Wdl) 
2koEo . 

If the initial conditions are a,,(O) = 1, this is just the first n 
terms of the Taylor series for exp(-ios). Thus, if al; is of or- 
der 1, (where L is the effective length of the linac), there is no 
significant blowup of bunches beyond the first few in the train. 
We show an example of this behavior in the next section. 

1= cT,ze’ 
2 ’ 

where T, is the filling time and T is the ratio of the filling time 
to the attenuation time of the RF structure. The single-bunch 
loading is 

4Neno 
90=7 1 

2 

where KO is the loss parameter of the accelerating mode and E, 
is the acceleration gradient. Taking TJ = 60 nsec, T = 0.6. X(D = 
436 V/pC/m, and E, = 186 hIeV/m gives 

P % (0.246m)& . 

We shall take P to be 24 RF cycles (about 42 cm) and .Y = 
1.67 x lOlo in our examples. 

5.2. Highly Damped Rhke 

The number of e-foldings of the wake between bunches is 
about: 

KOP 100 
2Q-r ’ 

(15) 

for E = 0.42 m and wavenumber Ko of the fundamental trans- 
verse mode about 470 to 480 m-l. Let us take as an example 
fe;Ena;tnze= 475 m-r, so that there are about 3 c-foldings 

In Fig. 1, the result of the daisy chain model is compared with 
the result of the full simulation program LINACBBU. 

5.3. Damped Wake Combined With Tuning 
of Wake Zero-Crossings 

The combination of lowering the Q’S and tuning the fre- 
quency of the fundamental transverse dipole mode has been dis- 
cussed in detail in Refs. 7 and 6. 
Figure 2 shows an example of ‘tuning curves”, where the masi- 
mum transverse blow-up factor of any of the bunches is plotted 
versus the frequency of the fundamental transverse mode. for 
various values of Q (assumed for simplicity to be the same for 
all transverse modes). The numbers plotted along the curves 
show the bunch that had the maximum blow-up. Thus, for this 
example, the curves are independent of the number of bunches in 
the train, provided there are at least four bunches; current TLC 
designs have at least 10 bunches per train. Note that even for 
the higher Q’S, the tolerance on tuning the fundamental mode 
frequency is at least &O.l%, which should not be too difficult to 
achieve. 

5.4. Use of a Spread in Tmnaerse hhde Frequencies 

We give an example similar to the previous one, except that 
we also introduce a frequency spread in each of the transverse 
modes. . 

2 
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Fig. 1. Comparison of the results of daisy chain 
model (plotted as n’s) with the results oj the program 
LINACBBU (plotted as X’s). In each case, the value 
of the envelope function la,(s)\ at the end of the linac, 
for each bunch number n, is plotted. The transverse off- 
set I,(S) = a,(s)exp(iks). The focusing junction, k, is 
assumed the same /or all bunches. 

Tuning Curves, w/o Mode Frequency Spreads 
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_ Fig. 2. Maximum transverse amplitude xmnz (normal- 
ized) of all bunches as a junction of the frequency of 
the fundamental transverse dipole mode, for values of 
Q = 20 to 50. The central value of the fundamental 
transverse mode wavenumber, where X,,/X, = 413, is 
477.85 m -I. The range shown about Ko is f 1%. 

3 

Figure 3 shows tuning curves for Q = 40 to 70, with a to- 
tal spred of 2% in the frequency of each transverse mode dis- 
tributed uniformly other 200 values; other parameters are as in 
the preceding example. For Q = 40, the blow-up is a factor 2 or 
less, even with the fundamental transverse mode frequency not 
tuned to place bunches near wake zero crossings. For the higher 
values of Q shown, some tuning would be required. Note that 
Q’s of 40 or so are obtainable without slotting the irises, and 
that according to Figs. 2 and 3, an acceptable solution could 
be obtained by either tuning the fundamental transverse mode 
frequency or introducing a 2% spread in the transverse mode 
frequencies, with Q N 40. 

3.80 
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Tuning Curves, with Mode Frequency Spreads 
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Fig. 3. Maximum transverse amplitude xmaI (normal- 
ized) of all bunches as a function of the frequency of 
the fundamental transverse dipole mode, for values of 
Q = JO to 70, with a spread in each transverse mode 
frequency of 2%. The central value of the fundamental 
transverse mode wavenumber, where X,,/Xrrfl ‘- 413, is 
477.85 m-l. The range shouln about Ii0 is % 1%. 
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