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1. INTRODUCTION 

For form factor calculation in strong interactions, it has been shown1 that 

the argument of the running coupling constant should be taken as the square of 

the momentum transfer of the exchanged gluon in order to make the perturbation 

theory meaningful. This was argued from the convergence of the perturbation 

series and can be justified in any process which does not involve triple or quartic 

vertices in the lowest order. In a recent leading-order perturbative QCD analysis of 

the proton Dirac form factor F:, we have shown2 that it is possible to fit the data 

in the range of momentum transfer squared 0 < Q2 < 30(GeV/c)2 by evaluating 

the strong coupling constant oS(Q2) at th e exact gluon kinematics for each of the 

diagrams contributing to the leading-order process. In this paper, we extend the 

same considerations to the pion form factor. 

The factorized3 QCD expression for the pion form factor (see Fig. 1) is given, 

bY 

where 8% = Min(z, 1 - z)Q, $(x:, QZ) is th e q uark distribution amplitude of the 

pion, and the hard scattering amplitude TH, to the leading order in a, is given by: 

TH(z,Y,Q~) = $ 
2 a,[(1 - x)(1 - y>Q21 + 1 4zyQ2) 
3 (l-X)(1-Y) 3 zy * 1 (2) 

In Eq. (2), th e argument of oS is the momentum transfer of the exchanged gluon 

as shown in diagrams of Fig. 1. While the leading order hard scattering amplitude 

in Eq. (2) ex i i s h b t d ivergence at both end points of x and y, the bound state quark 

distribution amplitude suppresses the end point singularities. 
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In this case, however, an immediate problem arises if the calculation of Eq. (1) 

is attempted with the usual one loop formula for the running coupling constant 

(3) 

(,B = 2/3 nf and nf is the number of flavors), since the integration in Eq. (1) 

allows cys to be evaluated near zero momentum transfer. The same problem arises 

in the proton Dirac form factor analysis2. In Ref. 2, this problem was avoided by 

introducing5 a cut-off in the formula for as(Q2) t o p revent the coupling constant 

from becoming infinite for vanishing gluon momenta. In particular, in Ref. 2 the 

following modified relation for os, as proposed in Ref. 6, was utilized: 

as(Q2) = 4T 
/Qh ( Q2&Yz) 

where mg is interpreted as a dynamical gluon mass with a value of typically about 

0.5 GeV/c and A is order of 100 MeV. For Q2 >> rni, it coincides with the one 

loop version (Eq. 3), but at very low momentum transfer, this formula “freezes” 

the coupling constant to some finite but not necessarily small value. 

The physical meaning of frozen coupling constant 5’6 may be found in the con- 

finement mechanism suggested by l+l dimensional QED.7 If one tries to elongate 

a positronium (e+e-), it is energetically more favorable for the vacuum to create 

fermion and antifermion pairs so that the effective coupling between the original 

two charges eS and e- is frozen because of screening by vacuum condensates. In 

fact, the color confinement does not necessarily mean the divergence of os(Q2) 

at small momentum transfer. The idea of frozen coupling constant may be more 

natural to understand the color confinement problem. As an evidence of vacuum 
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condensates in QCD, quark and gluon condensation order parameters are obtained 

by QCD sum rule from PCAC and instanton solutions:8 

(Vat I: i~u :I Vat) = (Vat I: dd :I Vat) 21 -(250 MeV) P-4 

and 

( Vat 1: 4 G,,,G’“” :I Vat 
> 

N 0.012 (GeV)4 WJ) 

Using a special set of Schwinger-Dyson equations, the formation of dimensionful 

parameters, for example, given by Eq. (5), has been studied.6 The numerical 

solution of the Schwinger-Dyson equation was consistent with the idea of frozen 

coupling constant given by Eq. (4) with 7ng = 500 f 200 MeV. In this way, mg is 

related to A which is order of 100 MeV and the whole analysis still has only one 

QCD parameter. 

Therefore, it is concluded that the QCD vacuum condensate affects not only 

quark distribution amplitude, but also the QCD running coupling constant at small 

momentum transfer region.’ Furthermore, since the value of mg given by Ref. 6 

freezes os( Q2) (Eq. 4) t o a value less than 1 even at Q2 = 0, the perturbation 

series may be expanded in terms of frozen coupling constant. 

In this paper, we present the leading-order perturbative analysis of the pion 

form factor using a frozen coupling constant given by Eq. (4). We follow the same 

method of calculations employed in Ref. 2 and use the same numerical values for 

mg and A as introduced there. In section 2, we present the quark distribution 

amplitude including its QCD evolution which is used in this analysis. Numerical 

results and comparison with experimental data are presented in section 3 and 

conclusions are followed in section 4. 
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2. Quark Distribution Amplitude and Its Evolution 

Useful constraints on the lowest moments of the distribution amplitude 4(x, Q) 

lo can be obtained using the QCD’ sum rule approach. Although the numerical ac- 

curacy of this method is not known, the general agreement between its predictions 

and overall consistency with other hadron phenomenology l1 lends credence to its 

validity. 

The distribution amplitude of the pion at Q = 500 MeV is given by lo 

&w> = z X(1 - X)(22 - 1)2 (6) 

where p = 500 MeV and fx = 93 MeV. The normalization of 4(x, p) is given by 

the condition 

Once the distribution amplitude is given at a certain value of Q(Q = 500 MeV, 

for example), then 4(x,&) t th a o er values of Q can be obtained by solving a 

Bethe-Salpeter type evolution equation.3 The result for valence quark distribution 

amplitude of the pion is expanded in terms of Gegenbauer polynomials Cz’2(2~ - 1) 

and is given by 

4(x,&) = d&(1-~) #"(2x -I)+; c2(2x - 1) (8) 

where Co 3’2(~) = 1 and Ci’2(~) = i (5z2 - 1). At the boundary of Q = ,!L, Eq. (8) 

reduces to Eq. (6) and in the limit Q + 00, Eq. (8) reduces to the asymptotic 

form in Ref. 3, as expected. 



3. Numerical Results and Comparison with Experimental Data 

Using the quark distribution amplitude of Eq. (8) and the frozen coupling 

constant of Eq. (5), we evaluated the integrals given by Eq. (1). As we did in Ref. 

2 for the proton Dirac from factor analysis, we included only the leading order hard 

scattering amplitude4 as given in Eq. (2). Th e results for the pion form factor 

is shown in Fig. 2. In Ref. 2, it was shown that it is possible to fit the data for 

proton Dirac form factor F: in the range of 10 < Q2 < 30 (GeV/c)2 when one 

uses the distribution amplitudes proposed by QCD sum rule calculations 
10,12 

and 

a frozen coupling constant (Eq. (5)) with rni between 0.1 and 0.5 GeV2. In the 

present case, as shown by Fig. 2, we have the same consistency with the available 

experimental data even though further comparison with future experimental data 

is necessary at higher Q2 region. 

Since the pion form factor Fr(Q2) is multiplied by Q2 in Fig. 2(a), the numeri-. 

cal results seem to be sensitive to different values of mg even at high Q2. However, 

the pion form factor Fr(Q2) ‘t 1 se If is much less sensitive to variation of mg (see Fig. 

2(b)). It is also interesting to note that the numerical values of mg used in this 

analysis are consistent with those of an effective gluon mass in the condensed vac- 

uum obtained by a QCD lattice calculations 13 and a recent discussion of dynamical 

mass generation in QCD.6’14 



4. Conclusions 

In this paper we have analyzed the pion form factor within a framework of 

perturbative QCD using a frozen coupling constant. While similar results should be 

obtained using any form of cut-off which prevents as(Q2) from becoming infinitely 

large at small momentum transfers, we chose to use the formula of Eq. (4) because 

of its simple analytical form, and its successful application for the analysis of the 

proton Dirac form factor’. Using the quark distribution amplitude of Eq. (8) 

constrained by QCD sum rule lo, we obtained numerical results shown in Fig. (2). 

The pion form factor obtained in this analysis is in a reasonable agreement with 

experimental data (as was the case of proton form factor in Ref. 2). Whether 

the same method would work for other form factors such as N - A transition 

form factors 
15 is an interesting question which necessitates the application of this 

technique to other processes. 
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Figure Captions 

Fig.1 : Valence Fock state contribution to the large momentum transfer meson form 

factor. TH is computed for zero mass quarks Q and q parallel to the pion 

momentum. 

Fig.2 : Pion form factor calculation with the distribution amplitude of Chernyak and 

Zhitnistky (Eq. (8)) and with the argument of as(Q2) evaluated at gluon 

momentum in Eq. (2). 2(a) Q2Fx(Q2); 2(b) FT(Q2). 
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