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ABSTRACT 

The calculation of the ~23 mixing angle from semi-leptonic B-decay depends’ 

on the mass ratio m,/mb. The energy scales at which the running masses m, and 

rnb should be taken are determined once terms of order [cys . (mc/mb)] are taken 

into account. We give an analytic expression for the QCD correction to the decay 

rate to all orders in the ratio between on-shell masses. We explain how it should 

be modified when both masses are taken at a single common scale. 
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1. INTRODUCTION 

The exact determination of the quark sector parameters is most important both 

as a test of the three generation Standard Model and as a probe of physics beyond 

this model. With three generations, the quark m ixing matrix is parametrized by 

three real m ixing angles and one complex phase. Two of these m ixing angles, 

323 = IKbl and 5x3 = IKbl, are extracted from B-meson decay measurements. 

The best experimentally measured and theoretically understood decay modes 

are the inclusive semi-leptonic decays. The quark-level process is b --+ q&-fit, where 

q is either a c-quark or a u-quark and e is a charged lepton. The masses of the e 

and p leptons and of the u-quark can be safely neglected (we later comment on the 

neglect of m ,). However, the charmed semi-leptonic decay rate strongly depends 

on the ratio m ,/mb [1,2]. 

The values of the masses m , and mb that should be used seem ambiguous 

[3,4]-. Quark masses run with the energy scale and it is not obvious what the 

relevant energy scales are. In particular, we want to decide whether to use the 

ratio between on-shell masses or the ratio between the masses taken at a common 

energy scale. W  e s h ow that the calculations for these two possibilities differ at 

order [as . (mc/mb)]. 

_ Previous calculations of QCD corrections to the decay rate (beyond zeroth 

order in the mass ratio) used numerical integration. We argue that they correspond 

to the ratio between on-shell masses. To show that, we perform the integration 

analytically. We then modify the calculation for the use of the ratio between 

masses at a single energy scale, finding that in this case there is no term of the 

form @k/mb> ln(%/mb), as expected on general grounds [5]. 

We further remark on the implications of our calculation on QCD corrections 

to charmless B-decays and on QED corrections to lepton decays, e.g. T  --+ ~LV~V~. 

We note that our results cannot be directly applied to top decays: we assume 

that the fermionic masses involved are all small compared to the mass of the 
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intermediate boson. This does not hold for rnt N Mw, and modifications are 

necessary [6]. 

2. SEMI-LEPTONIC QUARK DECAY 

We take a general case of a heavy quark h of charge -i and a lighter quark 

I of charge + f . The value of a mixing term ]Vjh ] is extracted from the inclusive 

semi-leptonic decay rate Mh -+ X&t, where Mh is a weakly-decaying meson that 

contains the quark h. At the quark level one uses the spectator quark model, 

assuming that the partial width is given by the h-quark W-mediated decay: 

I’(Mh + X,lv,) = I’( h + Ztv,) = G$m$h12 
1927rs FpsF~c~, (1) 

where Fps is a phase space factor and FQCD is a QCD correction factor. Both Fps 

and- FQCD depend on the mass ratio 

mf p--y. 
mh 

The calculation of Fps is well-known: 

Fps( p) = 1 - 8p + 8p3 - p4 

The FQCD parameter is of the form 

- 

(2) 

12~” In(p). (3) 

FQCD(P) = 1-3~ 2CYsf(P). (4) 

The crucial point is that with different definitions of p the function f(p) is 

modified beyond zeroth order in p. We now show this explicitly. 
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Suppose we use for the ratio p: 

namely, each mass is taken on its mass shell. We should use certain functions 

Fps(P) and f(P)* Th en we make the calculation using a different ratio p’: 

(6) 

namely, both masses are taken on a single energy scale. Now we should use func- 

tions Fis(p’) and f’(p’). Th e ratios p and p’ are related, to first order in cys, by 

p=p’ l- 
1 

? ln(p’) . 1 (7) 

As the difference is 

order in as, clearly: 

O(CX,) while the ph ase space factor is, by definition, zeroth 

F;,(z) = Fps(+ (8) 

However, modifications at order (asp) are required. To first order in p we have 

&s(p) =l - 8p &s(p) =l - 8p 

=l - 8~’ + =l - 8~’ + 
16~~ , 16~~ , 
--P WP') --P WP') 7r 7r 

16as , 16as , 
=FPs(p’) a 1 + up ln(p’) 

[ 
1 + up ln(p’) 1 1 . . 

The O(o,) correction should be absorbed in a new function F&cD(p’): The O(o,) correction should be absorbed in a new function F&cD(p’): 

F;CD(P’) = 1 - $f'(p') 

where 

(9) 

(10) 

f’(x) = f(x) - 24 x In(z) + . . +. (11) 

Indeed, the calculations with either p or p’ differ at order [a, (mi/mh)]. Moreover, 

when we use p, the ratio between on-shell masses, we expect terms of the form 
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OJ ’ p In(p) to appear in &cD( p), as the gluon loops on external legs are calculated 

at different scales. However, when we use p’, the ratio between masses at a single 

common scale, we expect no terms of the form oJ . p’ In($) [5]. Eq. (11) then tells 

us that the coefficient of the phi(p)-term in f(p) is 24. In the next section we give 

the analytic expression for f(p) and show that this is indeed the case. 

Previous calculations of the QCD corrections [l, 2,7] are a modification of 

earlier QED calculations [8] of p decay. In the QED calculation, the masses are 

by definition on-shell masses: lepton masses are experimentally measurable, and 

these physical masses identify with the on-shell masses. Consequently, the existing 

calculations of &CD-corrected quark decays correspond to mass ratio between on- 

shell masses. 

3. AN ANALYTIC EXPRESSION FOR THE MASS-DEPENDENT CORRECTIONS 

In previous calculations [l, 2,7] the d ‘8 2 erential cross-section is given analyti- 

cally. However, to derive the correction to the decay rate, the integration, being 

mathematically rather non-trivial, is carried out numerically. As we are interested, 

in the coefficient of the pin(p) term, we carried out an analytic integration to all 

orders in p. Our starting point was the differential cross section as given in ref. 

[7]. We now give the expression for the function h(p) 3 FPJ(p)f(p): 

. Q) = -(I - p2) $ _ yp + fP2 ) +plnp(20+90p-ip2+yp3) 

+p2 ln2 p (36 + p2> + (1 - p2) v - Fp + yp2 
> 

141 - P> 
(12) 

-A( I+ 30p2 + p4) In p ln( 1 - p) - (1 + 16p2 + p”) [fXiz(p) - r2] 

-32~~‘~ (1 + p) r2 - de&(&) + 4&(-fi) - 2lnpln 1-G 1 1+fi . 

The result is finite when p + 0 as guaranteed by the Kinoshita theorem [9]. The 

dilogarithm function Liz(z) is defined as in ref. [lo]: 

J!&(x) = - 
’ ln( 1 - 2) 

J 

x2 x3 
dz= c+3+3+... for 1x1 Il. (13) .z 

0 
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Our result agrees with the numerical integration results given for specific cases in 

refs. [1,2]. 

For the cases of interest p 5 0.1, for which an approximation to 0(p3) works 

well: 

h(p) =r2 - f + ~(68 + 24 In p) - ,03i2 . 32~~ 

+p2(167r2 + 273 - 361n p + 361n2 p) - p512 . 32~~ (14) 
1052 152 
9 - 3 lnp + 0(p4). 

To find f(p) one has to divide h(p) by FpJ(p) where FpJ(p) is given in eq. (3). To 

first order in p we get: 

f(p) = r2 - f + ~(18 + 8~~ + 24ln p). (15) 

The coeficient of the pin(p) t erm is indeed 24. The function f’(p’) that should be 

used when the masses are taken at a single common scale can be derived from eq. 

(14) by applying eq. (11). To first order in p’ we get: 

f’(p’) = 7r2 - f + ~‘(18 + 8~~). (16) 

There is no term of the form p’ In($). Th us we proved our above statement: 

Previous numerical calculations, being in agreement with eq. (15) but not with eq. 

(16), correspond to the mass ratio between on-shell masses. 

The function h(p) can be used directly, by rewriting eq. (1) as: 

r(h + l&) = I’(‘) - ?p) 

r(O) = +-Q4h12 
1927r3 ??&) 

r(l) = e41Vlh12 
192~3 h(P). 

(17) 
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4. THE ~23 MIXING ANGLE 

The above -discussion is most relevant for the calculation of the ~23 = lVcal 

m ixing angle (we use the parametrization of ref. [ll]) from the charmed semi- 

leptonic B-decay [12]: 

(s23)2 = [F] ["'(b; @)] [A] --$ (18) 

with 

F;J =FPJ(/d (19) 

7; =FQCD(PC) = 1 - $f(pc) 

We use [13]: 

m ,(m,) = 1.27 f 0.05 GeV 
cm 

ma(mb) = 4.25 f 0.10 GeV 

The mass ratio is then: 

(pc)l12 = 0.30 f 0.02. (21) 

This gives [2]: 

f (PC> 
FC PS 

=2.51 f 0.06 

=0.52 f 0.04 
(22) 

To find 77; one has to give a value to C-X,. However, unlike p, the value of os (or 

equivalently the scale at which it should be taken) is not determined until we 

calculate to O[(CX~)~]. The b es we can do is try to estimate the scale at which t 

the O[(Q~)~] corrections are smallest. We take 1.5 GeV 5 p 5 2.5 GeV which, for 

AQCD = 150 MeV, gives [13] os = 0.20 f 0.02. We get 

7; = 0.89 f 0.01. (23) 

The value of & = 0.87 given in ref. [3] corresponds to (us = 0.24. The &-value is 

not sensitive to the uncertainty in pc. 
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For the the semi-leptonic branching ratio we use the world average [14] of 

measurements both in the continuum and on the r(4S) peak: 

BR(b t ev,X) = 0.115 f 0.004. (24) 

We assume for the present calculation R E M = 0. Th’ is may give an S23- 

value higher by up to 4% than the true value. The world average for the B lifetime 

is [15] 

Tb = (1.18 f 0.14) x lo-l2 sec. (25) 

The largest uncertainty in the extraction of ~23 from the semi-leptonic decay width 

comes from the rnz dependence. A fit to the leptonic spectrum gives [4] 

< mb >= 4.95 f 0.05 GeV. (26) 

This fit is based on the model by Altarelli et al. [16]. Theoretically, it is plausible 

to use mb(p) at a scale p which corresponds to the average mass of the & system 

[4]. With 1.5 GeV 5 p < 2.5 GeV and AQCD = 150 MeV, the range is 4.6 GeV 5, 

&(p)-< 5.1 GeV, consistent with eq. (26). Th us, we choose the following range 

for mb: 

mb = 4.9 f 0.3 GeV. (27) 

The determination of ~23 from the B-meson semileptonic decay (eq. (18)) is 

thus subject to both experimental and theoretical uncertainties. Due to the rni- 

dependence, we cannot determine (~23)~ to an accuracy better than 30%. Adding 

the errors in quadrature we get 

(SZ~)~ = (2.1 f 0.7) X 1O-3 (28) 

which gives 

~23 = 0.046 f 0.008. (29) 

Calculations of ~23 within models other than the free quark model usually give 

somewhat higher ~23 values [16,17, IS]. 

8 



5. CHARMLESS SEMI-LEPTONIC b DECAY 

The ~13 = I-v&l mixing angle is given by 

(s13j2 = [%I [ BR(b ; “““‘I [&-I --$ (30) 

with 

77; =FQcD(Pu) = 1 - $(P,i 

In all existing calculations the u-quark mass is neglected. However, as the u-quark 

is lighter than AQCD, its mass is not well-defined on-shell. What we would really 

like to use is the ratio m,/mb at a common mass scale, as m, at scales above AQCD 

is well defined and known [13]: 

m,(l GeV) = 5.1 f 1.5 MeV 

mb(l GeV) = 5.6 f 0.1 GeV 

p:, M (8-t:) x 1O-7 

(32) 

The value of mb given here corresponds to A = 150 MeV. From eqs. (16) and (32) 

we can see that indeed p; can be safely put to 0: 

FJs =FpJ(O) = 1 

f’(0) =r2 - f M 3.62. 
(33) 

Using the same range for cy, as in the calculation of qb we get 

7; = 0.85 f 0.01. (34) 

Again, the value given in ref. [3], 7: = 0.82, corresponds to cyJ = 0.24. The ratio 

d/v; does not depend on our choice of oJ. We get: 

s13 
112 

- = 0.74 
IyB + X&l,) 

s23 rp --+ xcev,) 1 . (35) 
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6. LEPTON DECAYS 

The above calculation of QCD corrections to quark decays can be easily modi- 

fied to calculate QED corrections to lepton decay, !; --+ ljfij~;, by the replacement 

3 
CY, --+ --crE&f. 

4 

For the 7 -+ pVP u, decay, we have 

m cL =105.659 MeV 

m r =1784.2 MeV 

p =3.5 x 10-3. 

(36) 

(37) 

We get: 

Fps(p = 3.5 x 10-3) =0.9728 

f(p = 3.5 x 10-3) =3.48. 
(38) 

Although p is of order 10m3, f(p) is modified from its zeroth order value by as 

much as 4%. However, as CYEM is small, FQED(~) is modified from its zeroth order 
. 

value by only 2 parts in 104: 

FQED(P = 0) = 0.9957 

FQED(P = 3.5 x 10e3) = 0.9959. 
(39) 

In ref. [19] QED corrections to r decay rates are calculated with terms of order 

- [REM . (mi/mz)] neglected. They get ~\~~~$$~ = 0.9728. We find a 0.02% 

correction to this value: 

r(7 --+ P4Y)) = 0 9730 
rp -+ euiT(y)) ’ ’ 
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7. CONCLUSIONS 

The need for accuracy in the determination of the quark mixing angles ne- 

cessitates a refinement of the ingredients involved in the calculation. We concern 

ourselves with one such aspect: the quark mass ratio that should be used in the 

calculation of semi-leptonic decay widths. We are interested in the difference be- 

tween calculations using the ratio between the on-shell masses and those using the 

ratio between the masses taken at a common energy scale. 

There are three possible cases: 

a. The ratio rnl/rnh is close to 1. In this region the question is unimportant 

both in principle, as the two possible mass ratios are very close to each other, 

and in practice, as nature has not provided us yet with such a case. 

b. The ratio rnl/rnh is close to 0. Here the question is interesting in princi- 

ple, as for light quarks there is no well-defined on-shell mass. However, in 

practice the question is, again, unimportant because the mass ratio can be 

approximated to zero, and the calculations identify to zeroth order. 

c. The ratio rnl/rnh is non-negligible, but not too close to 1. Here the ques- 

tion is important both in principle and in practice. We find that previous 

calculations, which were all numerical, correspond to the ratio between the 

on-shell masses. 

We give an analytic expression for the QCD correction factor to all orders in 

the ratio between on-shell masses. We also give useful approximations to the QCD 

correction when either the ratio between on-shell masses or the ratio between the 

masses at a single scale is used. 
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