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ABSTRACT 

The neglected annihilation contributions in the Wilson loop formalism of Eicht- 

en and Feinberg are defined and calculated. An annihilation time scale is intro- 

duced to discriminate the glueball contributions from true annihilation contribu- 

tions to isoscalar-pseudoscalar meson states. In this formalism, it is found that 

there is no mixing between two quarkonium states with different quark masses 

through annihilation diagram. In a fixed state the annihilation contributions oscil- 

late as functions of the annihilation time scale, and so provide a possible mechanism 

to shift the mass of 7 upward, instead of downward as in the QED case. 

INTRODUCTION 

It is well known that the masses of isoscalar-pseudoscalar mesons such as 77 

and 771 have large contributions from the annihilation of the constituent quark 

and anti-quark pair. 1 In a somewhat different point of view, this was known as the 
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U(1) problem’ and has been resolved by the formalism of axial-vector anomaly? 

Furthermore, Witten has argued that the annihilation diagram viewpoint and the 

anomaly viewpoint are not incompatible in terms of l/N expansion. However, 

there is as yet no precise calculation of the annihilation contributions and mixing 

angles between isoscalar mesons. Only qualitative arguments’ and crude approx- 

imation methods5 are known to estimate the mixings, and one major problem to 

be overcome is the treatment of the quark and anti-quark bound state. 

The description of bound states between a quark and an anti-quark pair cannot 

be done as in the QED case because the exact form of confining potential has not 

been obtained from first principles. In QCD, the static potential results from an 

infinite set of graphs through the interactions of full Yang-Mills couplings, and so 

we have to introduce an approximation method to treat these infinite graphs. One 

method is to calculate directly by computers on suitably chosen lattices. However, 

in this method, there exist restrictions on the number of lattice sites and only 

quenched approximation cases can be calculated: Another approximation method 

to account for the confinement is to introduce a boundary which forms a bag 

containing quark, anti-quark, and gluons. In this bag model, the quarks move 

freely and relativistically, and are described by eigenmodes determined by the 

form and the size of the bag. The hadron spectra can be calculated and fitted 

fairly well to the observed values, but if we want to calculate diagrams, containing 

internal propagators such as annihilation diagrams we have to write down the 

propagators as sums over bag-model eigenmodes.’ These propagators result not 

only in algebraic complexity but also in some ambiguity concerning the bound-state 

description connected with the boundary conditions imposed on the eigenmodes. 

The other method to account for the confining potential is to assume an ap- 

propriate potential form; this method is known to be convenient for quantitative 

calculations of spectra and decay processes. The non-relativistic potential model 

calculations were first carried out for the heavy charmonium (CC) system just after 

the J/T) had b een observed. Later, the same calculations were applied to the heav- 

ier (bb) system and it was realized that the spin-dependences between the quark 
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and the anti-quark should be accounted for a systematic description of quarko- 

nium systems. There have been several attempts to derive the spin-dependent 

forces; however, in a theoretical viewpoint of quark confinement, the derivations of 

Eichten and Feinberg’ have provided a clear basis for other calculations. They,used 

the Wilson loop formalism9 and obtained the spin-dependent potentials up to order 

l/m2 in a perturbative expansion with respect to the inverse quark masses and with 

respect to the spatial part of the gauge covariant derivative in the equation for the 

quark propagator. In this expansion, they neglected the annihilation contributions 

as small short-distance effects in higher order in the effective coupling constant as. 

The first-order results can be used to explain nearly all the meson masses except 

for several states including the lowest lying isoscalar-pseudoscalar mesons?’ In or- 

der to explain the isoscalar-pseudoscalar meson masses it is apparent that we have 

to calculate the annihilation contributions; furthermore, the annihilation diagrams 

are known to be related to the mixings between states with the same quantum 

numbers. State mixings are also important in the study of non-@ states such as 

glueballs and exotic states? 

There have been several attempts to calculate the annihilation diagrams. As 

is well known, the two-photon annihilation diagrams in QED produce a negative 

energy shift l2 in contradiction to the case of 77 in QCD. To get a positive energy 

shift, Donoghue and Gomm replaced one physical gluon with one instantaneous 

Coulomb interaction in a bag model calculation: and Jaronski and Long13 argued 

that the mass shift becomes positive if the quark motion is highly relativistic. 

However, their calculations were carried out by assuming quasifree quarks and 

gluons, and so it is necessary to improve the treatment of bound states between a 

quark and an anti-quark. 

In this paper, we will concentrate on the Wilson loop formalism of bound 

states and calculate the neglected annihilation contributions in the derivations of 

Eichten and Feinberg. General formalisms are presented in the next section, and 

calculations are carried out in the third section. The final section is devoted to 

discussions. 
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. GENERAL FORMALISMS 

The QCD Lagrangian for a system with quark of mass m is given by 

L= - :Z’r (Fp,FpV) + \fr (iyfiLd, + gypA, - m) Q d3a: 1 , (1) 
where F /w = &JL -&A, +g[A,, &I, and A, = Ait” with {t”} the representation 

matrices for the quarks in the fundamental representation of the gauge group SU(3). 

In order to derive the Wilson loop form of potential it is convenient to introduce 

the four-point function 

I= ( w7* (~(Ydnp [;:I VYd) (wrd3 [::I Q(52)) ,o) ) 
(2) 

in which T* means time ordering, and I? has the appropriate Dirac and flavor 

structure; the path-ordered exponential 

P (:> - Pexp (ig /dz,AY(r)) (3) 

is included to maintain gauge invariance. The four-point function can be reduced 

into two terms: one is the connected Wilson loop term, and the other is the 

annihilation contribution. Introducing the fermion propagation function S(x, y;A) 

bY 

(+y”t$ + g-&4, - m) S(q y; A) = S4(x - y) , (4) 

the I becomes 

I= [,r{S(,2,y2;-i~)~[~~]~*S(Y,,~~ 
.6 pr 

is26J 
> [I 

z2 a 
} 

- Tr S YI,Y;?,--3~ { ( * “)~[~~]~*}Tr{S(~2,~~:-i~)il[::11..)1I(J),i=~, 
(5) 
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where Z(J) = W(J)/W(O) and 

W(J) = Det S - 6J [ ( i “>3 /[dAP]exp{i/d4s [-~Tr(P,,F’Y)+J~A~]}. 

(6) 
The double trace term is the annihilation contribution, and since we are inter- 

ested in the lowest order term we can neglect the fermion determinant factor 

Det[S(-iS/GJ)], which produces quark loops. The Wilson loop form can be ob- 

tained by inserting the non-relativistic propagation function S’s into the first term 

of Eq. (5). Ig noring the spatial motion of the quark in Eq. (4), the So satisfies the 

equation 

d iTo% +n’Ao-m So(~,y;A)=b~(s-~) , 
> 

(7) 

and the explicit solution is given by 

X0 So(x, y; A") = _ i(j(x' - y")e-'"('.-Yo)~P [yo] 6(5 - ;) 

(9 
-im(y”-zO) 1 - 7’ X0 - i6(y" -xO)e -P 

2 [ I yo w - !a * 
With this So, the first term of Eq. (5) becomes 

INR = -e- 2imTb(~i - yi);>s(x> - 92) Tr 1 +y” 2 G 2 1 -yoy a 

xTr(Pexp (k,f dz, [-$&]})IIJh=o , (‘) 
, 

where T = Ix0 - yO[, R = lx> - xii, and C(R,T) is the path shown in Fig. 1, 

which forms the Wilson loop. The spin-dependent potentials can be obtained from 

the Eq. (5) by considering the relativistic corrections to the propagator So, which 

come from the spatial part of the gauge covariant derivative. 
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CALCULATIONS 

The annihilation contributions come from the two diagrams in Fig. 2. We 

assume that the quark loops are in rectangular shapes, so that we can use the So 

for the temporal side propagators and neglect time dependences on the propagators 

for the spatial sides. The solution of the naive spatial equation 

(+d-m) S(i&f) = h3(&y3 

is given by 

m3/2 F.T m esmT 
S(Z,y’)=i - 

(27r)3/2 r3i2 ri--3/2(mr) - zr 7 (11) 

with r’= Z-y’, I? = -i’?+gx, and K is the modified Bessel function. However, in 

order to estimate the annihilation contributions we need to compare them with the 

first term in Eq. (5) in which there appears the uncalculable Wilson loop integral 

as in the Eq. (9). To get a similar Wilson loop integral, we introduce another 

path-ordered exponential factor and obtain 

Ss(x, y; A) = Pexp -zg { [ . /d&i(z)] )6(s” 

which satisfies 

(-7.5 - m) Ss(x, y; A) = b4(x - y) . 

Now the propagator S(x2, xl; A) can be written as 

YO)s(C 9 7 (12) 

(13) 

S(x2, xl; A) = -g2 so(z2, x~)~~A~(x~)S&~, ~Qy”&(~4)So(~4, zl)d4x3d4x4, 

(14) 
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. and the annihilation term IA becomes 

-Tr S YI,YZ,-~~ { ( . -“> p[i:]h}Tr{ S (x2,x1; --@ f$‘.)z(J)b=o 

= -g 
4 ‘!hd4Y3d4x4d4x3Tr so(!b y4)+%(&, $$~?!?&& ?&)P _ 

J 

By inserting the expressions of Eqs. (8) and (12) with different quark masses for 

the initial and final states, we get 

IA =g4 J d4y4d4y3d4x4d4x3[dAp]e- im2(y~-y~+y~-y~)-im~(z~--z~+z~--2~) 

x Qi - 3G)S(Y,o - Y:)s(Y: - y’i>qx; - xqqx; - x~)S(x~ - xi) 

m2e --mzr, 

-3/2(m2r~) - -- 1 ’ 
J -yo - 

4~ ry -4 2 

x Pew (igf+W)) } 

xTr irnii2 7-G-T r 
(&)3/2 312 ri-3/2(m1rz 

2my’2 1(.4/2 (ml rz) 
= - (2743/Z 312 hpjri. rz. 

. 
7 
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-ml72 
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. Now IA is given by 

IA = 4g 
4 (mlm2)3’2 

(‘J+ 
J 

[dA,]d4y4&y3d4x4d4x3e -imz(yy-yi+yi-yi)--iml(zi-&+zi-zy) 

X S(Yi - y’4)S(y,O - yz)6(y’j - y;)S(x> - x3)6(x: - x:)&(x> - xi) 

X 
K-3’2(m2r~) h/2(mirz) 

(ryr$ 
Qvi$%pjr~ 

x Ppp(y4, x4)&(~3, x3) + D,,(Y~, x3)+(~3, x4)1 

x Tr (Pexp [kf&NW]) Tr { Pexp [igfw%d]} eiSYM(A) 7 

(20) 

where only spatial indices of CL, V, CY, p will survive. Since there is no temporal 

index, we can choose the temporal gauge to calculate the gluon propagators. 

There are two cases we have to consider for the gluon propagator parts con- 

tracted with those of quarks; one with rz = ry, and the other with r, f ry. The 

first case is the annihilation contribution in a given state with the same initial and 

final quark mass and the second one is the contribution between different states 

which is responsible for state mixings. For the latter state mixing contributions 

we have in Eq. (20) 

ervir~eaBjrjz{Dpp(Y4, 4) x Dva(y3, x3) + &(y4, x~)D,~(~~, x4)} 

-a + 
rz - ry 

=- 
8T4 

I (Y4 - x:)2 - ” ’ (y3 - Xi3)2 - i.5 - (y4 - xi)2 _ iE ’ (y3 _ xt)2 _ ie 1 

, 

(21) 
so that 
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. 2( mlm2)3/2 
79 

eiml(z~+ZOZ)-im2(Y~+Y~)K 
-3/2(mlrx)K-3/2(m2rY) 

X 
J 

dyjdx4e 0 2i(mzyt-mlxt) 

x (y40-xy-;fi-x;)2- [ iE ' (yi - xi)" - ty; - x:)2 - i& 

- (yi - xi)” - ty; - xi)2 - it5 * (yt - Xi)” - ty; - Xi)2 - i& 1 
x /[dA,jTr (Pexp [igidzpAp(z)]} Tr { Pexp [igf dzpAp(;)] } eiSYMtA) 

t 
(22) 

by integrating out the delta functions. For simplicity, let’s introduce the notation 

rij = Iy7: - x;\ , (23) 

where i and j refer to 1 or 2. In the center-of-mass system we have 

w=r22 , r12 = r21 , 

and the time integrals become 

It = 
J 

dyjdx4e 0 2i(mzy,“-mIxi) 
[(yi - xi,‘1 rfl - i&l2 

-[(yi -Xi)" - rf2 - i&l2 1 
* 

C-w 

Now we cannot freely integrate over the interval from 0 to T because of the uncal- 

culable Wilson loop factors. In order to estimate the annihilation contribution, we 
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have to find out a way to compare the Wilson loop integral in Eq. (9) with those 

in Eq. (22). In fact, the integral 

W = /[dA,1Tr (P exp [ igcttTl di,*v(z)] } eiSyMcA) (26) 

is related for large T limit to the static potential energy c(R) as 

$@~{--$lnlV~} =e(R) , (27) 

where E stands for Euclidean space. Since we cannot calculate the integral, we 

usually introduce an appropriate form of E(R) to determine the radial excitations 

and the spin splittings of various spectra. Therefore, it is necessary to use an 

approximation method to compare the integral W with those in Eq. (22). When 

the spatial distances rx = 1x2 - xi 1 and ry = ly: - yi 1 have large differences, 

as shown in Fig. 3(a), we can assume that the energy difference between the two 

states is large, and the probability for mixing can be assumed to be suppressed:’ If 

the annihilation time is not negligible with respect to the total time scale T, as in 

Fig. 3(b), we cannot estimate the difference between the W and those in Eq. (22), 

and we have to introduce another loop factor connected to the two gluons. The 

extra loop factor is related to the unknown glueball contributions which must be 

considered independently. Excluding the above two cases, we can assume that 

the annihilation contributions between different states of nearly the same spatial 

size come from the case in which the annihilation time interval is short enough to 

neglect the differences between the loop integral W over C(R, T) and the products 

of the two integrals over C, and C,. The annihilation time interval is restricted 

by the above condition, and we assume that 

-A<y:-x:<A , m> 
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. with A an appropriate parameter. Then the time integral It becomes 

T 

It E 
J 

dx4e 0 2i(mz-m1)xt 
(t2 - p:‘, - iE)2 - (t2 - rft2 - i&)2 I (29) 

0 -A 

neglecting some boundary effects, which is reasonable for T --f co. Assuming that 

A is independent of x4, ’ the calculated result is given by 

It = exp[i(ma - ml)T] sin[(m2 - m1 ITI f(rll r12 A) 
> 7 7 

m2 -ml 
(30) 

where 

cos(2mvll) {ci[2mz(rll + A)] - ci[2m2(ql - A)]} 

i- sin(2mml) {si[‘Jm2(rll + A)] - si[2m2(rll - A)]} 
> 

-’ 
G2 ( 

cos(2m2rn) {ci[2m2(r12 + A)] - ci[2m2(q2 - A)]} 

-I- sin(2mvn) {si[2w(rn + A)] - si[2mz(r12 - A)]} )I , (31) 
and 

00 
si(x) = - 

J 
t!fi& , 

2 

00 

ci(s) = - 
J 

Fdt . 
X 

(32.a) 

(32.b) 
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. Now the mixing annihilation contribution IAM becomes 

I (mlm2)3’2 sin[(m2 - ml)T] 
AM = 

7r5 
a3 exp[-i(ml + m2)T] 

m2--1 

x IC-3,2(m2Ty)I(-3/2(mlr=) f(m, r12, A> 

with 

x JIdAp]Tr{ Pexp [,,,,,,.,,)I }Tr{ Pexp [i,J&PAP(z)] }c?‘~~(~), 

Y 

(33) 

rz=r12-r11 , ry = 7x2 + r11 * (34) 

In order to estimate the IAM, we need to write down the sum of INR and IAM ; 

INR + IAM E 2e -2imJ-6(x! - yi>qz; - y;)w 

+ ;,2 (77-4 7722)3’2 sin[(m:! - ml)T] 
3s 73 exp[-i(ml + m2)T] 

m2--1 (35) 

x K-3/2(m2Ty)I(-3/2(mlr,) f(m, r12, W’ 7 

where the color factor is introduced to IAM. By integrating out the two delta 

functions and taking the T + 00 limit, the new potential V’ becomes 

V’ = $+ym - $lne -c(p,)T 

x 

I 

1 + 1 a2 hm2)3’2 sin[(mz - ml)T] 
fis I+ exp[i(ml - m2>573 

m2 - ml 

X 
J 

~3~d3yiI~-3,2(m2r,)K_3/2(mlT,) (;;$,2 f(m ~12, A) . 

(36) 

If ml f m2, and assuming that the corrected term is small with respect to unity, 
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we have 

v’ = e(rz) , (37) 

so that there is no additional contribution. This is due to the fact that there is no 

linear T dependence in the second correction term. When ml = rn2 = m, V’ is 

given by 

V’ = 44 - &f$ /d3y;d3~K-3,2(m~,)K_3/2(mTy) (~~T~~,2.f(m m, A>, 

(38) 
where the integrations are to be carried out over suitable states with non-zero ~11. 

Now we return to the case of the annihilation in a fixed state with the same 

initial and final quark mass. In this case, the first term in Eq. (21) corresponding to 

the first graph of Fig. 2 must be changed from that of r, $ ry case. When rx = ry, 

the two gluons of the first graph of Fig. 2 propagate only along the time axis, so 

that there are no contributions from physical transverse degrees of freedom. For 

longitudinal gluon propagator, there exist several suggestions to write down the 

form in space-time coordinates. In temporal gauge, Frenkel15 has suggested that 

the longitudinal propagator is given by 

~~y’~*(z,y) = +qz0 - yO)(zO - yo)q$q; - ij) . (39) 

Later studies of the boundary effects16 resulted in an additional term and the 

propagator was changed into the form17 

;Dy*(z,y) = -;lF [+O - yO)(zO - yO) + (x0 + y”)] qb(Z - y3 . (40) 

If we use the propagator in Eq. (40), the first term in Eq. (21) becomes 

2 
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i 

. when yi > xt, and yi > xi, so that 1,~ becomes for ml = m2 = m, and P, = ry = T 

IA = -cy e-im(yY+yi-z!--2~) 8m3 2 
n- s 

X J dy,OdxfjewY:-d) { ~~Y40)26(yi - Xi)S(y’; - X3) 

1 

where (~2)~ in the first term of time integral must be changed into (x,“)” when 

(igi dzpAp(zj) ] Tr k exp (igf d.zp Ap(;)) ] eiSYMtA), 

(42) 

yz < xi, and yi < x i. The first part of the time integral becomes for the interval 

given by Eq. (28) 

T-A z:+A 

{J J 

dxi 4v 0 2im(yt-d)(y~)2 

0 4 

T 2: 

+ J J dxt dY@ 
0 2im(y~--z~)(xfJ)2 

A zi-A 1 

s 2 T3 
- gb(y; - Xi)b(fi - xf)G sin 2mA , 

(43) 

as T + 00. If we take the limit as in Eq. (36), the modified potential diverges. It 

is apparent that the divergence comes from the boundary terms of Eq. (40), so it 

seems better to use the form of E-q. (39). In fact, the annihilation contributions are 

related only to gluon propagators which are separated from the time boundaries. 
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. If we use the propagator in Eq. (39), we have 

(44) 

so that the time integral for this term becomes 

’ -- 
18 

( rdxp ‘r@ + 1 dxpzl d yt ) e2im(yi--z’)(y~ - xi)” 

1 

X S(Yi - sc’i)S(y; - x:) 

T-A 
( 

A2sin2mA+ a =-- - cos 2mA - 
18 m 7 

& sin2mA 
> 

6(y< - xi)S(y; - x;). 

(45) 

In the T --t 00 limit, IA becomes 

A 
sin 2mA + - cos 2mA - 

m2 
& sin2mA S(y: - ;c’i)S(y: - xt) 

+$(cos2mr{ci[?m(r+A)] -cibrn(r-A)]} 

+ sin2mr sz 2m(r + A) { .[ 

(46) 
where color factor of 2/3 is included. By comparing IA with INR as in Eq. (35), 

15 



we have the new potential V’ as 

V’ = $irnm - $lne- 4r)T 4m3 1 + -ecr;T 
+ 37r 

T -$K-;(mr))2 (%,in2mA+ $cos2mA - &sin2mA) 

+ J d3ziid3y’2 7 ’ (“....$m$2 ( cos 2mr{ci[2m(r + A)] - ci[2m(r - A)]} 

+ sin 2mr{si[2m(r + A)] - si[2m(r - A,~I)] 

($ sin2mA + $ cos 2mA - & sin 2mA) 

+ J d3y;d3zG$[I~v$m~)]2 cos2mr{ci[2m(r + A)] - ci[2m(r - A)]} 

+ sin2mr{si[2m(r + A)] - si[2m(r - A)]} )I . (47) 
The integrations are to be carried out with fixed r, so that they represent the 

summation over various angular states. In order to estimate the annihilation con- 

tribution in a given state we must assume an appropriate form of E(T), and then 

calculate the spectra with the corrected terms included. The correction terms 

are dependent on the T, quark mass m, and the time interval parameter A, and 

show oscillatory behavior with respect to these variables. The oscillatory behavior 

provides a possible mechanism for the positive mass shift of q. 

DISCUSSIONS 

In this~ paper, we defined the annihilation graphs as those with free gluon 

propagators without any associated Wilson loop factor. If we introduce additional 
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Wilson loop factor to the intermediate gluons, the contribution becomes a mixing 

between quarkonium states through glueball states. Since we cannot solve the 

bound state problems of glueballs, it is better to distinguish the pure annihilation 

graphs from those of glueballs. Of course, it is an important problem to calculate 

the glueball contributions. 

Besides the glueball problem, there remain several points to be resolved fur- 

ther. First, we must determine the annihilation time scale A in order to calculate 

explicit values to be compared with experimental data. It seems arbitrary to in- 

troduce the parameter A; however, it is essential in the Wilson loop description of 

bound states to consider the annihilation time scale. Second, there is no mixing 

between states with different quark masses in our definition of annihilation graphs. 

The well-known example of mixing between 77 and 71 must be treated only through 

glueball contributions. Another point concerns the form of the longitudinal gluon 

propagator. Th e introduction of a boundary term in Eq. (40) resulted in a di- 

vergence in our formalism as T + 00. Further studies of the forms of the gluon 

propagator in various gauges are necessary to confirm our results. 
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. FIGURE CAPTIONS 

Fig. 1. Wilson loop with temporal length T and spatial length R. 

Fig. 2. Annihilation diagrams in a Wilson loop formalism. 

Fig. 3. Diagrams excluded by the definition of annihilation contributions. 

_ (a) Diagram with large difference between r, and ry. 

(b) Diagram with physical glueball contributions. 
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