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ABSTRACT 
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One of the paths for searching for physics beyond the Standard Model is by 

probing low energy processes which are sensitive to the effects of high mass, virtual 

particles. This inspires much of the present round of rare I< decay experiments. 

Of particular interest are processes that are forbidden in lowest order, such as 

neutral current processes which change quark flavors, but which can occur through 

one-loop Feynman diagrams. 

Decays such as KL + 7r”e+e- and K -+ ?rvz? are of this type. The change in 

quark flavor, from an s (in the K) t o a d (in the K), occurs in the Standard Model 

through diagrams involving one or more loops. There is a large window between 

the present experimental limits on the branching ratios for these processes and 

the corresponding standard model predictions. Within that window there is the 

possibility of a branching ratio arising due to new high mass particles in the loop. 

Even if these processes are finally observed at roughly the expected level, they 

provide information on the parameters of the Standard Model and, in the case of 

K + KVV, a rate which depends on the number of light neutrino species. 

We have recently re-evaluated the Quantum Chromodynamic (&CD) correc- 

tions to the short-distance amplitude for the process I(L + r”P1- in the light of 

the present situation, where the mass of the t quark is comparable to, or greater 

than, the mass of the W boson!” In Standard Model predictions for Jr’ -+ TVV, 

QCD corrections are often neglected or, to the same end result, stated to be small!” 

When included, they are sometimes treated as an overall multiplicative factor for 

the whole amplitude, even though it arises from a sum of pieces due to c and t 

quarks in the loop. An exception is the work of Ellis and HagelinL3’ where QCD 

corrected top-quark contributions are given in the case where the mass of the top 

quark in the loop is much smaller or comparable to that of the W. 

In this paper we re-evaluate the QCD corrections to the short-distaace ampli- 

tude for K + ~UV when ml - Mw. We give an analytic form for the corrections 

to the leading logarithmic pieces and discuss the ambiguities in non-leading terms. 

Quantitatively, the rate for K+ --+ r+vii is decreased by 15 to 30%, a result which 
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is in fact numerically similar to thati4’ of applying Ref. 3, even though the detailed 

expressions are different. 

. Feynman diagrams for the process I( + rvefie are shown in Figure 1. They 

are similar to the diagrams for the short-distance contributions to the process 

K + &.P, except for the absence of the “electromagnetic penguin” and the 

appearance of different lepton lines. The latter induces a dependence on the mass 

of the charged lepton in the loop and a different weighting of the diagrams. 

. At a hadronic scale p below the charm mass and appropriate for I( decays, we 

write an effective Hamiltonian for AS = 1 processes 151 

‘H = s ‘A&d C Ci(p2)Qi + h. C. , 
i 

(1) 

where the effective four-quark operators Qr to Q6 are the same as in Ref. 5. The 

V - A character of the gauge boson coupling to neutrinos allows only the operator 

e2 
Qy = z(sa~p(l - Ys)d,)(fieY(l - +/s)ve) 

to appear to lowest order in electroweak interactions to represent the short-distance 

contributions to I( + TUG in the summation. 

At a scale Mw, before QCD corrections are introduced, the coefficient C, 

receives a contribution involving a quark 4 = U, c, t from both the “Z penguin” 

and the “Box” diagrams. When the coefficient is chosen to match the free quark 

result ;I one obtains: 171 

Eg)(M$) = l xq (xq - 6)(x, - 1) + (3x9 + 2)ln(xq) 
sin2 0~ 167r bq - Q2 1 7 (34 

~goz)(M~) = sin;ow 2 xq ; l I ;;xq) [ ) zq 1 W) 

where xq = mi/M&. The tilde over the coefficient indicates that the Kobayashi- 
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Maskawa (KM) factor has been removed from it: 

C,(&f$) = c !mL - 
q=21,C,t &+$‘id cv’q(M’) ’ 

(4) 

For small xq, the leading terms in Eqs. (3a) and (3b) come from the logarithm, 

with its coefficient in $:“) being four times larger and of opposite sign to that 

in CL;). The contribution of the u quark is neglected (because of an overall factor 

of xU), leaving c and t quark contributions which are comparable in the amplitude 

for K* + ~*VIY when the respective Kobayashi-Maskawa factors are included. 

The leading logarithmic QCD corrections are applied to the term proportional 

to Zn(xq), which arises here from an integration from the scale mi to that of the 

weak interaction, A4&. With the introduction of QCD, the integrand gets an 

additional scale dependence reflecting those of the four-fermion interaction and 

the running of masses, so thatL8’ M& Mk ML s dq2 -------+ q2 QCD s Al2 --p2) = % s dq2 yj!T . 
4 74 74 

Since by assumption the t quark has a mass comparable to the IV, its contri- 

bution has no large logarithms and in addition comes from a region where o, is 

small. Therefore the QCD corrections to c’“,t are neglected. Consequently, the 

only significant QCD corrections of interest here are those to the charm contribu- 

tion. Following Ref. 8 and breaking up the region of integration into segments that 

correspond to a given number of operative quark flavors, or equivalently, following 

the general renormalization group discussion of Ref. 5, we find for the “Box” 

(Box) = 127r ( I+25 - 1) 
‘IC 

clb 
lr,-24/25 

+ clb ( 1 - li*-$3) 

wq$/m:) 4m:> dm;) 
7 (5) 

with KbIW = cu,(m~)/cu,(kf$) and I<,/6 = a,(m~)/a,(m~) in effective five and 

four quark theories, respectively. 
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For the “2 penguin” the corresponding QCD correction factor is: 

(4 = ( 
127r 

77, 
wf&lm~) > 

X 

([ &-6/2311,-6/25 ( 1<7/25 4 - 1) (1 - K-y) - 

7 blw clb cys (4) 4m:> 1 (6) 
r-13/23 (I’:;: - ‘) _ &12/23 (l - ‘b/W > 

4m;, 13 b/W 4m;) 

Numerical values of the charm contribution, before and after QCD corrections, 

can be found for various values of AQCD in the Table. The values there correspond 

to v$~“) = 0.61 and viz) = 0.31 when AQCD = 150 MeV. Especially for the “Z 

penguin,” the QCD corrections are large. However, since the leading logarithm, 

ln(M&/mz), enters the amplitude for K --+ ~UV in the ratio of 4 to -1 (of “Box” 

to “Z penguin”), the effective QCD correction factor to the leading logarithm in 

the overall charm contribution is [4(0.61) - 1(0.31)]/[4 - l] = 0.71 . 

There remains the question of how to treat the QCD corrections to the non- 

leading terms. In general, the coefficients (?“,q may contain different (non-leading) 

renormalization-scheme dependent terms of the form: (constant) x xp . Being a 

physical quantity, the net amplitude ca.n not change in going from one scheme to 

another, as there are compensating changes in the matrix elements of the other 

operators. Without a higher order QCD calculation of the anomalous dimensions 

and the matrix elements, a scheme dependence remains in the QCD corrections to 

the non-leading terms in the coefficients. 

If we take the non-leading terms in the charm contribution from Eqs. (3), 

then it doesn’t make much difference what is done as far as QCD corrections to 

them. The next-to-leading terms are in the ratio of -4 to $3 and cancel against 

each other, as can be seen by comparing the (no QCD) leading logarithm portion 

with the full contribution of charm in the Table. As QCD corrections reduce the 

coefficient of the leading logarithm, the non-leading terms become relatively more 

5 



important if no correction is applied to them. Even in this case, there is only a 

10% difference in the total charm contribution (compare the sixth and third row 

of Table 1) if the non-leading terms are included, although the effects are very 

much bigger in the component pieces, especially CL:). Applying QCD corrections 

characteristic of the scale m, to these next-to-leading terms, in the spirit of Ref. 

8, reduces their magnitude and makes them even less significant (row seven of the 

Table). The lesson is that there is a sizable difference in the charm contribution due 

to QCD corrections to the leading logarithm, but only small differences induced 

from changing the value of AQCD or from handling the QCD corrections to the 

non-leading terms in different ways. 

With the QCD corrections in hand, we can apply them to the amplitudes for the 

processes of interest. The branching ratio (per neutrino flavor) for Ii’* + 7r*v&$ 

can be related to that for 1c.4 decay to yield, 

B(li’* + T*Qz~[) = 2 IV,di2 a2 jC,12 B(I(+ -+ r”e+ve) 

= 5.1 x 1o-6 I&l2 ICI/l2 
9 (7) 

where 

CV (8) 

We have performed a full numerical search over Kobayashi-Maskawa parameter 

space to obtain maximum and minimum values of the branching ratio as a function 

of mt, which is shown in Figure 2. We allow the magnitude of the Kobayash- 

Maskawa matrix elements to lie in the ranges directly allowed by experiment.[g’ 

In addition we impose the constraints of requiring that the short-distance (box 

diagram) contribution to the respective mass matrices account for c in the K” 

system and mixing in the L$ DOI system. Our results without QCD corrections 

(dashed curve) are very close to those of Nir!“’ 

An upper limit [“I on the rate occurs when m, is as large as allowed (1.7 GeV 

here), and we replace v~~v~d/v&v,d in Eq. (8) by minus its maximum magnit,ude, 
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allowing complete constructive interference between the charm and top contribu- 

tions. Unitarity of the KM matrix gives IVtdI < 0.024, while for rnt > 120 GeV, 

a more stringent upper limit on I&l occurs from Bd - Bd mixing. The upper 

bound on the rate so derived holds for three generations of quarks irrespective of 

whether CP violation arises from the Kobayashi-Maskawa matrix. In fact, adding 

the c constraint lowers the maximum rate by at most a few percent. On the other 

hand the minimum of B(Ii’* + r*vl6[) for a given mt occurs both when m, is 

as small as allowed (1.3 GeV here) and the potentially constructive interference 

between the charm and top contributions tends to be as small as possible. 

When one compares to the branching ratio with QCD corrections (solid curve), 

there is a decrease in the minimum by E 30%. The maximum, on the other hand, 

decreases by E 25% for smaller mt and M 15% for larger values. Although the 

detailed formulas are different, this is numerically similar to the results of Refs. 

3 and 4. From the preceding discussion this is to be expected in that, even though 

we take account of the change in operative quark flavors at the b-scale and mt being 

comparable to Mw, the basic physics is the same and the magnitude of the QCD 
[I21 corrections is not sensitive to the details of the running of CX~. 

The decay I(: -+ 7r”v~V~ is CP violating and is of current interest. [131 Its 

branching ratio (per neutrino flavor) can again be related to that for Ices decay: 

B(IC; + T~z/@~) = 2.1 x 1O-5 Ivud12 I(6 - i[)k cv t iIm cv12 . (9) 

The term proportional to Re C, gives a negligible contribution and 

Im C, = Im 
( ) 

g$ (L%,t - E”,C) , 

with the rephase invariant quantity Im (vt~Vtd/v&&) z ~2~3~6 in the original 

parametrization of Kobayashi and Maskawa.n4’ Therefore 

B(@ t T~z+&) ~25 2.1 X 10-5(S2S3Ss)2 ICy,t - (?v,c12 . (11) 

The quantity IEv,t - E,,,12 is completely dominated by the top contribution and 
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is shown in Figure 3. As ~2~3.~6 is of order 10w3, the branching ratio with three 

generations of neutrinos is of order 10-ll. The QCD corrections to the t quark 

contribution should be small, making this theoretically an ideal decay in which to 

study CP violation in the decay amplitude, although experimentally the problems 

are very formidable!13’ 
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Table 

The coefficient e,, for m, = 1.5 GeV (Units of 10e4) 

2;g) e$p’ c 
, V,C 

Leading Log Only 

No QCD -4.7 18.9 14.2 

AQCD = 100 MeV -1.7 12.1 10.4 

AQCD = 150 MeV -1.5 11.5 10.0 

AQCD = 250 MeV -1.1 10.5 9.4 

---- 

Full Contribution 

No QCD 

QCD applied to 
leading log only 

(AQCD = 150 MeV) 

QCD applied to leading 
and non-leading terms 
(AQCD = 150 MeV) 

-3.0 16.6 13.6 

0.3 9.1 9.4 

-1.0 10.6 9.6 
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FIGURE CAPTIONS 

1) Feynman diagrams giving a short distance contribution to the process 

I< --+ TulVe: the “2 penguin” and the “W box.” 

2) The maximum and minimum of the branching ratio (per neutrino flavor) for 

IF -+ T*VV without (dashed curve) and with (solid curve) QCD corrections 

(AQCD = 150 MeV). 

3) The quantity Iz;,,t - e,,,12, which enters the branching ratio for the CP 

violating decay I(L -+ 7r”UpVe, as a function of mt. 
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