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ABSTRACT

A Monte Carlo program simulating fermion pair production is presented. I features
a multiphoton bremsstrahlung out of the initial state beams. The contributions from soft
photons are summed rigorously up to an infinite order using the Yennie-Frautschi-Suura
method while the contributions from up to two hard photons are also properly treated.
Four momenta of all soft and hard photons are explicitly generated and the total energy
momentum conservation is exactly obeyed. The program is primarily aimed for LEP/SLC
type experiments and will be helpful in the precise measurements of the 7" mass and
width, the basic parameters in precision fests of standard electroweak theory. 1t can also
be used far away from the Z" resonance as well. From the point of view of the QED
it provides the totlal cross section with precision 0.1% near Z° and 0.5% away from Z°

resonance. With some restriction it can provide predictions for various asymmetries.
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PROGRAM SUMMARY

Title of the program: YFS2.02

Computer: I1BM; Installation: TBM 3081/3090/3033
Operating system: CERNVM, SLACVM, UTKVMI
Programing langnage used: FORTRAN 77

High speed storage required: 100000 words

No. of bits in a word: 32

Peripherals used: Line printer

No. of cards in combined program and test deck: 1339

Keywords: Radiative corrections, initial state bremssirahlung, Monte Carlo simulation,
Quantum Electrodynamics, exponentiation, multiphoton emission, Z° boson, ete™ anni-

hilation, electroweak theory.

Nature of physical problem:

ligh statistics data samples will be available soon in LEP and S1.C experiments allowing
for a precise measurements of the 7% mass, width and various asymmetries. Since initial
state QED bremsstrahlung distorts the shape of the Z9 resonance very strongly it will not
be possible to make any statement about the agreement of these data with the standard
clectroweak model before one is able to calculate all these effects very precisely. The above
QED effects depend usually on the experimental acceptance and selection criteria and
it is therefore practically impossible to calculate them analytically. It is already known
that in order to reach a sufficient precision level one has to sum up contributions from
multiple soft photons and from up to two hard photons. In particular any program of the
class presented in ref. [I] is not sufficiently precise. A number of analytical exact and
approximale calculations exist for the total cross section [2,3]. They are very instructive
but they cannot help in removing detector acceplance from the data and/or provide the

integrated cross section in the presence of the realistic, complicated set of cut-offs.

Method of solution:

The Monte Carlo event generator is the well known answer to the above problems. Any
given experimental acceptance and cut-olfs may be introduced easily by rejecting some part
of the generated events. The main technical problem in the construction of the Monte Carlo
event generator with multiple soft and hard photons is related to a necessity of generating

photon momenta within a multibody Lorentz invariant phase space with the simultancous



importance sampling for strong singularities due to the bremsstrahlung matrix element
and Z° resonance. An elegant solution of this problem, being an extension of the methods

described in refs. [4], is presented in this work.

Restrictions on the complexity of the problem:

Outgoing fermion f may be any lepton or quark except of f = e™, ve. The program is best
suited for calculating the total cross section and the spin asymmetry with respect to beain
polarization and also for all sorts of the detector acceptance studies. Pure electroweak
corrections are not included, but we provide a detailed explanation of how to do it. Due
to omission of the final state bremsstrahlung and its interference with the initial state
bremsstrahlung this program cannot be used for calculation of the final state polarization
asymmelry (7 pair production) and some care is necessary in the case of calculation of the

forward backward asymmeiry.

Typical running time:
CPU time for one evenl depends on center of mass energy and infrared cut-off. Typically,

al the Z° position generating 1000 events costs 9 CPU seconds and off Z° resonance about

18 CPU seconds on the IBM 3081.
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LONG WRITE-UP

1. Introduction

In the recent years an impressive evidence has been accumulated in a variety of exper-
iments, including direct observation of Z° and W% bosons in pp collider, in support of the
standard electroweak model [1]. A new qualitative step in its experimental verification will
take place soon with the advent of the LEP and SLC e*e™ colliders where high statistics

data near the Z° resonance will become available.

The first and simplest measurement of the total cross section will provide new precise
values of the Z° mass and width. In the next step the laborious measurements of various
asymmetries will provide detailed new information on the Z° couplings to leptons and
quarks. There is a well known problem, however, with the measurement of the Z% mass,
width and peak cross section which is due to the initial state QED bremsstrahlung. The
frequent emission of the (usually soft) photons out of the initial beams distorts strongly the
Breit-Wigner Z° resonance shape lowering the peak cross section by —26% and shifting the
peak position by about +110M¢V . In the radiative tail above the Z° position the QED
corrections are even larger, of order 100%. The emission of additional photons affects not
only the total cross section but also topology of the events giving rise Lo nonzero acollinear-
ity and acoplanarity angles for final fermions and to nonzero transverse momentum of the

final fermion pair as a whole.

Since the above QED effects do not carry any new physical information and may only
obscure the measurements of new interesting phenomena, it is therefore highly desirable
to calculate and to eliminate them from the data at the precision level of a factor of
2 — 3 better then the best anticipated experimental error. This means that the QED
initial state bremsstrahlung effects in the total cross section should be under control below
0.5%. From the various non-Monte-Carlo (analytical) calculations [2-4] it is known that
in order to reach a sufficient precision level it is necessary to include QED initial state
corrections from up to two real/virtual photons and it is strongly recommended to sum

(1)

up the contribution from the infinite number of soft photons'’ . The serious drawback
of these calculations is that they feature very simple kinematical limits on the photons,
as in ref. [2], or they have unspecified (and non-conserved) transverse photon momenta,

as in. refs. [3,4]. In the real experiment the combined effect of detector acceptance and

(1) See also ref. [5] for a summary review of these calculations,



of the selection criteria cannot be cast into a simple analytical form such that one may
attempt to integrate the cross section analytically. At LEP/SLC experiments a Monte
Carlo event generator will be for this purposc indispensable, similarly as it was in the
former PETRA/PEP experiments. Presently, the only published and documented Monte
Carlo event generator for the fermion pair production process at LEP/SLC energies is that
of ref. [6]. 1t includes single photon emission only, provides the total cross section with
low precision and lacks kinematical effects due to emissi‘on of the second real photon. It is

definitely insufficient for LEP/SLC experiments. .

One of the main lessons from refs. [2,3,5] is that due to strong variation of the lowest
order cross section near the Z° resonance one has, first of all, to sum up the contributions
from multiple soft photons. The contribution from hard photon(s) really matters far away
from the Z° resonance, especially in its radiative tail. The Monte Carlo event generator
presented in this paper is based on the rigorous resummation of soft photon contributions
according to the Yennie-Frautschi-Suura (YFS) method [7]. The first, still rather simple,
version of the Monte Carlo algorithm used in this work was presented in ref. [8]. Some nu-
merical results obtained from the first unpublished version of this program were presented
in ref. [9]. A supplementary discussion on the underlying ideas exploited in this work the

reader may find in refs. [10].

Is the strategy of the present work for calculating the higher order QED effects to
concentrate first on the proper soft photon summation the only possible one? Of course
it is not. Let us comment on the other options and try to explain very briefly how do
they compare with the ours. It is known that much of the effects due to the initial state
radiation can be qualitatively explained and calculated in a simplified picture where both
e* beams fragment collinearly into photons and another et beam such that at the moment
of e—et annihilation the total center of the mass energy is reduced and the annihilation
cross section changed accordingly, see refs. [3-5]. This type of the calculation is physically
very appealing and it gives a rather quick answer for the total cross section near the A
with about 1-2% precision. One may even construct a Monte-Carlo event generator in
which photons arc emitted with zero pr with respect to the et beams. After a quick start,
one faces the problems, however. In order to improve on the precision of the result the
beam fragmentation distributions have to be modified by hand in the soft photon limit.
Generally, in this approach in order to improve further on the precision one has to go
beyond the leading-log approximation. This can be done for the inclusive quantities like
the total cross section [2] but unfortunately there is no known way (apart from guesses) to

proceed systematically, beyond the leading-log, with the ezclusive distributions necessary



for a Monte Carlo program event generator. The attempts of constructing Monte Carlo
event generators in this spirit suffer from a large degree of arbitrariness and a lack of a good
estimate of the actual precision of the resull. In fact the only procedure for estimating the

final error is to compare the results from various different, ad-hoc, procedures.

The other possible, conservative, strategy would be to make a second order Monte
Carlo event generator, without any “exponentiation”, following closely the work of ref. [6].
(The corresponding analytical exact second order calculation for the total cross section is
already done, [2].) This approach seems, however, to be not very attractive. The first
order Monte Carlo of rel. [6] is plagued with the positivity problem of the soft photon
cross section: The integrated cross section with no photons above the energy cut-off Efax

is roughly proportional to 1 — 6, where

% 8 NG
by = 2(;) In (;g-) In (2’(}’1‘”) (1.1)

includes a large Sudakov-type double-logarithm and therefore 1 — 65 may easily become

negative — a disaster for the Monte-Carlo. In the second order situation gets improved
becausce this particular cross section becomes proportional to the factor 1 -6, + %63 which
does not get negative ( but may get excessively positive instcad). The positivity problem
returns, however, in the previous bad form, in the case of one photon above and up to
one real/virtual photon below Eax (the corresponding cross section is again proportional
to 1 — &,). Our scheme is superior to the above solution because the summation over
the infrared/soft photon contributions necessarily involves a summation of the Sudakov
double-logarithmic contribution to an infinite order at the very beginning and the positivity
of the diffcrential cross section is assured automatically. Compared with the leading/next-
to-leading log scheme our approach does not offer a quick start because one has to invest
in the development of the new nontrivial type of the Monte-Carlo generator, but once it
is done, the inclusion of the second order corrections, and of the higher ones if necessary,
is relatively easy and the remaining serics in the number of noninfrared/hard photons is
rapidly convergent (no double logs). The two above approaches are complementary and
if, at some point, the problems with the proper definition of the exclusive spectra in the
next-to-lcading log approach are solved, then its comparison with our scheme would be a

very interesting exercise.

How do we estimate the overall precision in our approach? The soft photon corrections
arc summed up to an infinite order, rigorously from the point of view of perturbative QED

[7], and the noninfrared/hard photon contributions are added in the scattering matrix
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element one by one, i.e., order by order. The basic method is to compare the results from

2

the first and second order calculations. Another possibility is to compare two second
order results, the usual one with the series over the noninfrared/hard photons including
three terms (up to two hard photons) and another truncated to two terms only. The
precision of the calculated cross section is deduced from the difference between the two
results. The following estimate of the precision is obtained from these two methods: in
the region up to 3GeV away from the Z° position the precision is better than 0.1% and

far away from the Z° it is better than 0.5%.

The presented program provides not only information on the total cross section but
also on the topology of the experimental events. Let us first explain what the title state-
ment about applicability of our program to two hard and multiple soft photons means.
The program in fact is generating events with three and more hard photons as well. The
restriction to two hard photons comes only from the fact that for three and more hard pho-

tons the matrix element will be not corrcct(s)

. There are two ways to proceed with these
multi-hard events, either let them in the sample, knowing that they contribute negligibly
( < 0.01%) to the total cross section, or to reject them with the experimentally feasible
cut-offs. Near the top of the Z° peak the rapidly falling cross section acts as an effective

(4)

cut-ofl on the hard photon emission. If the experimental cut-offs are loose then the
dependence of the total cross section and of other observables on cut-offs will be rather
weak. Nevertheless the resolution in the typical LEP/SLC experiments will be very sharp
and the effects due to emission of multiple photons will be clearly visible in many distribu-
tions, for example in the acollinearity /acoplanarity distribution of the outgoing fermions
or in the total longitudinal/transverse momentum distribution of the fermion pair. The
present program offers a definite and precise QED prediction for these distributions and
they may be very usecful in calibrating the detector and/or testing the QED as well. Some
of these distributions depend also on photons emitted from the final state which are not
yet included in the present version of the program. In this case we recommend the user to
employ the unpublished but widely available program KORALZ [11] in which the present
program is supplemented with the final state bremsstrahlung in an approximate way. This

is a temporary solution and the real one will come with the next version of the present pro-

gram. We would like also to note that the first version of the multiphoton event generator

(2) In fact, as is explained in Section 3, the contribution to the differential cross section from the second
noninfared/hard photon is added in the leading-logarithm approximation. Some of next-to-leading
corrections are also included. This is enough for the precision level claimed in this paper.

(3) It will be not dramatically wrong, factor two at most.

(1) For the initial state emission only.



with the Yennie-Frautschi-Suura soft photon summation exists for the low angle Bhabha

scattering [12]. Tt is aimed primarily at the luminosity type measurements.

The layout of the paper is the following: In Section 2 we describe the Monte Carlo
algorithm; in Section 3 we write down and explain in detail the QED differential cross
section used in the event generation; in Section 4 the structure of the program is explained
and the important subprograms and variables are listed; in Section 5 we describe how to
use the program, what sort of input is required and where to find the interesting output;
finally, in Section 6 we give the examples on the numerical results concentrating on the
precision of the total cross section and we provide a further information on the output

from the program. Short conclusions are given in Section 7.

The question of the arca of applicability of the program is discussed in Sections 5 and
6. We conclude that the program in the present version is well suited for the total cross
section®™ and for the polarization asymmetry with respect to the initial beam. With
some restrictions it can be used for the charge asymmetry at the top of the Z°. It is not
hcllpful for calculating the final state polarization asymmetry, unless it is taken as a part of
KORALZ [11]. The present program can be casily interfaced with any reasonable program
for pure electroweak corrections and we instruct the usecr at the end of Section 5 in how
to do it in practice. In Section 6 we also present an example of numerical results from
the Monte Carlo calculation based on the renormalization group improvement — another

possible application of the presented program.

2. The Monte Carlo algorithm

Let us start with a formula for the total cross section which includes phase space
integrals in a form ready for the Monte Carlo integration. The relation to the standard
Yennie-Frautschi-Suura notation [7], used also in many other papers on the exponentiation,
sce for instance refs. [13,14], can be found in the Appendix A. The differential cross section

for the process

e”(p1) +et(p2) — flg) + fq2) + v(k1) + ... + y(kn) (2.1)

is summed over the photon multiplicity n and integrated over the Lorentz invariant phase

(5) For the integrated cross section the influence of the final state bremsstrahlung is negligible, provided
the cut-offs are mild (or absent), but it becomes quickly quite important in the presence of any stronger
kincmatical cut-offs.



space in the following way

d’q d° dk; n
°T Z n'/ ' ‘12 ( 5(p1,p2,k,-))6“(p, tp—q1—q2— Zk{) om
1=1

q, QQ i=1
&3k o 2 (-
exp 2aB+/ 10 —-S(p1,p2, k) (1 — 6T () 5, Bo(Rp1, Rp2, Rq1, Rq2) (2.2)
Z ﬂl(RPhRm,th'R%kl) + Xn: B2(Rpy, Rp2, Ra1, Ray, ki, kj))
kl) 1,i=1 S(kl)s(kJ)
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Let us explain the main ingredients in the above expression.

(i) The infrared singularity in the factors

2 2 2
S k) = — LS. SR 6. — - £ — % :
(P1,p2, k) = =5 (mk mk) in? ((plk)(pzk) (p1k)? (sz)2) (2.3)

is excluded from the integration domain by means of the conventional energy cut-off in the

center of mass system. This is done with the help of

H f (-2—’“E - f) (2.4)

which is equal zero if an energy of any of the photons falls below €/3/2, s = 2p; - p2 and
we require € << 1.

(ii) The integral includes hard photons all over the complete phase space.

(iii) The explicit dependence of the integrated cross section in eq. (2.2) on the infrared
cut-off ¢, coming from the lower integration limits, is in fact completely canceled by the

Yennie-Frautschi-Suura [7] form-factor

, d*k .. 2e¢
Fyps(p1,p2,€) = exp (QQR,eB + / ';0—5(7’1’7’2’ k)(l — 0(k0 - T>))

8
o s 1 s w2
:exp(2;([]Il;n—g—l]]nﬁ-}-iln;—nz—l+—3“))v

where the approximation m?/s << 1 was used, see ref. [9] and Appendix A for definition

(2.5)

of 2aB and for other details. Neither the total cross section nor any other measurable
quantity depends on €. It plays only a role of a dummy parameter introduced to limit the

multiplicity of very soft photonq for the purpose of the numerical M. C. integration and it

9



may be set arbitrarily low.

(iv) The functions ﬂ~0,1,2 are infrared finite and are calculated perturbatively order by order.
In our case one needs the second order — two loop — double bremsstrahlung matrix elements
to extract them. The relevant formal definitions of §’s are given in refs. [10] and the first
order formulae for B(]’l can be found in ref. [9]. The complete definitions of B’s used in this
program are listed in Section 3. The normalization factor 2/8; = 2(1 - m}/(ql +qn)?) 12

was adjusted such that the lowest order By is simply

doBorn

B (i 0i) = =0 (0, 9).

(v) The meaning of the Rp; and Rg; is the following. Striclly speaking ,30,1,2 are defined
within the corresponding 2, 3 and 4 body phase space and if for a particular photon
multiplicity in the formula (2.2) there are some additional photons then the proper mapping
pi — Rpi and ¢i — Rgi in the arguments of 60,1,2 has to performed. In other words one

has to require [7]

Rp1 + Rp2 = Rqy + Rgy  for [}U(Rp],’sz, Raq1, Rqa),
Rpl + Rpp = 'R,ql + qu + kl for B] ('R,pl, 'R,pz, th qu, k() and (2.6)
Rp1 + Rpr = Rq1 + Rqs + ki + kj  for  Bo(Rp1, Rpa, Rar, Ray, ki, kj).

As we see, cach of the above mappings is the projection of the phase space point onto an
edge of the phase space, where the edge by itscll is a less-dimensional phase space. This
procedure is related to the fact that in the YFS scheme of ref. (7] the infrared singular
factors § are subtracted and the residua, equal to B’s, arc taken at the singularity position
(k = 0). The R procedure concerns only the arguments of B; and does not disturb the
phase space integral nor the four-momentum conservation. The reduction procedure R
may depend on the momenta of all fermions but may nof depend on the momenta. of
the individual photons. This requirement is crucial for the cancellation of the infrared
divergences in eq. (2.2). A definition of the R procedure for Bo will be given later on in
this Section and a detailed definition of the R operation for all B’s is included in Section
3.

We shall now introduce the reader to the method of gencrating Monte Carlo events.
The procedure of constructing our Monte Carlo algorithm is generally the following: we
shall gradually simplify the integrand and the phase space limits such that at the end we

obtain a simple distribution which can be easily gencrated with help of the uniform random

10



numbers. All these modifications have to be corrected for by the appropriate reweighting
and rejecting the events which were gencrated according to the simplified distribution. At
the end of this section we shall summarize on all weights which have been introduced in the
course of the simplifications. The exact integrated cross section is calculable numerically
using the average weights from the Monte Carlo run and may be obtained with an arbitrary

precision, simply by increasing the number of generated events.

In the first place we drop out higher B’s

B — 0, By —0. (2.7)

As we shall see later on, the effects of ;3 arc small and, therefore, they can be easily

reinstalled in the late stage of the Monte Carlo by the rejection procedure.

A next replacement
= 1
o — by = T OBorn ((q1 + 92)%) (2.8)

is more meaningful and it should be understood as follows. First of all, since we are dealing
with the resonance production we must take into account the effective shift of the center

of the mass energy [7]

s — s'= (1 +q2)’ (2.9)

in the matrix element, already in ﬂ~0. This is done by requiring that the reduction procedure

(n.b. for all B’s) fulfills the condition
(11 + @)’ = (Rg) + Rn)”. (2.10)

The R procedure for [}0 goes as follows. Starting from the laboratory system (center of the
mass system for the initial beams) with the third axis pointing along e~ we make a z-boost
such that g3+ ¢3 = 0 and then another boost along the remaining transverse part of ¢ + ¢
to a rest frame of q; + g7. In this frame we assign the resulting ¢; as Rg; and the four-
momenta Rp; are simply constructed as py = (\/s_’/Q,(),O,pz), Py = (\/.?’/2,0,0,—112)
where p, = m ®) Obviously, this construction fulfills conditions (2.6) and

(6) This procedure coincides well with the leading-log/collinear approximation prescription which says:
take the Born differential cross section at the reduced center of the mass system with the z-axis
pointing in this frame roughly in the direction of the beam momenta.

11



(2.10). In fact, neglecting the virtual correction, one may well approximate [9]

o doBorn [
ﬂO(RPl ) RP2, RQIRQ'Z) = d0 (3 y oq)a

where 6, is an angle between Rp; and Rgq;. In the eq. (2.8) we go on however one step
further and we also neglect the angular dependence on 4. This is done for the purpose
of the modularity of the program. From now on we have only to worry about the squared
bremsstrahlung matrix element factor []; S(k;) and about the resonance curve embodied
in the opom(s’). The whole complicated details about the higher order real and virtual
corrections are added in the late stage of the Monte Carlo by rejection and are functionally

very well separated from the rest of the program.

The net distribution which now remains for discussion is the following
oo n
1 d*k; df2
0" = Fyrs(pl,pz’()zh—i\/‘n kO‘S(p],pz,ki) (")gm/_rwq UBorn(S')- (211)
n=0 =1 !

The Z° resonance is so sharp that we have to arrange the phase space integration and the
Monte Carlo algorithm in a special way; the variable s’ = (g; + ¢3)? must be generated

first with an appropriate importance sampling. Let us introduce a new variable

s 2KP - K? =
v=l-—="m—  P=ptp, K=§k.~ (2.12)
as a first variable in our integral
vma: dQ
o' = Fuslpio @) [ do [ T8 onn(a(1 = 0)
¢ (2.13)

21y &Pk 4 o 2KP - K?
5 [T %550 o s(s - 202
n=0 =1 '

The condition v > ¢ is induced by O™, because due to € << 1 the term K2 in (2.12)
can be safely neglected. The upper limit vpe, on the photon phase space is in principle

arbitrary but it must obviously obey vpe, < 1 — 4m}/s.

Now comes the main point in the Monte Carlo algorithm: for a fixed value of the

variable v we have to gencrate four momenta of n photons according to a distribution

| J R

S(ki) with the constraint of eq. (2.12). The solution of the problem which shall

12



be shown quite in a detail in the following is quite similar to that presented in ref. [8],
sce also ref. [15]. Tt consists roughly in replacing the constraint (2.12) by a simpler one.
Photon momenta are generated according to the simplified constraint and the original one

is recovered later on by rescaling the four momenta of all photons accordingly.

The essential preparatory step in the above procedure is the introduction of the new

integration variables for the photon momenta which we sha.ll illustrate on the integral

d"k 2K P Vs
(U) \rv‘sal%t)rn('S /H (U — ) H 0 kl+1 g(k _ '76)
i=1 "
(2.14)
In the above we have introduced an ordering of the photon energies at the expense of
the 1/n! factor and, as a result, the function © was replaced by the single § function

depending on the smallest cnergy k3. Let us introduce now an auxiliary variable A and a

new delta function representing the simplified constraint

) =Frrsn@) [ [ 1‘[‘”’“

1=1

6(A i 2k1P)6(U _2KP - 1(2) H S K9) 8(E° ﬁ() (2.15)
i+1 t n ).

vP? 2

Then, we rescale all photon four momenta k; = Mk; and, next, eliminate the old delta

function by integrating over A. In the résulting integral

-0 ) ) ) ] ] ] : )
5 (2 - o) a0kt — RO — B9)..0083_, ~ RO (K, ) - V103 (k )

(2.16)

the new constraints simply states that k9 = vy/s/2, i.c., that the most cnergetic photon

saturates all of the energy conscrvation alone. The function

R'ZI)Z _ n
<1 and K=Y ki (217)

_ 1 1
K =—|14 — ‘here A =
J(K,v) 2( + ,-———I_Av), where (KT S
is a Jacobian factor left after removing the old delta function and the variable

P? 2
2K -P 1 + V1 — Av’

is a solution for the rescaling factor A obtained in the process of removing this old delta

/\O(R,U) =

< M(K,0) <1, (2.18)

function. Let us notice that if there is only one photon or if the photon system has a

13



vanishing effective mass, K? — 0, then the two constraints, new and old, coincide; there
is no need for rescaling, Ay — 1, and the Jacobian disappears, J — 1. In fact due to
the strong ordering of photon energies this is almost always the case. The other extreme
situation A — 1 occurs in the case of an emission of the two antiparallel and maximally
energetic photons. Finally, let us introduce the explicit polar parametrization of the photon

four momenta

k; = Xoki = /\Oéz; (1,sin 8; cos ¢;, sin f; sin @;, cos ), (2.19)
which leads to
d3k; - d3k; - - d
where
a i m? 1 m? 1
f) = — - 2.21
f( ) ((I—ﬂC()Sa)(l+ﬁCOSH) s (1 = Bcosh)? s (l+ﬂcosﬂ)2) ( )

and A = /1 —4m?2/s. The final result of all the above transformations is a new form of
the integral (2.13)

o =F...(c) Tdvan,,m( (1 =) / 40, [ +ifl / dzi / d cos; qus. 1(8:)
/ n=1i=1" e 0

§(v — z1)0(z — 22)8(zy — 23)..0(zn_1 — 20)0( o (K, v)zn — )T (K, v)] .
(2.22)
1t should be stressed that the above equation is completely equivalent to eq. (2.13) and in

the transition from one to another we did not make any approximation nor simplification.

The distribution (2.22) could have almost been generated with the standard uniform
random numbers if there was no complicated function 8(Ao(K, v)z, —€) J(K,v) in it. We

replace it, therefore, with a simple substitute

(Ao (K,v)zq — ) — b(zp — ),

J(R, v) — Jo(v) = %(| + \/%) (2.23)

having in mind that, as usual, it will be corrected for by the rejection. In addition, in order

(7

to ensure the qtablhlv of the rejection weights at a certain late stage of the Monte Carlo
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(reintroduction of ,51) we also drop mass terms in the photon angular distribution
f(0) — f(8) = (a/7*)((1 — BcosB)(1 + Bcosh)) . (2.24)

With the additional change of variables, y; = In z; we finally arrive at the masler integral
for the Monie Carlo event generation which defines the multidimensional distribution to

be generated with the help of standard uniform random numbers

Umar o n Inv ) 2x
Ocrude = Fyps(€) / dvogem (s(1 — v)) Jo(v) (6(1}) + :—)ZH / dy;/dcosﬂ.- f(ﬂ,')/dqﬁ,'
’ 0 n=li=ln . 5 0
d€lq
S(Inv —y)8(y1 — y2)0(y2 — ¥3)--.0(Yn—1 — ¥n)f(yn — In¢) e
(2.25)

~ Let us explain in the following how it is actually done. Assuming for the moment
that the value of the v and of the photon multiplicity n are alrecady defined (see below
for details) the properly ordered y; variables are uniformly chosen in the (In¢,Inv) range,
the angle ; according to the f(#;) distribution in the interval (0, 7) using for example the
method of refl. [6] and the ¢; uniformly in the (0, 27) range. Photon four momenta k; are
calculated using (2.19) and rescaled with Ag from (2.18). Given Q = g1+ g2 = P - X k;
the momenta ¢; and ¢, are generated isotropically in the @) rest frame and transformed
to the laboratory system. In this way we obtain a set of momenta ¢, g2, k1, ..., kn obeying
the total four momentum conservation rule and the condition v = 1 — s'/s. The question
still to be answered is: how do we generaie v and n? Let us integrate in (2.25) over all y;

and the photon angles §; and ¢;:

Umar

R O —v))Jo(v)(«S(v)
i (2.26)

Jpiad 1 o s v\n-!
+0(U—€);’;(n—_15°!(2;lnm—g]nz) )

As we see, for v > € the photon multiplicity minus one is distributed according to the Pois-

son distribution with the average 22 In(s/m2)In(v/¢). In order to obtain the distribution

(7) We would like to thank dr. Z. Was for pointing out to us this problem. Sec also Appendix B for more
comments.
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of v we have to sum over the photon mulliplicity n and the result can be cast into a sum

of the two v-integrals

€ - Ymaz

Ocrude = exp(‘sws) (/ dv')"'ﬂ—]o'Bnrn(s)"{' / dvo'B(,m(s(] _v))JO(U)‘Y’v”_lf‘Y_”)’ (2'27)
0 )

€

which represent the cases n = 0 and n > 0 correspondingly and we define

a 8 o ] '
=2—[1 ————1], r— 9%y, 2 2.2
7 T nmg 7 anf, (2.28)

Note that the factor €7 = fo( ~vv7~dv was transferred from the YFS form-factor to the

integrand and the remaining part of the form-factor is denoted as

1 2
exp(byps) = exp (% (§ In % — 1+ %)) . (2.29)

‘e

The variable v, the central variable in the Monte Carlo is generated according to the

integrand of

Umar

Ocrude = efvrs / dv 7”74 TBorn(S(1 — v))Jo(v) Frnass (v),
0 (2.30)
) Y-
) =50+ =01, Fsal0) = 1406- 0L (2)

and once v is known we decide that n = 0 for v < ¢ or n > 0 (Poisson distribution) for
v > ¢. The above formula is almost identical to the analogous one in ref. [8] except of the
factor Jp(v) which is related to the dilatation Jacobian, sce eqs. (2.17) and (2.23), and the
factor Fpass(v) which is entirely due to neglecting the electron mass terms in the photon
angular distribution, see eq. (2.23). Note that the distribution doyde/dv is a complicated
and strongly varying function with up to three sharp peaks at v = 0,1,1 — M%/s. It is
generated with the help of a general purpose Monte Carlo subprogram for generating an
arbitrary one dimensional distribution, see Section 4 for more details, which also provides

the value of the (numerically) integrated cross section o¢ryde-

The events generated according to the simplified differential cross section defined in the

master equation (2.25) have now to be processed through a rejection procedure in order
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to remove all approximations which were made on the way from eq. (2.2) to eq. (2.25).

The rejection weight
1
w=[] ws (2.31)
k=1

includes four component weights wy which are responsible for the corresponding simplifi-

cations and we will list them below. Lel us note that the precise inlegraied cross seclion

is given by

0 = Ocrude < W >crude . (232)

where the average weight < w > ude 18 taken over the crude generated events, prior to
rejection. The error on o is determined in the usual way by the variance of the weight w

and the number of the generated events.

Let us stress that the above total cross section is in our approach a result of the exact
(up to statistical error) integration of the differential distribution defined in eq. (2.2) over
the entire photon phase space. We doubt that the result can be ever cast into an analytical
form. One may ask, however, can we gain more insight into the total and differential cross
sections resulting from the Monte Carlo calculation. To this end it is very instructive to

look more carefully into the v-distribution

do . do rude

_d—l; = dv < W >crude (233)

where docrnge/dv is known analytically, see eq. (2.30) while < w > pude is calculated
numerically. Since v is the first variable in the Monte Carlo generation chain it is possible
to fix it and to analysc (numerically) the v-dependence of < w > crde and of each individual
weight < w; >cmde- We refer the reader to Appendix B for more details on this interesting

exercise.

Tracing back the path of all simplification on the way from eq. (2.2) to eq. (2.25) let
us first define the first weight w; which corresponds to dropping mass terms in the photon

angular distribution

_ 11 706) ,
wy = 1:11 76 (2.34)

In fact, this weight cancels the factor Fmass(v) in the v distribution, as can be verified
numerically in the Monte Carlo calculation, sce Appendix B for more details. In other

words, for a given v we know precisely the average of wy, i.e., < w1 >erude= 1/ Fmass(v)-
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The next two weights correspond to the simplification made on the dilatation Jacobian

and the lower photon energy boundary, sce eq. (2.23),
o — J(K,v) 1+ (1—Av)~'/?
TR0 14—

ws = 000(K, )n — ) = 0 (3;-3 -o).

(2.35)

The fourth weight corresponds to the transition from the original distribution (2.2) to

eq. (2.11)

7

1 -
wy = — (ﬂo(Rm Rp2, Rq1, Raa)

bo
+ i Bl (R’pla R’F?: R’Q], RCIZ, kl) + i :[}2(’R'pla R'pZa R‘Il, RQZ, kla kJ)) (236)
2 (kD) 2 S(k)S(k;)

15

There is a distinct difference between the three weights w23 and the weight wy. The
weight wyc = wiwaws does not include any information on the perturbative order of the
particular QED calculation nor about any other detail on the QED calculation apart from
resummation of the soft photons. In a sense, the part of our program generaling events
according to eq. (2.11) is a general purpose MC event gencrator for any type/order QED
calculation for process (2.1). This part of our generator is well isolated from the rest of
the program and we call it our low level Monte Carlo (LLMC) generator. The type/order
of the QED calculation is determined fully by the model weight wy only. In particular

(8)

there exists an interesting option in which the first or second order QED calculation
without exponentiation can also be emulated with the help of our LLMC gencrator by
assigning a nonzero wy # 0 for n = 0,1 or n = 0,1,2 and setting wy = 0 for higher photon

multiplicities.

(8) This option may be used for test comparisons with the other MC programs, when available. It was
already used to test the program of ref. [12].
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3. The matrix elements and the reduction procedure

The infrared finite functions [‘70,1,2 arc calculable perturbatively order by order and
in this section we shall present for them the second order expressions which are actually
used in the program. In order to reach the precision level defined in the Introduction it
is necessary to keep the exact formula for the first order contributions but it is enough to
employ the leading-logarithmic approximations for the second order contributions to B’s.
The formal definitions of ﬂ~’s up to second order were given in ref. [10]. In the process of

the calculation we often exploited the differential cross sections from refs. [2], [3] and [16].
The second order formula for By includes up to two virtual photons. It is extracted,

sce rel. [10], from the second order expression for d(r(2)/dﬂq and 1t reads

5(2) _ 47Bom o2V ponm
ﬂ() (p17p2,QIaq2)_‘ qu (svaq)(]"’_ (ﬂ,)(l‘ ‘)+2(7I') L 7I/_ln mg, (31)

where dop,m/d) is the lowest order differential cross section. It should be noted that
the above formula is considerably simpler than the original second order differential cross
section, notably it does not include any large double logarithmic corrections which have
been summed up into the Yennie-Frautschi-Suura (Sudakov) formfactor, see eq. (2.5). The
vacuum polarization contribution was not included since it is understood to be included
in the Z° and v propagators. The contribution from the light fermion pair production,
numerically small [3], was neglected. The first order formula for By was already given in
ref. [9]. Reinstallation of the remaining nonleading second order corrections in the above
expression would be rather straightforward since all necessary ingredients are given in ref.
[2]. The zero-th and the first order versions fi((lo) and [.i((ll) arc obtained by truncating the

higher order terms in the above expression.

The second order B; includes one real photon and the contributions from up to one
virtual photon. It will be defined with the help of the corresponding differential cross

seclion

o 2pyp o 1 .
D000 = 3 gy [ (5) 0 =01+ gm0 -6 5)

L - a2 (g1 g, 1) + (1 = Y7228 g )) Wi, B) o
2 . (8.4 qu S, q,1 d()q S, q,2 m\ &, )
where
. 2 91 -&)1-8) (&, B s _ k
Wi, f) =1 - e 2ABUZPL (8 8) By By
s (1—a)?+(1—=F)P2 \pg « pip2 pPip2
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and the normalization constant is such that Dgz) — S'(k)/;((,]) for ¥ — 0. Neglecting the
(a/7)? contribution leads us to the well known single bremsstrahlung matrix element with
the following definition of the angles 0,; [17]: The 84 is taken in the rest frame of the
g1 + g2 as a polar angle of the ¢ with respect to z-axis pointing along p) in this frame
while —p is used as a z-axis for 653. The & and A are Sudakov (lighi-cone) variables
which in the collinear situations have the following simple meaning: If e~(p;) fragments
almost co]]ineavr]y into a photon with a momentum fraction zp; and a quasi-real electron of
momentum (1 — z)p; then & = 2z and B ~0.In this case the above distribution reduces to

the Altarelli-Parisi [18] splitting function times the lowest order differential cross section

14+ (1 —2) dopom,
27 d()q (3 ’GQ)v

(64
D (p1, p2, @1, 42, k) ~ (;) (3.4)

which is the result expected in the leading-log approximation. Analogously, in the case of
et fragmentation & ~ 0 and B = z. Nole also that the distinction between 8,; and 64,
disappears in the collinear regions. The second order contribution in the above formula
is writlen in the collinear approximation. It can either be taken directly from ref. [2] or
obtained by convoluting the Altarelli-Parisi function with itself [3]. Finally, the leading-

logarithmic expression ®) for By is defined as follows [7,10]

BI(PI,PZ,QI,QLk) D( )(PlaPZ,‘IhQL ) - g(pl p?ak)ﬂ (R'PI,RP%’R'(II,RW)- (35)

The above expression is manifestly finite in the £ — 0 infrared limit. As we see, the
reduction procedure for Bo (see previous Section for its definition) necessarily enters into
the definition of 8. Tt must be so since Bo is originally defined within the two body phase
space only. Let us remark on the important property of the Ay contribution in the sum of
the eq. (2.2)

. (Rp1, Rps, Ray, Rz, k
ﬂO(RPIaRP%R‘IhRQZ Zﬂl n p2p ql:') 7 I) (36)
S(p1,p2, kit

As a direct consequence of the definition of ﬁ, the second term (sum over [;l’s ) does not
contribute at all if there is no hard photon (its relative contribution is in fact less then
1073 for v < 0.001). On the other hand, if there is onc and only one, I-th, hard photon

9) The precise second order formnla for D'® cannot be found in the literature (in ref. [2] the integration
3 I g
over photon angle and df, was performed), but it is definitely calculable.
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then the corresponding 8y (ki) is dominant and the differential distribution Dy(k;) for this
photon effectively replaces the whole above expression. The first Bo in (3.6) and the Bo
inside B3;(k;) cancel each other. If there are two or more hard photons then, in this part
of the phase space, the above expression is not adequate any more, and only the inclusion

of ,@2, ,@3 may improve the situation.

For practical calculations the definition of B, must be immediately supplemented with
the corresponding definition of the reduction procedure R specific for Bi1. 1t appears that,
for #1.2, in addition to conditions (2.6) and (2.10) there is another constraint on the way

it is defined. As discussed above, in the sum (3.6) the contribution

S(Rl’h Rpa, Rkl) ~ 2 ) ) 2
= Bo(R*pi, R°pa, R°q1, R°q2) =
S(p1, p2, ki) (Rkg)%

k)2 -
( l)7 ﬂU(R'zthzp?»qulaqu?)a

is present. In the case when I-th photon is hard this contribution should be maiched
(canceled) by the [;()(’R.p], Rpa, Rq1, Rgz). This means that to a very good approximation
the reduction procedure for Bo should be idempotent, ie., R? = R and, furthermore,
for Ay it should preserve the transverse component k2. =~ (kpy)(kp2)/(p1p2) of the photon
momenium with respect to p; and p;. 'To satisfy all these requirements we proceed as
follows. Let us suppose that we want to eliminate all photons except the I-th one. With
the z-boost along the beam move to a frame where (g1 + g2 + k;)® = 0 and we pretend
that there is no other photon except k;, as in the second equation of (2.6). We define
R(q1 + q2) = RGO = —k; in this frame. Then we assign RQ° = (('RC—Q')2 + ¢')~1/2 and
RI = RQ — k. Obviously, we have obtained RP = RQ + ki, i.e. the condition (2.6) is
fulfilled. Since RP = Rp1+ Rpz = 0 we casily define new (cffective) beam momenta Rp;
and Rp, along the z-axis and the only thing to be still done is to define Rq; satislying
R = Rq + Rqa, where RQ is known already. It practically means that we have to
define Rg; in the rest frame of R and to transform them back to the laboratory reference
frame. In order to ensure the idempotence of the reduction procedure R? = R we choose
the vectors Rg; in the same way as in the case of the reduction operation for Bo described in
the previous Section, i.e., we make a boost along the longitudinal and the transverse part
of Q = q; + ¢z and take for Rg; the resulting g; in @ rest frame. The exact idempotence
of R for Ao saves us also considerably in computing time since Bp is calculated only once
and the result is used many times. Let us finally note, that the above reduction procedure
differs from what was used in the earlier version of the program described (partly) in the
ref. [9] where the condition (2.10) was not imposed and the p; momenta were not touched;

Rpi = pi- In this case the eflective shift s — s’ in 7% propagator in dogom 1n (3.6) was due
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to the emission of only one (the hardest) photon. Such a procedure is perfectly sufficient for
the Born cross section mildly dependent on s but in the case of the very strong dependence
it hinders the precision of the resulting corrected cross section. In the referred case we

could only reach about 1 — 2% precision level near the Z° resonance.

The second order double bremssirahlung matrix element, being a raw material for the
construction of By, does not contain any virtual correction and in the leading-log/collinear

approximation may be written in a following compact form

o 2p1p2 a 2p1pa
47?2 (kip1)(kipz) 472 (kap1)(k2p2)

l)( )(Pl P2, 91,92, k1, k2) =

]. 2d0’ Orn ’ 2d orn
g (160 BP0 4 o, B0, 2) ) Wi, ) W, 2
(3.7)
where
A A - A f](di)Bl) =) ((Y|,02,ﬂ2)+) (01,02 ﬂ?)
fi v
or it h ot {fz(d.-,ﬂ.) Y (B, B) + Y (B 62, Bo),
R A N A fl(dl'a[;t) Y (GQ)U]aﬂ’)+) (0’2,01 ﬂl)’
it a o
or 1+ 061 <+ e {fz((‘y“ ') )(ﬂz,al,ﬂ])+) (ﬂz,m ﬂ]),
Ve, u,0) = (1= 2201 = u)? + (1 = 0)?)],
oo ki kL, & ol - i = By Bl = B
e U opip N & P 1= TN op) T =8y

In the collinear region the two photons may be emitted both from the e~ beam, both from
the et beam or each one {rom a different beam. It is casy to see that in each of these cases
the above formula coincides with the appropriate convolution of the two Altarelli-Parisi

fragmentation functions. For example for a double collincar fragmentation of

e~ (p1) = y(zip) + e (1 — z1)p1) = v(zip1) + [v(z2() = z)p1) + e ((1 = 22)(1 = 21)p1)]

we have z; = 2k0/s'/2 = &; and B; ~ 0 but &; = z; &) = z; and, assuming &; > @3, the
1 1 2 ) )

corresponding factor in fy + f2 (note that 641 =~ 042) reads

Y (al,az,ﬂz) +Y (ﬂlva%ﬁ;) = (14 (1= 20)))(1 + (1 = 23)?)

as expected from convoluting two Altarelli-Parisi functions. The other two terms in fi+f3

result from Bose symmetrization. In a similar way onc may check the proper behavior of
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D in the case of the double fragmentation of the et and in the case of the independent
single fragmentation of et and e~. All that is very much in the spirit of refs. [3] and
[1] but with two improvements relative to them. First of all the proper infrared limit is
reproduced Dg” — S(k1)5'(k2)ﬂ~((,0) for ky,k; — 0. And secondly, in the case when one
photon is hard collinear and the other hard non-collinear then our distribution still applies
there. It factorizes into an Altarelli-Parisi fragmentation for the collinear photon times
the exact single bremsstrahlung differential cross section at the reduced c.m.s. frame for
the noncollinear one. To this end we had to introduce the two angles f4; in I)gz). Our
distribution does not apply to the situation with the two hard noncollinear (high pr)
photons. Although the above leading-log approximation is sufficient for all of the practical
applications one could also use the exact double bremsstrahlung matrix element calculated

using spin amplitudes and spinorial technique of ref. [19]. This should be done at a certain

point as a test for the above simple expression. The final expression for B, [7,10] reads

Ba(pi, 45, k1, k2) ZDgz)(P:‘, g5, ki1, k2)
— S(pi, k1)) (Rpi, Raj, ko) — S(pi, k) B (Rpi, Raj k) (3.8)
— S(pi, k1)S(pi, kz)f’((;o)(Rpi, Ra;)

where the reduction enters again, in both /;0 and B;. In the sum

~ " B1(Rpi, Ryj, k) " B2(Rpi, Ryj, ki, km)
Bo(Rpi, Ra;) + ) = + Y= : (3.9)
! 1=1 S(Pi, kl) 1,m=1 S(Pi, k[)S(pi, km)
i¥m

the contribution from the third term (sum over E)Q’s) is a small contribution except of the
situation when there are two hard photons simultancously. Then, one of 3, contributions
overtakes the whole expression and introduces the proper Dj distribution in this region
of the phase space. Again, this distribution will not be very good if there are three hard
photons (or two hard non-collinear photons). The contributions to the total cross-section
from these regions of the phase space are known to be extremely small. If, however, one
day it will appear to be nccessary Lo introduce the precise matrix element for three photons
then the corresponding modification of our program will be quite straightforward. Only
this part of the program which provides weight wy will have to be corrected. The rest of

the program (LLLMC generator) will remain unchanged.

The reduction procedure for B, is defined very similarly as in the case of Bi. We go
wilh help of z-boost to a frame where (g) + g2 + ki + k) = 0 and then construct Rp; and

Rgi in the same way as for ).
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4. The structure of the program - subprograms, variables

In this Section we provide some gencral information on the program and on ils most
important subprograms and we list the names of some important and most frequently uscd

variables.

The program is divided functioﬁally and topographically into four parts which are
given the nicknames: (i) EXPAND - The main subprogram administering input/output
and the main rejection loop due to the main weight w; (it) YFSGEN - the low level Monte
Carlo generator generating the simplified distribution defined in eq. (2.13), i.e., the phase
space with the importance sampling for the bremsstrahlung peaks and the 7Y resonance;
(1ii) MODEL - the part of the program calculating the model matrix element, i.e., the
weight wy; and (iv) EXPLIB - the library of utilitics. In the following we shall describe
briefly all these parts and give short descriptions of the most important subprograms. Each
of thesc subprograms includes a short comment explaining its role and the meaning of its

paramcters.

The part EXPAND consists of subroutines EXPAND and FILEXP. The first one is
the main subroutine in the program. Its first parameter MODE, as also in many other
subprograms, tells the subprogram if it is called in the initialization mode (MODE=-1)
production/generation mode (MODE=0) or the final post-gencration mode (MODE=1).
The user must call on this subprogram; with MODE=0, in order to generate each Monte
Carlo event but before the first event is generated he must call on it with MODE=~1 in
order to provide the input data through its parameters. The input parameters are trans-
ferred to FILEXP which distributes them all over the various common blocks. FILEXP
sets also the values of some other parameciers in the program like input/output unit num-
bers, electron mass, the polarizations of et beams ete. After the last event is generated,
the call on EXPAND with MODE=1 provides the value of the total cross section and a
large amount of other useful information. The EXPAND makes all sorts of book-keeping
on the weights, it checks also if the weights have expected properties and compares the
total Monte-Carlo cross section with the estimates obtained using analytical and Gauss

integrations. Sec the next Section for more details on the input/output organization.

The part nicknamed YFSGEN is the low-level Monte-Carlo gencrator which generates
the multiphoton events according to the simplified distribution (2.11). The main adminis-
tration subprogram is here KARLUD which also features the three-fold operation mode. It

generates the variable v with help of the routine VESKO from the part EXPLIB. VESKO

is the general purpose program for generating any distribution and the v-distribution is
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defined by the function FUNSKO. In fact the v-distribution of eq. (2.30) is encoded in
the function VVDIS. In order to flatten the peaks at v = 0 and v = 1 we make the appro-
priate change of the variables with the help of the function CHBIN2. No such provision
is made for the Z° peak. KARLUD is the administrative subprogram, it mainly does
the weight book-keeping and the most of the Monte Carlo algorithm is in fact contained
in the subroutine KARLUD. It essentially generates the integrand of (2.13) for fixed v.
Since v is already known it, therefore, sets the photon multiplicity n = 0 when v < € or,
otherwise, it generates n according to a Poisson distribution with the help of the routine
POISSG. In the latter case (v > ¢) the photon momenta k; are constructed by calling on
the routine BREMUL and the solution for the rescaling factor Ag( K, v) and the Jacobian
factor (7( K, v) is provided by the routinec RESOLU. Once the photon momenta ki = Aok;
arc known then YFSGEN calls on the routine KINEKR which defines the fermion mo-
menta ¢;. The subroutine YFSGEN defines also the three weights wy, wy and w3 which
are transferred to KARLUD, and later to EXPAND. The subprogram ANGBRE is called
in BREMUL and it gencrales the photon angle 8; according to distribution f(#;). It also
provides the ratio f(8;)/f(6;) which is a component of the weight w;. The whole event,
i.e., n, k; and g;, is stored in the common block MOMSET:. In the case of any improvement
on the matrix element for the initial state bremsstrahlung, for example, the inclusion of
the proper matrix element for more hard photons, or the inclusion of the higher order
virtual and/or electroweak corrections, this parl (YFSGEN) of the program will remain

unchanged.

The model dependent weight wy is provided by the part called MODEL. It is calculated
according to formula (2.36) in the routine MODEL2. In fact this subprogram provides four
versions of the weight ws and the filter-routine MODEL selects one of them, the second
order expression (2.36), as the principal model weight in our program. The MODEL defines
also the maximum weight for the rejection in the main rejection loop in EXPAND, specific
to a chosen type of the model weight. Asit is also explained in a comment in the MODEL2,
the following versions of the weight wy are also provided: the weights with formula (2.36)
truncated to By and to B() only, but in both cases the second order expressions are taken,
and the weight in which the sum in (2.36) is truncated to By terms and the first order
calculation is applied. The EXPAND calculates the averages of these weights and prints
the values of the total cross sections corresponding to all above weights, see Section 6 and
Appendix B. This is very uscful for the control of the precision of the total cross section
obtained with the full weight as defined in eq. (2.36). The various components in the sum

(2.36) are calculated by the following subprograms: by is provided by GCRUDE, ﬂ~0 by
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GBETAO, 8;(ki)/S(ki) by GBETAL and By(ky, k;)/S(ki)S(k;) by GBETA2. The GBETAQ
routine calls on BVIRT0 which calculates the virtual part of Bo (see the bracket factor in eq.
(3.1)) and on REDUMO which performs the reduction procedure. The GBETALI routine
uses BVIRT1 to calculate the virtual part of 81 and REDUMI to perform the reduction
procedure. Finally, the GBETA2 calls on REDUM2 which performs the corresponding
reduction procedure. Among various small routines providing elements of the expressions
for ﬂ~1,2 there is GTHETA which calculates the two éngles 0. The function BORNV
provides the lowest order differential cross section a';'(l(rnn'm/dﬂ(ﬂ, 3), where o, = 4ma?/3s
enters in many places, in all #’s. The function BORNY calculates the integrated Born cross

seclion (also in o, units) with the help of BORNV employing a relation

OBorn = 3

2 d(’Born d‘TBnrn
(dcosﬂ (1s)+ dcosf (—],s)),

which is valid for any distribution of the type ¢;(1 + cos#)? + cy(1 — cos#)?. The fermion
charge and the weak isospin, used in BORNYV to calculate the coupling constants, is cal-
culated in GIVIZ0.

The most important routines in the utility library EXPLIB are the general purpose
routine VESKO which is used to generate the variable v and the routine WMONIT which
is used in several subprograms to monitor various weights. It calculates the average, the
variance and counts abnormal weights: negative, above a certain limit, etc. The EXPLIB
includes also the random number generator RANMAR from ref. [20] and the routine

(GAUSS for the numerical Gauss integration.

The vocabulary of the most frequently used variables is listed in the Table 1. We
indicate whether the listed variable is a member of a common block. Let us finally note
that, as usual in this type of the program, the whole program is written in the double
precision arithmetic — mostly due to the smallness of the electron mass. There is only a

very limited use of the double complex arithmetic, i.c., only for the Z° propagator.
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5. How to use the program — its applicability area

In the first part of this Section we shall explain how to use the program, what are the
input parameters and where to look for the output. Then, we shall explain what type of
the physical measurables, cross sections, distributions, asymmetries may be calculated with
the help of our program. We list the effects which are omitted in the program, indicating
a rough precision levels at which they start to play a-role. We also instruct the user in

how to include the pure electroweak corrections.

A typical sequence of instriiction needed to gencrate a thousand of the Monte Carlo

events may look as follows

IMPLICIT DOUBLE PRECISION (A-11,0-7)
COMMON / MOMSET / QF1(4),QF2(4),SPHUM(4),SPHOT(100,4), NPHOT
DIMENSION XPAR(20),NPAR(20)
{ assign XPAR and NPAR }
CALL EXPAND(-1,CMSENE,XPAR,NPAR)
DO 100 TEV=1,1000
CALL EXPAND( 0,CMSENE,XPAR,NPAR)
{ histograming }

100 CONTINUE
CALL EXPAND( 1,CMSENE,XPAR,NPAR)
XSEC=XPAR(10) ' .

The inpul paramecters are read only for MODE=—1. The parameter CMSENE is the total
center of the mass energy in GeV units and the other input parameters are encoded in
the two arrays NPAR and XPAR. The user must necessarily define seven entries in these

arrays, see the list below for a detailed description:

Fntry Name Description
NPAR KEYRAD =2,3 for QED first, second order
XPAR AMA7Z M, mass of the Z°
‘(I’AR 2) SINW2 sin? @y, By is the electroweak mixing angle

XPAR(5) AMFIN  my, mass of the final fermion
XPAR(6) VVMIN ¢, infrared cut-ofl, dimensionless

(1
)
(2)
XPAR(3) GAMMZ Tz, width of VA
(5)
(6)
XPAR(7) VVMAX  vpgaz, maximum of v variable

All these parameters are read only for MODE=—1 and they arc ignored in the production

mode, MODE=0. The output fermion and photon momenta are provided to the user in the
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common block /MOMSET/, sce also Table 1. They are in GeV units. The momentum ¢
of the fermion f is stored in the matrix QF1(K), K=1,2,3,4, with the usual convention that
QF1(4) is the energy. Similarly for the fermion f the gy is given by QF2. The momentum
of the i-th photon k; is placed in the SPHOT(:,K), K=1,2,3,4. The third axis is pointed in
the direction of e~ momentum p). The photon mulliplicity is provided as NPHOT. Once
the histograming is done the user rﬁa,y want to normalize the distributions to a proper
integrated cross section o. 1t can be found in XPAR(10); the other elements of XPAR and

NPAR may also be of some interest, see the following list:

Entry ‘ Name Description

XPAR(10) XSMC o integrated Monte Carlo cross section in units of 4ma?/3s

XPAR(11) EREL relative error on o, estimated from the variance of the weight
w

XPAR(12) XSMCNB ¢ in nanobarns

NPAR(10) NEVTOT number of the generated events

The call on EXPAND with MODE=1 automatically produces printout of about 50 con-
trol parameters with various pieces of useful information. We shall give a more detailed
description of them in the next Section and in Appendix B. This printout may be avoided
if one calls on EXPAND with MODE=2. In this case the parameters XPAR and NPAR
arc defined as for MODE=1.

Let us now comment on the applicability range of the program. As stated above
(see also next Scction), the program may be used to calculate the effects related to the
initial state QED bremsstrahlung on the total cross section and related quantities with the
precision below 0.5%. Can we really talk about such a precision from the point of view of
the QED, clectroweak corrections and QCD influence? The QED case looks good because
the contribution from the omitted final state bremsstrahlung on the total cross section is
only 8a /o = %a/w =0.003."” The influence of the initial/final state interference on the
unpolarized cross section is also small, §o/o =~ 2.107% on the Z° peak and up to ~7-10~*
away from the peak [21]. The omitied second order contribution from the production of
the light fermion pairs (going mostly into beam pipe) is about §o/o =~ 0.003 — 0.005
see refs. [22,23,3]. Our program, as it stands, has nothing to say about the other kinds
of the corrections. The parameters like Z° width, couplings parametrized with sin? By

are the external entilies. The pure electroweak corrections contribute to the total cross

(10) The final statc bremsstrahlung may become quite important in the presence of strong cut-offs.
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section in principle at the level of 80 /0 ~ a/7 ~ 0.003. It is known, however, that the
QCD corrections to the total cross sections, entering mainly through the Z° width, are
in a percent range. One may hope that at some point the total cross section on the A
resonance can be predicted from the standard model at the 1% level {22]. The precision

capabilities of the presented program are definitely betler than that.

The situation looks better for the initial state polarization asymmetry App. Many
uncertainties like the influence of the final state QCI and QED radiation cancels out [21],
§ALR < 0.001 near the Z° position, and are below the anticipated experimental precision
level 0.003. The presented program is therefore Well suited for this purpose. One has only
to attach to this program the library of the elcctroweak corrections in a reasonable way.
There are several possible ways to do it. One of them, advocated in ref. [24], is rather
easy to implement — the electroweak corrections are included in the Born differential cross
section which is (in the leading-logarithmic approximation) a basic building block for all
differential cross sections. For more details see the latter part of this Section. A possible
worry about this procedure may be related to the improper treatment of the helicity non-
conserving components in the differential cross sections. These contributions are, however,
known to be §ALr < 1071 (for v < 0.9) at the Z° position and are also below the

experimental precision level [21].

Can this program, provided that electroweak corrections are added, be used to calculate
the forward /backward asymmetry App? Outside the 79 peak definitely not, because the
effects due to the initial/final state interference induces App >~ +1.5% or even more
and this is neglected in our program. It appears, however, that at the top of the Z9 this
contribution is suppressed very much, provided one does not apply stringent cut-offs on the
photon momenta. Il one accepls events with photons up to 20% of the beam energy then
at the Z° position this contribution to Arp is less then 0.001, sce ref. {25]. The other type
of the pure QED influence on App comes from the shift of the effective center of the mass
cnergy /s due to the initial state bremsstrahlung combined with the rapid dependence of
App on s. Since our program provides a very good control on the total cross section this
effect can be, therefore, calculated with its help quite precisely. Summarizing, one may
use this program to calculate App close (Mz £ 1GeV’) to the Z° position provided that
cut-offs are very loose. A complete calculation of the QED effects will be possible with the
next version of the present program [26] which will include the final state bremsstrahlung

and the final/initial state interference.

The casc of the third asymmetry - spin polarization with respect to the final state

polarization Apy measured in the 7 pair production process is the most difficult because
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in this case one definitely needs the emission of the photon from the outgoing 7’s [27,28).
The program in the present form is not useful for this measurement. Here we recommend
that the reader uses a temporary solution which is provided within the unpublished but
available program KORALZ, version 3.x, which includes the single photon emission from
the final state (no interference) in addition to multiphoton effects of this program. The
real solution will come again with the future development of the presented multiphoton

program.

lLet us come to the question how to introduce easily and efficiently the electroweak
corrections into the present program. The simplest way [21] is to replace the subpro-
gram BORNV which provides the differential lowest order cross section with the new one

providing the corrected distribution

l d”l)c)rn (0 8) _1_ dUF)W

0,
oy d9 = 5 a7

One should also provide a separate new function BORNS, independent of BORNV, for
the integrated corrected cross section g, wWhich enters into docyge/dv and into by, see
routines VVDIS and GCRUDE. For the sake of the weight stability this cross section
should have the Z° propagator parametrized in way close to that in dopw/dQ. Since
both the electroweak corrected distribution dogw/dS2(#, s) will be called many times for
various values of s and the 6, therefore, a pretabulation procedure (look-up tables) of the
clectroweak corrections as a function of these variables is strongly recommended in order

to speed up the calculations.

Summarizing, the present program is very well suited for studies on the total cross
section and the initial state polarization Apr. With some restrictions it can be used for
the charge asymmetry App and il is not yel up to standards required for the final state

asymmetry Apg.
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6. Examples of numerical results

In this Section we shall show the examples of numerical results from our program,
mainly for the total cross section — concentrating on the question of the precision of our
program. We also explain where the presented results may be found in the output of the
program. Included are also two distributions which can be obtained with our program and
which cannot be obtained with any other Monte Carlo program which does not feature
the proper resumation over the soft photons. More examples of the numerical results will

be presented elsewhere.

The-results for the total cross section are presented in the Tables 2 and 3. In Table 1
we show the total cross section and the various related quantities for three energies close
to the Z° position. All these quantities can be read directly from the output from the
routine EXPAND, called at the end of the generation run with MODE=1. They can be
casily found in the printout, sec the excerpts from the test output included at the end of
the paper. The printout from EXPAND is divided into three windows A,B and C and each
window includes scveral items marked with A1,A2,A3,...,B1,B2,... etc. For example the
principal total cross section in nanobarns is printed in window A position A2. We included
these marks in the Tables. In fact these two Tables in themselves constitute a useful test

of the program which may help to verify whether the program functions properly.

Generally, the precision of the perturbative calculation can be deduced from the conver-
gence of the perturbative series. In our casc we have already summed up the contributions
from the soft photons up to infinite order and what remains is, in a sense, the expansion in
a number of “hard/noninfrared” photons. This is represented in our master equation (2.2)
by a series in B’s and our best second order cross section o = rr([;n o B @ Bg), sec Table
2, involves the sum fy + > By (ki) S (ki) + Yim Ba(ki, km)/S(k1)S (kmm). In the Table 2 we
include the cross sections in which this sum was truncated to two terms o7 = 0'([;0 @ ,él)
or Lo only one term o¢ = 0([30). We also present separately the individual contributions
from Bi, i = 0,1,2. All these quantities are calculated in Ofa?). The pure O(e) result
o' = a(fy®B) is also included. As a basic measure of the precision of the integrated cross
section (from the QED point of view) we take a difference between the first and second
order results, i.e., the quantity 8 = (¢' — 0)/o. As we see from the Tables 2 and 3 |§'| is
below 1.5-1073 for |/s— Mz| < 2GeV and is below 5- 1073 far away from the Z° peak. We
conclude therefore, rather conservalively, that from the point of view of the initial state
QED bremsstrahlung the precision of our resulls for the inlegrated cross seclion is betler
than 0.1% close to the Z° peak and 0.5% far away from the 7° peak.
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As we see from the Table 2 the series in f;, i = 0, 1,2 (in the second order) converges
very rapidly; for instance, the contribution from By in the range \/s = Mz3+2GeV is below
0.02%. It is at most 0.5% far away from the Z% We treat these numbers as a further
confirmation of the previously stated estimates of the precision. Let us note that even the
second order cross section from fg alone gives ncar thovtop of the Z° (|/s — Mz| < 1GeV)

a very good (better than 1%) estimate of the cross section.

In both Tables 2 and 3 we also demonstrate a remarkable result concerning an agree-
ment of our Monte Carlo cross section with the lca(iing-]()g type analytical calculation
of refs. [3,22]. The second order total cross section is obtained in these works in the
leading-log approximation (essentially by convoluting twice the Altarelli-Parisi fragmen-
tation function) and later it is improved by an ad hoc procedure such that the result
features a proper soft-photon limit and agrees with the () exact calculations. There is
some freedom in this game and we have exploited it to wrile a formula of this class which

is numerically as close as possible to the result of our Monte Carlo program. We have

found that the lotal cross section given b_v(“)
Umar e—C“[ . ]
= 1 —v)) ey’ (1 + 6
o4 0/ v Tnn (a1 = 9)) o3 11+ 85 + 8 (o),
o 17an2 ,
s = (3)(E-0+35(3) 1" (6.1)

1 o 1 9
bp(v) = v(— 1+ 51}) + (;) L(— :1-(4 ~6v+ 3v*)In(l —v) ~ v)
8 a
L=ln;n—2-, 7=2(—

e

7r)(1, —1), C=057721566...,

parametrizes the result of our program very well indeed. (See eq. (2.29) for definition of
8vrs.) As we sce in Tables 2 and 3 it agrees with the second order Monte Carlo result to
within the statistical error which is ~ 0.03% close to the Z% and ~ 0.05% away from the
7" resonance. Now, the natural question to be asked is: if the Monte Carlo total cross
section is reproduced with the above formula so well; then how well does the integrand of
the above expression reproduces the Monte Carlo result for the distribution do/dv. The

interested reader we refer for the answer to Appendix B.

In the Table 2 we also include the best known non-Monte-Carlo result for the second

order total cross section of rel. [2]. We show there the full second order calculation without

(11) This formula is up to third and higher order corrections equivalent to that presented in ref. [22],
although ours is a bit more compact.
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» (12)

fermion pair production and with the by hand “exponentiation . As we see thereis a

very good, to within 0.1%, agreement of this result with our Monte-Carlo result.

In Figs. 1 and 2 we present the photon multiplicity distribution and the transverse
momentum of the muon pair as a whole. All these distributions are produced with samples
of more than 10° events. The photon multiplicity is shown for photons above 100M eV
in a normal sit',uaﬁon, without the influence of any resonance, i.e., for /s = 40GeV, on
the top of Z° resonance /s = Mz = 92GeV, where the photon average multiplicity is
dampened and at /s = 100GeV, in the radiative tail, where it is strongly enhanced.
The corresponding average multiplicilies are 1.0, 0.75 and 1.52. The distributions of the
transverse momentum of the muon pair is shown at the top of the Z° (The analogous
distribution off the peak would be more diffluse, for example the average pr which is
0.12GFEV at the Z° would rise to 0.88GeV” at /s = 40Gel . 1t should be noted that both

of these distributions would be also aflfecled by the final state bremsstrahlung significantly.

In the present version of the program all details which do not concern the initial state
bremsstrahlung (electroweak corrections, final state bremsstrahlung, s-dependence of the
7% width etc.) are either neglected or included in the simplest form, in order to keep the
program and its description maximally simple. All such extensions will be included and
discussed in the forthcoming publications [26]. Onc exception from the above rule is the
following numerical example illustrating the effects of the large ultraviolet contributions
summed up using technique of the renormalization group. This result may be obtained
with a minor modification of the present program, and it adresses the important problem
of the interrelation of the soft and ultraviolet divergences in our calculation scheme. More
precisely, the result (2.2) and the attendant numerical consequences, as presented until
this point, do not address systematically the probable large ultraviolet (UV) logarithms,
which may occur in o. To handle these effects, we have nsed the Weinberg- 't Hooft
renormalization group [29] to obtain the respective renormalization group improved form
of eq. (2.2). The corresponding improvement may be realized by following the recipe in

refs. [9,10]. In the following, we wish to illustrate the effects of the improvement.

The following numerical results we have obtained using a version of the present pro-
gram which was obtained by applying the recipe in refs. [9,10] to eq. (2.2). This rather
strightforward modification consists of replacing the QED and weak coupling constants

by the corresponding running coupling constants. In particular, the SU,p charge gw, is

(12) We would like to thank Gerrit Burgers for providing us the program ZAPPQ for calculating this cross
section.
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defined at My here, i.e., it is assumed to be close to its value at Myy. (This is still true
cven al PEP and PETRA energies.) The other required input is identical to that used
before. The corresponding numerical results of this renormalization group improvement
are illustrated in Table 4. We see, as we have already realized in refs. [9,10}, that at the
Z° the eflect is O(1%) and that, away from the Z° it is necessary for the high precision
simulations. We see further, howevér, that the effect of the s-dependent width, after the
fashion of ref. [22], is still observable at the level of 0.1%. This is consistent with the
results in ref. [22].

The lesson we draw from this exercise is the following: If one wants the below 1%
precision at the Z% the s-dependent width and the renormalization group improvement
should be used; away from the Z% the latter improvement should still be used for such

precision.

7. Conclusions

The present program represents an example of a successful full implementation of the
Yennie-Frautschi-Suura soft photon summation scheme with the help of a powerful Monte
Carlo technique. The profit from this approach is three-fold: (1) one may implement
an arbitrary set of experimental cut-offs in the calculations (something that was in the
original YFS paper discarded as an impossible dream); (2) the perturbative expansion
in the number of the noninfrared/hard photons appears to be stable and fast convergent
giving rise to high precision results; and (3) there is no need to resort to arbitrary, ad-
hoc, “exponentiation” procedures at the very end of the finite order calculations since the

proper soft photon resummation is the starting point.

There is a new open perspective of applying the presented techniques to a more difficult
case of the final state bremsstrahlung [26] or to the process of Bhabha scattering where it
is rather unclear what the usual ad-hoc “exponentiation” procedure would be. We think
that in the above more diflicult cases the presented technique will allow one to sum up
the higher order QED eflects very efficiently and the event generators of this class will be
a very useful tool in analyzing the experimental data at LEP/SLC. Indeed, the low angle
Bhabha scatiering event gencrator employing the presented technique is already available
[12]. Let us finally note that the present version of the program including only the initial
state radiation will be still useful in many applications (quark pair production) even if a

more sophisticated version with the final state bremsstrahlung [26] will become available.
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APPENDIX A

Mellin transform versus Monte Carlo — a relation to YFS notation

In this Appendix we shall show how our master formula (2.2) would look in a standard
notation used in ref. [7] and how to translate it from one notation to another. In the

notation of ref. [7] the integrated cross section for our process (2.1) reads as follows

dz dq, dqy 1/ ~
X P |2 —qy — ) expl|?2 0 .
o 2n) / P exp [z’t(m +pr—qi—gq2) +1 ] (“(p[ oB+ B] (ﬂO(Rp Ry;)
d*k Pky [ PPk
k() ’—:xkgl('Rph 'Rq,, 2' / 1 / 2 ’—urk; z:rk2132(pr',’ ’qu, kl, kZ))
(A1)
where
i d'k 2py — k 2+ k \?
2B =
* 47"2./1‘?2—”1%<k2—2p1~k+k2+2pg-k !
3= [ Lk ‘ 0 (A2)
2B = —;CTS(pl,pg, k)ﬂ([(m(ﬂ) — k ), A

3

Do, ) = [ G800, pz,k)(f itk _ gk (C2) — k“))

The function (K, (2) — k°) represents collectively the upper experimental limits on the
real photon four-momenta. The advantage of the Monte Carlo is that we may simply put

this limit very high, for example, above the phase space limits

O(K () — 8(v's — k).

The integral [d'z projects out photon four-momenta which do not conserve the total
cnergy-momentum anyway. (The z-dependent exponent has to be expanded prior to z
integration.) Summarizing, the upper limits on k integration are provided by the phase

spacc itsell and all hard photons are included in the game.
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Now comes the second step: we divide the photon energy integration range in B into

k® < k. = €\/s/2 and k° > k., where the parameter ¢ is small (but not necessarily smaller

than m.//s)

3 3 N
2aB = / %S(k) + / dk—[{cS(k)()(\/; — k%) = B(e) + R(e) (A3)
kO <k, NS

We combine then R(e) with D and we obtain

] &k - ~irk ok ooy izkg 0
D'=D+ R(e) = Fs(k)(e -1+ WS(k)e 9(\/.; - k%) (A4)
kO <k, k> k.
Now we observe that the first integral in the above formula vanishes in the limit ¢ — 0

and furthermore the 8(/s — k") factor in the second integral can be omitted because [ diz

provides an even stronger cut-off. Taking this into account we obtain

d'z d*q, d*qy . Pk ik z
=y | g el o - a) ' /k o) -
> ; &k i
exp[?aB+B(c)] Bo(Rpi, Rgj) + T Bi(Rpi, Rqj, k) +...].

It is now enough to expand the z-dependent exponent and to integrate over z in order to

obtain our master formula (2.2).

What are the most important differences between the Yennie-Frautschi-Suura formula
(A1) and our master formula (2.2)? The first 1s manifestly infrared finite but it cannot be
used directly for the Monte Carlo. The sccond is well suited for Monte Carlo integration,
it apparently depends on infrared cut-off ¢ but, in fact, ¢ is a dummy regulator and it can
be proved that in the limit ¢ — 0 none of the physically meaningful results depend on
il. The independence of the total cross section can be shown either by reintroducing the
Mellin transform and going back to Y-F-S formulation or by simple algebraic calculation -
without resorting to the Mellin transform, or even finally by differentiating eq. (2.2) with
respect to €. In fact the expression (A1) is as a generating functional for eq. (2.2). What

should be strongly stressed, however, is that both formulations are totally equivalent.

From the eq. (A1) it is also rather clear that the reduction operation R may depend
on the fermion momenta p;, ¢; but it in no way depends on the momenta of the individual
photons. If this were not true then the equivalence between the eq. (2.2) and the eq. (Al)

would have been broken and even the infrared finiteness would have been threatened.
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APPENDIX B

More on Monte Carlo weights — the v distribution

The aim of this Appendix is to answer the question: is it possible in the Monte Carlo
program of the type presented here, which calculates numerically a complicated multidi-
mensional integral with the precision below 0.1%, to understand in a fine detail how the
final numerical result is built up. As we have indicated already in Sections 2 and 6 one

should look for the answer in the distribution of the variable v

4
% = %Lu—h < 'I_Ilwa' >crndes iqigﬁ = 50771 70(0) Emass (v) oBorn(3(1—v)), (B1)
where the average < ... >crude 15 taken over the Monte Carlo events generated according to
dorude- We shall show that in the above distribution it is possible to understand qualita-
tively and quantitatively the magnitude and the v-dependence of the various components
and therefore the magnitude of the Monte Carlo total cross section as well. Many of the
quantities discussed in this Appendix may be found in the output of the program and we
shall indicate where to find them and what values are expected. To obtain some of them
it is necessary to run the program for fixed v. This is not a normal mode of work and we
refer the interested user to the comments in the program on the necessary arrangement of

the input parameters.

For the purpose of our detailed weight-analysis it is convenient to rewrite the egs. (B1)

as follows
do  doges do et _
=gy <Nfafafi >, =0T 'opor (5(1 = v)),

N1 = wiEnass(v), fo=wrJo(v), fa=ws, fi= wyedFS,

(B2)

It should be noted that for fixed v there is no difference between the two averages < >cryde
and < > In the following we shall look into the average weights < f; >per,t = 1,2,3
separalely, then into < f1f3 >t and < f1f2f3 >ref, and finally we shall include the model
weight f3 into the game. It makes sense to explore the average weights separately because,
as we shall see, a simple factorization principle < f1f2f3 >ret=< f2 >ret< [1f3 >ret holds.
Let us note that the reference differential cross section doot/dv which we have isolated
out, when taken alone, determines the value of the total cross section to within 10%.
Furthermore, for the og,m weakly dependent on s we have roughly orer = opom(s) due
to .[01 ~vvY~1dv = 1. In order to sec betier what happens in the case of the production of

the ZY resonance we shall typically “expand” the region of the small v (which contributes
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most of the total cross section) by introduction of a convenient “natural” variable z = o7
in which doget/dz =~ opom(s(1 — 2'/7)). This new distribution turns out to be rather flat
for z < 0.5 and may show up a resonance structure above z ~ 0.5. The value of opym
changes less than 1% for z < 0.57 (v < 5.4-10"3) at \/s = M, for 2 < 0.53 (v < 2.8-1073)
at /s = Mz +2GeV and for 2 < 0.39 (v < 1.6 - 107") at /s = Mz — 2GeV.

The factor Fmass(v), as it was b()inted out in Section 2, is canceled exactly by the
mass weight w,, i.e., we expecl < f; >q= 1. All that is a purely technical trick — we
overpopulate the region of the phase space with photons almost collinear to et in order
to reject these supplementary events shortly after. Not quite all of them are rejected
however - the model weight w4 spares some of them from the rejection. This is related
to the fact that soft photons cannot flip fermion helicity while hard photons can. The
corresponding additional helicity-flip (positive) contribution to the differential cross section
is located almost entirely in the region of the very small angle photon emission, sce ref.
[30]. Tf we did not take this phenomenon into account in the docge, the total Monte
Carlo rejection weight would fluctuate wildly (although for a small fraction of events),
l.hrrca.t(‘ning the overall convergence of the calculation. The quantity < fi >pr —1 is
calculated in the program and printed in the window B, position B0 of the output from the
routine KARLUD. The user of the program may verify by himself that within a statistical

error this quantity is always equal to zero.

The weight

J2 = Jo(v)wy = J(K,v) = %(I + —\/—-1——__%) (B3)

includes the variable A = K*P?/(KP)? which is a (complicated) function of the total
photon momentum K such that 0 < A < 1 and for small effective mass K? of the photon
system A ~ 0. The origin of the above weight is related to the rescaling transformation
used to impose the energy conservation on the photons. The presence of the weight f;
refllects the fact that this dilatation transformation underpopulates the region of the phase
space with the two hard anticollinear photons. In the Monte Carlo f; is introduced in such
a way thal first we overpopulate all hard photon events by inclusion of Jy(v) in the docryge
and later on we reject selectively with the weight wy giving more survival chances to events
with antiparallel photons. The factor Jp(v) from do¢yde cancels precisely the other factor
J; 1(v) in wy, leaving in the do/dv the net result fy. The program provides an information
on < f3 >ret: in the window B position B2, of the output from routine KARLUD one may
find the Monte Carlo result for < fy >per. From the inspection of the eq. (B3) we expect
< f3 >ermde~ 1 for v << 1. The Monte Carlo calculation gives 1 < < fy >per < 1.001 for
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v < 0.03 and it increases up to < f3 Scrude= 1.06 for v ~ 0.9. The Monte Carlo result for

this average is plotied as a function of z = v7 in Fig. 3a.

The third weight f3 = w3 is related again to the process of imposing the energy
conservation on the photons by means of the scaling down of the photon momenta. In this
procedure we get sometimes an event with the energy below the €4/s/2 limit. Such an event
is attributed the zero weight and is later rejected. The weight f3 is a complicated function
of the photon momenta; nevertheless, we know almost everything about its average. First

of all, in the range ¢ << v << 1 we expect

6—07' , B
and/or equivalently
= ———e~07 = B5

These identities are related to the well known phenomenon of the competition of the soft
photons for the total energy. The right hand side of eq. (B5) is the result of the analytical
calculation made with the help of the Mellin transform, sce for instance refs. [7,13]. From
the Monte Carlo calculation this average (probably for the first time) was obtained in ref.
[8]. The value of < f3f1 >rer —g(7) is included in the output of the program, see window
B, entry B8, of the output from KARLUD, and one may see that for 102 <v<0.2itis
equal zero to within 1073, What about lower values of v? First of all f =1 for v <¢, on

the other hand, again from the analytical calculation [7], it is known that

A e
/ W w3do crude ™ / J1J3dores = I’La,-mﬂnnm(s)- (B6)

0<v<Ymasr 0<v<vVmar

This relation will be true provided thal ¢ << vmer << | and vmqr is small enough for
oBorn(8(1—2)) to be independent of v. The above identity implies that the average < f1f3 >
has to have some structure near v = e. One can make a Monte Carlo numerical exercise
and plot < f1f3 >t as a function of z = v7. As we see in Fig. 3a, < fif3 >rer= 1 for
v < ¢, then < f1f3 et~ g(7) for 102¢ < v and, finally, in the region e < v < 10%¢ it shows
a few percent dip. Since our program reproduces eq. (B6) rather well it is therefore quite
obvious that the role of the dip is to correct the integrated cross section for the lack of the
factor g(7) in the 0 < v < ¢ range. The net influence of the above unphysical structure on

the integrated cross section and other observables is in the limit € — 0 totally negligible
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and we may really not worry about it. The only practical lesson is that the cut-off ¢ should
be kepl aboul a faclor of 10% below the resolution limil sel by the experiment or the energy
variation of ranm.(m) The mechanism of the dip development is rather simple: Contrary
to the situation in the region vyer >> € where the frequency of an event with the photon
energy falling below the €y/s/2 limit is independent of v and equals precisely 1—g(7), for v
approaching € such an event happens more often. This is true for events with two or more
photons. For example the two photons with the energy above €4/3/2 cannot make v below
2, i.e., all events with € < v < 2¢ and the photon multiplicity n > 2 will get rejected.
(This well known phenomenon can be observed already in the conventional second order
QED calculation.)

The collective result < f >=< f1f2f3 >ret i1s plotied in Fig. 3b as a function of z. As
we see, from comparing Figs. 3a and 3b the factorization < f >=< f >< f3f3 > holds,
the v dependence of < f > is now fully understood and can be summarized as follows:
The dip in the vicinity of v = ¢ and the plateau < f >= 1 for v < € are the unphysical
artifacts of the Monte Carlo integration with the finite cut-off (infrared regulator) e while
the < f >= g(v) plateau for v > 10%¢ is the “normal” situation and the slight enhancement
of < f > at higher v reflects the phase space factor f; from hard anticollinear photons.
The net effect of the weights fi,¢ = 1,2,3 can be summarized in the effective distribution

which for v < 10~2 approximates well the Monte Carlo result
pp

—Cy

d re _ e
( ZU[ < fif2f3 >ret )e”' = yv?~! mﬂnnm(s(l - v)). (B7)

This looks already like a part of the integrand in eq. (6.1). Let us include now the
model weight fy = e Fsyy in the game. It includes the sum of the contributions form Bg, ,é]
and B,. As it was indicated in Section 6 the magnitude of the corresponding contribution
is provided by the program. From a serics of the MC events gencrated at various fixed
v’s one may learn that for v < 1072 the contribution from Bo dominates, i.e., the relative
contribution from the other two @’s is below 1073, (In facl By switches on, al the same
level of 103, for much higher v, i.c., for v > 0.12.) The net contribution from ,@0 will be
roughly 1 + 65 where 65 = (a/7)(L — 1) + %(oz/w)2 1.2, sce the second order expression for

Bo in eq. (3.1). The main role of the contribution from B is to reinstall in the spin factor

(13) Let us note that if we had lowered € then the dip would move gradually to z = 0 and, for extremely
low ¢, it would disappear completely. Such a small ¢ would be rather inconvenient, however, due to
unnecessary loss of the speed of the program.
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11+ (1 — v)?) in do/dv. In view of that it is quite clear that the Monte Carlo result for

do/dv can be parametrized with an effective distribution

(dv)w_—e TG +7)(1+65) 2 oBorn(8(1 —v)).  (B8)

In the next plot, sce Fig. 4, we shall compare the complete second order Monte Carlo
(MC) results for do/dz with the other Monte Carlo and analytical results. In order to be
able Lo see the effects at the “resolution” level of 0.1% we have to remove from do/dz large
and “irivial” effects discussed above, see eq. (B8). All fine details can be seen if we look

into the-distribution

(2) = do/dv _ do/dz
P o Topum(s(1 = ) (14 (1 = 0)2)  opam(s(1 — 2/M))(1 + (1 = 2"/7)?)/2

(B9)
In Fig. 4 we plot the MC first and second order result for p(z), all from the MC runs at

fixed v. The MC results below v = 0.01 are consistent with the previously discussed z-
dependence of the average < f >=< fifafs >rer- The second order MC result agrees well
with the formula (6.1) - the biggest difference being 0.5% at v = 0.9. It is therefore not
surprising that the corresponding total cross sections near 7% resonance agree to within
0.03%, see Table 2. The first and sccond order MC results start do differ for v > 0.2 and
the difference goes up to 12% for v = 0.8. In the plot we have also included the typical
example of the first order analytical “exponentiated” result of ref. [3]; more precisely it
is a version of rel. [22] with the truncated second order terms. It differs with all other
MC and analytical results at the level of a few percent for v > 0.5. It is interesting to
observe that the MC first order result at v > 0.4 tends to underestimate the differential
cross section. Tt is related to the fact that the 8y contribution in this region is negative
and, since B, is not included, the events with two hard photons contribute roughly twice
the contribution from ;. This sort of double counting is corrected by inclusion of [;2 n
the second order. The first order analytical “exponentiation” shows an opposite tendency

of overestimating the differential cross section in the same high v region.

What is the precision of the distribution do/dv obtained from our program from the
point of view of the higher order QED corrections? From the smallness of the 4; and Bs
contribution we deduce that for v < 0.2 it is beter than 0.1%. In refl. [16} it was found "

(14) This result- was obtained by solving, up to infinite order (numerically), the Lipatov evolution equation
for the nonsinglet structure function of the electron.
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that the influence of the third and higher orders in the region 0.2 < v < 0.8 is below 0.5%
level. This is consistent with the difference between the second order MC result and the
analytical result of eq. (6.1), as may be scen in Fig. 4, and we treat this as an estimate of

the precision.

Summarizing, the above detailed weight analysis shows that the total cross section
consists of a few simple building blocks. We are able to understand qualitatively and
quantitatively the v-behavior and the magnitude of the each component and, therefore, of

the total cross section as well.
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Table 1

The alphabetic list of the important and frequently used variables.

Variable Common  Description

ALF] o alr

ALFINV  —— 1/a, the inverse of the QETD coupling constant
AMFIN WEKING my, mass of the final fermion

AMEL WEKING m,, electron mass

AMAZ ~  WEKING My, mass of the Z°

BETAQ e fi(, second order result

BETID  —— B8y(k1)/ S (ki) second order result

BET2D —— Ba(ky, km)/ S (k1) S (km) second order result
BETIDX —- B1(ki)/S(ky) first order result

BETAOX —— ﬂ~0 first order result

BETIT VVREC v =2(a/7)(Ins/mi-1)

CMSENE —— center of the mass energy, /s

DISCRU —— by crude Monte Carlo distribution

DJAC e J (K ,v), dilatation Jacobian

ENE WEKING beam energy, /5/2

EXPY — 1/X(K,v), dilatation factor

GAMMZ WEKING Ty, width of the Z°

IDF WEKING final fermion identifier, IDF=2,3,1 for p, u,d
KEYRAD KEYYFS =3,2 radiation switch for second, first order calculation
NOUT —— output unit number, set in routine EXPAND
NPHOT MOMSET n, photon multiplicity

Pl — T

QF1,QF2 MOMSET g, final fermion four momenta, Gel”’
SPHOT  MOMSET list of photon four-momenta, Gel’

SPHUM  MOMSFET sum of photon four-momenta, Gel’

SINW2 WEKING sin? 8y, by is the electroweak mixing angle
SVAR S s

SVARI — s' = 5(1 — v), mass of final fermion pair squared
\'AY VVREC wv=1-4/s

VVMIN VVREC ¢, infrared cut-off

VVMAX VVREC  vpas, upper limit for v

wTh2,... — wy, wy, ... weights
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Table 2

Table of the cross sections for the muon pair production process. The following parameters
were used: Mz = 92GeV, 'z = 2.45346, sin? fyy = 0.228818. An upper limit on the photon
phase space was Umay = 0.8 and the infrared cutofl ¢ = 1078, The A6,B1 etc. indicate
a line in one of the three windows in the output from subprogram EXPAND, where the
corresponding quantities may be read out. All cross sections are in units of op = 4mal[3s
(so called R-units). The cross section ap is the best available non-Monte-Carlo result
from ref. [2]; we show their “cxponentiated” second order result, with the omission of the

production of additional fermion pairs.

/3, cms energy 92GeV 94GeV 90GeV
A6: No. of events 4.0 10° 3.1-10° 3.9 -10°
AD: 0 = a(fo @ B1 @ Ba), O(e?) | 13153 £0.04 58.37 % 0.02 33.65 + 0.01
Bl: a1 = o(Bo @ B1), O(a?) 131.52 + 0.04 58.37 + 0.02 33.64 + 0.01
BO: 09 = o(fo), O(a?) 132.16 + 0.03 59.44 + 0.02 33.94 £ 0.01

Bl: 8 = 2=% contr. from f; | (0.65+.02)107* | (1.73+.04)107* | (2.23%.04)107*

B3: &; = 2% contr. from f; | (=4.91£.06)107% | (-18.40 .04)1073 | (—8.85 £ .05)107°

B5: o' = o(fo ® 1), O(a') 131.31 4 0.0 58.30 + 0.02 33.60 £ 0.01
§ = =2 (-1.54+.3)107% | (~=1.3+.4)10"3 | (-1.5%.4)1073
’8: 04, analyt. result eq. (6.1) 131.55 08.38 33.64

C9: 64 = (o4 —0)/0 (=0.2 % .3)1073 (0.2 & 4)1073 (0.1 + .4)1073
op, Berends ct. al. [2], O(a?) 131.64 58.46 33.67

o', Berends ct. al. [2], O(a) 132.03 58.38 33.76

bp = (op —0)/o (0.8 +.3)107? (1.4 £ .4)1073 (0.6 = .4)10~3
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Table 3

Selected quantities of the Table 2, with the same input parameters, but for a wider range

of energy. The cross section is again in R-units.

V5 [GeV] o 8, 10° §-10° | 64-103 | bg-103
40[1.1026 £ 0.0006| 5.11%+.03 | —48+.5| 05+.5 [-03+.5
90| 33654001 | 0224001 |—1.5+0.4| 01403 | 06404
91| 73334002 | 0.10£0.03 |-1.5+0.3] 0.0+0.3 | 0.6+0.3
92| 131.53+0.01 |0.065+0.002| —1.5+0.3| 0.0+0.3 | 0.8+£0.3
93| 93.38+£0.03 |0.088+£0.002| —1.4+03| 0.1£03 | 0.7+0.3
91| 58.38+£0.02 [0.174+0.004]-1.3£04|-02+04|1.4+04
100| 13214001 | 1.56+0.01 |—08+0.7| 0.8+0.8 | 0.6£0.7
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Table 4

The cross section as in Table 2, with the same input parameters: (a), including the effects
of renormalization group improvement and the s-dependent width; and (b), including only

the effect of the s-dependent width. The cross section is again in R-units.

ValGev]l|  ola) o(b)

40 {1.2198 + 0.0005 | 1.1024 & 0.0004

90| 38.17+0.01 34.40 £ 0.01

911 80.10£0.02 75.21 +£0.02

92| 133.48 %+ ().031 132.04 £ 0.03

93| 102.2410.03 97.56 £ 0.02

911 62.05+£0.02 97.39 £ 0.02

100} 14.407 £ 0.008 | 13.134 £ 0.008
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FIGURE CAPTIONS

1. The photon multiplicity distribution for photons with the energy above 100MeV.
The center of the mass energy is /s is: a) 40GeV, b) 92GeV, c¢) 100GeV. The Monte
Carlo samples include more than 10° events. The distributions are normalized in an

arbitrary units.

9. The transverse momentum distribution of the final stale muon pair. The center of
the mass energy is /s is 92GeV. The Monte Carlo sample includes about 4 - 10°

events. The distributions is normalized in the nummber of the events.

3. The Monte Carlo results for the various internal weights: a) triangles and dots repre-
sent < f3 >rof and < f1f2 >pet correspondingly, b) dots denote < f >=< f1f2f3 >ref,
all as a function of 2 = v7. The v scale is also marked. The statistical errors are
less then the size of dots/triangles. The dashed line marks g(v) = e~ ¢7/T(1 + 7).
This plot is essentially almost independent of \/s. In the calculations we have used

V3 =Mz =92GeV and e = 1078,
4. The plot of the p(z) = (2do/dz) [(opam(s(l — 2V/7))(1 + (1 — z1/7)?)). Dots and

squares represent the second and first order Monte Carlo results from our program
(run for fixed v) correspondingly. The statistical error is below the size of the dots
and squares. Squares at low z are omitted in order not to obscure the picture. (They
fall there at a constant distance below dots.) The solid curve corresponds to the
sccond order analytical result with the “exponentiation” as given by formula (6.1)
and the dashed curve represents the first order analytical “exponentiated” result [3].
This plot is almost /s independent. We have used again Vs = Mz = 92GeV and
e =105

TPJU-15/88 pow. w IFUJ
zam. 20/88, 270 egz.
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EXCERPTS FROM THE OUTPUT

Fedehedededededededdedededee
* ( YFS VERSION 2.2 NOVEMBER 88 ) *
* EXPAND INPUT PARAMETERS *
* 92.000000000 ' CMSENE * CMS ENERGY *
* 3 KEYRAD * RADIATION SWITCH *
* 0.105000000 AMFIN +* FINAL FERMION MASS *
¥ 92.000000000 AMAZ * MASS OF 20 *
* 2.453460000 GAMMZ +* WIDTH OF 20 *
* 0.228818000 SINW2 * SIN(THETW)**2 *
* 0.000001000 VVMIN * MINIMUM VALUE OF V-PARAMETER *
* 0.800000000 VVMAX * MAXIMUM VALUE OF V-PARAMETER *

FFF AT R AR he A de e A A e dede dede e dede R v Fedede Ao Aere st de e de e de e e e s de e deve deve e e e ok Yo v Tede ve e s Fedede dede A v e
=== ) MP S e

QF1 17.45970990557074 23.44740398671347-35.41734494924665 45.92408487881668
QF2 -17.47243176468074-23.44084321242244 35.50152653410081 45.99052525827749
PHO 0.01272185911000 -0.00656077429103 -0.08418158485416 0.08538986290580
SUM 0.00000000000000 0.00000000000000 0.00000000000000 91.99999999999997
= UM P S e————

QF1 13.62446124335595 22.25003776671934-37.88412045420546 45.99899708016354
QF2 -13.62446320902179-22.25002815088870 37.88522260179111 45.99990072855150
PHO  0.00000196566584 -0.00000961583065 -0.00110214758565 0.00110219128494
SUM  0.00000000000000 ©.00000000000000 0.00000000000000 91.99999999999998
—_—eeeer— e DUM P S e ————————eee

QF1 -12.04727357422227 -4.99932546917594 43.12337263409677 45.05292829615043
QF2 " 12.04799691161893 4.99874862853679-44.09028678007265 45.97940985683405
PHO  0.00001610246097 0.00115357194465 0.96669904757151 0.96669973599002
PHO -0.00073943985763 -0.00057673130550 0.00021509840438 0.00096211102549
SUM  0.00000000000000 ©.00000000000000 0.00000000000000 91.99999999999998
—_——————————eme———= ) IMPS

QF1 -13.93314269222713 43.18265952721784 7.11399734053975 45.92923396146279
QF2 13.94316472836349-43.18680468544265 -6.95549770228890 45.91189295669911
PHO -0.01002264579176 0.00414432763129 -0.15730563366891 0.15767907681161
PHO 0.00000060965540 0.00000083059352 -0.00119400458194 0.00119400502647
SUM 0.00000000000000 0.00000000000000 0.00000000000000 91.99999999999998
————=}{]MP S =—————————————

QF1 -45.80956016230473 2.00688772322648 -3.66682074862488 46.00000000000000
QF2 45.80956016230473 -2.00688772322648 3.66682074862488 46.00000000000000
SUM 0.00000000000000 0.00000000000000 ©0.00000000000000 92.00000000000000
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* KARLUD FINAL REPORT *
* WINDOW A *
* 1161134 NEVTOT * NO OF EVENTS - TOTAL AQ *
* 0 NEVNEG * NO OF EVENTS WITH WT<O Al *
* 0 NEVOVE * NO OF EVENTS WITH WT>1 A2 *
* 128.427451914 "~ XCVESK * CRUDE XSEC. FROM VESKO A3 *
* . 128.427405776 XCGAUS * CRUDE XSEC. FROM GAUSS INTEGR. A4 *
¥ 0.000000359 XCVESK/XCGAUS -1 AS *
* 0.000048788 ERELAT * RELATIVE ERROR (VESKO) A6 *
¥ 0.943193797 WTKARL *  AVERAGE TOTAL WEIGHT A7 *
* 0.000171572 ERKARL * DISP/AVER. FOR WTKARL A8 *
* 121.131932488 XSKARL—AVER(WTl*WTZ*WTB)*CRUDE (SIGMAPRIM) A9 *
* KARLUD FINAL REPORT CONT. *
* WINDOW B *
* 0.000092282 AVERAGE(WF1)-1, WF1=MASS WEIGHT BO *
* 0.000145674 ERROR STAT. Bl *
* 1.000156608 AVERAGE (WF2), WF2=FIRST DIL. WT B2 *
¥ 0.000003035 ERROR STAT. B3 *
* 0.990304695 AVERAGE (WF3) WF3=SECOND DIL. WT B4 *
* 0.000123166 AVERAGE(WF3) -YGAMF(BETI2) B5 *
* 0.000094124 ERROR STAT. B6 *
* 0.991008354 AVERAGE (WF1*WF3) B7 *
* 0.000054395 AVERAGE(WF1*WF3)-YGAMF(BETI) B8 *
* 0. ooo173002 ERROR STAT B9 *
* KARLUD FINAL REPORT CONT. *
* WINDOW C *
* 0.107785610 BETI= 2*ALFA/PI*(LOG(S/MEL**2)-1) co *
* 0.990444794 GAMFAP= 1-PI%*#*2%BETI**2/12 C1 *
* 0.990953959 GAMFAC=EXP( -CEULER*BETI ) /GAMMA( 1+BETI) c2 *
* 0.990181530 GAMFA2=EXP( ~CEULER*BETI2)/GAMMA( 1+BETI2) C3 *
* 0.991154034 AVERAGE (WF 1*WF2*WF3) C4 *
¥* 0.000200075 AVERAGE (WF1*WF2*WF3) -YGAMF(BETI) Cs *
* 0.000173032 ERROR STAT. Cé6 *
* 122.217810423 XREFER= REFERENCE CSECTION BREMKF(10) Cc7 *
* CROSS-CHECKS *
* 0.000039159 XREFER*AVER(WF 1*WF1*WF3) /XSKARL- 1D0 C8 *
* 0. 000030132 XCRUDE*AVER(WTR)/XREFER 1DO c9 *

...........................................................................
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* 92
*
* 131
* 0
* 1
* 0
* 0
%
*
*
7
* 1

.000000000

.526546987
.037331985
. 349696092
.000383093
.000283836

1161134
396985
0

0

. 846459055

EXPAND OUTPUT -~ WINDOW A

a L3N VN aAT Vi

BN VAL

CMSENE * CMS ENERGY
TOTAL XSEC FROM MONTE CARLO
XSMC * 1IN R UNITS

* ABSOLUTE ERROR
XSMCNB * IN NANOBARNS

* ABSOLUTE ERROR
EREL * RELATIVE ERROR
NEVTOT * NO OF EVENTS - TOTAL
NEVACC * ACCEPTED
NEVNEG * WITH NEGATIVE WEIGHT
NEVOVE * WITH WT > WTMAX
XBORNB * BORN IN NANOBARNS

A0
Al

A2
A3

L3

A4
AS
A6
A7
A8
A9

ok % % ok ok k% o+ % % A

Ffredrrreiriedededede e dotede et deedede A AR e e et Fede de el A AR e e A e de ke A e de ke i e

%
o+

*

131.
.000283932
.526546987

% % ¥ ok ok ok o % % H ok
'
(=]

J

|

* ok %+ ok o 4+ F+ F X #+ Gk

-0

|

132.

131.
.000283836
132.
131.
131.

131.

164227929
.000283583
517912565

.000283836

.004913954

.000023550
.000065648
.000002463
.334533181
.000283918
.001459886
.000401463

526546987

035619586
.003855570
363550846
.001240802
512547019
.000106453
556613969
.000228548

EXPAND OUTPUT - WINDOW B
XSECTIONS IN R-UNITS
CROSS SECTION

X520 *
EREL20
X521
EREL21
X522
EREL22

* 0 kv ¥

*

Xs25 *
EREL25 -

BETAO
RELATIVE ERROR
BETAO+BETA1

RELATIVE ERROR

XSECTION

BETAO+BETA1+BETA2 XSECT

RELATIVE ERROR

RELAT. CONTRIB.

FROM BETA1l

AND ITS ERROR

RELAT. CONTRIB.

FROM BETA2

AND ITS. ERROR
BETAO+BETA1 ORDER(1) ONLY

RELATIVE ERROR

X525/XS22-1 = ORDER(1)/ORDER(2)-1

EXPAND OUTPUT - WINDOW C
* MONTE CARLO CROSS SECTION

XSMC

RELATIVE ERROR

RELATIVE ERROR

XREF2 *

FIRST ORDER TYPE-2

XSMC/XSKF2-1

XREF3 *

FIRST ORDER TYPE-3

XSMC/XSKF3-1

XREF4 *

SECOND ORDER TYPE-4

XSMC/XSKF4-1

XREF5 *

SECOND ORDER TYPE-5

XSMC/XSKF5-1

57

BO

Bl

B2

B3

B4

B6

co
C1i
c2
c3
C4
C5
Cé
C7
c8
c9

0k ko ok ok ok h k o FF F

* ok ko * ok b+ k F ¥ F

Fededededekdoiedoirdolelniriniedeiedeioiodoioiriefrioledefrieieinieededeiedededededededeedefrdefededrirkefodrfeirie e doedeede koo



