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ABSTRACT 

A hlontc Carlo program simulating fwmion pair production is prcscntcd. It features 

a multipholon bremsstrahlung cmt of the initial sialc bcanw. l’ho contrihlll.icms from soft 

photons are summed rigorously up to an infinifc order using l,hc \‘ennie-T:rall~.schi-S.ullra .- 

rrrcthod while the conl.ributions from up 1.0 f.wo hard pholons arc also properly treated. 

Four momenta of all sofl. and hard phol.ons arp cxplivil Is gcncral.cd and the t.otal cnergj 

momentum conservation is cxact.1~ obqwl. l’hc program is primarily aimed for l,l?I’/SI,C 

type experiments and will hc helpful in the prccisc mwwrcrncn1.s of the Z” mass and 

widl,h, the basic pa.ramrtws in precision fcsts of sf.nndnrd clwt,rowcak thcorr. It can also 

be used far away from the Z” rcsonanw as well. I:rom the point of view of the QED 

it provides the total cross swi.ic)n wiljh precision 0.1% near X” and 0.5% away from Z” 

rcsonancc. M’ith some restriction it can provide prcdicl ions for various as~mmctrics. 

(‘lb be Rubm,ilted lo Computer I’hysirs L’ommuniralion.v) 

*Work supported in part by the Department of Energy, contracts DE-AC03-76SF00515 



PROGRAM SUMMARY 

7’itlc of the program: YFS2.02 

Chmputcr: JBM; Inslahbion: IBM 308 I /3090/3033 

Operating qmkm: CEILNVM, SI,AWI\I, IJTKVM 1 

I’rogra ming la figuago used: FORTRAN 77 

High speed storage required: IO0000 words 

No. of hits in a wwd: 32 

I’eriphcrals used: Line prinf.er 

No. of cards in comhincd program and t.csf, deck: 1339 

Kq.n:ords: Ra.dia.tive corrcvtions, initial state brcmssl rahlllng, nlonte Carlo simulation, 

Quanl.urn Electrodynamics, exponcnt,ia.tiorI, multiphoton emission, Z” boson e+e- anni- 7 
hila t ion, 4cctrowca.k theory. 

Nature of phJvsica.1 problem: 

lligh statistics data samples will be available soon in 1,11:1’ and Sl,C experiments allowing 

for a precise mea.surements of the Z” mass, width and various asymmetries. Since initia.1 

state QEJ) bremsstra.hlung disf,orts the,shape of the X0 resonance very strongly it will not 

be possible to make any sl.atcmcnt. abollt t,hc agrecrncnl, of these data. with the standard 

clcctrowea.k rnodel bcforo one is able to calculate all fhcsr effects very precisely. The above 

Ql<l) effects depend usually on the expcrimcnl.al acceptance and selection criteria and 

it is therefore pra.ctica.lly impossible to calculate them analytically. It is already known 

that in order to rea.ch a sufficient precision lcvcl one has t.o sum up contributions from 

multiple soft photons a.nd from up to two hard phohns. In particular any program of the 

class presented in ref. [I] is not siifiicicnl.ly precise. ,I number of a.nalytical exact. and 

approximate calcula.tions exist for the total cross secl.ion [2,3]. They are very instructive 

but they ca.nnot help in removing detector acceptance from the data. a.nd/or provide the 

int,egrated cross section in the presence of the rcalist.ic, complicated set of cut-offs. 

Afethod of solutkm: 

‘I’hc! Monte Ca.rlo event gcncrator is the well known answer to the above problems. An3 

given experimental a.cccptancc a.nd cut-olfs may bc inf,roduccd easily by rejecting some pa.rt 

of the gcnera.ted events. The main kchnical prohlcm in f he construction of the Monte Ca.rlo 

event gcnera.tor with m~lll,iplc soft and hart1 photons is related to a necessity of generating 

pt~oborr momenta wit.hin a. m11l1 ibody Lorcntz invariant phase space with the simultaneous 

2 



importance sampling for strong singularit,ics due to the brcmsst.rahlung matrix element 

and Z” resona.nce. An elcga.nt solution of this problem, being an extension of the methods 

described in refs. [A], is presented in this work. 

Restrictions on the complexity of Ihe prohlcm: 
. 

Outgoing fermion f may bc any lepton or quark except of j = e-, v,. The pr0gra.m is best 

suited for calculating the total cross section and the spin asymmetry with respect to beam 

polarization a.nd also for all sorts of the detector acceptance studies. Pure electroweak 

corrections a.re not included, but we provide a detailed explanation of how to do it. Due 

to omission of the final sta.te bremsstrahlung a.nd its interference with the initial state 

brcmsstrahlung this program cannot. be used for calculation of the fina. state polarization 

asymmetry (T pa.ir production) and some ca.rc is necessary in the case of calculation of the 

forward ba.ckward a.symmcf,ry. 

‘/f.picaI running time: 

- CPU time for one event depends on center of ma.ss energy and infrared cut-off. Typica.lly, 

at, the Z” posit,ion gcncra.ting 1000 events costs 9 CPII seconds and off Z” resona.nce about 

18 CPU seconds on the IBM 3081. 
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LONG WRITE-UP 

1. Introduction 

. In the recent years a.n impressive evidence has been accumula.ted in a va.riety of exper- 

iments, including direct observation of 2’ and II’* bosons in pjj collider, in support of the 

standard e1ectrowea.k model [I]. A new qualitative stcp’in its experimental verification will 

take place soon with the advent, of the LEI’ and.Sl,C e+e- colliders where high sta.tistics 

data near the Z” resona.nce will become available. 

The first and simplest, mcasurcment of the total cross section will provide new precise 

values of the Z” mass and width. In the next step the laborious measurements of various 

asymmetries will provide detailed new information on the Z” couplings to lcptons and 

quarks. There is a well known problem, however, will1 the measurement of the Z” mass, 

width and peak cross section which is due to the initial sla1.e QED bremsstrahlung. The 

frequent emission of the (usually soft) photons out of the initial beams distorts strongly the 

Hreit-Wigner X0 resona.nce shape lowering the peak cross section by -26% and shifting the 

peak position by a.bout +llOAlcI~. In the radiative tail above the Z” position the QED 

corrections a.re even la.rger, of order 100%. The emission of additional photons a.ffects not 

only the tota. cross section but also topology of the events giving rise to nonxero acollinea.r- 

ity and acopla.narity angles for final fermions and to nonxcro t;ransvcrse momentum of the 

final fermion pair a.s a whole. 

Since the above QI?D effects do not carry a.ng ne\v pllysical information a.nd may only 

obscure the mca.surerncnt,s of new intercst.ing phenomena, it is therefore highly desirable 

to calculate a.nd to climina.tc t,hern from the data at. the precision level of a. factor of 

2 - 3 better then the best a.nticipa.ted cxperirncntal error. This mea.ns that the QED 

init.ial sta.te bremsstra.hI,lng effects in the total cross sccl,ion should be under cont.rol below 

0.5%. From the va.rious non-Monte-Carlo (analytical) calculations [2-41 it is known that 

in order to rea.ch a sufficient precision level it is necessary to include QED initial sta.te 

corrections from up to two real/virtual phol,ons and it. is strongly recommended to sum 

up the contribution from the infinite number of soft, photons (1) . The serious dra.wback 

of these calculations is that they fca.turc very sirnplc kincmat,ical limits on the photons, 

as in ref. [2], or they have unspecified (and non-conserved) transverse photon momenta, 

as in. refs. [3,4]. In the real cxperirnenl, the combined effect of detector a.ccepta.nce and 

(1) See also ref. [5] for a summary review of these calculations. 
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of the selection criteria. ca.nnot be cast into a simple analytical form such that one ma!, 

attempt to integrate the cross section analytically. At I,EP/Sl,C experiments a. Monte 

Ca.rlo event generator will be for this purpose indi.9pen.9able, similarly as it wa.s in the 

former I’E’I’RA/PEP experiments. Presently, the only published and documented Mont,e 

Carlo event genera.tor for the fermion.pa.ir production process at LEP/SLC energies is that 

of ref. [6]. It includes single photon emission only, provides the tota. cross section with 

low precision and lacks kinematical effects due to emission of the second real photon. It is 

definit,ely insufficient for LEI’/SLC experiments. 

One of the ma.in lessons from refs. [2,3,5] is that due to strong va.riation of the lowest 

order cross section near the Z” resonance one has, first of all, to sum up the contributions 

from multiple soft photons. The contribution from hard photon(s) rea.lly matters far a.waJ 

from the Z” resona.nce, espccia.lly in its radiative t,ail. ‘i‘hc nlonte Ca.rlo event generator 

presented in this paper is based on the rigorous resummatic~n of soft photon contributions 

according to the Yennie-Frautschi-Suura (YFS) me6hod [7]. The first, still rather simple, 

version of the Monte Ca.rlo alg~~rithm used in this work was presented in ref. [S]. Some nu- 

rr1erica.l results obtained from the first unpublished version of this program were presented 

in ref. [O]. A supplementa.ry discussion on the underlying ideas exploited in this work the 

reader may find in refs. [lo]. 

Is the stra.tegy of the present work. for calculating the higher order QED effects to 

concentrate first on the proper soft photon summation the only possible one? Of course 

it is not. Let us comment. on the other options and t,ry to explain very briefly how do 

t,hcy compare with the ours. Tt is known that much of the effects due to the initia.1 sta.te 

radia.tion can be qualita.tivcly explained and calculated in a simplified picture where both 

c* beams frag ment, collinea.rly int.o photons a.nd another e * beam such t.hat at the moment 

of e-e+ a.nnihila.tion the ioh center of the mass cncrgy is reduced and the annihila.tion 

cross section changed accordingly, see refs. [R-5]. This type of the calculat.ion is physical13 

very a.ppcaling a.nd it gives a rather quick answer for the total cross section near the Z” 

with a.bout, l-2% precision. One ma.y even construct a nlont,e-Carlo event gcnera.tor in 

which photons a.re emitted with zero ~77 with respect to the c* beams. After a quick start, 

one faces the problems, however. In order t.o improve on t.he precision of the result the 

bea.m fragment&ion distributions ha.ve to be modified by hand in the soft photon limit. 

Generally, in this a.pproa.ch in order to improve further on t.hc precision one has to go 

beyond the leading-log approxirnai ion. This can be done for the inchsive quantities like 

the tot,al cross section [2] 1 HI unfortunately there is no known way (a.part from guesses) to t 

proceed systema.tically, beyond the leading-log, with the ezcla.sive distributions nccessa.ry 
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for a Monte Carlo program event generator. The att.empts of constructing Monte Ca.rlo 

event grnera.tors in this spirit suffer from a la.rge degree of a.rbitrarincss and a lack of a good 

estimate of the actual precision of the result. In fact the only procedure for estima.ting the 

final error is to compa.re the results from va.rious different, ad-hoc, procedures. 
. 

The other possible, conserva.tive, strategy would be to ma.ke a second order Monte 

Ca.rlo event genera tar, without any “exponentiation”, following closely the work of ref. (61. 

(The corresponding ana.lytica.1 exact second order calculation for the total cross section is 

already done, [2].) Th is approach seems, howe+er, to be not very a.ttractive. The first 

order nlonte Ca.rlo of ref. [6] is plagued with the positivity problem of the soft photon 

cross section: The integrated cross section with no photons above the energy cut-off J%,, 

is roughly proportional to 1 - 5, where 

- 

includes a la.rge Sudakov-type double-logarithm and therefore 1 - 6s may easily become 

ncga.t,ive -. a disa.ster for the AIonte-Carlo. In the second order situa.tion gets improved 

bcca.usc this pa.rticu1a.r cross section becomes proportional to the factor 1 - 6, + f6f which 

does not get nega.tive ( but may get excessively positive instead). The positivity problem 

returns, however, in the previous bad form, in the case of one photon a.bove and up to 

one real/virtual photon below EL,, (the corresponding cross section is again proportiona. 

to 1 - a,). Our scheme is superior to the above solution because the summa.tion over 

t,he infra.red/soft photon contributions necessarily in\olvcs a summa.tion of the Sudakov 

c~oul)le-loga.rit,hrnic contribution to a.n infinite order at the very beginning and the positivity 

of the differential cross section is assured aut,omatically. Compared with the Iea.ding/next- 

to-leading log scheme our approa.ch does not offer a quick start because one ha.s to invest 

in the development of the new nontrivial type of the Monte-Carlo generator, but, once it 

is done, the inclusion of the second order corrections, and of the higher ones if necessary, 

is rela.tively easy a.nd the remaining series in the number of noninfrared/hard photons is 

rapidly convergent (no double logs). The two above approaches are complcmenta.ry and 

if, a,t some point, the problems with the proper definition of the exclusive spectra in the 

next-to-lca.ding log approach are solved, then its comparison with our scheme would be a 

very interesting exercise. 

How do we estimate the overall precisicln in our approach? The soft photon corrections 

are summed up to an infinite order, rigorously from t.he point of view of perturba.tive QED 

[7], and the noninfrarcd/hard photon contributions arc added in the scattering ma.trix 
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clement, one by one, i.e., order by order. The b&c method is to compare the results from 

the first, and second order calculations. (2) Another possibility is to compa.re two second 

order results, the usua.1 one with the series over the noninfrared/ha.rd photons including 

three terms (up to two hard photons) and another truncated to two terms only. The 
. precision of the ca.lcula.ted cross section is deduced from the difference between the two 

results. The fo.ilowing estima.te of the precision is obtained from these two methods: in 

the region up to 3Ge\,’ a.way from the Z” position the precision is better tha.n 0.1% and 

far a.way from the Z” it is better tha.n 0.5%. 

The presented program provides not only information on the total cross section but 

also on the t,opology of the experimental events. I,et us first explain wha.t the title sta.te- 

mcnt about a.pplicabilit,y of our pr0gra.m to two hard and multiple soft photons mea,ns. 

The progra.m in fact is generabing events wit.h three and more hard photons as well. The 

restriction to two hard photons comes only from the fact. t,haf. for t.hree and more hard pho- 
- tons the ma.trix element will be not correct (3) . There are two wa.ys to proceed with these 

multi-hard events, eit,her let them in the sample, knowing that they contribute negligibly 

( < 0.01%) to th t t, 1 e o 2 cross section, or to reject them with the experimentally feasible 

cut-offs. Nea.r the top of the 27’ peak the ra.pidly falling cross section acts a.s a.n effective 

cut-off on the hard photon emission. (4) If the experimental cut-offs a.re loose then the 

dependence of the tota. cross section a.nd of other obscrvables on cut-offs will be rather 

weak. Nevertheless the resollltion in the typical T,EI’/Sl,C experiments will be very sharp 

a.nd the effects due to emission of multiple photons will bc clearly visible in ma.ny distribu- 

tions, for cxa.mple in the a.collinearity/acoplanarity distribution of the ou6going fermions 

or in the total longitudinal/transverse momentum distribution of the fermion pair. The 

present program offers a definite a.nd precise QED prcdicl,ion for these distributions a.nd 

they ma.g be very useful in calibra.ting the detector and/or testing the QEI> as well. Some 

of these distributions depend a.lso on photons emitted from the final state which are not 

pet included in the present version of the program. In t.his case we recommend the user to 

employ the unpublished bul, widely a.vailable program KORAZLZ [I l] in which the present 

program is supplemented with the fina. state brcmsstrahlung in an approxirna.te wa.y. This 

is a temporary solution a.nd the real one will come with t.he next version of the present pro- 

gram. We would like a.lso to not,e that the first version of the mull.iphoton event genera.tor 

(2) In fact, as is explained in Section 3, the contribution to the diffcrcntial cross section from the second 
noninfared/hard photon is added in the leading-logarithm approximation. Some of next-to-leading 
corrections are also included. This is enough for the precision IWel claimed in this paper. 

(3) It will be not dramatically wrong, factor two at most. 
(4) For the initial stak emission only. 
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with the Yennie-Fra.utschi-Suura soft photon sumrnation exists for the low angle Rhabha 

scattering [12]. Tt is a.imed prima.rily a.t the luminosit,y type measurements. 

The la.yout of the pa.per is the following: In Section 2 we describe the Monte Ca.rlo 

algorithm; in Section 3 we write down and expla.in in detail the QED differential cross 

section used in the event generation; in Section 4 the structure of the pr0gra.m is explained 

a.nd the importa.nt subprogra,ms a.nd variables are listed; in Section 5 we describe how to 

use the progra,m, wha.t sort of input is required a.nd where to find the interesting output; 

fina.lly, in Section 6 we give the exa.mplcs on the numcrica.1 results concentra.ting on the 

precision of the tota. cross section and we provide a further informa.tion on the output 

from the pr0gra.m. Short conclusions are given in Section 7. 

The question of the a.rca of applica.bility of the program is discussed in Sections 5 a.nd 

6. We conclude that the program in the present version is well suited for the total cross 

section(5) a.nd for the polarization asymmetry with respect to the initial beam. With 

some restrictions it ca.n be used for the charge a.syrnrnetry a.t the top of the Z”. It is not 

helpful for calculating the final state polarization asymmetry, unless it is ta.ken a.s a. pa.rt of 

KOILALZ [II]. Th _ p _ e resent progra.m ca.n be easily interfaced with any rea.sonable program 

for pure e1ectrowea.k corrections a.nd we instruct the user a.t the end of Section 5 in how 

t,o do it in pra.ctice. In Section 6 we also present an example of numerica. results from 

the Rlont,e Ca.rlo ca.lcula.tion ba.sed on the renormalization group improvement - a.nother 

possible a.pplica.tion of the presented program. 

2. The Monk Cdo algorithm 

Let us sta.rt with a formula for the total cross section which includes phase space 

integrals in a. form ready for the Monte Carlo integration. The relation to the sta.ndard 

Yennie-Fra.utschi-Suura. notation [7], used also in many other papers on the exponentia.tion, 

see for instance refs. [13, I I], can be found in the Appendix A. The differential cross section 

for the process 

e-(m) + e+(p2) + fh) + J(Q2) + Y(h) + *** + y(hl) (24 

is summed o\:er the photon multiplicity n and integrated over t}le Lorent inva.riant pha.se 
(5) For the integrated cross section the influence of the final state bremastrahlung is negligible, provided 

the cut-offs ire mild (or absent), but it becomes quickly quite important in the presence of any stronger 
kinematical cut-o&. 
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space in the following wa.y 

n d3k; - 
rI 7S(P19 P2, ki) h4(Pl + PZ - q1 - q2 - 2 ki) Oy 
ix1 i kl 

. 
exp 2aH + ( J $3(m 7 p2, w -. CYAN) ; (ijowl, 77.m mr, mn) P-2) 

n &(RPI, RP~, Rq1, %z, kd n 
+): +c 

fi2(RPlt RP2, %I7 %2, ICI, Icj) 

I=1 @r) I,j=I S(k,)S(kj) 
Wj 

J,et us explain the main ingredients in the a.bove expression. 

(i) The’infra.red singularity in the factors 

- 
$m,pzrk) = -$ ($--$)2=$((p,;);k)-&-&) (2'3) 

is excluded frorn the integration doma.in by means of the convent,ional energy cut-off in the 

center of ma.ss system. This is done with the help of 

qLfi(j 2kp-( 
( 1 i=l fi 

(2.4) 

which is equal zero if an energy of a.ny of the photons falls below c&/2, 3 = 2pl . p2 and 

we require c << 1. 

(ii) The integral includes ha.rd photons all over the complete phase space. 

(iii) The explicit dependence of the integrated cross secbion in eq. (2.2) on the infra.red 

cut-off t, coming from the lower integra.tion limits, is in fact completely ca.nceled by the 

Yennie-Fra.utschi-Suura. [7] form-fa.ctor 

F;,,(pl,p2,O=exp(2~R,eR+ J~s(pl,p?,k)(~ -o(kO-3))) (25) 
=exp(2F([ln-$-l]lnc+fIn$--I+:)), . 

where the a.pproximation m.z/.~ << 1 was used, see ref. [n] and Appendix A for definition 

of 2aR and for other deta.ils. Neither the total cross section nor any other mea.surable 

quantity depends on E. It plays only a. role of a dummy parameter introduced to limit the 

multiplicity of very soft photons for the purpose of 1,ho numerical M. C. integra.tion a.nd it 
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may be set arbitra.rily low. 

(iv) The functions ,80,1,2 a.re infra.red finite and are calculated perturba.tively order by order. 

In our ca.se one needs the second order - two loop - double bremsstrahlung matrix elements 

to extract them. The releva.nt forma.1 definitions of B’s are given in refs. [lo] a.nd the first 
. order formu1a.e for &I ca,n be found ;n ref. [9]. The complete definitions of & used in this 

program are listed in Section 8. The normalization fact,or 2/pj = 2(1- m;/(ql + q2)2)-‘/2 

was a.djusted such tha.t the lowest order ,& is simply 

jjr)(pi, qi) - dBBorn --j&t 4. ’ 

(v) The mea.ning of the Rpi and ‘Rq; is the following. Slrictly spea.king ,&I,2 are defined 

within the corresponding 2, 3 a.nd 4 body phase space and if for a. pa.rticular photon 

multiplicity in the formula (2.2) th , ere are some additional photons then the proper ma.pping 

- Pi -+ R.pi and qi -+ K?qi in the arguments of &,1,2 has to performed. In other words one 

has to require [7] 

Ql + Rp2 = R.q1 + Rq2 for B”WPl, 7Ep2, R,q1, R*q,), 

%I + 7+2 = Rql + Rq2 + k, for al (RPl, Rp2, ‘@I, Rqz, k,) a.nd 

RPl + RPz = R$‘l + R@ + kl + kj for bz(‘Rpl, Rp2, R,q,, Rq2, k,, kj). 

(2.6) 

As we see, each of the abovr mappings is the projection of the phase space point onto an 

edge of the phase space, where the edge by itself is a less-dimensional phase space. This 

procedure is related to the fact that in the J’FS scheme of ref. [7] the infrared singular 

factors ,!? a,re subtracted and the rcsidua, equal to j’s, are taken at the singularity position 

(k” = 0). The R. p rocedure concerns only the arguments of /?i and does not disturb the 

phase space integral nor the four-momentum conscrvat.ion. The reduction procedure R 

mny depend on the momenta of a.11 fermions but mny nol depend on the momenta..of 

the individual photons. This requirement is crucial for the cancella.tion of the infrared 

divergences in eq. (2.2). A d .f t e lni ion of the ‘R, procedure for PO will be given la.tcr on in 

this Section and a. detailed definition of the 77. operation for a.11 ,8’s is included in Section 

3 t . 

We shall now introduce the reader to the method of gencra.ting Monte Ca.rlo events. 

The procedure of constructing our Monte Carlo algorithm is generally the following: we 

shall gradually. simplify the intcgra.nd a.nd the phasr space lirnit,s such that at the end we 

obta.in a simple distribution which ca.n be easily gencra.tcd with help of the uniform random 
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numbers. All these modificatzions have to be correct4 for by the appropriate reweighting 

and rejecting the events which were generaled according to the simplified distribution. At 

the end of this section we shall summa.rize on a.11 weight.s which ha.ve been introduced in the 

course of the simplifications. The exa.ct integrated cross section is ca.lcula.ble numerica.lly 
. using the avera.ge weights from the Monte Carlo run and may be obtained with a.n a.rbitrary 

precision, simply by increa.sing the number of generated events. 

In the first pla,ce we drop out higher j’s 

Pl - 0, 82 - 0. P-7) 

As we shall see later on, thcb effects of fi I,2 are small and, therefore, they can be ea.sil> 

rclinsta.lled in the la.te stngc of the Monte Carlo by the re.jcction procedure. 

A next repla.cement 

I 
PO - h = - Worn 

47 (h + Q212) (2.8) 

is more mea.ningful a.nd it sho111d be undcrslood as follows. First of all, since we a.re deahng 

with the resona.nce production we must take into account the effective shift of the center 

of the mass energy [7] 

.$ --+ .9’ = (q, + q# (2.9) 

in the matrix element, already in ,&. This is done by requiring that the reduction procedure 

(n-b. for all p’s) fulfills the condition 

(Ql + 42)2 = (7291 + R.~z)~. (2.10) 

‘~‘he 77, procedure for & goes as follows. Starting from f.hc laboratory system (center of the 

ma.ss system for the initial beams) with the third axis pointing along e- WC make a. z-boost 

such that qf +qi = 0 a.nd then another boost, along the remaining transverse pa.rt of @‘I +& 

to a rest fra.me of qf + q2. In this frame WC assign tho resulting qi as R,qi and the four- 

momenta. R,pi are simply constructed as p1 = (&/2,O,O,p,), p2 = (G/2,0,0, -pz) 

where pz = j/qc-q t6) . Obviously, this construction fulfills conditions (2.6) a.nd 

(6) This procedure coincides well with the IcadinR-log/collinrar approximation prescription which says: 
takr the Rtirn dill’rrential cross section at the reduced crntcr of the mass system with the z-axis 
pointming in this frame roughly in the direction of the beam momenta. 
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(2.10). In fa.ct, neglecting the virtual correction, one may well appr0xima.k [!I] 

dbBorn 
&~,PI, 72P2, QlRQ2) = ---&- (d, tq, 

where ti9 is an a.nglc between Rpl and R91. In the cq. (2.8) we go on however one step . 
further and we a.lso neglect the a.ngu1a.r dependence on 19~. This is done for the purpose 

of the modula.rity of the pr0gra.m. From now on wc have only to worry about the squa.red 

bremsstrahlung ma.trix element factor ni S(ki) a.nd about the resona.nce curve embodied 

in the annrn(.q’). Tl _ ?I 1 _ 1e u IO c complica.ted details about. the higher order rea.1 a.nd virtual 

corrections a.re a.dded in the late stage of the Monk Carlo by rejection and a.re functionally 

very well sepa.ra.ted from the rest of the program. 

The net distribution which now remains for discussion is the following 

r’ = F~,,(P~, ~2, E) 2 f / fJ $~$(PI) ~27 ki) QT J 2 flBcm(~‘)* 

n=O ’ 1 
(2.11) 

The Z” resonance is so sharp that> we have to arrange the phase spa.ce integra.tion and the 

Monte Ca.rlo a.lgorithm in a specia.1 wa.y; the variable .Y’ = (q1 + q2)2 must be genera.ted 

first with an appropriate importa.nce sa.mpling. J,et us introduce a new va.riable 

3’ 
2)=]--= 

2KI - #2 

P ’ 
1’ = Pl + 172, 

S 
IC=eki 

i=l 

(2.12) 

as a first va.ria.ble in our integral 

Vm.r 
6’ = &,s ( Pl,PZ, 4 J I dv 4 

- 6130rn(s(1 - v)) 
* 4 7r 

c (2.13) 

e$/fi$S(ki) Oy 6(~- ““>i lc2). 
n=O . i=l i 

The condition v 2 t is induced by @y, because due to f << f the term K2 in (2.12) 

ca.n be safely neglected. The upper limit v,,, on the photon phase spa.cc is in principle 

a.rbitra.ry but it must obviously obey u,,, < I - 4m,!/s. 

Now comes the ma.in point in the Monte Carlo algorit,hm: for a. fixed va.lue of the 

varia.blc ZJ we ha.ve to gene&e four m0mcnt.a of n photons according to a distribution 

ny&=, S(ki) with th _ c constra.int of tiq. (2.12). Th c solution of the problem which sha.11 
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bo shown quite in a deta.il in the following is quite similar to that presented in ref. [8], 

see also ref. [15]. It consists roughly in replacing the constraint (2.12) by a. simpler one. 

J’hoton momenta. a.re gcnera.ted a.ccording to the simplified constraint a.nd the original one 

is rccowrcd la.ter on by resca.ling the four momenta of all photons a.ccordingly. 

. The essential prepara.tory step in the a.bovc procedure is the introduction of the new 

integration va.riables for the photon momenta which WC shall illustra.te on the integral 

J 

n-l 

U;(Z)) = FyFS~Born(~‘) 
n dgk; e 

JJ FS(ki) 6 
i=l * 

v - 2’e1i,i K2) JJ O(ky+, & - kp) B(kjl - +. 
i=l 

(2.14) 

In the above we ha.ve introduced an ordering of the phot.on energies a.t the expense of 

1,he 1 /n! factor a.nd, as a result, the function Oy was replaced by the single 8 function 

depending on the sma.llesl. energy k,. ’ J,ct us introduce now an auxilia.ry varia.ble X and a 

new delta. fun&on represcnt,ing the simplified constraint 

flk(v) =&fsQorn(g’) JdX J fi $S(ki) 

6(h-~)6(u-2KP1’1BZ)~H(k~+~-kP)B(k~-~r). (2*15) 

Then, we rescale all photon four momenta ki = Xii and, next, eliminate the old delta. 

function by integrating over A. In the resulting integral 

J 
n d’rci ^ - 

CL(v) =FyFsflBorn(*S’) n ,,S(ki) 
i=l 'i 

6 
(2.16) 

the new constra.ints simply st.aI.es that @ G v&/2, i.c., that, the most energetic photon 

saturates all of the energy conservation alone ‘l’ho function 

j721'2 
where A = - 

(k-l’)2 s ’ 
and K=kLi, (2.17) 

i=l 

is a. .Ja.cobian fa.ctor left a.fter removing the old delta function and the va.riable 

1’2 2 
MJ(, 4 = TJ 21(. p 1 + J1-li-;;’ 0 5 X0(Q) L 1, (2.18) 

is a solution for the resealing factor A ohta.ined in the process of removing this old delta 

function. J,et us notice tha.t if there is only WIO photon or if the photon system ha.s a 
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\-anishing effective mass, I?2 + 0, then the two constraints, new and old, coincide; there 

is no need for resealing, X0 + 1, a.nd the Jacobian disappea.rs, 3 + 1. In fact due to 

the strong ordering of photon energies this is almost always the case. The other extreme 
‘ situation A + 3 occurs in the ca.se of a.n emission of the two a.ntipara.llel a.nd ma.ximall) 

. energetic photons. Finally, let us introduce the explicit polar pa.ra.metrization of the photon 

four momenta 

h Ici = Xolci = XO2Zi (1) L sin 8; c?S +i, Sill 6; sin di, COS @i), (2.19) 

which lca.ds to 
d3j& - - 

f$S(ki) = $S(ki) = ~dcl,sRid$i /(Oi), 
I I I 

(2.20) 

1 
m) = ;( (1 - pcd)(l + pcosf?) 

m2 I -e m2 1 -e 
s (1 - pcos6)2 s (1 + /!?cos8)2 > 

(2.21) 

and /? = dm. Th I f e lna result of a.11 the above transformations is a. new form of 1 

the intcgra.l (2.13) 

a’ =&(c) Uma’d~~~orn(.~(J - v)) J % [I + 2 fJ 1 F / dcosoi rdioi .f(ei) J f n=l i=l f Ll 0 

f5(u - q)6(q - 22)8(x2 - 23)...0(2,-, - ..)6(A,(K, v)2, - c)J(I(, v) 1 . 

(2.22) 
11 should be stressed tha.t the a.bove equation is complclcly equivalent to eq. (2.13) a.nd in 

the tra.nsil,ion from one to a.nothcr we did not make any approxima.tion nor simplifica.tion. 

The distribution (2.22) could h ave almost, been gcneratcd with the standard uniform 

random numbers if there was no complicated function I?(&(&-, V)X, -c) ,7( K, v) in it. We 

replace it, therefore, with a simple subst,it.ute 

6(x,( l-i-, v)Za - c) - 6(x:, - c), 

JyK,7l) + J&4 = I I + 
2( $4 

(2.23) 

having in mind that, as usual, it will be corrected for by the rejection. In addition, in order 

to ensure the sta.bility of the re.jcction weights at a. certain late stage of the Monte Ca.rlo (7) 

14 



(reintroduction of /?I) we a.lso drop mass t,erms in the photon a.ngular distribution 

f(O) ----+ f(O) = (c#)((l - /3cosB)(l +Pcos8))-‘. (2.24) 

With the a.dditiona.1 change of variables, yi = In xi we fina.lly a.rrive a.t fhe masler inlegrul 

for fhe Blonie -C UT o 1 eveni genemiion which defines the mu1tidimensiona.l distribution to 

be generated with the help of sta.ndard uniform random numbers 

umao 

(rcrude = py~s(c) 
J 

dvm,ru (3 ( 

0 

C(u)+~~~[iodyijdcosBij(Ri)jldmi 
n=l i=llu c -1 0 

6(ln v - YMYI - Y2P(Y2 - Y3)...f9(!/81-1 - yn)8(yn - In c) 
)I 

. 2. 

(2.25) 

T,et us explain in the following how it is actually done. Assuming for the moment 

that the va.lue of the v a.nd of the photon multiplicity n are already defined (see below 

for details) the properly ordered yi variables are uniformly chosen in the (In C, In v) ra.nge, 

the angle 8; a.ccording to the i(fli) distribution in the interval (0, K) using for example the 

mct,hod of ref. [6] and the 4; uniformly in the (0,27r) range. Photon four momenta. Ici are 

calcula.tcd using (2.19) a.nd rcscaled with 10 from (2.18). Given Q = q1 + q2 = P - C Ici 
the momenta. q1 a.nd q2 are gcnera.tcd isotropically in the Q rest fra.me and transformed 

to the labora.tory system. Jn this way we obta.in a set of momenta ql, 42, kl, . . . . k, obeying 

the total four momentum conservation rule a.nd the condition v = 1 - s’/s. The question 

still to be a.nswered is: how do we generate v and n? IA, us integrate in (2.25) over a.ll yi 

and the photon a.ngles fli a.nd 4;: 

UWSf?Z 

fluode = r;;,,(C) 
s 

~V~BOI-, 

0 (2.26) 

+@(V-C)!-F ’ (2”ln~ln~)n-‘). 
n=, (n - v 7r e 

As we see, for v > c the photon multiplicity minus one is distributed according to the Pois- 

son distribution with the a.vcrage 2: ln(.~/rn~) ln(v/c). 1 n order to obta.in the distribution 

(7) We would like to thank dr. 2. \I’qs for pointing out to us this prd~lcm. See also Appendix El for more 
comments. 
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of II we ha.ve to sum over the photon multiplicity n and the result can be ca.st into a. sum 

of the two ?J-intcgra.ls 

L 

(I 

Umar 
u crude = exP(h~s) dvyv7-’ Qorn s + .() I 

d . .vuB,,rn(.q(~ -v))fi(v)y~v+lc~-~’ 
0 f 

which represent the cases n = 0 and n > 0 correspondingly and we define 

(2.28) 

Note that the fa.ctor ET = s d -yvr-‘dv was transferred from the YFS form-factor to the 

intcgra.nd and the rcrnaining part of the form-factor is dcnotcd as 

ev(~~Fs) = =P ; 2 n m,2 
( ( 

a I] “-]+$ . 
e >> 

(2.29) 

I’hcl variable v, the central va.riable in the hjonte Carlo is gcnera.ted a.ccording to the 

int,egra.nd of 

Umns 

flcrude = e 6YFS 

I rfv yay-’ ~B,wn(*~(~ - 4)Jb(qGllass(~~), 

0 (2.30) 

J)(v) = $1 + (1 - v)-‘i2), lcmaas(v) = 1 + 8(v - c)t (f) 

7’-7 

a.nd WICC v is known we decide that n = 0 for II < c or n, > 0 (Poisson distribution) for 

v > c. l‘hc a.bove formula is almost idenl.ic*al to the analogous one in ref. [8] except of the 

fact,or &(71) which is related to t.ho dilatation Jacobian, see cqs. (2.17) and (2.23), and the 

fa.ctor E”as9(v) ih’ .h M K is entirely due to neglecting f,hc clcct.ron mass terms in the photon 

angular distribution, see eq. (2.23). Note that l-he disfribuf.ion db,,,,d,/dv is a complica.ted 

a.nd strongly varying function with up to three sharp peaks at. T) = 0, 1, 1 - A1gl.s. It is 

generated with the help of a general purpose hlontc Carlo sr1bprogra.m for generating a.n 

arbitrary one dimensiona. distribution, see Section 3 for more details, which also provides 

the value of the (numerically) integrated cross section bcr,,&. 

The events genera.ted according !,o the simplified differential cross section defined in the 

master equation (2.25) h avc now to be processed through a. rejection procedure in order 
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to rcmov:e all a.pproxima.tions which were made on the way from eq. (2.2) to eq. (2.25). 

The re.jection weight 
4 

w= rI wk (2.31) 
k=l 

includes four component weights ?llk which are responsible for the corresponding simplili- 

ca.tions and we will list them below. Let IIS nol,e that .lhe precise integrated CFOJS seciion 

is given by 

fl = flcrudc < 11’ >crude (2.32) 

where the a.\-erage weight, < u! >cr,,de is taken over t,hc crude gcnera.ted events, prior to 

rejection. The error OJI c is determined in the usual way by the va.ria.nce of the weight w 

and the number of the generated events. 

I,et us stress that the a.bovc total cross section is in our approach a result of the exa.ct 

(up t .t, (. .I, I I , o s a is ica error) intcgra.tion of the differential distribution defined in eq. (2.2) over 

t,he entire photon phase space. M’c doubt I hat the result can be ever ca.st into an a.na.lytica.1 

form. One may ask, however, can we gain more insight into the total and differential cross 

seclions resulting from the h,lonto Carlo calculation. To this end it is very instructive to 

look more ca.refully into the v-distribution 

dr drcrude 
dll= - < w >rrudr dv 

(2.33) 

where da cr,,t~e/dv is known analytically, see eq. (2.30) while < w >cr,,& is calculated 

numcrica.ll,;. Since v is the first variable in the h4ont.e Carlo generation chain it is possible 

to fix it a.nd to analgsc (numerically) the v-dependence of < w >cr,,dr and of each individual 

Weight < ?Ui >rrl,de. We refer the reader to Appendix H for more details on t,his interesting 

exercise. 

Tracing back the pa.th of all sirnplilication on the way from eq. (2.2) to eq. (2.25) let 

us first define the first weight u11 which corresponds I.0 dropping mass terms in the photon 

angular distribution 

n /Ceil 
w,= - III 

i=* ICei). 
(2.34) 

In fact, this weight cancels the factor &,RJS(u) in t(l IP v distribution, as can be verified 

numerically in the Monte Carlo calculation, see Appendix R for more details. In other 

words, for a. given v we know precisely the average of ~1, i.e., < UI, >crude= l/&,.,,(v). 
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The next two weights correspond to the simplification ma.de on the dilatation Jacobk 

a.nd the lower photon energy boundary, see eq. (2.23), 

w2 = J(R,v) = 1 + (1 - L47p2 
J-44 1 + (1 - ,)-l/2 

703 = B(A()(K, v)2, - c) = 6 
( > 

x 
.&-’ - 

(2.35) 

The fourth weight corresponds to the transition from the origina. distribution (2.2) to 

cq. (2.1 I) 

w,+ = - b’, ( &l(R.Pl , m*, %I 7 %z) 

n PI (Wl, m% %Jl , Rqz, h) n 
+): +c 

B2taPl~ RP2~ aql, Rq2, kl, kj) 
(2.36) 

’ I=1 %r) l,j=l S( k,)cS’( kj) 
l#j 

There is a distinct difference bebwecn the three weights 7111~~ and the weight ~4. The 

weight whfc = ~11~27~9 does not include any information on the perturbative order of the 

particular QED ca.lcula.tion nor about any other detail on the Ql?D cakulation apart from 

resumma.tion of the soft photons. Jn a. sense, the part of our program genera.ting events 

according to eq. (2.11) is a ger1cra.l purpose MC event generator for rzny type/order QED 

calculation for process (2.1). This part of our generator is well isolated from the rest of 

the program and we call it our low level nlonte Carlo (l,l,nlC) gcnera.tor. The type/order 

of the QED ca.lcula.tion is determined fully by the model weight w4 only. In pa.rticula,r 

there exists a.n inkresting option (8) in which the first or second order Ql?D calcula.tion 

without exponentiation can also be emulated with the help of our LT,hlC generator by 

a.ssigning a nonzcro 2~4 # 0 for n = 0, 1 or n = 0, I, 2 and setting 1~4 = 0 for higher photon 

multiplicities. 

(8) This opbion may be used for test, comparisons with the other hlC programs, when available. It was 
already used to test the program of ref. [12]. 
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3 . T h e  m a .trix e l e m e n ts a .n d  th e  reduc tio n  p rocedure  

T h e  in f rared fin i te fu n c tio n s  & ,I,2  a r e  ca lcu lab le  pcr turbat ively o r d e r  by  o r d e r  a n d  

in  th is  sect ion w e  s h a .1 1  p r e s e n t fo r  th e m  th e  s e c o n d  o r d e r  express ions  wh ich  a r e  a .ctu a .llg  

u s e d  in  th e  p r o g r a m . Jn  o r d e r  to  r e a .ch  th e  prec is ion level  d e fin e d  in  th e  In t roduct ion it 

is necessa.ry  to  k e e p  th e  exact  fo r m u l a . fo r  th e  first o r d e r  c o n tr ibut ions b u t it is e n o u g h  to  

e m p loy th e  lead ing- logar i thmic  a p p r o x i m a tio n s  fo r  th e , -second o r d e r  c o n tr ibut ions to  p ’s. 

T h e  fo r m a l  d e fin i t ions o f p ’s u p  to  s e c o n d  o r d e r  w e r e  g i ven  in  re f. [IO ]. In  th e  process  o f 

t.hc  calcula. t ion w e  o fte n  exp lo i ted  th e  dif ferentia, i  cross sccf, ions f rom re fs. [2 ], ( 3 1  a .n d  [1 6 ]. 

T h e  s e c o n d  o r d e r  fo r m u l a  fo r  /? I, inc ludes  u p  to  two vir tual p h o to n s . It is extra.cted, 

w e  re f. E lO ], f r o m  th e  s e c o n d  o r d e r  express ion  fo r  d ~ ( ~ ) /d Q ~  a n d  it r e a d s  

8 !2)(P l  P 2  4 1  42)  =  d c B n r n  , 1  I y & * %  Q  1  +  (f)t 
’ q  (  

I~ - l )+~ ( f )2L2),  L = ln-$,  (3 .1 )  

w h e r e  & ~ ,,,,/d n  is tl IV  _  1  o w e s f, o r d e r  di f ferent ial  cross scct,ion. It shou ld  b e  n o te d  th a .t 

th e  a .b o v e  fo r m u l a  is cons iderab ly  s i rnplcr  th a n  th e  or ig ina l  s e c o n d  o r d e r  di f ferent ial  cross 

sect ion, n o tab ly  it d o e s  n o t, inc lude  a n y  l a rge  d o u b l e  logar i thmic  correct ions wh ich  h a .ve  

b e e n  s u m m e d  u p  into th e  Y e n n i e - F r a u tsch i -Suura  (Sudakov )  fo r m factor,  s e e  e q . (2 .5 ) . T h e  

v a c u u m  polar iza t ion c o n tr ibut ion was  n o t i nc luded  s ince it is u n d e r s to o d  to  bc  inc luded  

in  t.h e  Z” a .n d  y p r o p a g a tors. T h e  cor i t r ihut ion f rom th e  l ight fe r m i o n  pa i r  p r o d u c tio n , 

nl lmcrical ly smal l  [3 ], w a .s neg lec te d . T h e  first o r d e r  fo r m u l a  fo r  /!? o  w a .s a l rea .dy  g i ven  in  

re f. [9 ]. Reinsta. l lat ion o f th e  r cma .in i n g  n o n l e a d i n g  s e c o n d  o r d e r  correct ions in  th e  a .b o v e  

express ion  w o u l d  b e  ra th e r  s t ra ight forward s ince al l  necessary  i ng red ien ts a .re g i ven  in  re f. 

[2 ]. T h e  zero- th  a .n d  th e  first o r d e r  vers ions /9 ,) ‘(“1  a n d  fit) a r e  o b ta i n e d  by  t runcat ing th e  

h i g h e r  o r d e r  t,e rms  in  th e  a b o v e  express ion.  

T h e  s e c o n d  o r d e r  /? I inc ludes  o n e  rea l  p h o t.o n  a n d  l.h e  c o n tr ibut ions f rom u p  to  o n e  

vir tual p h o to n . It wil l  bc  d e fin e d  with th e  h e l p  o f 1 ,1 1 c  co r respond ing  di f ferent ial  cross 

sect ion 

D i2 ) (p~  P Z  a  qz  k) =  * 
2 P l P 2  

7  , , , 
4 , r2 (km )(bz) 

[l +  (%)(I ,  -  l)( l  +  k ln(1  -  &  -a)) ]  

f ((1  - f% )* *(s/, 6 ,J) +  (1  -  a ,$ !;;n  
Q  

- -+‘, flq .2 ) )  K l@ , B ) , 
. 

w h e r e  
. ,jr& ,, $ ) =  , w  - a 1  - 8 j 4  

( >  $ + L ! &  
3  (1  -fi)*+ (l-/I)* p  fi ’ h = p r P 2 ’ 

j j= lep l  

P l P 2  

(3 .2)  

(3 .3 )  
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and the norma.liza.tion constant is such that Di*) + ,$(k)/$‘) for k + 0. Neglecting the 

(a/~)* contribution lea.ds us to the well known single bremsstrahlung ma.trix element with 

the following definition of the a.ngles 6’,,i [17]: The 8,,1 is taken in the rest frame of the 

q1 + qz a.s a po1a.r a.nglc of the $1 with respect to z-axis pointing a.long $1 in this frame 

. while -i;z is used a.s a. z-axis for ti9,2. The & and fi are Sudakov (light-cone) varia.bles 

which in the collinear situations ha.ve the following simple mea,ning: If e-(pl) fragments 

almost collinearlg into a photon with a. momentum fraci,ion zpl a.nd a. quasi-real electron of 
. 

momentum (1 - r)pl then iv = z a.nd @ N 0. In this case the a.bove distribution reduces to 

the Altarelli-Pa.risi [18] splitting function times the lowest order differential cross section 

4’7~1, ~2, q1, qz, k) N (f> ’ + ‘:, ‘I* +(.+, e,), 
Q 

(3.4 

which is the result expect.4 in the leading-log approximal.ion. Analogously, in the case of 

et fragrncnta.tion & 21 0 and b = z. Note also that the distinction between 8,1 a.nd tJq,2 

disappears in the collinear regions. The second order contribution in the above formula, 

is written in the col1inea.r approximation. 11 can either be taken directly from ref. [2] or 

obtained by convoluting the Altarelli-Parisi function wit,11 itself [3]. Finally, the lea.ding- 

loga.rithmic expression (‘I for /?I is defined as follows [7,10] 

l?dmr ml a, n, k) = D\*hmr a, qi, k> - ~~(P,,Pz, k)i$)(R,p,, Rpz, Rq,, Rqz). (3.5) 

The a.bove expression is manifestly finite in t.hc k + 0 infrared limit. As we see, the 

reduction procedure for /30 (see previous Section for its definition) necessarily enters into 

the definition of ,81. Jt must be so since & is originally defined within the two body pha.se 

space only. I,et us remark on the important pr0pcrf.y of t.he /?I contribution in t,he sum of 

the eq. (2.2) 

n 
i%@P11 R-P*, %l, Rqz) + c 

bd%,, Rpz, R,ql, Rqz, k,) 

I=1 ~(PI 7 ~2, h) * 
W-9 

As a. direct consequence of the definition of ,61 the second term (sum over PI’s ) does not 

contribute at a.11 if there is no hard photon (its relative contribution is in fact less then 

low3 for v < 0.001). On the oth er ha.nd, if there is one and only one, I-th, ha.rd photon 

(9) Th. p s , P rerise second order forrnllla for @) cannot 1~ follnd in thr litcratllre (in ref. [z] the integration 
over photon angle and &I, was performed), hut it is dcfinitrly calculnhle. 
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then the corresponding /?I (k,) is dominant and the differential distribution D,(/c,) for this 

photon effecti\-ely replaces the whole above expression. I’he first f30 in (3.6) a.nd the /!& 

inside /?l(rC,) ca.nceI each other. If there are two or more hard photons then, in this part 
‘ 

of the phase space, the above expression is not adcquafc any more, a.nd only the inclusion 
. 

of pz, as... may improve the situation. 

For practical calculations the definition of fil must be immediately supplemented with 

f,he corresponding definition of t.he reduction procedure 77, specific for /?I. Jt a.ppea.rs that, 

for /?~,a, in a.ddition to conditions (2.6) and (2. Ii)) there is a.not,her constraint on the way 

it is defined. As discussed above, in the sum (3.6) the contribution 

S(RPl , Q2) Rk,) - (k& - 

3hP24,) 
PdR2PJ, R2Ph R2Ql, R*2Q2) 21 (Rk,)2 P”(R2Pl, R2p2, RZql, RZq2), 

’ 7 

is present. Tn the case when b-th photon is ha.rd this contribution should be ma.tched 

- (ca.nceIed) by the ~~(‘R.~~,‘R, ~2, ‘Rql, SRq2). ‘T‘his means that to a very good a.pproxima.tion 

the reduction procedure for /!& should he idempotcnt., i.e., 7Z2 = 77, and, furthermore, 

for /?I it should preserve the transverse component A$. z (Cpl)(kpz)/(plpz) of the photon 

momenlum with respect to pl and ~2. ‘Ii, satisfy all these requirements we proceed as 

follows. Let us suppose that we wa.nt to eliminate all photons except the I-th one. With 

the z-boost, along the beam move to a .frame where (q1 + q2 + k/)3 = 0 and we pretend 

that there is no other photon except ICI, as in the sccon~J equation of (2.6). We define 

77,((t; + {2) = ‘RG G -K, in this fra.me. l’hcn we assign RQ” - ((R&)2 + s’)-*/~ and 

RI” = R,Q - k,. Ob 7 \iousIy, we have obtained 72P = R.Q + k,, i.e. the condition (2.6) is 

fulfilled. Since Rfl = Ri;l + Rjiz = 0’ we easily define new (effect.ive) bea.m momenta Rpl 

and 72~2 a.Iong the z-a.xis and the only thing to be still done is to define Rq; sstisfying 

RQ = Rql + Rqz, where R-Q is known already. It practically means that we have to 

define 7Xq; in the rest frame of ‘RQ and to transform them back to the Ia.bora.tory reference 

frame. In order to ensure l,he idempotencr of the reduction procedure R2 = R we choose 

the vectors Rq; in the sa.mc way as in the case of f,ho reduction operation for /!& described in 

the previous Section, i.e., we make a boosf, along the longitudinal a.nd the transverse pa.rt 

of Q = qI + q2 and ta.ke for ‘Rq; the resulfing qi in Q rest frame. ‘rhe exact idempotence 

of R for PO sa.ves us also considerably in computing time since Do is calculated only once 

and the result is used many times. 1,ct us finally note, that the above reduction procedure 

differs from wha.t was used in the ea.rIier version of the program described (partly) in the 

ref. [!I] where the condition (2.JO.) wa.s not imposed and t.ho pi momenta. were not touched; 

Rpi = pi. Tn this case the elI’ecl,ive shift B --+ 3’ in Z” propagator in dug,,, in (3.6) was due 
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1,o the emission of only one (the hardest) photon. Such a procedure is perfectly sufficient for 

the Born cross section mildly dependent on s but in the case of the very strong dependence 

it hinders t,he precision of the resulting corrected cross section. In the referred case we 

could only reach about 1 - 2% precision level near the X0 resonance. 
. 

The second order double bremsstrahlung matrix element, being a. ra.w ma.terial for the 

construction of pz, does not conta.in a.ny virtual correction a.nd in the lea.ding-log/collinea.r 

a.pproximation may be written in a following compact form 

4TPl P2 q1 q2 h b) = Q 
2PlP2 a 2PlP2 * 

> , , , , 
47r2 vwmlP2) 47r2 @2p,)(k2p2) 

f (Il(hi, Bi)2~f~orn(~f7 Oq,l) + f2(cii, bi)2~~~~r"(.~~,~~~2))rr,(e*,ii,)~~~~(~2,p,) 
9 

WV 

where 

for 63 + /?I > ti2 + 62 
{ 

fl(&i, Bi) = I’( 6; h’2, &) + qq; &, 84, . I 
.fZ(hi, Pi) = J’(B1; hi7 $2) + I’(&; b2, Bz), 

for 61 + 81 5 &, + a2 
I 

jl(rii, Bi) = I’( ~2;4,&) + Jy+%,jl), 

I2(hi7 8;) = J-(82; h: 7 &) + J’*(&; 61, bl), 

l-(x, II, 11) E (1 - X)‘[(l - ?I)2 + (1 - V)2)], 

pi = $, pi = 2, &#; = h1 (+‘z _ b2 
1 - &2’ l-4,’ 

j’, = A, 8:=-J&. 

In the co1linea.r region the two photons may be emitted both from the e- beam, both from 

the e+ bea,m or ea.ch one from a different beam. It is easy to see that in each of these cases 

the a.bove formula coincides with the appropriate convolution of the two Altarelli-Parisi 

fragmentation funclions. For exa.mple for a double collinear fragmentation of 

f3Pd -+ y(ziPi) + e-((1 - zl)pl) -+ y(zlpl) + [y(z2(l - tl)pl) + C-((1 - z2)(1 - z~)~~)] 

we have 2; = 2kf/s’12 = 
L 

hi and Pi z 0 bllt &I = z1 ;Y’, = 22 and, assuming 61 > &2, the 

corresponding factor in jl + j2 (note thal 19~,1 z 19~,~) reads 

Y(&1; ii;, p;, + 1-Q 1;&‘,,&) = (1 + (1 - z,)2)(1 + (1 - z2)2) 

as expected from convoluting two Alta.relli-Parisi funcl-ions. The other two terms in jl+ j2 

result from Rose symmetriza.tion. In a. similar nay one may check the proper beha.vior of 
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112 in the ca.se of the double fragmcntaI.ion of the et and in the ca.se of the independent 

single fragmenta.tion of et a.nd e-. All that is very much in the spirit of refs. [3] a.nd 

[,I] but, with two improvements relative to them. First of all the proper infra.red limit is 

reproduced I), (2) -+ ,!?(kl)$(k2)/?f) for kl, k2 + 0. And secondly, in the case when one 
. 

photon is ha.rd col1inea.r a.nd the other hard non-collinear then our distribution still a.pplies 

there. It factorizes into an Alta.relli-Parisi fragmcntatjon for the collinear photon times 

the exact single brcmsstra.hlung differential cross section at the reduced c.m.s. frame for 

the noncollinear one. To this end we had to introduce the two a.ngles Qq,i in U[2). Our 

distribution does not apply to the situation with the two hard noncol1inea.r (high pi) 

photons. Although the above Ica.ding-log a.pproximation is suficicnt for a.11 of the pra.ctica.l 

appliwtions one could also USC the exa.ct double bremsstrahlung matrix element calculated 

using spin a.rnplitudcs a.nd spinorial technique of ref. [I !I]. ‘I’1 lis should be done at a certa.in 

point as a test for the a.bovc simple expression. The final expression for & [7,10] rea.ds 

(3.8) 

where the reduction enters again, in both ,f?o and /!Il. In the sum 

n PI ('Qi, 'Qj> h) n 
PO(RPi, R.qj) + C 

P2(RPi, 'QjT kl, km) 

I=1 S(pi, h) 
+c - 

iiTzl S(pi, k,)S(pi, km) 
(3.9) 

t,ho contribution from the third term (sum over /$!‘s) is a. small contribution except of the 

situa.tion when there a.re two ha.rd photons simultaneously. Then, one of ,& contributions 

overtakes the whole expression a.nd introduces the proper 112 distribution in this region 

of the phase spa.ce. Again, this distribution will not bc very good if there are three ha.rd 

photons (or two hard non-co1linca.r photons). The coni ributions 1.0 the total cross-section 

from these regions of the phase space are known to be extremely small. If, however, one 

day it will appear to be necessary to introduce the precise matrix element for three photons 

then the corresponding modification of our program will be quite straightforward. Only 

this pa.rt, of the program which provides weight. 1114 will have to be corrected. The rest of 

the program (J,L&IC generator) will remain unchanged. 

The reduction procedure for p2 is defined very similarly as in the case of PI. We go 

with help of z-boost to a. frame where (qi + q2 + ki + k,)” = 0 and then construct Rpi a.nd 

R,qi in the sa.me way a.s for al. 
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4. The structure of the program -- subprogra.ms, va.rkbles 

In this Section we provide some general information on the program a.nd on its most 

important, subprogra.ms a.nd we list the na.mes of some important and most frequently used 

. va.ria.bles. 

The program is divided functionahy and topographically into four pa.rts which are 

given the nicknames: (i) EXJ’ANJ) - The main subprogram administering input/output 

and the rna.in rejection loop due to the main weight. 71:; (ii) YJSGEN - the low level Monte 

Carlo generator generating the simplified distribution defined in eq. (2.13), i.e., the pha.se 

space with the importance sampling for the bremsstrahlung pea.ks and the Z” resonance; 

(iii) M<IDEJ, - the part of t,he pr0gra.m calculating the model matrix element,, i.e., the 

weight 2114; and (iv) EXJ’J,JB -~ the library of utilities. In the following we shall describe 

briefly all these parts a.nd give short descriptions of the most important subprograms. Ea.ch 

of these subprogra.ms includes a short comment explaining it,s role a.nd the meaning of its 

para rnd,ers. 

J‘he part EXJ’ANJ) consists of subroutines EXJ’ANI) and FII,EXP. The first one is 

the main subroutine in the program. Its first pararnetcr ~JOJIE, as a.lso in ma.ny other 

subprogra.rns, tells the subprogram if it is called in the initia.lixation mode (MODE=-1) 

production/generation mode (MODE=O) or the final postgeneration mode (MODE=l). 

The user must call on this subprogram, with MOJ)E=O, in order to generate each Monte 

Ca.rlo event but before the first event is gencrat,cd he must call on it with MODE=-1 in 

order to provide the input data through il,s parameters. The input para.meters a.re trans- 

ferred to FJJ,EXP which distributes them all over the various common blocks. FJLEXP 

sets also the vslues of some other pa.ramctcrs in the program like input/output unit num- 

bers, electron ma.ss, the polarizations of c* beams etc. After the last event is generated, 

the ca.11 on EXPAND with MOl>E=l provides the value of the tota. cross section and a 

large arnount of other useful information. The EXPAND rnakcs all sorts of book-keeping 

on the weights, it checks also if the weights have expccbcd properties and compares the 

total Monte-Ca.rlo cross section with the estimates obt.aincd using a.nalytical and Gauss 

inbegrations. See the next Section for more details on t.he input /output organization. 

The pa.rt nicknamed I’FSGEN is the low-level hJonl.e-Carlo generator which generates 

the multiphoton events a.ccording to the simplified dist.ribution (2.1 1). The ma.in adminis- 

tration subprogram is here KARCUD which also features t,hc three-fold opera.tion mode. It 

genera& the va.riable 11 with help of the routine VESKO from the pa.rt EXPLJB. VESKO 

is the general purpose progra.rn for generating any distribution a.nd the v-distribution is 
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defined by the function FUNSKO. In fact the v-disbribution of eq. (2.30) is encoded in 

the funct,ion VVDJS. In order to flatten the peaks a.t v = 0 and TJ = 1 we make the a.ppro- 

pria.te change of the va.ria.bles with the help of the function CJJBJN2. No such provision 

is made for the Z” peak. KARLUD is the administrative subprogram, it ma.inly does 

the weight book-keeping a.nd the most of the Mont,e Carlo algorithm is in fa.ct conta.ined 

in the subroutine KAR.LUJI. It essentially generates the integrand of (2.13) for fixed II. 

Since u is a.lrea.dy known it, therefore, sets the phol.on multiplicity n = 0 when u < c or, 

otherwise, it generates R a.ccording to a J’oisson distribution with the help of the routine 

J’OISSG. In the la.tter case (v > t) the photon momenta ki a.re constructed by ca.lling on 

t.hc routine BR,EMUT, and the solution for the resealing factor X0(/(, u) and the Ja.cobian 

fact,or S( K, II) is provided by the routine R.ESOJ,ll. Once the photon momenta ki = Xoki 

are known then YFSGEN calls on the routine KJNEKR which defines the fermion mo- 

menta, qi. ‘J’ho subroutine 71’FSGEN defines also the three weights ~1, ~2 and ~3 which 

are tra.nsferred to KARLUD, and later to EXPAND. ‘J’hc subprogram ANGBRE is called 

in BREiMUII a.nd it gencrat.es the photon angle fli according to distribution j(0i). It also 

provides the ratio j(0i)/j(@i) 7) ’ .l R in- 1 is a component of t.hc weight ~1. The whole event, 

i.e., n, ki and qi, is stored in the common block h10h~lSF’I‘. In the case of any improvement 

on the ma.trix element for the initial stat,e bremsstrahlung, for example, the inclusion of 

the proper matrix element, for more hard photons, or the inclusion of the higher order 

v-irf,ual and/or elcctroweak corrections, this part (YISGEN) of t.he program will rema.in 

unchanged. 

The n~c~dcl dependent weight w,t is provided by t.hc part called MGDEJ,. It is calculated 

a.ccording to formula. (2.36) in the routine RlOl)J?1,2. In fact this subprogram provides four 

v:ersions of the weight ~14 and the filter-rout.inc hlOl)lCl , selects one of them, the second 

order expression (2.36), as the principal model weight. in our program. The nJOI>EJ, defines 

also the rna.ximum weight for the re,jcction in the main re.jcrt,ion loop in EXPAND, specific 

to a chosen type of the model weight. As it. is also explained in a comment in the MOI)EL2, 

the following versions of the weight u1,t are also provided: the weights with formula. (2.36) 

truncated to 61 and to pa only, but, in both cases the second order expressions are ta.ken, 

and the weight in which the sum in (2.36) is t.runcaf.ed t,o at terms and the first order 

calcula.tion is applied. The EXPAND calculates the averages of these weights a.nd prints 

the values of the total cross sections corresponding to all above weights, see Section 6 and 

Appendix R. This is very uscf~~l for the control of the precision of the total cross section 

obtained with the full weight as defined in eq. (2.36). I’J w various components in the sum 

(2.36) are ca.lcula.ted by the following subprograms: ha is provided by GCRUJIE, fin by 
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GHI?‘I’AO, Pl(k,)/S(k,) by GREX’Al a.nd /?,(k,, kj)/a?(k,)S(Lj) by GRETA2. The GRETA0 

routine ca.iis on RVIRTO which calculates the virtual part of PO (see the bra.cket fa.ctor in eq. 

(3.1)) and on REDUMO which performs the reduction procedure. The GRETA1 routine 

uses R\‘lR’I‘l to calculate the virtua.1 part, of /?I and RI?I)UMl to perform the reduction 
. procedure. Fina.iiy, the GRI?TA2 calls on R.EI)UI\l:! which performs the corresponding 

reduction procedure. Among \:arious small routines providing elements of the expressions 

for PI,2 there is GTJIETA which calculates the tlvo angles 0,,+. The function RORNV 

provides the lowest order differential cross section, ap’drrrl,,,/d0(8, s), where cP = 47ra2/39 

enters in many pia.ces, in all p’s. The funcf,ion RORNY calculates the integrated Born cross 

section (also in ~7~ units) with the help of BORNV employing a relation 

wl,,,, = ;(p&s,+ -&-I’s)), 

lvhich is valid for any distribution of the type cl (1 + cos f?)’ + c2( I - cos 0)“. The fermion 

charge and the weak isospin, used in ROR.NV to caicuiatc the coupling consta.nts, is ca.i- 

cuia.ted in GIi’lZO. 

The most, importa.nt routines in the utility library ESI’LIR a.re the genera.] purpose 

routjinc VESKO which is used to generate the variable II and t,he routine WMONIT which 

is used in several subprograms to moni.tor various weights. It calculates the a.vcrage, the 

variance a.nd counts abnormal weights: negative, above a certain limit, etc. The EXPLJR 

includes also the ra.ndom number generator RANhl AR from ref. [20] and the routine 

GAUSS for the numerica. Gauss integration. 

The vocabuia.ry of the most, frequently used variables is iisl.ed in the Table 1. We 

indicate whether the listed va.riabie is a rncmbcr of a common block. I,et us finally note 

that, a.s usual in this t,ypo of the program, t.he whoic program is written in the double 

precision arithmetic - mostSly due to the srnaiincss of the electron mass. There is only a 

very Iirnited use of the double complex arithmetic, i.e., only for the Z” propagator. 
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5. How to use the progrsm - its applica.bi1it-y a.rea 

In the first pa.rt of this Section we shall explain how to use the program, what are the 

input pa.ramet,ers a.nd where to look for the output. Then, we shall explain wha.t type of 

the phFsica.1 mea.surabies, cross sections, distributions, asymmetries may be ca.icula.ted with 
. 

the help of our program. We list the effects which are omitted in the program, indicating 

a rough precision levels a.t which they start to play a .roie. We a.lso instruct the user in 

how to include the pure e1cctrowea.k corrections. 

A t,ypicai sequence of instrilction needed to generate a thousand of the Monte Carlo 

event,s ma.y look a.s follows 

IMl’I,lCl’rl I>OURl,T’, I’RECJSION (A-11,0-7,) 
cmnwN / hmnwr~r / ~l~l(~2),~F2(:l),Sl’Illlnr(~l),sI’lioT(100,~),Nr’rrc,T 
DlhJENSlON Xl’AR(20),NI’AR(20) 
{ nasigm XPAR nnd NT’AR } 
CAl,l, EXI’AND(-1 ,(:RlSlSN~,XPAlt,NmR) 
DO 100 1lW=1,1000 
CAl,I, EXPAND( O,CI\lST;‘NT;‘,,XPi~It,NPAR) 
{ hisiograming } 

100 CONTINUE 
CAJ,I, EXI’AND( 1 ,(=RIS~NE,XrAlI,Nl’AR) 
XSEC=XPAR( 10) 

The inpul, para.meters a.re read only for RlODl?=-1. ‘l‘hc parameter CMSENE is the tota. 

center of the mass energy in Gel:’ units and the other input parameters a.re encoded in 

the two a.rrays NI’AR and XT’AR. The user must nccrssariiy define seven entries in these 

a.rrays, see the list below for a deta.iied description: 

T;‘ntrj 
NPAR.( 1) 
XPAR.( 1) 
XI’AJt(2) 
XPAR(3) 
XJ’AR(5) 
XT’AR.(G) 
Xl’AR(7) 

Na.me Dcscript ion 
KWRAD =2,3 for QED first,, second order 
AMAZ Afn, mass of the Z” 
SINM’2 sin2 t9\1:, &I. is thr eiectroweak mixing angle 
GAnlMz I‘;!, width of X0 
AMFIN mj, mass of the final fermion 
VVMIN c, infrared cut-off, dimcnsionicss 
VVMAX vmdz, ma.ximum of v variable 

Ail these parameters are read only for MODE=-1 and they are ignored in the production 

mode, MODE=O. The output fermion and photon momenta are provided to the user in the 

27 



common block /MOMSET/ , see also Ta.bie 1. They are in GeIiy units. The momentum qy 

of the ferrnion f is stored in the matrix Q1:l (K), K=l,2,3,4, with the usua.1 convention tha.t 

QFI (4) is the energy. Similarly for the fermion f the q2 is given by QF2. The momentum 

of the i-th photon Ici is pia.ced in the SPHO’I‘(i,K), K=l,2,3,4. The third a.xis is pointed in 
. 

the direction of e- momentum $1. The photon multiplicity is provided as NPHOT. Once 

the histogra.ming is done the user ma.y want to norm~iixe the distributions to a proper 

integra.tcd cross sectsion cr. It can be found in XI’AR( JO); the other elements of XPAR a.nd 

NI’AR may a.iso be of some interest., see the following list: 

l?ntry _ Name Description 
!WAR.( 10) XSMC c integrated Mont,e Carlo cross secl.ion in units of 47ra2/3s 
XI’AR( 11) EREI, relative error on rr, estimat,ed from the variance of the weight 

Xl’AR(l2) XSMCNR z in nanobarns 
N PA R.( I 0) N EVTO’I number of the gene&cd events 

‘1%~ ca.ll on EXPAND with nlODE=l automatically produces printout of a.bout 50 con- 

trol para.rneters with various pieces of useful information. We shall give a. more detailed 

description of them in the next Section and in Appendix R. This printout ma.y be a.voided 

if one ca.lis on EXPAND with MODE=2. In this case the parameters XPAR and NPAR 

are defined as for MODE=l. 

J,ct us now cornrnent on the applicability range of the program. As stated above 

(see a.iso next Section), the program ma] be used to calculate the effects rela.ted to the 

initial sta.tc QED bremsstrahiung on the total cross section and related qua.ntities with the 

precision below 0.5%. Can we really talk about SIIC~ a precision from the point of view of 

the QED, ciectroweak corrections and QCl) influence ? The QI?D case looks good beca.use 

the contribubion frorn the omittcd final sl.aI,e brernssl,rahiung on the total cross section is 

only 6a/a = f,/, = 0.003. (“I The influence of the initial/final state interference on the 

unpolarized cross section is a.iso small, Srr/cr 21 2.1 O-” on the! Z” peak a.nd up to N 7n10e4 

a.wa.y from the pea.k [2l]. ‘J‘l IF omitted second order contribution from the production of _ 

the light fcrmion pairs (going rnostiy into beam pipe) is about 6a/(z 21 0.003 - 0.005 

see rcfs. [22,23,3]. Our p ro ram, as it stands, ha.s nothing to say a.bout the other kinds g 

of the corrections. The parameters like Z” width, couplings parametrized with sin2 t+$fr 

a.re the externa.] entities. The pure electroweak corrections contribute to the total cross 

(10) The final state bremsstrahlung may become quite important in the presrnce of strong cut-ok 
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section in principle at the level of 6o/a N (w/x N 0.003. It is known, however, tha.t the 

QCl> corrections to the tota. cross sections, entering mainly through the Z” width, a.re 

in a percent ra.nge. One may hope that at some point the total cross section on the Z” 

resona.nce ca.n be predicted from the standard model at the 1% level [22]. The precision 

ca.pa.biiities of the presented program a.re definitely better than that. 

The situa.tion looks better for the initia.1 sta.te polarization asymmetry ALE. Many 

uncertainties like the influence of the final sta.te QCJ) and QKI> radiation cancels out [21], 

5/11;~, 5 0.001 near the Z” position, a.nd a.re below the a.nticipated experimental precision 

level 0.003. The presented progra.m is therefore well suited for this purpose. One has only 

to atta.ch to this progra.m the library of the eicctrowcak corrections in a rea.sonable way. 

There a.re several possible 1va.ys to do it. One of them, advocated in ref. [24], is ra.ther 

easy to implement - the e1ectrowea.k corrections are included in the Born differentia.1 cross 

section which is (in the leading-logarithmic approxirnat.ion) a basic building block for ail 

differential cross sections. For more details see the IatCer part of this Section. A possible 

worry about this procedure ma.): be reia.ted to the improper trea.t.ment of the heiicity non- 

conserving component,s in l,hc direrential cross sections. ‘J’hcse contributions are, however, 

known to be ~ALR < lo-’ (for u < 0.9) a.t the 8’ p osition and a.re a.lso below the 

experimental precision level [21]. 

Ca.n this program, provided that electroweak corrections are added, be used to calculate 

the forward/backward asymmetry rl~n. ? Outside the Z” peak definitely not, becanse the 

effects due to the initia.l/finai state interference inc111ces 5Arn 21 +1.5% or even more 

and this is negiccted in our program. It appears, however, that at the top of the Z” this 

contribution is suppressed very much, provided one does not apply stringent cut-offs on the 

photon mornenta.. If one accepts events with photons up to 20% of the bcarn energy then 

at t,he Z” position this contribution to A,, is less then 0.001, see ref. [25]. The other type 

of the pure QED influence on A,, comes from the shift of the effective center of the ma.ss 

energy fi due to the initial sta.te bremsstrahiung combined with the rapid dependence of 

‘1~8 on J. Since our program provides a very good control on the total cross section this 

effect can be, therefore, caicuia.tcd with its hcip quifc precisely. Summarizing, one ma.y 

use this program to calcuia.te .4,n close (Alz f lGclV) to the Z” position provided that 

cut-offs a.re very loose. A cornpiete ca.lcuiat.ion of the QED effect.s will bc possible with the 

next version of the present program [26] which will include the final state bremsstra.hlung 

and the final/initial state interference. 

The ca.sc of the third a.symmetry - spin polarization with respect to the final sta.te 

pola.riza.tion Aao, mea.sured in the r pa.ir production process is the most difficult beca.use 
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in this case one definitely needs the emission of the photon from the outgoing 7’s [27,28]. 

The progra.m in the present form is not useful for this measurement. Here we recommend 

tha.t the rea.der uses a. temporary solution which is provided within the unpublished but 

ava.ila.ble program KORAT,& version 3.x, which includes the single photon emission from 

the fina. state (no interference) in a.ddition to multiphoton effects of this program. The 

real solution will come a,gain with the future devcloprynt of the presented multiphoton 

pr0gra.m. 

1,et us come to the question how to introduce easily and eficiently the elcctroweak 

corrections into the present, progra.m. The simplcsf, way [2.1] is to replace the subpro- 

gram RORNV which provides the differential lowest order cross section with the new one 

providing the corrected dist.ribution 

1 dnl)am(d, s) ---) 
rp dS2 

One should also provide a separate new funct,ion RORNS, independent of RORNV, for 

the integrated corrected cross section Q,,,, which enters into dn,,,,d,/dv a.nd into bo, see 

routines VVDIS and GCR1JDE For the sa.ke of the weight stability this cross section 

should ha.ve the Z” propagat,or parametrized in way close to t.ha.t, in drrEw/dR. Since 

both t,he electroweak corrected distribution dcrE,/dU(f?, .Y) will be called many times for 

various va.lucs of s and the 8, thcrcfore, a pretabulaf.ion procedure (look-up tables) of the 

clectroweak corrections a.s a. function of these variables is strongly recommended in order 

to speed up the ca.lcula.tions. 

Summarizing, the present progra.m is very well suited for studies on the total cross 

scct,ion and the initial state pola.rization ,;Ir,n. M’if.h some rcst,rictions it ca.n bc used for 

the charge a.s)-mmetry AF,J and it is not yet up to sl,andards reqnired for the fina. sta.te 

asymmetry ilPOl. 



6. Exa,mples of numerical rcsdts 

In this Section we shall show the exarnplcs of numerical results from our program, 

ma.inly for the total cross section - concentrating on the question of the precision of our 
. 

pr0gra.m. We also explain where the presented results may be found in the output, of the 

prograrn. Included a.re also two distributions which can.bc obtained with our program a.nd 

which cannot be obtained with any other Monte Carlo program which does not fea.ture 

the proper resnmation over t,tic soft photons. Alore examples of the numerical results will 

be presented elsewhere. 

The-results for the total cross section are present.4 in the Tables 2 and 3. In Ta.ble 1 

we show the total cross section a.nd the various relat,cd quantities for three energies close 

to the Z” position. All t,hcsr quantities ca.n be read directly from the output from the 

routine I;:X PA N I>, ca.llcd a.1 t,hc end of the gcneraf.ion rnn wit.11 R,f ODE=1 . ‘1’11ey ca.n be 

- easily found in the printout,, SW the excerpbs from the test ouf,put, included a.t the end of 

the paper. ‘I’hr. printout from EXPAND is divided into Ihrcc windows A,R and C and each 

window includes several items marked with A l,A2,A3,...,HI ,H2,... etc. For exa.mple the 

principa.1 total cross section in nanobarns is printed in window A position A2. We included 

these marks in the Ta.bles. In fact these two Tables in thcrnscl\;cs constitute a. useful test 

of the program which may help to verify whether the program functions properly. 

Generally, the precision of the pert,urbative calculai ion ran bc deduced from the conver- 

gence of the perturbative scrics. In our case we havr already summed up the contributions 

from the soft photons up to infinite order and what remains is, in a sense, the expansion in 

a number of “ha.rd/noninfrarcd” photons. This is represented in our master equation (2.2) 

by a series in ,8’s and our best second order cross section (T = I,(/?” CD /?I @ /$), SW Table 

2, involves the sum & + xi /!?,(k;)/,?(k;) + ‘& /32(k,, k,)/.$(L,)L?(lc,). In the Table 2 we 

include the cross sections in which this sum was truncal.cd to two terms (~1 = a(& @ 81) 

or to only one term CT~ = ~(,f?“). \\‘e a.lso present separately t.hc individual contributions 

from j;, i = 0, I, 2. All t} IPSO quantities a.re ca.lculaIcd in O(CY’). The pure C>(o) result 

a’ = fl(j” @$) is also included. As a basic measure of 1.hr precision of the integrated cross 

section (from the QED point, of view) WC take a diffcrcnco between the first and second 

order result.s, i.e., the quant.ity 5’ = (n’ - a)/ 6. As we see frorn the Ta.bles 2 and 3 16’1 is 

below 1.5.1 Om3 for I&- iU,l 5 2Ge\’ a.nd is below 5. IO-” far away from the Z” pea.k. We 

conclude therefore, r&her conservntieely, that from t.hc point of view of the initia.1 sta.te 

Ql?D bremsstrahlung fhe pmzision, of our msulfs for fh,c in,fcgmfed cross secfion is beffer 

than, 0.1% close lo the Z” peak and 0.5% jnr uwny from the Zo peak. 



As we see from the Table 2 the series in pi, i = 0, I,2 (in the second order) converges 

very rapidly; for insta.nce, the contribution from 82 in the ra.nge & = Mzzt2Gel is below 

0.02%. It is a.t most 0.5% fa.r a.wa.y from the Z”. We treat these numbers a.s a furiher 
conjirmniion of the previously sta.ted estimates of the prccisfon. Let us note that even the 

second order cross section from & alone gives near the top of the Z” (Ifi- IIIzl 5 1GeV) 

a very good (better than 1%) estimate of the cross section. 

Jn both Ta.bles 2 and 3 we a.lso demonstrate a. remarkable result concerning an agrce- 

ment of our Monte Ca.rlo cross section with the leading-log type ana.1ytica.l calculation 

of refs. [3,22]. The second order total cross section is obtained in these works in the 

1eading:log a.pproximation (essentially by convoluting twice the Altarelli-ra.risi fra.grnen- 

t,ation function) and later it is improved by an ad hoc procedure such that the result 

features a. proper soft-photon limit and agrees with the 0( ) _, o exact ca.lculat.ions. There is 

some freedom in this garnc and we have exploited it t o write a formula. of this class which 

is numerically a.s close a.s possible to the result of our hlonte Carlo program. We ha.ve 

found that the total cross section given by (“1 

CA = I dv ~,,,(s(l - v)) I,[l-~y)e’yFs 7oy-‘(1 + 6.7 + 611(v)), 

6:- (q)(L-l)+;($?, (64 
h(4 = .(-l+;~)i(~)L(+-,,..,,,,,,(,.,-.) 

L=ln-+, C = 0.57721566..., 
me 

para.metrizcs the result of our pr0gra.m very well indeed. (See cq. (2.29) for definition of 

6yFS.) As we see in Tables 2 and 3 it agrees with the second order Monte Carlo result to 

within the statistical error which is 21 0.03% close to t.ho Z’ and N 0.05% away from the 

Z0 rcsona.nce. Now, the natural question to be asked is: if the Monte Carlo total cross 

section is reproduced with the above formula so well, then how well does the integra.nd of 

the a.bove expression reproduces the l’~Ion1.e Carlo rcsnlt for the distribution da/dv. The 

interested reader we refer for the a.nswer to Appendix R. 

Tn the Ta.ble 2 we a.lso include the best, known non-hlontc-Carlo result for the second 

order total cross section of ref. [2]. M ‘e 9 _ .I IOW there the flrll second order ca.lculation without 

(11) This formula is up to third and higher or&r corrections equivalent to that presented in ref. [22], 
although ours is a bit more compact. 
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fermion pair production a.nd with the by hand “exponentiation v (12) . As we see there is a. 

\:ery good, to within O.l%, a.greement of this result with our Monte-Ca.rlo result. 

In Figs. 1 a.nd 2 we present the photon multiplicity distribution and the transverse 

. momentum of the muon pair a.s a. whole. All these distributions are produced with sa.mples 

of more tha.n 10’ events. The photon multiplicit~y is shown for photons a.bove IOOiVeI~ 

in a. norma. situation, without the influence of any resonance, i.e., for 6 = 40&V, on 

the top of X0 resona.nce & = ill, = 92Gel,‘, where the photon a.vera.ge multiplicity is 

dampened a.nd at 6 = lOOGel,‘, in the radiative tail, where it is strongly enha.nced. 

The corresponding a.vera.gr multiplicities are I .O, 0.75 and 1.52. The distributions of the 

transvcrl;;e momentum of the muon pa.ir is shown at t.hc top of the Z”. (The analogous 

distribution off the peak wor~ld be more diffuse, for example the average PT which is 

0.42GEI’ at the Z” would rise to 0.88CelV at & = 4OGeI-. It should be noted tha.t both 

of these distributions would be a.lso affected by the final state bremsstra.hlung significa.ntly. 

In the present version of the pr0gra.m all details which do not concern the initial state 

brcmsstrahlung (electroweak corrections, final state brcmsstrahlung, s-dependence of the 

Z” width etc.) a.re either neglected or included in the simplest form, in order to keep the 

program and its description maximally simple. All snch extensions will be included and 

discussed in the forthcoming publications [26]. One exception from the above rule is the 

following numerical exa.mple illustra.ting thceffects of the large ultraviolet contributions 

summed up using technique of the renormalization group. This result may be obtained 

with a. minor modificad,ion of the present program, and it adresses the important problem 

of the interrelation of the soft a.nd ultra.vic)let divergences in our calcula.tion scheme. More 

precisely, the result (2.2) and the a.ttendant numcriral consequences, a.s presented until 

t,his point, do not a.ddress s)-stcrna.tically t.he probable large r~lt raviolet (UV) loga.rithms, 

which ma.y occur in 6. To ha.ndle these effects, we have used the Weinberg- ‘t Hooft 

renorrna.lixation group [29] t o obtain the respective renormalization group improved form 

of eq. (2.2). Th e corresponding improvement may be realized by following the recipe in 

refs. [9,lO]. Jn th e o f 11 owing, we wish to illustrate the effects of the improvement. 

The following numerical results we have obtained using a version of the present pro- 

gram which was obta.ined by applying the recipe in rcfs. [9,10] to eq. (2.2). This ra.ther 

strightforward modification consists of replacing the QED and weak coupling constants 

by the corresponding running coupling const,ants. In parbirular, the SUZL cha.rge gW, is 

(12) We wo~~ld like to thank Gcrrit R~irgcrs for prodding us thr program ZAI’PQ for calculating this cross 
section. 
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defined at Jr,,: here, i.e., it is assumed to be close to its value a.t AIrrr. (This is still true 

even a.t PEP and PETRA energies.) The other required input is identica.1 to that used 

before. The corresponding numericad results of this renormalization group improvement 

are illustrated in Table 4. We see, a.s we ha.ve aheady realized in refs. [9,10], that at the 
. Z” the effect is O(l?‘) o and tha.t, away from the Z ‘, it is necessary for the high precision 

simulations. We see further, however, that the effect of the a-dependent width, a.fter the 

fashion of ref. [22], is still observable a.t the level of ‘0.1%. This is consistent with the 

results in ref. [22]. 

The lesson we dra.w from this exercise is the following: if one wa.nts the below 1% 

precision at the Z”, the .y-dependent width a.nd the renormalization group improvement 

should be used; a.wa.y from the Z”, the latter impro\emcnt should still be used for such 

precision. 

7. Conclusions 

The present program represents 8.n example of a successful full implementa.tion of the 

Yennie-Frautschi-Suura soft photon summation scheme with t.hc help of a. powerful Monte 

Carlo technique. The profit from this a.pproach is three-fold: (1) one may implement 

an arbitrary set of experiment,a.l cut-offs in the calculations (something that wa.s in the 

original YFS paper discarded as an impossible dream); (2) the perturbative expa.nsion 

in the number of the noninfra.red/hard photons appears to be stable and fast convergent 

giving rise to high precision results; a.nd (3) t,here is no need to resort to a.rbitra.ry, a.d- 

hoc, “exponentia.tion” procedures at the very end of the finite order calcula.tions since the 

proper soft photon resummation is the starting point.. 

There is a. new open perspective of applying the presented techniques to a. more difficult 

case of the final state bremssbrahlung [26] or to the process of Hhabha. sca.ttering where it 

is ra.thcr unclear what the usual ad-hoc “exj)Onentiat,iorl” procedure would be. M’e think 

that in the a.bove more difficult cases the present,ed technique will allow one to sum up 

the higher order QED effects very eficient,ly and the event generators of this class will be 

a. very useful tool in ana.lyzing the experimental dat.a at l,J’,P/ST,C. Jndeed, the low a.ngle 

Rha.bha. scattering event generator employing the presented technique is a.lrea.dy ava.ila.ble 

[12]. Let IIS finally note tha.t the present version of the program including only the initia.l 

state ra.diation will be st,ill useful in many applica.tions (quark pair production) even if a 

more sophistica.ted version with the final state bremsst rahlung [26,] will become a.va.ila.ble. 
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APPENDIX A 

Mellin transform versus Monte Carlo - a relation to YFS notation 

In this Appendix we shall show how onr master formula (2.2) would look in a. standard 

notation used in ref. [7] and how to translate it from one notation to another. In the 

notation of ref. [7] the integraI.ctJ cross section for our process (2.1) reads as follows 

+cgJ!Y$~ rx[)[iz(pl + P2 - Q1 - q2) + I)] cXp[2OR + b] (~O(Ep~, Rqj) 
+ -ixkl-ixkzP~(Rpi, Rqj, k1, k2) . 

(Al) 

where 

2nR = $/k2!;; (k~~1~,k.k+k~~~2k.k)2) 

2c& = 
J 

$$(p,, p2, k)O(K,(~l) - k’), 

am > P2, [Kn]) = 
.I 

d”k - 
k”S(p,, p2, k) cirk - O( I<,&) - k”) 

(AZ) 

?‘hc function d(K,(O) - k”) rcprcsents collectively t.hc upper experimental limits on the 

real photon four-momenta.. The advantage of the nJonI.r Carlo is that we may simply put 

this limit very higJ1, for example, above f.hc phase space limits 

e(rc,,(S2) - k”) = I?(& - k’). 

7’Jle integral JfPz p ro’ec 9 out pJloton four-momenta which do not conserve the total J _ .t. 

energy-momentum a.nywa.y. (The z-dependent exponent has to be expa.nded prior to z 

integration.) Sumrna.rixing, the upper limits on k inkgration are provided by the phase 

spa.cc itself a.nd all hard photons are included in the game. 
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Now comes the second step: we divide the phot,on energy integration range in fi into 

k” < k, = 442 and k” > k,, where the para.metcr c is small (but not necessa.rily sma.ller 

1.ha.n m,/&) 

2cxB = 
J 

$,$(k) + 
J 

$i?(k)fl(& - k”) = b(c) + R(t) w 
k”<k, -kO>k, 

tl’e combine then R(c) wit,h 11 and we obtain 

u’ = 1) + R(E) = J $,?(k)(drk - 1) + J ~,~(k)~-izk~(~ - k”) (A4 
k” <k, k”>k, 

Now we observe that the first integral in the above formula vanishes in the limit E + 0 

aud furthermore the e(fi-- k”) f ac ,or t in the second inl.cgral can be omitted because J d4z 

provides a.n even stronger cut,-off. Xking this into account we obtain 

czJ-&JF!$ [ iZ(Pl + p2 - Ql - 42) + J d”k 
CXP -p -izk.?( k)] 

k”>k, (A5) 

exp [HUB + B(C)] (Po(Rpi, aqj) + J $e-izkjl(Rpi, Rqj, k) + . ..) . 
It is now enough to expand the &cpendrnt exponent and to integrate over z in order to 

obt.a.in our ma.ster formula (2.2). 

What are the most important differences between the Yennic-Frautsch-Suura formula, 

(Al) a.nd our master formula. (2.2)? Tt IC Ir$ is manifestly infrared finite but it cannot be r . t 

used directly for the Monte Carlo. The second is well suifcd for hlonte Carlo integra.tion, 

it a.pparently depends on infrared cut-off < but,, in fact, ( is a dummy regulator and it can 

be proved that in the limit c + 0 none of the physically mca.ningful results depend on 

it. I‘hr independence of the total cross section can be shown either by reintroducing the 

Mellin transform a.nd going back to Y-F-S formulation or by simple algebraic calculation - 

without resorting to the hlellin transform, or even finally by differentiating eq. (2.2) with 

respect to F. Tn fact the expression (Al) is as a generating functional for eq. (2.2). Wha.t 

should be strongly stressed, however, is that both formulafions are dolally equdvulen.i. 

From f,he eq. (Al) t i is also rat,her clear that the reduction opera.tion 72 may depend 

on the fcrmion momenta. pi, qi but it in no way depends on t,he momenta. of the individual 

photons. If this were not true then the equivalence bcf,wecn the eq. (2.2) and the eq. (Al) 

wol11d have been broken and even the infrared finiteness wo~~ld have been threaf,ened. 



APPENDIX I3 

More on Monte Carlo weights - the u distribution 

‘l‘ho aim of this Appendix is to a.nswcr the question: is it possible in the Monte Carlo 
. program of the type presented here, which calculates numerically a complica.ted multidi- 

mensional integral with the precision below O.l%, to understand in a fine detail how the 

fina.l numerical result is buih up. As we have indicated already in Sections 2 a.nd 6 one 

should look for the a.nswer in the distribution of.tho variable ZJ 

dfl &rude krude -=- 
d?) _ dv < h W >rr,,dr, - = e~~Fs~Vy-‘~~~(*~)~mRllr)(v) agorn(s(l. -v)), (Bl) 

dV 
i=l 

where the average < . . . >cr,r& is taken over the Monte Carlo events generated a.ccording to 

da CTlldP. We shall show that in the a.bovc distribution it is possible to understand qua.lita.- 

tivcly a.nd quantita.tivcly the ma.gnitude and the v-dependence of the various components 

and therefore the magnitude of the hlontc Carlo tol,al cross section as well. h,Ta.ny of the 

quwntities discussed in this Appendix may be found in the output of the program and we 

shall indica.te where to find them a.nd what values are expcct,cd. To obtain some of them 

it is necessary to run the program for fixed v. l‘his is not a normal mode of work and we 

refer the interested user to the cornmcnts in the program on the necessary arrangement of 

the input parameters. 

For the purpose of our det.ailcd weight,-analysis it is convenient to rewrit,e the eqs. (Bl) 

as follows 
da darer ker -= - < hfZhf4 >wl, - = dv dv dv 

y*P-’ %w”(*~(~ - u)), 

fl = ~&,a&‘), 12 = .&7i+~), j3 = w.7: f4 = 1L14e6? 

w4 

It should be noted that for fixed v there is no difference between the two averages < >crude 

and < >ref. In the following we shall look irtf,o the a\.cragc weights < fi >ref, i = 1,2, 3 

separa.tely, then into < Ilf3 >rcf a.nd < I1{2f3 >rrf, and finally we shall include the model 

weight f,t into the ga.me. Tt makes sense to explore the average weights separately because, 

as we sha.ll see, a. simple factorization principle < IIfzj3 >ref=< f2 >re.< flfs >ref holds. 

Let us note that the reference differentia.1 cross section dcr,,f/du which we have isolated 

ol~t,, when taken alone, detcrrnincs the value of the tota cross section to within 10%. 

Furthermore, for the (TR,,,” wea.kly dependent on s WC have roughly b,,.f 21 v~,,,(s) due 

to .\; yv+dv = I. T n order to see better what happens in the case of the production of 

t,ho Z0 resona.ncc we shall typically “expand” the region of the small u (which contributes 
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inosl, of the total cross section) by introduct,ion of a convenient “na.tural” varia.ble 2 = VT 

in which drr,,r/dz N ~~~~(s(l - t’/T)). ‘l’h is new distribution turns out to be rather fla.t 

for z < 0.5 a.nd may show up a resona.nce st,ructure above z N 0.5. The value of flBorn 

cha.ngcs less tha.n 1% for z < 0.57 (V < 5.4. lo-“) at fi = Al,, for t < 0.53 (u < 2.8. 10m3) 

. at fi = ~Ilz + 2GeI’ and for z < 0.39 (II < 1.6. IO-“) at & = IIIz - 2GeV. 

The factor I?,,,,,,(v), ,, t as i was pointed out in Section 2, is canceled exa.ctly by the 

muss weight 1112, i.e., we expect < II >rcf~ 1. All that is a purely technical trick - we 

overpopulate the region of the pha.se space with photons almost collinear to e* in order 

to reject these supplementary events shortly after. Not quite a.ll of ihem a.re rejected 

however -- the model weight 1114 spares some of them from the rejection. This is rela.ted 

to the f&t tha.t soft photons cannot. flip fermion hc1icil.y while hard photons can. The 

corresponding additional hclicif,y-flip (posit,ivc) contriblll,ion to t,hc differential cross section 

is lora.ted almost entirely in the region of the very small angle* photon emission, see ref. 

[SO]. Tf \ve d T ic not ta.ke this phenomenon into accounl, in the db,,,,d,, the total Monte 

(-:arlo re.jection weight, WOIJ~! flucf.ua.te wildly (althorlgh for a small fraction of events), 

threatening the overa. convergence of the calculat.ion. ‘T’hc quantity < fl >ref -1 is 

calculated in the progra.m and printed in the window H, position HO of the output from the 

routine KARLUD. The user of the program may verify by himself tha.t within a statistical 

error this qua.ntity is always equal to zero. 

l’he weight 

I2 = Ji(11)2(12 = J( ri, v) = f ( I + &-A > tw 
includes the variable A = K21’2/(KI’)2 which is a (complicated) function of the tota.l 

photon momentum K such that 0 < A < I and for small effective mass K2 of the photon 

system A = 0. ‘The origin of the above weight is related to the resealing transforma.tion 

i~scd to impose the energy conservation on the photons. The presence of the weight f2 

reflects the fact tha.t this dilalntion tra.nsforrnaf ion undcrpopulatcs the region of the phase 

space with the two ha.rd ant.icollinear photons. In the iI1ont.e (., ‘(ar o 1 f 2 is introduced in such 

a way tha.t first we overpopulate ail hard photon cvcnls by inclusion of Jo(v) in the db,,,,& 
and later on we re.jcct selectively with the weight u12 giving more survival chances to events 

with a.ntipa.rallel phot,ons. ‘T’he factor ,70(v) from dc,,,,d, cancels precisely the other factor 

&-‘(v) in 1112, lra.ving in the drr/dv the ncl result f2. ‘T’hc program provides an informa.tion 

on < j2 >re[: in the window B position R2, of the oul,put, from routine KARLUD one ma.y 

find the hfonte Carlo result for < j2 >ref. From the inspection of the eq. (B3) we expect 

< f2 >crudc= 1 for 11 << 1. The hfontc Carlo calculation gives 3 5 < f2 >ref 5 1.001 for 
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v < 0.03 and it incrca.ses up to < j2 >cr,l&N 1.06 for v z 0.9. The hlonte Carlo result for 

this avera.ge is plotted a.s a. function of z = VT in Fig. 3a. 

The third weight j3 = ‘~3 is related again to the process of imposing the energy 

conserva.tion on the photons by means of the scaling down of the photon momenta.. In this 
. 

procedure we get sometimes an event with the energy below the c&/2 limit. Such an event 

is a.ttributcd the zero weight a.nd is la.ter rejected. The !vcight 13 is a. complica.ted function 

of the photon momenta; ncver6helcss, we know alrnost cvcryt,hing about its average. First 

of all, in the range c << v << 1 we expect 

e-C+ 
< l-3 >ref= q1 + y) = .9w 

and/or equiva.lently 

< 1311 >rer= 
e--Q 

w + 79 
= .9(Y)- W) 

These identities a.re r&ted to the well known phenomenon of the competition of the soft 

photons for the t,otal energy. The right hand side of eq. (H5) is the result of the a.na.lytica.1 

calcula.tion ma.de with the help of the Mcllin transform, SW for instance refs. [7,13]. From 

the h,lonto Carlo calcula.tion this average (probably for the first time) wa.s obtained in ref. 

[8]. The value of < 1311 >rPf -g(y) is included in the outpu1 of the program, see window 

13, entry B8, of the oulp111. from KART,IJl), and one may SW tha1. for 102c 5 v < 0.2 it is 

cqnal zero to within lo- 3. M’hat a.bout lower values of v ? First of all I2 Z 1 for v 5 E, on 

the ot,hcr ha.nd, a.gain from t.he a.nalytical calculation [7], it is known tha.t 

J J 
,-c-i wl wdcmie = hl3dw = 7%,, 

v + 7) 
n-hrllb). tw 

O~v~vmar o<v<v,,, - - 

This relation will be true provided thal, < << v,,, << I and v,,, is small enough for 

flRorn(s(l-v)) t o b _ d ,p e in c endent of v. The above identity implies that the average < flf3 > 

has to ha.vc some st,ructurc near v = c. One can make a hIor1t.c Carlo numerical exercise 

and plot < flj3 >rcf as a function of z = ~7. As we SW in Fig. Ra, < 1113 >ref~ 1 for 

v 5 E, then < Ilf3 >ref~ g(y) for 102c < tj a.nd, finally, in the region E < 21 < 102c it shows 

a. few percent dip. Since our program reproduces eq. (HB) rat.hcr well it is therefore quite 

obvious tha.t the role of the dip is to correct the integrated cross section for the la.ck of the 

fac.tor g(y) in the 0 < v < c range. The net influence of {(he above unphysical structure on 

the integrated cross section and other observablcs is in the limit c + 0 totally negligible 



a.nd we ma.y rea.lly not worry a.bout it. The only practical lesson is that the cr&oflc should 

be kepi aboui a jaclor oj lo2 below the resolution limii set by the experiment or the energy 

va.ria.tion Of dnor,,. (‘3) The mecha.nism of the dip development is ra.ther simple: Contra.ry 

to the situation in the region v,,, >> E where the frequency of an event with the photon 

energy falling below the tfi/2 limit ;s independent of v and equals precisely 1 -g(y), for v 

a.pproa.ching c such an event ha.ppcns more often. This is true for events with two or more 

photons. For example the two photons with the energy above c&/2 ca.nnot make v below 

2r, i.e., all events with E < v < 2~ a.nd the photon multiplicit,y n > 2 will get rejected. 

(This well known phenomenon ca.n be observed already in the conventional second order 

Ql?l) calculation.) 

The collective result < J >=< Ilf213 >rer is plotted in Fig. 3b as a, function of z. As 

we see, from comparing Figs. 3a and 3b the factorization < f >=< j2 >< f2zf3 > holds, 

the II dependence of < j > is now fully understood and can be summarized as follows: 

‘J’hc dip in the vicinity of u = E and the plateau < j >Z 1 for VJ < c are the unphysica.1 

artifacts of the Monte Carlo intcgra.tion with the finite cut-off (infrared regulator) E while 

the < f >= g(y) plateau for TI > 102c is the “normal” situation and the slight enhancement 

of < i > a.t higher r~ reflects the pha.se space fa.ctor 12 from hard a.nticollinear photons. 

The net effect of the weights fi, i = 1,2,3 can be summarized in the effective distribution 

which for o < 10B2 approxirna.tes well the hlonte Carlo result 

dcrcr 
dv < 1112j.7 >ref 

> 

= yvy-1 e-- 
~Bnr&U - 4). 

e/f- w + Y) 
W) 

This looks already like a part of the intcgrand in cq. (6.1). Let IIS include now the 

model weight f4 = e 6vFa~~Ult in the game. Tt includes the srrrn of the contributions form PO, ,& 
* 

and 82. As it wa.s indicaicd in Section 6 the magnitude of the corresponding cont,ribution 

is provided by the progra.rn. From a. series of the hl(J events generated at various fixed 
- 

V’S one ma.y lea.rn that for 11 < I OS3 the contribution from pa dominates, i.e., the rela.tive 

contribution from the other two fi’s is helow 10V3. (In fact pz switches on, a.t the same 

level of JO-“, for much higher o, i.e., for 11 > 0.12.) The net contribution from pa will be 

roughly 1 + Ss where Ss = ((~/x)(f) - 1) + f(o/~) 112 , see the second order expression for 

PO in eq. (3.1.). Tl w main role of the contribution from 81 is to rcinsta.ll in the spin factor _ 

(13) Let us note that if we had lowered c then the dip would move Rradually to L = 0 and, for extremely 
low c, it would disappear completely. Such a small c world bc rather inconvenient, however, due to 
unnecessary loss of the speed of the program. 



f(1 + (1 - 7J)2) in da/dv. In view of tha.t it is quite clear that the Monte Carlo result for 

da/dv can be pa.ra.metrizcd with an effective distribution 

,+F.s $-1 I,;J-;Tj (1 + 6,) I + ‘:- v)2 Qorn(41 - U)). (B8) . 

In the nexi plot, see Fig. 4, we sha.11 compare the complete second order Monte Carlo 

(MC) results for du/dz with the other Monte Carlo and a.nalytica.1 results. Jn order to be 

able to see the effects at the “resolution” level of 0.1% we have to remove.from do/d2 large 

and “trivial” effects discussed above, see eq. (H8). All fine details can be seen if we look 

inI,o the-dist,ribut,ion 

PM = 
dc/dv dc/dz 

Y’u ~-b~<,,rn(.S(l - #(l + (1 - u)2) = Qnrn(R(l - Z’/Y))(l + (1 - 2’/7)2)/2 
(Jw 

In ipig. 4 we plot the MC First and second order result for p(z), all from the MC runs a.1, 

lixcd u. The MC _. It. t -1 rcsu 5 )c ow u = 0.0.1 are consistent wit.1, the previously discussed t- 

dependence of the a.veragc < j >=< flf213 >ref. The second order MC result a.grees well 

with the formula (6.1) - the biggest difference being 0.5% at u = 0.9. It is therefore not 
. . 

surprising that the corresponding total cross sections near X0 resona.nce agree to wlthm 

0.03%, see ‘l’a.ble 2. The first and second order MC rcsu1t.s start do differ for u > 0.2 and 

the difiercnce goes up to 12% for v = 0.8. In the plol WC have also included the typical 

example of the first order analytical “exl)onent,iai,cd” result of ref. [3]; more precisely it 

is a version of ref. (221 with the truncat,ed second order tcrrns. It differs with all other 

\lC a.nd a.nalptical results at the level of a few percent for II > 0.5. It is interesting to 

observe that the MC first order result ai. II > 0.11 tends lo undercstimat.c the diffcrcntial 

cross section. It is rela.tcd to the fact that the B1 con1 ribution in this region is ncga.tivc 

and, since /?2 is not included, the events with two hard photons contribute roughly twice 

t,hc cont,ribution from /?I. This sort of double couni,ing is corrected by inclusion of j!& in 

the second order. The first, order analytical “e?cponcnt.ial.ion” shows an opposit,c tendency 

of overestimat,ing the differential cross sccl.ion in the same high t) region. 

What is the precision of the distribut,ion drr/dt! ohf.aincd from our program from the 

point, of view of the higher order QJ?J> corrections. 7 J+om the smallness of the p1 and p2 

contribution we deduce tha.t for ‘II < 0.2 it is beter than 0.1%. In ref. [16] it was found(14) 

(1 Q) This red.-was obt,ained by solving, up to infinik order (numerically), the 1,ipator evolution equation 
for t,he nonsinglct structure function of the. rlcctron. 
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that the influence of the third a.nd higher orders in the region 0.2 < u < 0.8 is below 0.5% 

level. This is consistent with the difference between the second order MC result a.nd the 

analy1.ica.l result of eq. (6.1), a.s may be seen in Fig. 4, and we treat this as a.n estimate of 

the precision. 

Summarizing, the a.bove dcta.iled weight, analysis shows that the total cross section 

consists of a. few simple building blocks. We are able to understand qualitatively a.nd 

quantitatively the v-bcha.vior and the magnitude of the each component and, therefore, of 

the total cross section a.s well. 
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Table 1 

The a.lpha.bctic list of the important a.nd frequently used va.ria.bles. 

. 
Varia.ble Common Description 

ALFJ --- 
AJ,FJNV -- 
AMFJN WEKJNG 
m EJ, WEKJNG 
AhlAX - P\‘EKJNG 
B J?‘J‘AO ---~ 

HlTlJ) -- 
BE-J‘2J) 
BET1 1)X --- 
HlS’J’AOX -- -- 
B 15’1.7 \‘VJI.EC 
CRlSFI:NE -- 
JIJSCRU -- 
J)J AC --- 
ENE WEKJNG 
F:X J’Y 
GAhIMZ WEKJNG 
1111;‘ \$‘EKJNG 
KGYJLAJI KGYYFS 
NOU’l 
NI’JJO’I‘ nwnmrr 
J’J 
QF 1 ,QF2 nmmm~ 
SJ’JJO’I’ nwnww 
SJ’JJ Uh4 mnww 
SlNW2 WEKING 
%‘.A R. 
S\‘A Jt1 
vv VVREC 
VVnlJN VVREC 
VVMAX VVRJX 
W’I‘I ,2,... --- 

J/Q, the inverse of the QEJ) coupling constant 
mj, rna.ss of the final fcrmion 
m.,, electron mass 
n_fz, mass of the Z” 
PC, second order result 
jl(k,)/$(k,) second order rcsulf8 
/Z&B{/&, k,)/S;(kr),T(k,) second ortfcr rcsull. 
$1 (/,~,)/$(k,) first order result, 
/?o first order result 
y = 2(n/n)(ln B/4 - I) 

center of the mass energy, fi 
bo crude nlonte Carlo distribution 
g(I?, v), dilatation Jacobian 
bcarn energy, h/2 
l/X0( i-, u), dilatation factor 
J’z, width of the Z” 
final fcrmion identifier, JJ)F=2,3,4 for 11, tl, d 
=3,2 radiation swii,ch for secon(J, first order calculation 
output unit number, set in routine EXPANJ) 
n, photon multiplicity 
7r 
q1,2, final fermion four rnomcn~a, Gel,- 
list of photon four-momenta, <I‘eJ’ 
sum of photon four-momcnt.a, GcI - 
sin2 Blli, 611. is the clcctrowcak rnixing angle 
8 

8’ = ~(1 - u), mass of final fermion pair squared 
V = 1 - 87.9 

6, in fra red cut-off 
vmnr, upper limit for v 
~1, ~12, . . . weights 
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Table 2 

Table of the cross sections for the muon pair production process. The following pa.rameters 

were used: M, = 92GeV, I’;! = 2.45346, sin2 fl 11’ = 0.228818. An upper limit on the photon 
i 

pha.sc space wa.s u,,, = 0.8 a.nd the infra.red cutoff c = 10e6. The A6,Bl etc. indica.te 
. 

a. line in one of the three windows in the output from subprogram EXPAND, where the 

corresponding .quantitics may be read out. All cross sections are in units of crp = 4x(u2/3s 

(so called R-units). The cross section aE is the best ava.ilable non-Monte-Ca.rlo result 

from ref. [2]; WC show their “cxponcntiatccl ” second order result, with the omission of the 

production of a.dditional ferrnion pairs. 

4, cIns energy 92GclI 94Gel.’ 90GeV- 

A6: No. of events 4.0 * to5 3.1 . 105 3.9 . lo5 

AO: rr = a(& @ ,& @ ,&), O(02) 131.53 f 0.04 58.37 f 0.02 33.65 f 0.01 

RI: (rl = CT(&) CD j,), O(ru2) 13 1.52 f 0.0.1 58.37 f 0.02 33.64 f 0.01 

HO: cro = a(&, O(o”) 132.16 f 0.03 59.44 f 0.02 33.94 f 0.01 

B4: 52 = 7, contr. from j2 (0.65 f.02)10-4 (1.73 f .01)10-4 (2.23 f .04)10-4 

H3: 61 = 6’;bQ, contr. from /?I (-4.91 f .06)10-’ (-18.40 f .04)10-3 (-8.85 f .05)10-3 

R5: 6’ = u(j-& cI3 PI), O(d) 13 1.34 f O.O,l 58.30 f 0.02 33.60 f 0.01 

5’ = 6)--6 
u ’ (-1.5 f .3)10-3 (-1.3 f .4)10-3 (-1.5 f .4)10-3 

C8: flA, analgb. result eq. (6.1) f 31.55 58.38 33.64 

c9: d* = (aA - 6)/U (-0.2 *.3)10-" (0.2 f .4)1 o-3 (0.1 f .4)10-3 

aE, Bcrends ct. al. [2], 0(02) 131.6.4 58.46 33.67 

ak, Bcrcnds et. a.]. [2], 0(o’) 132.03 58.38 33.76 -: 

SE = h - d/c (0.8 f.3)10-" (1 :I f .4)10-3 (0.6 f.4)10-3 
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Table 3 

Selected qua.ntities of the Table 2, with the same input parameters, but for a wider ra.nge 

of energy. The cross section is again in R-units. 

. 

90 33.65 f 0.01 0.22 f 0.0 1 

- 91 73.33 f 0.02 0.10 f 0.03 

92 131.53 f 0.0 1 0.065 f 0.002 

100 13.21 f 0.01 I .56 f 0.01 

6’. IO” 

-4.8 f .5 

-1.5 f 0.4 

-1.5 f 0.3 

-1.5 f 0.3 

-1 .4 f 0.3 

-1.3 f 0.4 

-0.8 f 0.7 

6.4 * 103 

0.5 f .5 

0.1 f 0.3 

0.0 f 0.3 

0.0 f 0.3 

0.1 f 0.3 

-0.2 f 0.4 

0.8 f 0.8 

6E - 103 

-0.3 f .5 

0.‘6 f 0.4 

0.6 f 0.3 

0.8 f 0.3 

0.7 f 0.3 
I 

1.4 f 0.4 

I 0.6 f 0.7 
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Table 4 

The cross section as in Ta.ble 2, with the same input parameters: (a.), including the effects 

of renormalization group improvement a.nd the .+dcpcndcnt width; and (b), including only 
. the effect, of the s-dependent width. The cross section is again in R-units. 

fi [GeVJ 4-d 4) 

40 I .2198 f 0.0005 1.1024 f 0.000‘~ 

_ 90 38.17 f 0.01 34.40 f 0.01 

91 80.3 0 f 0.02 75.21 f 0.02 

92 133.48 f 0.03’ 132.04 f 0.03 

93 102.24 f 0.03 97.56 f 0.02 

94 62.05 f 0.02 57.39 f 0.02 

100 14.407 f 0.008 13. I34 f 0.008 
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F1GUR.E CAPTIONS 

1. The photon multiplicity distribution for photons with the energy a.bove 100MeV. 

The center of the mass energy is & is: a.) IOGeV, b) 92GeV, c) 100GeV. The Monte 
. Ca.rlo samples include more tha.n IO” events. The distributions are norma.lizcd in an 

a.rbitrary units. 

2. The transverse momentum distribution of the 6nal state muon pair. The center of 

the mass energy is 6 is 92GeV. The nfonte Carlo sample includes a.bout 4 . lo5 

events. The distributions is norma,lized in the number of the events. 

3. The Monte Carlo results for the va.rious internal weights: a) triangles and dots repre- 

sent < fz >rer and < jlj2 >rer correspondingly, b) dots denote < f >=< frfzf3 >rer, 

all a.s a function of z = rIy. The n scale is also marked. The sta.tistical errors a.re 

less then the size of dots/triangles. The dashed line marks g(y) = emcr/J’(l + y). 

This plot is essentially almost independent of 4. In the calculations we have used 

fi = IJlz = 92GeJ.’ and E = 10m6. 

4. The plot of the p(z) = (2da/dz) /(rrn,,n(d(l - ~‘/y))(l + (1 - z’/‘)“)). Dots and 

squares represent the second and first order Monte Carlo results from our pr0gra.m 

(run for fixed v) correspondingly. The statistical error is below the size of the dots 

a.nd squa.res. Squares a.t low z are omitted in order not to obscure the picture. (They 

fa.11 there a.t a constant distance below dots.) The solid curve corresponds to the 

second order a.na1ytica.l result with the “exporIerll.ial,ic,n” as given by formula. (6.1) 

and the dashed curve represents the 6rst order analyt.ical “cxponentiated” result [3]. 

This plot is a.lmost fi independent. VITc have used again & = Mz = 92GeJr a.nd 

c = 10-s. 

TPJU-15/88 pow. w IFIJJ 

za.m. 20188, 270 egz. 
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EXCERPTS FROM THE OUTPUT 

* ( YFS VERSION 2.2 NOVEMBER 88 > * 
* EXPAND INPUT PARAMETERS * 
* 92.000000000 CMSENE * CMS ENERGY * 
* 3 KEYRAD * RADIATION SWITCH * 
* 0.105000000 AMFIN * FINAL FERMION MASS * 
* 92.000000000 AMA2 * MASS OF ZO * 
* 2.453460000 GAMMZ * ‘WIDTH OF ZO * 
* 0.228818000 SINW2 * SIN(THElW)**2 * 
* 0.000001000 WMIN * MINIMUM VALUE OF V-PARAMETER * 
* 0.800000000 WMAX * MAXIMUM VALUE OF V-PARAMETER * 
**‘-‘*m-m 
-DUMPS 
QFl 17.45970990557074 23.44740398671347-35.41734494924665 45.92408487881668 
QF2 -17.47243176468074-23.44084321242244 35.50152653410081 45.99052525827749 
PHO 0.01272185911000 -0.00656077429103 -0.08418158485416 0.08538986290580 
SUM 0.00000000000000 0.00000000000000 0.00000000000000 91.99999999999997 

DUMPS 
QFl 13.62446124335595 22.25003776671934-37.88412045420546 45.99899708016354 
QF2 -13.62446320902179-22.25002815088870 37.88522260179111 45.99990072855150 
PHO 0.00000196566584 -0.00000961583065 -0.00110214758565 0.00110219128494 
SUM 0.00000000000000 0.00000000000000 0.00000000000000 91.99999999999998 

DUMPS 
QFl -12.04727357422227 -4.99932546917594 43.12337263409677 45.05292829615043 

;;; 12.04799691161893 0.00001610246097 4.99874862853679-44.09028678007265 0.00115357194465 0.96669904757151 45.97940985683405 0.96669973599002 
PHO -0.00073943985763 -0.00057673130550 0.00021509840438 0.00096211102549 
SUM 0.00000000000000 0.00000000000000 0.00000000000000 91.99999999999998 

DUMPS 
QFl -13.93314269222713 43.18265952721784 7.11399734053975 45.92923396146279 
QF2 13.94316472836349-43.18680468544265 -6.95549770228890 45.91189295669911 
PHO -0.01002264579176 0.00414432763129 -0.15730563366891 0.15767907681161 
PHO 0.00000060965540 0.00000083059352 -0.00119400458194 0.00119400502647 - 
SUM 0.00000000000000 0.00000000000000 0.00000000000000 91.99999999999998 

DUMPS 
QFl -45.80956016230473 2.00688772322648 -3.66682074862488 46.00000000000000 
QF2 45.80956016230473 -2.00688772322648 3.66682074862488 46.00000000000000 
SUM 0.00000000000000 0.00000000000000 0.00000000000000 92.00000000000000 
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**~~*~*~~~*~~*~~*~~~~*****~**~~~~~~~~ 
* KARLUD FINAL REPORT fr 
* WINDOW A * 
* 1161134 
* 

NEVTOT * NO OF EVENTS - TOTAL A0 9: 
0 NEVNEG" 

* 
NO OF EVENTS WITH .WT<O Al * 

0 
* 

NEVOVE * NO OF EVENTS WITH wT>l 
128.427451914 

A2 * 

* 
XCVESK * CRUDE XSEC. FROM VESKO 

.128.427405776 
A3 * 

+c 
XCGAUS * CRUDE XSEC. FROM GAUSS INTEGR. A4 * 

0.000000359 
* 

XCVESK/XCGAUS-1 
0.000048788 

A5 * 

* 0.943193797 
ERELAT * RELATIVE ERROR (VESKO) A6 * 
WTKARL * AVERAGE TOTAL WEIGHT 

* 
A7 * 

0.000171572 
* 

ERKARL * DISP/AVER. FOR WTKARL 
121.131932488 

A8 * 

*M-W- 
XSKARL=AVER(WI'l*WT2*WT3)*CRUDE (SIGMAPRIM) A9 * 

mJrhmMP"--'--'--'--' 

*-****--**pm * KARLUD FINAL REPORT CONT. * 
* WINDOW B * 
* 0.000092282 WFl=MASS WEIGHT 
7% 

AVERAGE(WFl)-1, BO * 
0.000145674 ERROR STAT. 

* 
Bl * 

1.000156608 
* 

AVERAGE(WF2), WF2=FIRST DIL. WT B2 * 
0.000003035 ERROR STAT. 

* 
B3 * 

0.990304695 AVERAGE(WF3) 
* 

WF3=SECOND DIL. WT B4 * 
0.000123166 

* 
AVERAGE(WF3) -YGAMF(BETI2) B5 * 

0.000094124 ERROR STAT. 
* 

B6 * 
0.991008354 

* 
AVERAGE(WFl*WF3) B7 * 

0.000054395 
* 

AVERAGE(WFl*WF3)-YGAMF(BET1) B8 * 
0.000173002 ERROR STAT. B9 * 

* KARLUD FINAL REPORT CONT. * 
* WINDOW c * 
* 0.107785610 BETI= 2*ALFA/PI*(LbG(S/MEL**2)-1) co * 
* 0.990444794 
* 

GAMFAP= l-PI*2*BETI*2/12 Cl * 
0.990953959 

* 
GAMFAC=EXP(-CEULER*BETI)/GAMMA(l+BETI) c2 * 

0.990181530 
* 0.991154034 

GAMFA2=EXP(-CEULER*BETI2)/GAMMA(l+BETI2) C3 * 

* 
AVERAGE(WFl*WF2*WF3) c4 * 

0.000200075 
* 

AVERAGE(WFl*WF2YJF3)-YGAMF(BET1) c5 * 
0.000173032 ERROR STAT. C6 * 

* 122.217810423 
* 

XREFER= REFERENCE CSECTION BREMKF(lO) c7 * 
CROSS-CHECKS * 

* 0.000039159 C8 * 
* 

XREFER*AVER(WFl*WFl*WF3)/XSKARL-1DO 
0.000030132 XCRUDE*AVER(WTR)/XREFER-lD0 c9 * 

m-*-'--'*'-. i 
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*s-w*-*.--.--.-..*- >‘; EXPAND OUTPUT - WINDOW A * 
* 92.000000000 CMSENE * CMS ENERGY * 
* TOTAL XSEC FROM MONTE CARLO * 
* 131.526546987 XSMC * IN R UNITS A0 * 
* 0.037331985 * ABSOLUTE ERROR Al * 
* 1.349696092 XSMCNB * IN NANOBARNS A2 * 
* 0.000383093 * ABSOLUTE ERROR A3 * 
* 0.000283836 EREL * RELATIVE ERROR A4 * 
* 1161134 NEVTOT * NO OF EVENTS - TOTAL A5 * 
* 396985 
*‘ 

NEVACC * ACCEPTED A6 * 
0 NFiVNEG * WITH NEGATIVE WEIGHT A7 * 

* 0 NEVOVE * WITH WT > WTMAX A8 * 
* 1.846459055 XBORNB * BORN IN NANOBARNS A9 * 

31 k*‘--‘--‘- 
* EXPAND OUTPUT - WINDOW B * 
* XSECTIONS IN R-UNITS * 
?k 132.164227929 xs20 * BETA0 CROSS SECTION BO * 
* 0.000283583 EREL20 - RELATIVE ERROR * 
* 131.517912565 xs21 * BETAO+BETAl XSECTION Bl * 
* 0.000283932 EREL21 - RELATIVE ERROR * 
* 131.526546987 xs22 * BETAO+BETAl+BETA2 XSECT B2 * 
* 0.000283836 EREL22 - RELATIVE ERROR * 
* -0.004913954 * RELAT. CONTRIB. FROM BETA1 B3 * 
* -0.000023550 AND ITS ERROR * 
* 0.000065648 * RELAT. CONTRIB. FROM BETA2 B4 * 
* 0.000002463 AND ITS. ERROR * 
* 131.334533181 XS25 * BETAO+BETAl ORDER(l) ONLY B5 * 
* 0.000283918 EREL25 - RELATIVE ERROR * 
* -0.001459886 XS25/XS22-1 = ORDER(l)/ORDER(2)-1 B6 * 
* 0.000401463 - RELATIVE ERROR * - 

* EXPAND OUTPUT - WINDOW c * 
* 131.526546987 XSMC * MONTE CARLO CROSS SECTION co * 
* 0.000283836 RELATIVE ERROR Cl * 
* 132.035619586 XREF2 * FIRST ORDER TYPE-2 c2 * 
* -0.003855570 XSMC/XSKFZ-1 c3 * 
* 131.363550846 XREF3 * FIRST ORDER TYPE-3 C4* :- 
* 0.001240802 XSMC/XSKF3-1 c5 * 
* 131.512547019 XREF4 * SECOND ORDER TYPE-4 C6 * 
* 0.000106453 XSMC/XSKFS-1 c7 * 
* 131.556613969 XREFS * SECOND ORDER TYPE-5 C8 * 
* -0.000228548 XSMC/XSKFS-1 c9 * 
*-w 
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