Chiral Corrections to the Anomalous 2γ Decays of π^{o}, η and η^{\prime}

Dieter Issler
Stanford Linear Accelerator Center Stanford University, Stanford, California 94309

Abstract

To any order in chiral perturbation theory, the anomalous Wess-Zumino term is shown to generate only chirally invariant counterterms. Explicit examples of $O\left(p^{6}\right)$ terms generated by one-loop graphs are given, some of which are relevant to the two-photon decays of π^{0}, η and η^{\prime}.

Motivation

To lowest order, chiral symmetry forbids the process $\pi^{0} \rightarrow 2 \gamma$, but including the chiral anomaly one obtains $\Gamma_{\pi^{0} \rightarrow 2 \gamma}^{a n o m .} \approx 7.7 \mathrm{eV}$ at $m_{\pi}^{2}=0$ in close agreement with early measurements. However, recent two-photon experiments at $e^{+} e^{-}$colliders find $\Gamma_{\pi^{0} \rightarrow 2 \gamma}^{\text {exp. }}=(7.3 \pm 0.2) \mathrm{eV}^{1}$. The discrepancy is of the order expected in $\mathrm{SU}(2)$ current algebra (CA), indicating the need for meson-loop corrections. The need for a refined calculation is even more apparent in the η meson: In the $\mathrm{SU}(3)$ limit, $\Gamma_{\eta \rightarrow 2 \gamma}^{\text {anom. }}=(1 / 3)\left(m_{\eta} / m_{\pi}\right)^{3} \cdot \Gamma_{\pi^{0} \rightarrow 2 \gamma} \approx 170 \mathrm{eV}$ in sharp contrast with $\Gamma_{\eta \rightarrow 2 \gamma}^{\text {exp. }}=$ $(524 \pm 31) \mathrm{eV}$ from 2γ experiments ${ }^{1}$ (older measurements based on the Primakoff effect are controversial). Note the analogy with the $\eta \rightarrow 3 \pi$ puzzle. CA cannot predict the two-photon width of η^{\prime} without further assumptions; experiment finds $\Gamma_{\eta^{\prime} \rightarrow 2 \gamma}^{e x p}=(4.25 \pm 0.19) \mathrm{keV}^{1}$.

In recent years, these questions have been mainly studied in the context of chiral perturbation theory (ChPT)., ${ }^{2,3} \mathrm{ChPT}$ systematically expands the low-energy effective action in powers of p^{2} and $m_{\text {quark }}$, taking into account meson loops. The effects of the chiral anomaly are captured by the Wess-Zumino term. When sufficiently precise data become available, the chiral anomaly can be tested in a similarly stringent way as chiral symmetry has been verified in the non-anomalous sector. ${ }^{5}$ Below, I report on some aspects of ongoing theoretical work towards this goal.

Non-Renormalization of the Wess-Zumino Term

Adler and Bardeen showed that the chiral anomaly in a theory with fermions like QCD is given by the basic triangle graph, higher-order graphs renormalizing only the masses and couplings of the theory. ${ }^{6}$ An analogous theorem holds in the effective meson theory: Quantum corrections induced by the Wess-Zumino term require only chirally invariant counterterms to any finite order in ChPT. ${ }^{3}$

Presented at the DPF ' 88 Conference: 1988 Meeting of the Division of Particles and Fields of the APS ,The Storrs meeting, Storrs, CT, August 15-18,1988

Disregarding for the moment the need for symmetry-preserving regularization, this is easily deduced in the path-integral formulation: The action is

$$
\begin{equation*}
S=\dot{S}_{i n v .}+S_{W Z}=\int d^{4} x\left(\mathcal{L}_{i n v .}(U, V, A, \ldots)+\mathcal{L}_{W Z}(U, V, A)\right) \tag{1}
\end{equation*}
$$

where V, A are external vector and axial-vector fields, respectively, and U is the exponential of the meson fields, $U(x)=\exp \left(i \frac{\phi^{a}(x)}{f} \frac{\lambda_{a}}{2}\right)$. Under a chiral rotation β, $S_{\text {inv. }}$ is invariant and $\delta_{\beta} S_{W Z}=\int d^{4} x \operatorname{Tr}(\beta(x) \Omega(V(x), A(x)))$ is independent of $U(x)$. The generating functional Z of connected Green functions varies as

$$
\begin{align*}
\delta_{\beta} Z[V, A, \ldots] & =-i e^{-i Z}\left(\delta_{\beta} e^{i Z}\right)=-i e^{-i Z} \delta_{\beta} \int[d U] e^{i S_{i n v}[U, V, A, \ldots]+i S_{W Z}[U, V, A, \ldots]} \\
& =-i e^{-i Z} \int[d U]\left(i \delta_{\beta} S_{W Z}\right) e^{i S_{i n v}+i S_{W Z}}=\int d^{4} x \operatorname{Tr}(\beta(x) \Omega(V, A)) . \tag{2}
\end{align*}
$$

The regularized version of the above argument expands the action around the classical extremum realized by some $U_{0}(x)$ and makes use of the fact that $\Delta S_{W Z}\left[U, U_{0}, V, A\right] \equiv S_{W Z}[U, V, A]-S_{W Z}\left[U_{0}, V, A\right]$ can be shown to be a local four-dimensional chiral invariant. Building graphs with the usual propagators and vertices as well as vertices from $\Delta S_{W Z}$, only chirally invariant expressions are obtained in an appropriate regularization scheme, such as operator regularization. A technical problem intimately related to the expansion of the action around the classical solution $U_{0}(x)$ is the appearance of divergences that cannot be absorbed simply by adding a corresponding graph with a higher-order vertex replacing the loop. Instead, several divergent graphs together are renormalized by a set of counterterms that correspond, in effect, to a modification of the classical equations of motion for $U_{0}(x)^{3}$.

Counterterms of Order p^{6} and Phenomenology

The lowest-order chiral Lagrangean is $O\left(p^{2}\right)$, and the corresponding one-loop graphs and their counterterms are $O\left(p^{4}\right)^{5}$. The Wess-Zumino action being itself $O\left(p^{4}\right)$, a corresponding calculation in the anomalous sector is $O\left(p^{6}\right)$. It is of theoretical and phenomenological interest to determine which of the chirally invariant terms of $O\left(p^{6}\right)$ with an ϵ symbol are actually needed for absorbing divergences. These calculations are somewhat tedious but nearing completion. Some examples of divergent terms are

$$
\begin{align*}
& \frac{c}{2} \epsilon^{\mu \nu \rho \sigma} \operatorname{Tr}\left(D_{\tau} U D_{\mu} U^{\dagger} D^{\tau} U D_{\nu} U^{\dagger} D_{\rho} U D_{\sigma} U^{\dagger}\right. \tag{3}\\
& \left.\quad \quad+D^{\tau}\left(D_{\tau} U D_{\mu} U^{\dagger}-D_{\mu} U D_{\tau} U^{\dagger}\right) U D_{\nu} U^{\dagger} D_{\rho} U D_{\sigma} U^{\dagger}\right) \\
& \tag{4}\\
& c \epsilon^{\mu \nu \rho \sigma} \operatorname{Tr}\left(\left\{D_{\nu} U U^{\dagger}, F_{\rho \sigma}^{L}+U F_{\rho \sigma}^{R} U^{\dagger}\right\}\left(D^{\tau} F_{\mu \tau}^{L}+U\left(D^{\tau} F_{\mu \tau}^{R}\right) U^{\dagger}\right)\right)
\end{align*}
$$

$$
\begin{align*}
-\frac{c}{2} \epsilon^{\mu \nu \rho \sigma} \operatorname{Tr}(& \left(F_{\mu \tau}^{L}-U F_{\mu \tau}^{R} U^{\dagger}\right) * \\
& *\left(-D_{\nu} U\left(U^{\dagger} F_{\rho \sigma}^{L} U+F_{\rho \sigma}^{R}\right) D^{\tau} U^{\dagger}+D^{\tau} U\left(U^{\dagger} F_{\rho \sigma}^{L} U+F_{\rho \sigma}^{R}\right) D_{\nu} U^{\dagger}\right. \tag{5}\\
& \left.\left.\quad+D^{\tau} U D_{\nu} U^{\dagger}\left(\dot{F}_{\rho \sigma}^{L}+U F_{\rho \sigma}^{R} U^{\dagger}\right)-\left(F_{\rho \sigma}^{L}+U F_{\rho \sigma}^{R} U^{\dagger}\right) D_{\nu} U D^{\tau} U^{\dagger}\right)\right)
\end{align*}
$$

where $c \equiv\left(-256 i \pi^{4} f^{2} \epsilon\right)^{-1}, \epsilon \rightarrow 0$ is a regularization parameter, f the pion decay constant, $D_{\mu} U \equiv \partial_{\mu} U+V_{\mu}^{L} U-U V_{\mu}^{R}, V^{R, L} \equiv V \pm A$, and $F_{\mu \nu}^{R, L}$ are the corresponding field strengths. For the full list of terms see Ref. 3.

A comprehensive phenomenological analysis of the 2γ channel of pseudoscalar mesons has been given by other authors. ${ }^{2}$ The main conclusions are that loop corrections are finite for on-shell photons but divergent for off-shell photons. In both cases the $O\left(p^{6}\right)$ effective Lagrangean contributes to the meson-mass dependence of the decay rate. Unfortunately, however, present experimental accuracy does not allow to reliably determine these higher-order terms because the effects are too small for π^{0} and, for η, masked by mixing with η^{\prime}. I plan to extend the analysis to other processes in the anomalous sector in order to identify the experiments with the greatest potential for determining the new low-energy parameters.

ACKNOWLEDGMENTS

This work was supported by Schweizerischer Nationalfonds and the U.S. Department of Energy (contract DE-AC03-76SF00515). I am grateful for discussions with J.F. Donoghue, J. Gasser, J.L. Goity, A. Krause, H. Leutwyler, S. Pokorski and J. Soto.

REFERENCES

1. J. Olsson, Nucl. Phys. B (Proc. Suppl.) 3 (1988) 613.
2. J.F. Donoghuc, B.R. Holstcin and Y.C. Lin, Phys. Rev. Lett. 55 (1985) 2766; Erratum (to be published);
J. Bijnens, A. Bramon and F. Cornet, preprint MPI-PAE/PTh 30/88 (August 1988);
J.F. Donoghue and D. Wyler, Zürich University preprint (September 1988).
3. D. Issler, in preparation.
4. J. Wess and B. Zumino, Phys. Lett. B37 (1969) 95;
E. Witten, Nucl. Phys. B223 (1983) 422.
5. J. Gasser and H. Leutwyler, Ann. Phys. 158 (1984) 142; Nucl. Phys. B250 (1985) 465, 517, 539.
6. S.L. Adler and W.A. Bardeen, Phys. Rev. 182 (1969) 1517.
7. D.G.C. McKeon and T.N. Sherry, Phys. Rev. Lett. 59 (1987) 532.
