Chiral Corrections to the Anomalous 2γ Decays of π^o , η and η'

Dieter Issler

Stanford Linear Accelerator Center Stanford University, Stanford, California 94309

ABSTRACT

To any order in chiral perturbation theory, the anomalous Wess-Zumino term is shown to generate only chirally invariant counterterms. Explicit examples of $O(p^6)$ terms generated by one-loop graphs are given, some of which are relevant to the two-photon decays of π^0 , η and η' .

MOTIVATION

To lowest order, chiral symmetry forbids the process $\pi^0 \to 2\gamma$, but including the chiral anomaly one obtains $\Gamma_{\pi^0 \to 2\gamma}^{anom} \approx 7.7 \text{ eV}$ at $m_{\pi}^2 = 0$ in close agreement with early measurements. However, recent two-photon experiments at e^+e^- colliders find $\Gamma_{\pi^0 \to 2\gamma}^{exp} = (7.3 \pm 0.2) \text{ eV}^1$. The discrepancy is of the order expected in SU(2) current algebra (CA), indicating the need for meson-loop corrections. The need for a refined calculation is even more apparent in the η meson: In the SU(3) limit, $\Gamma_{\eta \to 2\gamma}^{anom} = (1/3)(m_{\eta}/m_{\pi})^3 \cdot \Gamma_{\pi^0 \to 2\gamma} \approx 170 \text{ eV}$ in sharp contrast with $\Gamma_{\eta \to 2\gamma}^{exp} =$ $(524 \pm 31) \text{ eV}$ from 2γ experiments '(older measurements based on the Primakoff effect are controversial). Note the analogy with the $\eta \to 3\pi$ puzzle. CA cannot predict the two-photon width of η' without further assumptions; experiment finds $\Gamma_{\eta' \to 2\gamma}^{exp} = (4.25 \pm 0.19) \text{ keV}^1$.

In recent years, these questions have been mainly studied in the context of chiral perturbation theory (ChPT).^{2,3} ChPT systematically expands the low-energy effective action in powers of p^2 and m_{guark} , taking into account meson loops. The effects of the chiral anomaly are captured by the Wess-Zumino term.⁴ When sufficiently precise data become available, the chiral anomaly can be tested in a similarly stringent way as chiral symmetry has been verified in the non-anomalous sector.⁵ Below, I report on some aspects of ongoing theoretical work towards this goal.

NON-RENORMALIZATION OF THE WESS-ZUMINO TERM

Adler and Bardeen showed that the chiral anomaly in a theory with fermions like QCD is given by the basic triangle graph, higher-order graphs renormalizing only the masses and couplings of the theory.⁶ An analogous theorem holds in the effective meson theory: Quantum corrections induced by the Wess-Zumino term require only chirally invariant counterterms to any finite order in ChPT.³

Presented at the DPF '88 Conference: 1988 Meeting of the Division of Particles and Fields of the APS, The Storrs meeting, Storrs, CT, August 15-18,1988 Disregarding for the moment the need for symmetry-preserving regularization, this is easily deduced in the path-integral formulation: The action is

$$S = S_{inv.} + S_{WZ} = \int d^4x \left(\mathcal{L}_{inv.}(U, V, A, \ldots) + \mathcal{L}_{WZ}(U, V, A) \right)$$
(1)

where V, A are external vector and axial-vector fields, respectively, and U is the exponential of the meson fields, $U(x) = \exp\left(i\frac{\phi^{a}(x)}{f}\frac{\lambda_{a}}{2}\right)$. Under a chiral rotation β , $S_{inv.}$ is invariant and $\delta_{\beta}S_{WZ} = \int d^{4}x \operatorname{Tr}\left(\beta(x)\Omega(V(x), A(x))\right)$ is independent of U(x). The generating functional Z of connected Green functions varies as

$$\delta_{\beta} Z[V, A, \ldots] = -ie^{-iZ} (\delta_{\beta} e^{iZ}) = -ie^{-iZ} \delta_{\beta} \int [dU] e^{iS_{inv} [U, V, A, \ldots] + iS_{WZ}[U, V, A, \ldots]}$$
$$= -ie^{-iZ} \int [dU] (i\delta_{\beta} S_{WZ}) e^{iS_{inv} + iS_{WZ}} = \int d^{4}x \operatorname{Tr} \left(\beta(x)\Omega(V, A)\right).$$
(2)

The regularized version of the above argument expands the action around the classical extremum realized by some $U_0(x)$ and makes use of the fact that $\Delta S_{WZ}[U, U_0, V, A] \equiv S_{WZ}[U, V, A] - S_{WZ}[U_0, V, A]$ can be shown to be a local four-dimensional chiral invariant. Building graphs with the usual propagators and vertices as well as vertices from ΔS_{WZ} , only chirally invariant expressions are obtained in an appropriate regularization scheme, such as operator regularization.⁷ A technical problem intimately related to the expansion of the action around the classical solution $U_0(x)$ is the appearance of divergences that cannot be absorbed simply by adding a corresponding graph with a higher-order vertex replacing the loop. Instead, several divergent graphs together are renormalized by a set of counterterms that correspond, in effect, to a modification of the classical equations of motion for $U_0(x)$.³

Counterterms of Order p^6 and Phenomenology

The lowest-order chiral Lagrangean is $O(p^2)$, and the corresponding one-loop graphs and their counterterms are $O(p^4)$.⁵ The Wess-Zumino action being itself $O(p^4)$, a corresponding calculation in the anomalous sector is $O(p^6)$. It is of theoretical and phenomenological interest to determine which of the chirally invariant terms of $O(p^6)$ with an ϵ symbol are actually needed for absorbing divergences. These calculations are somewhat tedious but nearing completion. Some examples of divergent terms are

$$\frac{c}{2}\epsilon^{\mu\nu\rho\sigma} \operatorname{Tr} \left(D_{\tau}UD_{\mu}U^{\dagger}D^{\tau}UD_{\nu}U^{\dagger}D_{\rho}UD_{\sigma}U^{\dagger} \right)$$
(3)

 $+ D^{\tau} (D_{\tau} U D_{\mu} U^{\dagger} - D_{\mu} U D_{\tau} U^{\dagger}) U D_{\nu} U^{\dagger} D_{\rho} U D_{\sigma} U^{\dagger}),$

 $c\epsilon^{\mu\nu\rho\sigma} \operatorname{Tr} \left(\{ D_{\nu}UU^{\dagger}, F^{L}_{\rho\sigma} + UF^{R}_{\rho\sigma}U^{\dagger} \} (D^{\tau}F^{L}_{\mu\tau} + U(D^{\tau}F^{R}_{\mu\tau})U^{\dagger}) \right),$ (4)

$$-\frac{c}{2}\epsilon^{\mu\nu\rho\sigma} \operatorname{Tr}\left((F_{\mu\tau}^{L} - UF_{\mu\tau}^{R}U^{\dagger})*\right) \\ *\left(-D_{\nu}U(U^{\dagger}F_{\rho\sigma}^{L}U + F_{\rho\sigma}^{R})D^{\tau}U^{\dagger} + D^{\tau}U(U^{\dagger}F_{\rho\sigma}^{L}U + F_{\rho\sigma}^{R})D_{\nu}U^{\dagger}\right) \\ + D^{\tau}UD_{\nu}U^{\dagger}(F_{\rho\sigma}^{L} + UF_{\rho\sigma}^{R}U^{\dagger}) - (F_{\rho\sigma}^{L} + UF_{\rho\sigma}^{R}U^{\dagger})D_{\nu}UD^{\tau}U^{\dagger})\right),$$
(5)

where $c \equiv (-256i\pi^4 f^2 \epsilon)^{-1}$, $\epsilon \to 0$ is a regularization parameter, f the pion decay constant, $D_{\mu}U \equiv \partial_{\mu}U + V_{\mu}^{L}U - UV_{\mu}^{R}$, $V^{R,L} \equiv V \pm A$, and $F_{\mu\nu}^{R,L}$ are the corresponding field strengths. For the full list of terms see Ref. 3.

A comprehensive phenomenological analysis of the 2γ channel of pseudoscalar mesons has been given by other authors.² The main conclusions are that loop corrections are finite for on-shell photons but divergent for off-shell photons. In both cases the $O(p^6)$ effective Lagrangean contributes to the meson-mass dependence of the decay rate. Unfortunately, however, present experimental accuracy does not allow to reliably determine these higher-order terms because the effects are too small for π^0 and, for η , masked by mixing with η' . I plan to extend the analysis to other processes in the anomalous sector in order to identify the experiments with the greatest potential for determining the new low-energy parameters.

ACKNOWLEDGMENTS

This work was supported by Schweizerischer Nationalfonds and the U.S. Department of Energy (contract DE-AC03-76SF00515). I am grateful for discussions with J.F. Donoghue, J. Gasser, J.L. Goity, A. Krause, H. Leutwyler, S. Pokorski and J. Soto.

REFERENCES

- 1. J. Olsson, Nucl. Phys. B (Proc. Suppl.) 3 (1988) 613.
- 2. J.F. Donoghue, B.R. Holstein and Y.C. Lin, Phys. Rev. Lett. 55 (1985) 2766; Erratum (to be published);
 - J. Bijnens, A. Bramon and F. Cornet, preprint MPI-PAE/PTh 30/88 (August 1988);
 - J.F. Donoghue and D. Wyler, Zürich University preprint (September 1988).
- 3. D. Issler, in preparation.
- J. Wess and B. Zumino, *Phys. Lett.* B37 (1969) 95;
 E. Witten, *Nucl. Phys.* B223 (1983) 422.
- 5. J. Gasser and H. Leutwyler, Ann. Phys. 158 (1984) 142; Nucl. Phys. B250 (1985) 465, 517, 539.
- 6. S.L. Adler and W.A. Bardeen, Phys. Rev. 182 (1969) 1517.
- 7. D.G.C. McKeon and T.N. Sherry, Phys. Rev. Lett. 59 (1987) 532.