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ABSTRACT 

- The effective potential of “weak” interactions of a gauge group R is studied in 

-the- framework of models whose global symmetry group G is dynamically broken 

down to its subgroup H. The properties of its critical points on the coset manifold 

R\ G/H and their dependence on the embeddings R c G, H c G are investigated. 

All critical points with a nontrivial residual gauge symmetry H, = R n H are 

identified in the series of models SU(n) \ SU(N)/SO(N), 72 < N 2 6 and SU(n) \ 

SWYISJW), n < 2N 5 6 with n = 2,3. Examples of degenerate hessians i.e. 

potentials with flat directions both neutral and charged under H, are presented 

and their physical implications are briefly discussed. 
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This paper concerns the embeddings of gauge symmetries into dynamically 

broken global symmetries in gauge field theory models without elementary scalars. 

It suggests a general prescription to identify and presents models to demonstrate 

the embeddings which are necessary for the realization of specific breaking patterns 

of gauge symmetries. 

I will begin with a brief review of the general framework underlying the results 

which will be established subsequently; for more details the reader is referred to 

the original literature cited in Ref. 1. 

The local gauge interactions are introduced into the field theory by means of an 

embedding of the corresponding gauge group R into its global symmetry group G. 

The group G is assumed to be dynamically broken down to its subgroup H c G. 

The embedding R(H) c G is determined by two sets of complimentary condi- 

tions which may be characterized as kinematical or dynamical in nature reflecting 

respectively mathematical or physical aspect of the problem. 

The first set specifies the choice of groups and representations in question. In 

particular the R(H) - p re resentation content of the G - representation, i.e., the 

decomposition n -G = c, @&g) is an important condition as it determines the 

embedded group R(H) up t o an inner automorphism of G : R -+ g,Rg;r (H --) 

g&ghl), s-(h) E Ge2 

The second set is of intrinsically dynamical origin being often referred to as 

3’4 alignment conditions. It is based on a minimum energy principle which removes 

the mathematical freedom in the choice of the element g = grghl. The potential 

energy (density) V(g) defined as a function of the group element g is induced by 

gauge interactions to the leading order of the fine structure constant oR. It is 

given by an expectation of R - invariant product of two Noether currents of the 
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gauge group gRg-l in a H - invariant vacuum state. Obviously such expression is 

a function of the coset element 1 E G/H only i.e. V(g) = V(1) for g = Ih, h E H. 

Furthermore by standard Wigner-Eckhardt arguments its l-dependence may be 

always reduces as follows: 

W) = C,r”*R~),(l)niY,),(l)g~~, 1 E G/H (1) 

where the unknown constants {Cm} re p resent contributions of various irreducible 

representations {et’} whereas the matrix elements Rgja are defined as follows: 

l&l-r = $&(l)X# (24 

; - 
{I&} = AZgR, {X$’ E I#} = AlgG W) 

The matrices T - ( T,~)(T’* f ~2’) and g(@) = (g$‘k) in (1) represent Killing forms 

of R and G groups respectively; the latter gca) (ff> is restricted to the subspace BH . 

The factorized form (1) h o Id s under rather general conditions. Indeed it is 

sufficient to demand the isotropy group H to be compact. This in its turn implies 

that the coset manifold G/H is reductive i.e. the complement K = {Km} of 

the algebra H = { H;}(H $ K = AZgG) is a representation of H([H, K] = K). 

However the discussion will be restricted to the subclass of reductive manifolds 

i.e. compact symmetric manifolds G/H f or which [li’, Ii’] = H holds in addition to 

[HJ] = K. F ur th ermore it will be assumed that the group H is simple and its 

(ff) _ coset representation is irreducible. Then only two representations GH , cy - h, k 

are involved in Eq. (1) and therefore within a irrelevant additive constant the 

potential function may be reduced to the form (c.f. Refs. 5,6). 
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V(1) = CrUbR~(l)R~(l)gTTzn, c > 0 

with 

RF(l) = Tr(lRJ1li’~) 

9 mn = -Tr(KmKn), rub = -Tr(&&) 

(3) 

(44 

w 
and a positive constant C = G’(k) - C(h). 

I will proceed to the mathematical formulation of the embedding conditions. 

To this end the potential function (3) will be expressed in a standard geomet- 

ric language. This is immediately achieved by recognizing that the matrix ele- 

ments Rr(1) are directly related to the Killing vectors [k(l) and vielbeins ek(l). 

Parametrizing the coset element 1 = l(z) by local cooridinates z = {x”} e.g. via 

l(z) = exp(zpLI(,) one finds 

VW = rubE~(~)51(4spY(~) = rab(Eu, tb) (5) 

Note that the constant factor C of Eq (3) has been suppressed. 

Now the variational problem of the potential function can be addressed. In light 

of the Ansatz (5), it is convenient to consider variations induced by infinitesimal 

group motions (diffeomorphisms). Indeed the first variation is simply described by 

the Lie derivative LM as LMg,, = 0, LM[: = [l”N1 etc. The second variation 
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may be realized by means of the Laplas-Beltrami operator AR = rabL,Lb. Hence 

one easily arrives at the following theorem. 

Theorem. 

If the potential function (5) h as a critical point (extremum) at the origin x = 0 

i.e. 

Vm(0) = aV(X)/aXmIz=O = LmV(X)lz=O = 2rab(5a, f[mb])12:0 (7) 

then its hessian (mass matrix) at the critical point is given by 

Vmn(O) = d2V(X)/dXmdXnjz=o (84 

vmn(o> = LmLnv(X)lz=o = {AR((rn,tn.) - (AR[m,(n) + (m H n)},=o (8b) 

- 

- -Clearly by redefinition of R-generators i.e., &(x~) = l(xc)&lt(xc) + R, 

the critical point x = xc # 0 can be translated to the origin. Therefore, it will 

be henceforth assumed xc = 0. Thus the conditions (7,8) can be used to deter- 

mine critical configurations {Ra} directly. The task is facilitated by the following 

straightforward deductions. 

Corollary 1. 

The unbroken (Ha) and broken (Ka) components of critical gauge generators 

R, = Ha + I(,, Ha E H, K, E K obey the constraints 

V, = -2rabTr{ :[Ha, & II(m) = 0 (94 

W) 

or alternatively 

rab[Ha, I(b] = 0 
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Corollary 2. 

Let the symmetry of the critical point x = 0 be H, = H, @ H, with the 

unbroken (residual) gauge subgroup H, = RnH and the global symmetry Hg c H 

defined by [H,, R] = 0 Then the coset generators Km which are not neutral under 

Hc i.e. [I(,, H,] # 0 satisfy the condition (9) identically. 

Corollary 3. 

The decomposition tm(x) = frn~t~(x) of the H-multiplet {tm(x)} in terms of 

R-multiplets {&(x)~A& = -CA&} re d uces the hessian (8) to the form. 

Vmn = fmBfnCCA{(~AB + SAC) - 2(BC I A)}(~B,[c)z=o (10) 

where the coefficients CA and (BC I A) stand for the second Casimir and Clebsh- 

Gordan coefficients of the group R. 

Corollary 4. 

A necessary conditon for the embedding R c G to be physical is that the 

potential function V(x) h as a relative minimum at the critical point x = 0 i.e. it 

possesses a positive hessian V,, > 0 along with Vm(0) = 0. 

At this point it is appropriate to dwell upon some special features of the hes- 

sians in question. In general, hessians can be degenerate with a spectrum con- 

sisting of positive, negative as well as zero eighenvalues. However, mathematical 

discussions (e.g. in Morse theory) are usually restricted to the functions with non- 

degenerate hessians as they are known to be dense in the class of smooth functions. 

Nevertheless in what follows I will not be bound by such restrictions; moreover, 

the search of potential functions with degenerate hessians will be a major thrust 

of the discussion. 
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A physical significance of the degeneracy may be appreciated by delineating 

prominent characteristics of the generators {Xa = Ka(modH)} representing zero 

modes. Obviously R-singlet generators {Xal[Xa, Ra] = 0) have a trivial na- 

ture and it is sufficient to focus upon R-nonsinglets {Xrnl [XU, Rd # 0). They 

can be classified according to the properties {K(g)} = {Ka}, [Kg’, H,] = 0 and - 
(cl [Km , H,] # 0 describing respectively gauge, neutral and charged zero modes. An - 

insight into the intricate origin of these modes may be gleaned by identifying pos- 

itive (Hmn) and negative (-Km,) components of the hessian’; One easily infers 

from the definition (Sat> that 

Vmn (0) = Hmn - Krnn (11) 

z . mn = 2rabTr{ [za, I(m][zb, Kn]}, 2 = H, K (12) 

Evidently all zero modes {Km} arise as a result of a subtle conspiracy of broken 

(K,) and unbroken (Ha) components of R-generators leading to an exact can- 

cellation of their contributions i.e. Km = Hmn. However, the origin of the 

conspiracy underlying gauge zero modes is fundamentally distinct from that of 

charged/neutral zero modes. In the former case it is a manifestation of the uni- 

versal property i.e. R-gauge invariance; the potential function V(x) is altogether 

independent of the gauge coset parameters {x&l} (as well as R-singlet ones) or 

more precisely in the vicinity of the critical point it is defined on the left-right 

(cl (n) coset R \ G/H. On the other hand for charged/neutral zero modes {xm, X~ } 

such conspiracy is an expression of flatness of the potential in certain directions 

enforced by particular features of the coset manifold in question. Furthermore, 

it is important to realize that the potential V( x restricted to its flat directions ) 
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4 = {xg,xg)} - - is, in general, a non-trivial function V(4) of 4: 

V(X) = V(O) + (1/2)VmnXmXn + 0(X2) (134 

V($) = V(O) + O(d2), 4 = (xg$&$, - - VW 

The general features described above will be demonstrated on a series of models 

of the class introduced in Refs. 7,8: 

R \ G/K = SU(n) \ Su(M)/so(~) 

=Ii’,(n(M),n<M=2N,2N+l (144 

- 
R \ G/Ha = SU(n) \ SU(M)/Sp(N) E Ka(n 1 N),n < M = 2N W) 

The embeddings both H c G and R c G will be closely examined with a special 

attention to the resulting intersection H, = R n H i.e. residual gauge symmetry. 

For this purpose the choice of the Weyl basis for U(M) generators {XM} is most 

suitable: 

X : (x;): = 6;67, i,j = (O),fl,..., fN, M = 2N(2N + 1) ( 15) 

Indeed the Hz-generators can be now simply identified by means of an involutive 

automorphism e, E G: 

(164 
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Here the tilde indicates transposed matrices and 

(ez)mn = &&Sm+n, Z = S,U, Ek = 1, Ek = sign(m) (17) 

An important property of the matrix [(e,),,] is that it defines ‘H invariant 

(anti)symmetric bilinear form for the fundamental representation ‘DH, z = s(u). 

The following lemma is a direct consequence of this fact. 

Lemma 1 

- A necessary and sufficient condition for the embedding R C “H with the 

content kH = c, !$+ng) to exist is to have a R invariant (anti)symmetric bilinear 

form on the space ‘r&, 2 = s(u). 

Hence one is immediately led to a simple and yet very effective prescription to 

identify breaking patterns. 

Lemma 2 

- A necessary condition for the breaking R + H, = R n H with the con- 

tent i& = Q H=~adf) (M - (a) -fJ - aH = C, $& ) to occur is the existence 

(absence) of a bilinear form which is both H,(R) and H invariant. 

The familiar example of the group R = SU(2) p rovides a simple demonstration 

of the first lemma. Any irreducible representation of a (half) - integer spin admits 

an (anti)symmetric bilinear form. Thus it can be embedded into SO(Sp) - groups 

but cannot be embedded into Sp(S0) - groups. Evidently a reducible represen- 

tation containing both integer and half-integer spins cannot be accommodated by 

either SO or Sp groups. However one should bear in mind that conjugate repre- 

sentations of SU(2) are equivalent. Therefore a reducible representation with two 

identical spins admits both symmetric and anti-symmetric bilinear forms and its 

embedding into either SO or Sp is permitted. 
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Now the results described in the Table should not be difficult to verify. All 

possible embeddings of R = SU(n), n = 2,3 into G = SU(M), Ad 2 6 have been 

examined and critical points of, the potential function of corresponding models in 

the series (14) h ave been identified. A crucial feature of all cases considered is the 

special choice of the R content which by Lemma 2 obstructs the embedding R c H 

apriori. The content of the Table, in general, is not intended to be exhaustive. 

However, the listing of critical points with UW(l) or SUw(2) gauge symmetries is 

complete. A comprehensive discussion of these results will be presented elsewhere. 

Here the discussion will be restricted to the potentials with flat directions. 

The models of interest are as follows: 

Icut 1 6), 6G = 3R + 3 X h, H, = SU,(2) @I &,(l) (184 

~~42 1 6), !iG = ‘2 X 2R + i& H, = U,(l) @I UW(l) t w 

&(2 1 S), 6G = 3 X &, Hc = SO,(3) 8 &(l) (184 

&(3 1 6), 6G = 2 X 3R, H, = U,(l) 8 S0,(3) (1 84 

The analysis should be extended beyond the calculation of their hessians and 

the following expression of the potential (5) is more suitable for this purpose 

2V(x) = NR + rabTr[et&eUt(x)RbU(x)] (19) 

where 

NR = TabTab 
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U(x) = l(x)etl(x)e (2 w 

Thus the potential is defined as a bilinear function of matrix elements {Urn,}. 

In particular the representations of R-generators given in the Table reduce the 

potentials of the models (18) to the form: 

2htX> = 3 - (I ull I2 + 1 h-2 I2 + 1 u21 12) (214 

3b(X) = 6 - (I u11 + U22 I2 + 1 U23 - Ul-3 I2 + 1 U32 + U-31 12) 
(‘Jib) 

6vC(x> = l2 - (I Ul2 - U21 I2 + 1 Ul3 - U31 I2 + 1 U23 - U32 12) 

2vo(x) = lo - (I Ull - U22 I2 + I Ul3 - U32 I2 + I U31 - U23 I”) 

Obviously it is sufficient to introduce the parametrization 

U(x) = 12(x), l(x) = exp[(i/2)x;j$] 

to infer the hessians of the above potentials (c.f. Eq. (8)) 

vA(X) = 1 + (I x1-3 I2 + 1 xl3 12) + 0(x2) 

3VB(X) = 2 + (I x11 - x22 I2 +4 1 x12 I2 +4 1 x1-2 I2 +2 1 Xlml 12 

+ 2 I x2-2 I2 $2 1 xl3 I2 +2 1 X2-3 I”) + 0(x2) 

(2lc> 

(214 

Pa 

(234 

(23 
6Vc(x) = 12 - (I xl2 - x21 I2 + 1 xl3 - x31 I2 + 1 x23 - x32 12) + 0(x2) (23~) 

2VD(X) = 10 - (I xll - X22 I2 i- I ~13 - x32 I2 + 1 ~31 - ~23 12) + 0(x2) (23d) 

Hence one readily identifies charged and neutral zero modes by their H, - 

content: 
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Hc .= WA&‘) I H$‘J33) @  VW) I H i> 

$4 = x12 + x2-1 E 1; 63 &, s zz 211 - 222 E lJj @  1; W-4 
(x1, x2) = (x23, x2-3) E zg ‘8 1; 

Hc = {U,(l) 1 H; + H;} @  {&u(l) I Hi + H; - H;)/2} 

7--23E1;;@& X=X3-l+i91; 
(24b) 

Hc = (SOg(3) I EijmHj, m = VJ} @ {&t,(l) 1 (H; + H; + H;)/2} 
(244 

q;j E xi-j - (1/3)S;jxm-m E 5g 8 Ii, i,j = 1,2,3 

- Hc = {u,(l) 1 (HI + H2 + H3)/2} 8 {SO,(3) 1 H; - Hi, Hi - H;} 
(244 

Xij 3 Xi-j - (l/S)S;jXm-m E JJ @SW, i,j = 1,2,3 

Now the evaluation of the potentials restricted to the flat directions (24a, . . . . 

d) becomes straightforward. It is easily accomplished by means of the following 

parametrization of the coset element l(x) (see Eq. (2Ob)). 

lA(x) - l(s>l(+>l(X/2> (254 

1B(X) = w2, x/2) (25b) 

k(x) f 1(77ij/2) (254 

b(x) f 1(x&q (254 

Note that every factor l(4) on the right hand side of Eq. (25) may be repre- 
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sented as an exponential of a “off diagonal” matrix. Therefor the l(d) is amenable 

to some standard manipulations i.e. 

l(4) = exp[i(4K+h.c.)] = exp [ “,t :] = [(l -y2 (1 -:i,)l,2] (26) 

where 

z = B sin(BtB)1/2/(BtB)1/2 (27) 

Returning to Eq. (21) with the parametrization of the matrix U given by Eqs. (20, 

25-27) and performing some simple algebra one derives (c.f. Eq. (13b)): 

2vA(4) = 2 + Sin2 ( ?,!I 1 sin2 1 x I= 2+ I+ I21 x I2 +0($4) (284 

12V&b) = 8 + 16 sin4(l/2)(l 9 I2 + 1 x 12)li2 

= 8 + (I rl I2 + I x 12j2 + OM4) (28b) 

12Vc(#) = 24 - 4 / Tr<cos(qtq)1/2 12= 24- 1 Tr(q$) I2 +O(qS4) (284 

4Vo($) = 20 - 4 1 Tr<cos(xtx)1/2 12= 20- 1 Tr(x<xt) I2 +O(qh4) (28d) 

An actual difference in representations of the SO(3) generators {talTr(tatb) = 

2Sab} in Eqs. (28~) and (28d) has b een ignored as it can be compensated by an 

appropriate redefinition of the zero modes 17 or x. Note that the evaluation of the 

potential (23a, 28a) is consistent with the previous calculations of the model (18a) 

carried out in somewhat different parameterization.’ 

The results (23, 28) lead to the main conclusion of the present article: There 

exist potentials with critical points (minima or maxima) described by a residual 

gauge symmetry H, = R fl H # ,0 and flat directions (degenerate hessians) either 

neutral (28b) or charged (28a,c,d) under H,; These potentials restricted to the flat 
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directions are nontrivial functions of the zero modes. For purposes of comparison 

one may recall- flat potentials entertained previously. For example in field theory 

models with elementary scalars, the flatness has been either postulated or enforced 

via supersymmetry; lo On the other hand, in the framework of dynamical models 

with a semisimple gauge group R it has been achieved by a fine tuning of guage 

” couplings. Therefore the approach to flat potentials pursued in this work may be 

viewed as a natural development of the latter attempts. 

Apparently, a physical significance of the above results predicated on the ex- 

istence of a program which incorporates the flat potential as a necessary first step 

toward a dynamical realization of the Higgs potential. Such program has been 

advanced recently i.e. it has been proposed to construct models which possess the 

following features’: 

. -- 1. Potential function (5) has a minimum which is described by a residual gauge 

symmetry and charged flat direction. 

2. Potential function (5) restricted to its flat directions mimics a Higgs poten- 

tial without mass terms. 

3. Higher order corrections to the potential function (5) mimics Higgs mass 

terms. 

Evidently the potential (28a) re p resents the only model which satisfies the first 

condition. Unfortunately none of the potentials (28) meets the second condition; 

The potential (28b) f ai s 1 only because its flat directions are neutral under the 

residual gauge symmetry. A consideration of the third condition is beyond the 

scope of this discussion. 

A further examination has revealed numerous examples of flat potentials how- 

ever the realization of a bona-fide Higgs potential has proven to be a difficult 
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task. An extensive discussion of these and related problems will be presented in 

forthcoming reports. 

In conclusion I would like to acknowledge the hospitality of my colleagues at 

the Physics Department of UCLA and the Theory Group of SLAC. 

. 
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TABLE CONTINUED 

&(W) (3 + 3 x &An 577, (2) 8 37, (2) w2 2,/d%  x;/fi, XZJJZ 
’ [I(: - 2x$/24 

I&(3/6) (2 x 3)nmx U,(l) 8 mfJ (3) (H: - H,2)/2 Iwe (Xi + xr;yJZ 

(K: + K2” - 21(,3)/2& (X,3 + XIf)/fi 

Ka(3)6) (2 x 3)ext U ,(l) 8 37, (2) P,1 - H ,2)/2 H ;/d%  (X,l +X:,2)/d 
(K; + K2” - 2K,3)/24 (X,” - xrf>/Jz 

K4316) (3 + 3 x &lax S&(3) 8 SOUJ (3) H;/2, (K; - 2X;)/2fi Xl,lJz, X,llJz, x:,/Jz 

(JZP = 2 + z-2) 

Ks (316) (2 x &lax U,(l) @  mu(3) m - fw2 K:ld%  (Xi + K,“>/d 
(K; + K; - 2K;)/2d (X,3 + x,3>./Jz 

Ks(316) (2 X &in U,(l) @  37, (2) P: - H ,2)/2 @ Ifi, (Xi+ X:,“)/fi 
(K; + K,2 - 2K,3)/2a (X,3 - x3/l/z 

Table - Critical points of the models defined in Eq. (14) are described by their 

(a) (a) R - content { nR } of R c G  and nature as a relative minimum (min), maximum (max) or saddle (ext) point, 

(b) Symmetry (H,) with global (II,) and risidual gauge (I&,,) components, 

(c) R - generators with zero (Ra) and positive (R+) roots. The realization of the generators (15) is switched to 

the form Xj = zi8/dzj. 


