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ABSTRACT

Three major effects from the interaction of ete™ beams — disruption, beam-
strahlung, and electron-positron pair creation — are reviewed. For the disrup-
tion effects we discuss the luminosity enhancement factor, the maximum and rms
disruption angles, and the “kink instability . All the results are obtained from
computer simulations. Scaling laws for the numerical results and theoretical ex-
planations of the computor aquired phenomena are offered whereever possible.
For the beamstrahlung effects we concentrate only on the final electron energy
spectrum resulting from multiple photon radiation process. and the deflection an-
gle associated with low energy particles. For the effects from electron-positron
pair creation, both coherent and incoherent processes of beamstrahlung pair cre-
ation are discussed. In addition to the estimation on total number of such pairs.
we also look into the energy spectrum and the deflection angle.

1. INTRODUCTION

There are three major phenomena induced by the beam-beam interaction
which are important to the design of high energy linear colliders. Namely, there
is the disruption process where particle trajectories are bent by the collective
EM field provided by the oncoming beam, and there is the beamstrahlung process
where particles radiate due to the bending of the trajectories. The third major
phenomenon, i.e., the electron—positron pair creation, is associated with the fact
that during collision any high energy photon has a finite probability of turning
itself into a ete™ pair with lower energy in general.

The most important impact of disruption is the deformation of the effective
beam sizes during collision, which causes an enhancement on the luminosity. In
addition, the disruption angle affects the constraints on the final quadrupole aper-
ture. When the two beams are colliding with certain initial offset, the disruption
effect between the two beams would induce a kink instability, which imposes a
constraint on beam stability. Ironically, this instability helps to relax the offset
‘tolerance for flat beams because the offset beams tend to find each other during
the initial stage of the instability. Under a multi-bunch collision mode, however,
the kink instability will largely degrade the luminosity through the relatively long
growth time. On the other hand, the direct impact of beamstrahlung is the loss of
" the available energy for high energy events, and the degradation of beam energy
resolution ‘because of the stochastic nature of the radiation. Furthermore, the low



energy particles resulting either from beamstrahlung or from pair creation would
be severely deflected by the strong beam-beam field, and would therefore impose
constraints in the design of the linear collider interaction point region.

Most of the issues raised above can be studied by decoupling the disruption
and the beamstrahlung effects. The energy loss due to beamstrahlung may modify
the luminosity enhancement, but this effect can be ignored since we are only
interested in the case where the average energy loss is small. Conversely. the
average energy loss, the final energy spectrum and the pair creation process can be
studied by assuming no disruption without compromising too much on accuracy.
There is, however, one issue where the two effects are strongly coupled. This is
the maximum disruption angle associated with the large deflections from the low
energy particles.

In this lecture we review what has been studied on these issues. The computer
simulations are performed using the code ABEL (Analysis of Beam-beam Effects
in Linear colliders) described in Ref. 1, but improved considerably since it was
first written. Although it is attempted to make this lecture pedagogical. many
details are reluctantly omitted to avoid lengthiness. The reader is urged to consult
the sited references in these circumstances.

2. DISRUPTION EFFECTS

It will be shown in this chapter that all the disruption effects can be well
described by two Lorentz invariant parameters. Namely, one is the disruption
parameter D, defined as
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where 7, is the classical electron radius, 4 the Lorentz factor of the relativistic
beam, and 0;,0y,0, the rms beam size. Physically, D measures the strength of
mutual focusing between the two beams. The other is the A parameter, defined

T as
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where 3; , are the S-functions at the interaction point of the ete™ beams.

Physically, A measures the inherent divergence of the incoming beam. This
_is important because the collision process takes place within several o,’s around
the interaction point, and the natural variation of the beam size over such a
distance due to the finiteness of the A-function would have significant impact
on the disruption process. In the study of disruption effects one often chooses
. to fix the beam size o¢ (for round beams) or o, and o, (for flat beams) at the
interaction point so that the nominal luminosity (in the absence of disruption)



can be computed. In such case A is related to the invariant emittance e, via the
relation A = ¢,0,/v03. Futhermore, one can easily verify that A/D manifests the

initial phiase space area per particle of the beam in units of the classical electron
radius:
A € ’
= = _ (2.3)
D re N
which is independent of the optics that the beam experiences. Similar arguments
also apply to flat beams.

In this lecture we assume the same initial parameters for the colliding electron
and positron beams. The longitudinal coordinate s is fixed to the center-of-mass
frame whose origin is the collision point of the two bunch centers. The time
coordinate t is defined such that t = 0 when the two bunch centers collide. We
further introduce the longitudinal coordinates z; (j = 1,2) co-moving with the
two bunches. The origin of z; is the center of the jth bunch. and z; is positive
along the direction of motion of the beam (see Fig. 1).
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Fig. 1. Schematic diagram that defines the various coor-
dinates of the two colliding bunches. For a test particle
in bunch I at z; = 2, the relative coordinate with respect
to bunch 2 is 29 = =2t — z.

In our calculations we shall ignore the longitudinal component of the focusing
force, which is of the order 1/+ smaller than the transverse component. Thus the
coordinate z; of a particle is a constant in t. It is easy to see that particles in one



bunch that arrive at s at time ¢ should have their co-moving coordinate z; related
to s by ‘

s = 21+t . (2.4)

where we adopt the convention that the speed of light ¢ = 1. On the other hand.
particles in the opposite bunch arriving at the same space-time point would have
their co-moving coordinate z; related by

s = —zp—t . (2.5)
With these relations in mind. the luminosity for 4 = 0 is defined by

L = 2f.\'2/drdydsdt ni{r.y.z1.t) na(zoy.za.t) (2.6)

where f is the repetition rate of collisions, and n;(zr.y. z;.t) the distribution func-
tion of the jth beam at time ¢, normalized such that

/ n;(r,y.z;.t) dedydz; =1 . 7=12 . (2.7)

Since we ignore the longitudinal force. the longitudinal distributions are constant
in time, i.e.,

1
/nJ(I,y,zJ'.t) dzdy = n,(z;) = 5= exp {— 202}

In the absence of disruption, the luminosity in Eq. (2.6) can be straightfor-
wardly integrated (assuming Gaussian distributions) to get
fN?

Ly = . 2.9
0 41rcr§ (2.9)

When A # 0, the above expression should be modified to take into account
the variation of the beam cross section due to the change of the 3-function around

- - the interaction point. This can be done by introducing a reduction factor 7,:
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such that the luminosity for a finite A in the absence of disruption is
Laqa=n4L0 . (2.11)

Numerically, n4 =~ 0.76 at A = 1.0, and rapidly approaches unity for A < 1.
Since a reasonably designed accelerator would presumably be chosen to work in
the regime where A < 1 to avoid degradation on luminosity, we find it convenient
to use Lo as a reference parameter for all values of A.



When the disruption is included, the effective luminosity £ would be different
from Ly, and a luminosity enhancement factor Hp is introduced to account for
the cliange
L
Lo
Note that with Hp so defined without 74 involved, it is possible that Hp < 1
when D is small but A is large.

By the same token. we introduce a disruption angle enhancement factor Hy.
In the weak focusing limit where D « 1, the approximate solution of the equation
of motion for a particle with impact parameter ry can be shown to be

dr Te N

@ T3
final 79%

ro . (2.13)

Thus the nominal disruption angle can be defined as

N
Ll _p2° (2.14)
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The effective disruption angles fp for an arbitrary D is generally different from
0o, so Hy is defined as

Hy = — . (2.15)

2.1 - Luminosity Enhancement Without Offset

Our primary interest is the enhancement of luminosity due to the mutual
pinching of the two colliding beams. The details have been discussed in Ref. 2 for
round beams and will be given in Ref. 3 for flat beams. As was pointed out in
Ref. 2, the luminosity is infinite if the initial beam is paraxial and the compu-
- tation is perfectly accurate. This is because a paraxial beam can be focused to

a singular point. In reality, however, a beam will always have certain inherent
divergence, and the singularity is only approached asymptotically. To account
for this effect, as mentioned earlier, a parameter A; , = az/B;,y is introduced,”)
which is proportional to the emittance for a given beam size o, . The computed
enhancement factor Hp = L£/Ly, where Ly is the geometrical luminosity without
-the effect of the depth of focus related to A;y, taken into account, is plotted in
Fig. 2 as a function of Dy and A, for flat beams.

The data in Fig. 2 are obtained by using a distribution function which is
uniform in z and Gaussian in y and z (UGG), instead of a three-dimensional
~ Gaussian distribution (GGG), for easiness of computation. The enhancement
factor of GGG distributions for a given Dy can be deduced from a superposition

6
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Fig. 2. Luminosity enhancement factor as a function of
Dy. computed with four different values of Ay. The A,
values are so chosen that they are equally separated on
the logrithmic scale.
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Fig. 8. Luminosity enhancement factor for round beams.

of UGG results with disruption parameters ranging from 0 near the horizontal
edge to 1/6/mD, at the beam center. The enhancement factor for round beams
is shown in Fig. 3.

By comparing Figs. 2 and 3, one finds that the enhancement factor for flat
beams scales roughly as the cube-root of the corresponding value for round beams:
which obeys the following empirical scaling law that fits all data points in Fig. 2



to within 10% accuracy:

HD=1+D1/“( )[ln(\/ﬁ-#l)-}—?ln(p-;)} : (2.1.1)

D
1+ D3
The reason for the flat beam enhancement not being scaled as a square root of
the corresponding value for the round beam is because the horizontal focusing can
enhance the vertical pinch effect (and vice versa) in the round beam case. whereas
for flat beams the pinch in the major (horizontal) dimension can hardly affect the
disruption in the minor dimension.

In both cases. the Chen-Yokova results indicate a logrithmic divergence of
Hp as a function of A, or Ay. In addition. Hp is monotonically increasing as a
function of D, or Dy, at least up to D =100. This second point is qualitatively the
same as that found by Fawley and Lee*’ but in contradiction to Holebeek®' and

Solyak:’ where the enhancement factor first saturates before eventually decreases
at large D’s.

The difference appears to be due to the different ways of handling stochastic
—.errors. In a Monte Carlo simulation the initial condition is generated by random
numbers, which introduces a statistical fluctuation, and therefore an asymmetry.
of the order 1/ \/7\:, N being the number of macro particles. This asymmetry will
be amplified during collision (i.e., kink instability) due to the beam-beam force.
especially when the disruption parameter is large. The fact that the number of
macro particles in a simulation is typically much smaller than the actual particle
number, this fluctuation is artificially enhanced if no proper action is taken. To
minimize this computation error in the study of luminosity enhancement without
“offset, the particle distribution function should be symmetrized at every time step
in the calculation, so that the beam-beam force has the up-down symmetry at all
times for the flat beam case. Similarly, in the round beam case only the radial
force is computed. This process eliminates the possible instability triggered by
computation errors.

The actual collisions are expected to have some unavoidable initial offset in
alignment and skewness in distributions. This effect will be discussed in the next
section.

In order to analyze the physical mechanism of the disruption process which
give rise to the Hp behavior shown in Figs. 2 and 3, it is useful to investigate
the time evolution of Hp. The differential luminosity (per unit time), d£/dt, can
be defined as

dl

o = 2f N? /d:cdyds ni(z,y, z1,t) na(z,y, 22, 1) . (2.1.2)



By the same token the differential luminosity enhancement factor, dHp/dt. is
defined by

dHp 1 dC

—_— = == - 2.1.3
& " Lo d (2.1.3)
such that
T dH
D
= —=dt . 214
Hp = [ G (21.4)
—oc
In the absence of disruption it is easy to see that
dHp 1 —t?
= — ) .v—
i = 7 o\ o) 23

and from this expression [(dHp/dt)dt =1, by definition. Figure 4 shows dHp/dt
as a function of time for various values of D for round beams. Silimar behavior
is also seen for flat beams, though not as dramatic. Here the parameter A is
fixed at 0.05, and the time ¢ is in units of ¢./c. In spite of the fact that the Hp
curves in Fig. 3 are reasonably smooth for each fixed value of A, the curves shown

in Fig. 4 reveals different characteristics throughout the entire range of the value
of D.

For very small and very large D’s, dHp/dt varies as a Gaussian function
(although for large D regime there are small wiggles superimposed), while for
medium values of D there is an obvious spike.

For very small D, e.g., D < 0.6, we find that dHp/dt varies essentially as
Eq. (2.1.5), which reflects the square of the longitudinal particle distribution of
the bunch. When D ~ 0.5, a second peak appears at t >~ 1.6 0,/c. The peak
grows as D gets larger, and eventually becomes the dominant source for the lumi-
nosity enhancement by D ~ 0.7. Notice also that the location of the second peak
shifts gradually to the left as D increases, where the strong disruption induces the
phenomena to occur earlier in time. Furthermore, while the buildup of the second
peak becomes steeper, its falloff becomes smoother as D increases. This phenom-
ena of a second peak appears in the region 0.5 < D £ 5. Beyond D ~ 5, the
differential luminosity evolves into a new regime. The “second” peak now occurs
right near the beginning of the collision, and its smooth falloff now recovers the
Gaussian-like variation, except that there appear to be high-frequency wiggles su-
perimposed. While the time evolution of dHp/dt in both the small and the large
D regimes behave similarly, their absolute values are distinctively different.

It turns out that the underlying physical mechanisms are indeed very different
in the above mentioned three regimes of D, classified as follows: (1) the small D
(D £ 0.5), or the weak focusing regime, (2) the medium D (0.5 £ D < 5), or
the transition regime, and (3) the large D (5 < D), or the pinch confinement
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Fig. 4. Computer analysis on the time evolution of the
luminosity enhancement factor Hp, at various different
values of D with A = 0.05.

regime. In the following sections we shall provide theoretical descriptions that
qualitatively explains*the phenomena occurs in the three regimes.

2.2 The Weak Focusing Regime

The weak focusing regime corresponds to the range 0 < D < 0.5. For such
small values of D, dHp/dt is essentially described by the Gaussian function in
Eq. (2.1.5). The correction to this expression to the first order in D can be derived
in the following way. For the sake of argument we assume A = 0. This is justified
because it turns out that there is no divergence at A = 0 in the correction term
linear in D, i.e., to this order the correction arises only through the radial motions
of the particles.

The equation of motion of a particle at z; in a bunch is
d*r 4Nr,

dt? v

fo(r)na (=2t — z1) | (2.2.1)

10



with

4

/ neo(r) rdr .

0

I

fo(r) =

—_
o
N
o

where n,o(r) is the unperturbed radial distribution function normalized such that
[ nro(r) rdr = 1. To derive the first order correction we had assumed unperturbed
distribution on the right-hand side of Eq. (2.2.1). The solution of Eq. (2.2.1) with

initial conditions r = rg, and dr/dt = 0 at t = —oc is given by
44’\v7'
r(t.zy) = ro— " < fo(ro) g(t.z1) . (2.2.3)
with
1 t , 1
g(t,zl) = / dtl / dfz nz(-——Qt; - Z]) = / dil (t - t]) nz(—2t1 - 51)
—0C - -—C

“Equation (2.2.3) can be inverted as

4Nr,
v

ro = 1+ fo(r) g(t.z1) . (2.2.4)

within the same order of accuracy. For our purpose we like to know the perturbed
radial distribution function n,(r) at (¢,2;). This can be found by

d 2
Tl,—](T,t,Z]) =n,0(r0) di:g;
(2.2.3)
4Nr, 1 dn,
= ny0(r) [1+ 7r (‘7'{'0' Zro fo(’")-‘rnro) g(t,zl)}

Accordingly, the luminosity can be evaluated as

L x / rdr dzy dzy ny(z1) n.(22) [n,l(r,t,zl) nr](r,t,zz)} ,
i=—(11+22)/2

=/ rdrdzy dzy n,(21) na(22) [ngo(r)]

y {1 + 4Nr, (L dn,o fo+ nrO) [g(t,zl) +g(t,zz):|} )

v nro dr t=—(21422)/2
(2.2.6)
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where the leading term (unity) corresponds to the nominal luminosity L£o. The
integration over r can be carried out, which gives

i 1 d 17
/rdrnfo (nro Z;O fo+nro) =3 / rdr ndy . (2.2.7)
0 0

Thus the luminosity enhancement factor for small D is

Hp ~ 1 4 rejz [rdr ;720
~ frdr ni,

o
o
[05]

t=—(21422)/2

X/ dzydz> n:(21) nz(iQ)[g(f-21)+g(f-:2)]

Since the two colliding bunches are symmetric. g(f.z;) and g(f.z2) contribute
equally to Hp. where

1 o<
g(t.z1) = / dti(t —11) n.(=2t; — 5 1/ 7d7 n.( 22)
t=—(21422)/2 —00 0
, (2.2.9)
Therefore
AN dr n 7
Hp ~ 1+ Te [frrnzro] //d,.ldzznz nZZo/'rdTn z2)
¥ J rdrn?,
0
4N drnd] [, [
=14 = Te [f T rngo] /dz / 7dT n (z) n(r+z) . (2.2.10)
¥ J rdrn?,
0 0
Now we introduce normalized coordinates p = r/og, and { = z/0,. Then
d
Hp = 1+D[f ”""'0] /d( / rdr ny(¢) na(r+¢) . (22.11)
f pdpnrO

For Gaussian and uniform distributions, this leads to

H 14D x { £ (radially Gaussian) } { 71; (longitudinally Gaussian) }
D = x .

% (radially uniform) 715 (longitudinally uniform)

(2.2.12)

12



This formula agrees very well with the simulation results for D < 0.6. Notice
that for D < 1, the empirical expression for Hp in Eq. (2.1.1) behaves as D¥s/4,
which is'by no means close to the linear behavior in Eq. (2.2.12). This is mainly
because of the need to suppress the strong £n(1/A) dependence in Eq. (2.1.1) in
the small D regime. This strong én(1/A) dependence, however. is necessary to fit
the medium and large D regimes.

Rigorously speaking, Hp cannot be Taylor expanded around D = 0. In
deriving Eq. (2.2.4) we have assumed that the first term rg on R.H.S. of Eq. (2.2.3)
is much larger than the second term. This is not the case when ¢ becomes large.
no matter how small D is. One obvious example is that at the focal point the
two terms would become equal. For D « 1, however, this focal point lies far
beyond the tail of the oncoming bunch, thus the subtlety mentioned above is
alleviated. To be more explicit, from linear optics it is easy to see that the focal
length in the weak focusing regime is proportional to o./D, thus the density of
the oncoming beam around the focal point is proportional to exp {—1/2 D’} <« 1.
Since Hp comes from multiplication of the local densities of the two bunches. the
contribution from the focal point is exponentially small.

2.3 The Transition Regime

The transition regime is characterized by the appearance of the second peak
in dHp/dt with relatively short duration. This phenomena also conforms with
the fact that in this regime the first focal point lies inside the bulk of the on-
coming beam. Because of the strong focusing, the deformation of the oncoming
beam cannot be ignored. As we will show later in this section, the leading order
correction in D for the target bunch deformation is equivalent to the second order

“contribution in D to the focusing force. To set the stage for the second order
calculations, however, we shall still start with the first order approach where the
equation of motion is given by Eq. (2.2.1). For small r in a Gaussian distribution
we have

_dz_a: _ 4Nr, = exn d — (2t 4+ z;)?
dt* —  \Pry 20t0. P 202
_ 2D =z (Qt + 21 )2
= \/2_7? -;2- exp{ -—2;Z— (231)
It suffices to solve the equation
d*z _ 2D =z 212 939
di2 . \fox o? P o? ’ (2.32)

13



which arises from a coordinate transformation from ¢ to t+2;/2. Let us denote the
two solutions to Eq. (2.3.2) by u;(¢) and uy(t), with initial conditions at t = —x

u; = 1+0(%) , Uy = t-{-O(—}) . (2.3.3)

respectively. We are interested in the solutions near the focal point, which for D £
5 occurs at tg ~ o,/D. By definition, at the focal point u;(tg) = 0. Numerical
integration then gives the following approximate solution:

3 VD '
up(tp) >~ — — (055 D<5) (2.3.4)
4 o,
while
1 4 o, . -,
ua(tp) = — ~ - (05D <3) . (2.3.5)

u1(to) 3VD

The last relation comes from the Wronskian property:
up(t)ue(t) —ur(us(t) = 1 . (2.3.6)
The general solution to Eq. (2.3.2) is therefore
T = zouy(t) +zgua(t) . (2.3.7)
_Transforming back to the original coordinates, we have the solution to Eq. (2.3.1)

T = TouUp (t+i2l) +zéu2 (t+%) . (2.3.8) |

Generally, 7§ < 1, so from Eqgs.(2.3.4), (2.3.5) and (2.3.8) we see that a particle
at z; would be focused to the axis at time tg ~ 0,/D, or

it ~ — — — . .
: (2.3.9)

The focal point is thus at

(2.3.10)

14



This means particles at different longitudinal positions z; in one bunch would all
be focused to the same point z3 ~ 20,/ D, but at different times.

Phis ‘naive picture, however, contradicts simulation results. Two diagnoses
were performed to monitor the detail processes of beam focusing in this regime.
Figure 5 shows the time evolution of the average radius 7(¢, z) of a set of selected
z-slices with z; ranging from —20, to +20; for D = 1.0 and A = 0.05. Here 7 is
defined as

oo -1/2

Fo= 2/ [ne(r)]? rdr , (2.3.11)

0

where the radial particle distribution function n,(r) is normalized such that f n(r)
rdr = 1. The above definition is equivalent to the definition of the standard devi-
ation og in the limit of a Gaussian distribution, but in general it puts more weight
on the radii that have higher particle densities. This is particularly inspired by
the observation that during the collision a bunch tends to develop into a core
and a halo, and the conventional definition of the rms value would not reflect the
_crucially important role of the core.

One finds in Fig. 5 that most particles at different z’s are focused almost
simultaneously, at t ~ 0.8 ¢, /c, which differs with Eqgs. (2.3.9) and (2.3.10). This
fact is also reflected by the relatively short duration of the second peak in dHp/dt.
Indeed, the full-width half-maximum (FWHM) of the second peak turns out to
be around 0.4 o, /c throughout the range of 0.7 < D < 3. One further diagnosis is
shown in Fig. 6 for dHp/dz as a function of z. This is the cumulative contribution
of each z-slice of one beam to the luminosity enhancement. If all the particles are
focused at the same z2, as the strong-weak picture suggests, then dHp/d: must
show a sharp spike. On the contrary, Fig. 6 shows a smooth curve manifesting
the longitudinal Gaussian distribution of the beam.

To account for these facts, we proceed by including the deformation of the
on-coming beam to the first order in D. To this order, the deformation of a
longitudinal slice at z; is given by Eq. (2.2.5), and that for the on-coming beam
is obtained by simply replacing 23 by 2z = =2t — 2, i.e.,

4Nre (L dTlr()
v

nei(r,t,20 = =2t — 21) = ngo(r) [1 + fo+ nro) 9(21)} :

(233.12)
It is interesting to observe that ¢ does not appear on the R.H.S. of the above
equation. We can thus improve the unperturbed equation of motion by replacing

fo(r) with

ney dr

r

/ ne1(r,t,z0 = =2t — 2;) rdr . (2.3.13)
0

fl(r7zl) =

N |

15
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Fig. 5. Time evolution of the average radius ¥ (in units
of o) of a set of selected z-slices with z; ranging from
—20, to 420, for D = 1.0 and A = 0.05. Notice that
in this regime of D, different slices are focused to their
minimum radius at about the same time, in this case at

t ~0.80,/c.
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Fig. 6. Cumulative contribution of the luminosity en-
hancement factor dHp/dz as a function of z. The Gaussian—
like distribution indicates the simaltaneity of the focusing
process for different z-slices.

Substituting Eq. (2.3.12) into Eq. (2.3.13), we find a simple expression:

filrz) = folr) |14 2T

n,o(r) g(zl) . (2314)

16



Actually, the above inclusion of the deformation of the on-coming beam, with
the disruption parameter D intact, can also be interpreted as the inclusion of the
modification of D to the next order, namely,

DD |14 30

n,-o(?") g(zl) . (2315)

with the distribution fo(r) unchanged. From this viewpoint the focusing force for
the bunch core near the axis is increased by a factor:

4Nr, g(Z])

1+ nyo(r) g(z1) = 144D

(2.3.16)
oz
Once this is seen. the result from the strong-weak picture (or the first order
expansion in D) can be readily modified to include the next order in D. Namely.
the focal point should occur at
o,

Z1 —
'~ DiTaDgE)e] T 2 (2:3.17)

From the definition of g(z1), we find for small =)

Q
—
1N}
—
—
—

4 = -
(2P 2

T (2.3.18)

=
o] —
Q|g
N

This implies that the z; dependence in Eq. (2.3.17) is almost cancelled provided
that D is not too large (e.g., of order unity). Thus the minimum beam size occurs

at the time
. o

D(1+l;/\/2_7?)

t ~ t;(D) = (2.3.19)

We are now ready to derive the luminosity enhancement factor Hp. The beam
size of the slice at z; can be derived from Eq. (2.3.8) as

af (:1:(2)> u% (t+-22—1)+<1:'(2,> u% (t+%l)

o2 [uf (t + %’) + (%)2115 (t + %)] . (2.3.20)

Considering that the primary contribution to Hp comes essentially from the high
particle densities near the focii of both bunches, we concentrate on the beam size
around t ~ t¢(D), where u;(t5) = 0. Thus Eq. (2.3.20) becomes

ot~ o} { [iten] e+ [;—‘”}}
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2

9D [t—1t;\?  16A2 -
= 2.3.2
16 ( o, ) * 90] ’ (2.3.21]

where Egs. (2.3.4) and (2.3.5) have been used. The same expression holds for o3
of the second beam near t >~ ty. The enhancement factor is therefore

1 22 422 202
Hp = [ d=nd= -2 0
b / 1922 505, O { 207 } [Uf + 03
1 s+ 12) {9D [t—1t;\° 16A?
=2 ds dt exp ¢ — +
2n 0, o?

16 0, 9D
1 dt [ £ (9D (t-t '~’+16A?
T o P o2 16 o, 9D

Since the contribution to Hp essentially comes from around t ~ t;, we can ap-

(2.3.22)

proximately carry out the above integral as

VT ~1 o
Hp ~ — ex = : 2.3.2
b A p{ [D (1+D/\,/"z—n)]“} (2323

Unfortunately, this expression does not fit the transition regime in Fig. 4 too
well numerically. In particular, it is too sensitive to A, and Eq. (2.3.22) gives too
sharp a peak in dHp/dt. The disagreement mainly comes from the fact that ¢y
is not strictly z; independent. The residual z; dependence in Eq. (2.3.17) would
break the simultaneity of focusing among all the z-slices. As a result, at time t;
when a slice at z; reaches its minimum size o, the overlapping oncoming slice at
22 may not have reached its minimum yet. This slight mismatch between o; and
o2 would potentially relax the sensitivity of Hp on A, as in Eq. (2.3.23).

To incorporate the residual z; dependence in ¢y, numerical integration will be
needed. Our result here, however, does indeed qualitatively explain the essential
physical process which dominates the transition regime: namely, the luminosity
in the transition regime is contributed primarily from a very narrow window of
collision time when the longitudinal slices from head to tail of each bunch are
focused to their minimum size almost simultaneously.

2.4 Pinch Confinement of Bunch Core

In the large D regime (D 2 5) the most striking phenomena is the confinement
of a large fraction of bunch particles near the axis within a small equilibrium radius
throughout the course of collision. We call this portion of the bunch the core, as
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opposed to the halo particles that come from either never being focused to the
axis or being focused but escaping. The occurance of this phenomena, however.
is nothing like a phase transition that appears abruptly at a particular value of
D. In fact, we already see certain signatures from the slices near the bunch tail in
Fig. 5, where slices at z = —1.0, —1.5 and -2.0 tend to stay at a pinched radius.
This is why we called the regime for medium D the transition regime.

In this section we devise an analytic description of the large D regime guided
by simulation results. Since the luminosity essentially comes from the confined
core, we will emphasize the behavior of the core. This is handled, again, by the
mean radius 7 of a longitudinal slice introduced in Eq. (2.3.11). However. for the
sake of mathematical simplicity, the transverse distributions of each longitudinal
slice is assumed to be Gaussian at any time. The evolution of the beam size is
described by the rms beam size g;(z;, s) of a slice at z; that comes to s. Since we
assume equal beams, we have by mirror symmetry

o1(z,8) = 02(z,—s) . (2.4.1)

-In the linear approximation of the focusing force, the equation of motion of a
particle at z; in the first beam is given by

d'.’
d—; + K (5,8)z=0 , (2.4.2)

with

Ki(z1,8) = 2¥re { ns(2)

Y [62(22’5)]2 }22 =2z — 28

When D is very large, the actual beam size is rapidly oscillating during the colli-
sion. We may smooth out this fluctuation in the focusing force K. In this sense
we have introduced &; in Eq. (2.4.3), where the bar indicates a smoothing over
some short interval of s. Our task is to solve Eq. (2.4.2) to obtain z(z;,s) and
from which to deduce the beam size o] so as to be self-consistent with 6, in K.

In the case where D is very large and the particle in consideration is well inside
the oncoming bunch (i.e., |z2| £ (some factor) xo,), the WKB approximation is
suitable to solve Eq. (2.4.2). Thus, in this case we have

" (02 Ky(z,8))1/4

z(z1, ) (Ci1cosb; + Cysinby) (2.4.4)

where

o
=N
(W) 4
-

01='/ VEi(z1,5) ds . (2.
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Here we have introduced dimensionless constants C; and C,. In order to express
them in terms of the initial condition r¢ and r,, we need a solution near the head
of the oncoming bunch. where WKB fails. This will be discussed later.

Since cos #; and sin 6; oscillate very rapidly, we may put cos? §; = sin’ 6, =
1/2 and cos 6; sin8; = 0. Then, we have

I o2 1

1{21,8) = ——————
(z1:9) 0./ Ki(z1,8) 2

To get the smoothed beam size we average Eq. (2.4.6) over the initial distri-
bution, from which we get

(C}+C3) . (2.4.6)

— C o? i
6'12(2].8)= <.T'(Z].S)>=';—TIE)~]—S)- (244)
with
1 2
C= <§ (Cf+C§)> : (2.4.8)

where () denotes the average over the initial distribution. Then. we get from
Egs. (2.4.3) and (2.4.7)

_ C oy F2(23.8)
di(z1,8) = 249
i(z1,9) 55 [ eyl I ( )
Similarly, for the second beam
_ C o9 71(z1,8)
2 0 O01(<1,
05(z2.8) = 2.4.10

Now we can solve Eqgs. (2.4.9) and (2.4.10) self-consistently with the result

( Coo (1) -1/6 -1/3
di(z1,8) = o.nz(z o.n, . 2.4.11
1z1,) V2D [ : ] [ (22)]22 =2; —2s ( )

Inserting into Eq. (2.4.3) we obtain

4D2 2/3 4/3
Ki(n1,s) = 22 [a,nz(zl)] [a,nzm)] L (241
020'3 29 =21 — 28 (

Here we have a remarkable formula saying that the beam size is determined only
by local variables; namely, the longitudinal density of the beam of interest at z;
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and the Jongitudinal density of the oncoming beam at the same position. All
the history of the particle is packed in one single parameter C. Keep in mind.
however,-that Eqgs. (2.4.11) and (2.4.12) do not apply to the head and the tail of
the bunches.

Figure 7 shows the time evolution of the beam size for five z—slices at z; =
1.0, 0.5, 0, —0.5 and — 1.0 o, for D = 100 and 4 = 0.05. These five curves
are then overplotted in Fig. 7(f). One finds that there is no distinctive difference
among the five curves except for the shift in time according to their locations in
the bunch. The slices abruptly shrink when entering the oncoming beam and soon
reach some equilibrium “core” with small and rapid wiggles and a slow variation of
the mean radii. The rapid wiggles are related to the oscillations of cos 8; and sin 6.
whereas the slow variation agrees well with [n,(z2)]71/% « exp [(:1 - 25)2/60::’]
in Eq. (2.4.11), which ensures the validity of the WKB approximation.

D=100 A=0.05
E T T T 7T T [ T | T T3
2= 1.0 -05
[ - //—
\'W"w (q) \”'w’/ |
) i i |

~1 -1.0

L 1
05 7
L at N
i / |
T b e Vi
- ] 1“ ] L | ] e’ |

0 R
0 /‘/ 7*
| = L
- [
_(:\‘V\v/ (f) W\%M@/f»
0 | i | 1 I L
-2 0 2 -2 0 2
12-87 ct/o;, 5917A4

Fig. 7. Time evolution of the beam size for five selected z-
slices at z; = 1.0, 0.5, 0, —0.5, and —1.00,, for D = 100
and A = 0.05, shown in the figure from 7(a) to 7(e),
respectively. The five figures are then overplotted in 7(f).
A confined bunch core can be obviously seen.

In order to find Hp we have to express C;, C2 and C in terms of the initial
conditions. To this end we need a drastic approximation. The fact that the beam
size suddenly reduces to a small value suggests that we may ignore the focusing
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force before the particles are focused to the core. Therefore, we shall assume that
the focusing force K is given by Eq. (2.4.12) when z; is well inside the oncoming
bearn but is zero near the beginning and the end of the collision. The boundary is
determined by the limit where WKB fails. The condition that the WKB is valid
is given by

d 1
,'.— ,?’Sl . (2.4.14)
lds | ‘
Since z; is a constant for a given particle, we can rewrite Eq. (2.4.12) as
% 8s"
K| =— exp{— S,, . (2.4.15)
o; 3o;

with

. " N
o 2 D : 2y . (2.4.]6}
e~ d)

- We shall ignore exp(—z%/602). assuming that our particle is nowhere near the
head and the tail of the beam. The solution of Eq. (2.4.14) for s < 0 is

s 2y . (2.4.17)
where s(;(< 0) is a solution to
8(=50) o [4502) _ ) (2.4.18)
3ko, P 302 [ 7 o

and is approximately given by

oo 13,.( /2D .
pales JSETI( oy C) . (2.4.19)

The above s(l) is thus the boundary that partitions the two zones for zero and finite
Ky’s. Note that at s = s[; K is given by

, 9 kN (a,\° 3 D \? 3 D\|
Ki(so) = 537 (azc) (—) ~ 2w (—azcz) h\Wer T

(2.4.20)
The solution with the initial condition z¢ and z§ at s’ = s is then
K (s1)] : N
= 0 —_— 4.
T=1x0 [Kl(s’) cos 8 + z; KilsD) i (s sinf (2.4.21)
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where

g = Ki(s')ds . (2.4.22)
3

Note that we have ignored the derivative of K1, which is always valid whenever
the WKB approximation is applicable. Rigorously speaking. we should impose
the initial condition at s = 0, not at s = s;. Our treatment is justified because

for very small A the deflecting angle z at s = s(; is much smaller than g, which
is the typical value of ry.

Comparing Egs. (2.4.21) and (2.4.4) we have

) , 11/4 . 2\ 2 -1/4
C, = [a; Ix'l(s])] %% = [% (l'g—) fn ( ’83? %2)] giol (2.4.23)

, 1-1/4 '
Cy = [021\'1(51)} 2o (2.4.24)
Averaging over the initial distribution gives
p [2. (/3 D0\
=5 | — = 2.4.95
(CT) v |:3 [n( 5 C) (2.4.25)
‘and
2 2 (z3) o (z¢*) 2
(CH) (C3) = =502 = 4% (2.4.26)
%9 90

The latter merely insures the conservation of the linear emittance. Since we
assume A < 1 and D > 1, we have (C?) > (C2). Therefore,

C’=2 (C}+CH ~=(C}) . (2.4.27)

N —
N =

which, together with Eq. (2.4.25), determines C self-consistently. We now get

D\ [2 3 o\

While C still appears on the RHS of the expression, it varies only logarithmu-
cally. We may substitute C on RHS with some constant times D3 As a good
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approximation we get

‘ 1/3 -1/6 |
e=(2)" [ (2)] a0

which agrees with the exact solution of Eq. (2.4.28) within 1% for D R 10. Thus.
" the smoothed beam size in Eq. (2.4.11) is now written as

9 1 1/6 zf+222
5 (o1 6) = I i B ] . (2.4.30
o1(21,8) = 00 [32\/5 D[n(D/'z)] ew{ 1202 }:—:2 =z —2s ( |

and the focusing function is

o 128 p\1'"? 22 + 253
Kq(z1.58) = [?ﬂ'— D* in <—2—>} exp {1—30,;,—'}~0 o . (2.4.31)

These formulas apply for

, 3 D
lz] £ 2|sq| =~ 3 {n (?> o, . (2.4.32)
Let us now calculate the enhancement factor Hp. Analogous to Eq. (2.3.23) we
have
2 2.2
oq 25+ z5
HDz/ dz1dz) 9 exp{ 1 "}
oi(21,8) + 03(22,8) w03 207 Jzp=2 -2

(2.4.33)
Note that 2 dsdt = dzjdz;. If we replace o in this expression with the smoothed
radius &; in Eq. (2.4.29), we get

. D\11/3
o= 13140 n (2)] 2430

via numerical integration. As in the case of the transition regime where the
slight mismatch between o; and o3 should not be overlooked, in the confinement
regime the rapid wiggling of the beam size also plays some role and, therefore,
one needs to use o; instead of &;. Averaging the square of Eq. (2.4.4) over the
initial distribution and using Eqs. (2.4.25) and (2.4.30), we get

U%(zhs) = (z%(zl’s))
0'2 2 A2 .
= 2r 50 (02 cos” 0; + —4—s1n2 01) exp{

zf + 22% }
603 22 =21 — 2s

' (2.4.35)
At 0, = 7/2, we have the minimum beam size o] =~ [(27)1/4 A/2+/D)oy. Notice
that if we ignore A% and replace cos? 6 by 1/2, we recover the smoothed beam
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size in Eq. (2.4.30). Nevertheless the finiteness of A can still contribute to the
luminosity near the zeroes of cos #;. Substituting Eq. (2.4.35) into Eq. (2.4.33).
the new Hp now reads

3(2F +23) )

[
Iy _ P R
T r ] Tl T 40?

9 2 9
—22 4 2 A,
X |exp ——l+—2‘-2-2— C? cos® 8, + —sin® 6,
120 4

-1
22,2 A2
+ exp { 1120,_,2 } (C2 cos® 6; + T sin’ 62)]

Since #, and 6, are strong functions of z; and z3, and C? > A%/4. we can
approximately integrate the above expression to obtain

_ 2D dzydzo 3(2% 4 23) A 2} — 22
HD_—WL’\/Q_%'CQ/ p exp{ T {n 5C cosh 1202

for A « C. By numerical integration and by invoking Eq. (2.4.29). we finally
obtain

D\1'* (1 D? )

where A; = 0.880 and Ay = 2.28. The agreement with the simulation is not
excellent but the {nA dependence is correctly expressed. We can also obtain
dHp/dt, discussed in Section 2.1, by replacing dz;dz; in Eq. (2.4.37) with 2 dsdt
and by integrating over s. Since only small |z;] and |z;| contribute in the integral.
we may ignore the variation of cosh in Eq. (6.37) as a rough approximation. In
so doing, we obtain

oo

(2.4.39)

Comparing this expression with the unperturbed dHy/dt of Eq. (2.1.5), one finds
that dHp/dt for large D is indeed Gaussian with a slightly larger coefficient for ¢°
in the exponent. This fact agrees with the simulation results quite well. (Compare
the figure for D = 100 versus that for D = 0.2in Fig. 4.) Notice that the functional
behavior exp(—3t2/202) comes solely from the WKB part. On the other hand. the
overall factor in Eq. (2.4.39), which comes from the truncation of K at the head
of the bunch, like the case for Hp, does not numerically reproduce the simulation
results. : )
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2.5 Luminosity Enhancement With Offset

Since the asymmetry in distributions tends to shift the center-of-gravity of
the beams, it gives rise to the same effect as the initial alignment offsets. For this
reason our study on the effect of imperfections is concentrated on initial offsets
only.

As will be discussed in the next section, an initial offset triggers a kink insta-
bility, especially when the disruption parameter becomes large. As it occurs. this
instability is not always harmful because, in the initial phase of the instability. the
beams always tend to find each other, which prevents the otherwise rapid degra-
dation of the luminosity for large initial offsets. Figure 3 shows the luminosity
enhancement factor as a function of offset Ay (in units of o) for various values of
D,. The dotted curve is the geometrical enhancement factor without beam-beam
force, which is equal to exp (—A§/4). UGG distribution is used and A, =0.2 for
all curves. The up-down symmetry is not enforced except for the cases at A, =0.

From Fig. 8 one finds that the tolerance on alignment offset reaches an op-
timum for values of D, between 5 and 10. Within this range of Dy, Hp is still
above unity even at Ay ~ 3. Beyond this region of D, the beam-breakup becomes
" severe, while below the beam-beam attraction is not vet strong enough.

T T ITHIJ

Hp L
01
0.05 F
- \ J
{ ! b 1
0 1 2 3 4 5
1088 Ay (Gy) s157A2

Fig. 8. Hp as a function of offset Ay for flat beams.

The same data as in Fig. 8 is replotted in Fig. 9 as a function of Dy, and
each curve corresponds to a fixed value of Ay. (The region of large D, and small
Ay is not very accurate because of its sensitivity to computing errors.) One sees
a saturation and decrease of Hp as a function of Dy unless Ay = 0. One also
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notices that the curves with small offsets, e.g., A, = 0.2, resemble the results in
Refs. 5 and 6, except that our offset was explicitly introduced. In designing a linear
collider, one needs to estimate Hp for the chosen D and A. This depends on the
assesment of potential imperfections of beam-beam collision. Though arbitrary.
it may be safer to adopt the curve for Ay = 0.2 or 0.4, instead of Ay = 0, as the
effective enhancement factor.

Similar exercise for round beams are shown in Fig. 10 for D up to 50. Here
we find the same generic behavior as in the case for flat beams.
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Fig. 10. Hp as a function of offset A for round beams.
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2.6 Disruption Angles

One important piece of information for linear collider design is the expected
disruption angle. Knowledge of the maximum disruption angle is essential to
determine the aperture of the last element in a final focusing system, so as to
avoid being showered by the debris from the beam-beam collision.

For round beams,the simulation results of the maximum and the rms dis-
ruption angle reduction factors, Hy"** and Hy™*, are plotted in Figs. 11 and 12.
respectively. The curves for A = 0 in the two figures reasonably agree with the pre-
vious results.’ These curves for zero emittance can be well-explained theoretically.®

which predicts the following generic functional behavior for both Hy'¢'* and HyTj

for A= 0, i.e., a linear increase for D <« 1 and a 1//D suppression for D > 1:

a+bD, D1,
Hg'o ~ (261)

4
75, D>>l,

where a, b and ¢ are some numerical coefficients which are different for maximum

““and rms angles, and which are to be fixed by the simulations. From Figs. 11 and
12 we find

087+157D, D<1,
Hgy® =~ {1.84 ~ D>1. (2.6.2)
VD /
and
0.784+020D, D<1,
Hgy® =~ {0.67 ’ D>1. (2.6.3)
VD
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Fig. 11. Mazimum disruption angle as a function D for
round beams, computed with four different values of A.
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Fig. 12. Rms disruption angle as a function of D for
round beams.

When A # 0, the inherent divergence of the beam cannot be overlooked when
the disruption is small. The natural rms divergence angle of a beam is

Oz, g0
Oy = 5} = (2.6.4)
while
oy = \Joi2+0,? = V2o!. (2.6.5)

Dividing both sides by 6, as defined in Eq. (2.14), we have the contribution from
finite emittance:

ms %0 _ A 5
Hy?e = e _JiD, (2.6.6)

where the definitions of A and D are used. The general expression for H;™? is
therefore

H™ = \/(H;ng)u(H;j;“)'-’ : (2.6.7)

Inserting Eq. (2.6.3) for Hy'7* and Eq. (2.6.6) for H'?*, the above expression fits
all the curves in Fig. 11 very well. Notice that the contribution of the second
term rapidly diminishes for D beyond unity. Thus the rms disruption angle is
asymptotically independent of A.

The situation for the maximum disruption angle is slightly more complicated
since the maximum natural divergence angle for Gaussian distributions is not
well-defined. However, as is the case for Hy, the functional behavior of HJ'**
should be similar to that of Hg'?*, and the overall Hg*** should be analogous to
H™ in Eq. (2.6.7). This is evidenced by the similarity between Figs. 11 and 12,

aside from the numerical differences.
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Now we examine the flat beam deflections. If the disruption parameter is
very small, the transverse location of a particle during collision is nearly constant.
Then one.can estimate the disruption angles 8; and 6, as functions of the initial
transverse coordinates rg and yg. For very flat Gaussian beams we have

. toc 2 4
gzz_\/fprﬁzm i/ exp{-t7}dt | (2.6.8)
2 To, s (zo/V20;) —t —10
~00
5 !/0/\/2-"31
7r (o4 —12 —12/2¢02 570 00
Hy-_——\/;Dy;ii \_ﬁ-' / e Vdt| e/ (2.6.9]
0

where the quantities in the square brackets can be expressed by the complex
error function w(zo/v/20:) and the real error function erf(yo/\/20,). Here the
emittance is ignored. One finds that the maximum and r.m.s. disruption angle
reduction factor to be

Hi7g =0765 ,  (z0=13loy) (2.6.10)
Hyv = /72 , (20=0. yo = o¢) (2.6.11)
H;™s = /7/(6V3) | (2.6.12)

H;™s =/x/(6V3) , (2.6.13)

where the nominal angles 8, o = D;0./0, and 6, = Dyoy/o, are assumed. These
resemble the leading constant terms in Egs. (2.6.2) and (2.6.3) when D <« 1.
(Rigorously speaking, for flat beams with large but finite aspect ratio, 6, reaches
a maximum near yo ~ oz and then decreases; but this is not important.)

The distribution functions of Hy, ¢ and Hg, ¢ are shown in Fig. 13. The actual
singularities at 8, = 0; ma; and 6, = 0 are not supposed to be as sharp as those
in Fig. 13 because of finite emittance, various errors, and the disruption effect.
However, we found from simulations that the qualitative difference between the
horizontal and vertical angles still holds even for D,y not much less than unity.

Figure 14 shows the maximum and r.m.s. vertical disruption angle reduction
factor Hy, (8, in units of Dyoy/0,), as a function of D,. Here we consider the
case for small D, only. As in the case for round beams, the dependence on Ay
is not as significant as in the case of Hp except for the small D, region, where
the beam divergence is emittance dominated. (The distribution of initial o, is
truncated at 2.5 standard deviations in the simulation.)
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Fig. 13. Distribution of Hg, o for small Dy .
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Fig. 14. Mazrimum and r.m.s. vertical disruption angle
reduction factor. The four curves corrrspond to Ay =
0.1, 0.2, 0.4, 0.8, respectively.

The simulation results can roughly be fitted by

Fd 1

6+/3 (1 + (0.5D,)3]1/8

rms
and H;';" ~ 2.5H5:"’. Here the contribution of the initial emittance (= Ayoy/0:
for 8y rms) has not been included. The reason that the angle does not increase
linearly in Dy is that the particle trajectories are bent backwards and oscillate
when D, is large.
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So far, the collision is assumed to be head-on. For flat beams the disruption
angle in the presense of vertical offset is also important in determining the aperture
of the final quads. The mean deflection angle of the entire bunch can be written
in the form”

1o .
0, = 3 iDyHC(Dy,Ay) , (2.6.15)

where A, is the vertical offset in units of oy and the weak dependence on A, is
ignored. For small disruptions, the function H, approaches the following analytic
form
4y
-y*/4 -
H(Dy,Dy) = /e dy . (2.6.16)
0

Figure 15 shows H. as a function of A, computed by simulations. where UGG
distribution is assumed.

P~ I o o O L B
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0 1 2 3 4 5

6-88 A y 6065A2

Fig. 15. Effective center-of-mass deflection. The curve
for Ay = 0 is analytic, while the rest are from simulation.
The dashed line corresponds to the slope at the zero Dy
and zero Ay limit, which is equal to 1/2.

Roughly speaking, the maximum disruption angle in the presence of offsets is
the sum of the center-of-mass deflection angle ©, and the maximum angle in the
absense of offsets, 8 maz-

2.7 Kink Instability
If one of the beams is displaced vertically for some reason, this offset triggers a
vertical oscillation and, when D is large, the oscillation is enhanced by the beam-

beam force. This phenomena is known as the kink instability. Figure 16 shows a
specific example.
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Fig. 16. An erample of kink instability for D =20. 4 =
0.2, and Ay = 0.2

In the above figure the bunch is sliced longitudinally and the vertical coordi-
nate y of the center-of-mass of each slice (in units of oy) is plotted against the
longitudinal coordinate s (in units of o,). Each graph corresponds to a snapshot
of the beam vertical position at a particular time ¢ (in units of 0. /¢). The devel-
opment of the instability can be seen in time sequence. The initial offset in this
example is chosen to be 0.20, (full) and the disruption parameter is D, = 20.

For uniform beams and small amplitude oscillations, the equation of motion
for the beam particles can be obtained from fluid dynamics (the flat beam version
of the equation is given in Ref. 8),

V27 D
=2 (2.7.1)
6 o:

7] 912
[E = E] Yy = _wg(y:t - Yx)s wg =

where y is the y coordinate of e*and e~ beams. Consider the space-time variation
of y+ to be of form exp{ikz — iwt + #}. The non-trivial solution of the above
equation should satisfy the following dispersion relation:

wd w?
1= —2 0 T.
@+ k2 (0t k) (27.2)
The most unstable solution is found to be
V3 1 :
y+ = const. X exp [:tz(\/T—wos - %r_) + -2—wot] . (2.7.3)

This solution is in reasonable agreement with the simulation shown in Fig. 16.
Namely, the phase difference between e~ and e* beams is varified to be 7/3, and
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the growth rate is as predicted. Furthermore, Fig. 16 clearly demonstrates the
standing-wave nature of the kink instability, which agrees with the description of
Eq. (2.7.3).

So far our discussion on the kink instability deals with collisions of two
bunches. Another type of kink instability occurs during the collision of two bunch
trains, each consists of Ng bunches. One of the major problems of such a multi-
bunch operation is the interaction between bunches before and after their colli-
sions at the central collision point. The i** bunch in the electron bunch train
will collide not only with the i** bunch in the positron train, but also with the
j(< i)™ positron bunch before coming to the central collision point. Colliding two
flat beams at a relatively large crossing angle can help to avoid unwanted direct
encounters between the outgoing bunch debris and the incoming fresh bunches.
However, due to the long range nature of the Coulomb interaction. there still ex-
ists undesirable interference between two separated bunches at a distance. Since
the crossing angle cannot be made arbitrarily large due to the luminosity con-
sideration, this long range interaction cannot be entirely suppressed. In fact. it
imposes a severe restriction on the stability of the beams.

~ Consider the encounter between the nt* positron bunch after collision and the
m™® (m > n) electron bunch before collision at a distance L from the collision
point. A schematic diagram of the system is shown in Fig. 17. We assume that
all the bunch encounters occur within the drift space around the central collision
point.

According to Eq. (2.6.15), the center-of-mass deflection angle for the n'"

positron bunch is
lo
Oyn = 5 d

o:

DyH(Dy,Ayn) (2.7.4)

where Ay, is the relative offset between the mt* electron and the nth positron
bunch, in units of oy, at their closest encounter. The cumulative offset for the
m*" bunch before arriving at the central collision point is therefore

Ap=C Y H(Dy,B8n)+6m (2.7.

n<m

o
-1
(WL
~—

where 6,, is the initial offset of the m!* beam, and the coefficient C is

C = D,D, (2—4)2 , (2.7.6)

and 64 = 0, /0, is the diagonal angle of the bunch.

The cumulative offset Ay, (in units of 6(1 + C)™~1) is plotted as a function
of the number of bunches in Fig. 18. Since the factor 64/6, must be larger than
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Fig. 17. A schematic diagram of multi-bunch collision.

unity in order that the crossing angle does not reduce the luminosity significantly.
the condition for negligible growth of the instability, i.e., Ay, < 6, according to
Fig. 17, is roughly

(Ng—1)D,D, £2 . (2.7.7)

This imposes a constraint on the allowable number of bunches per train.

3. BEAMSTRAHLUNG EFFECTS

The energy spectrum of the electrons is important for two reasons: (1) the
tip of the spectrum, i.e., the distribution near the initial beam energy, provides
information on the energy resolution for high energy physics events, and (2) the
tail of the spectrum, i.e., the distribution of the low energy electrons, which had
suffered severe energy loss through hard beamstrahlung, reveals the likelihood of
finding large disruption angles. This second issue will be addressed in the next
section.
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Fig. 18. Cummulative offset as a function of the number of bunches.

The energy spectrum of radiation can be characterized by the beamstrahlung

parameter T, defined as
B
T=y=— |, 3.1

VB, (3.1)

where B is the effective field strength of the beam, and B, = m?c3/eh ~ 4.4 x 1013

Gauss is the Schwinger critical field. For historical reasons, this parameter is

related to the parameter £ introduced by Sokolov and Ternov, by a simple factor

3/2:

(critical energy) 37ey? 3 - 5
6 = - == =3 ) (3“)
(initial energy) 2 ap 2

where p is the instantaneous radius of curvature. Since the two parameters are
trivially related, we shall employ either of them depending on the convenience of
the situation. The typical value of ¢ during collision is

rg'yN 2
ao,0y 1+ R

1= , (3.3)

where R = o0;/0y is the aspect ratio of the beam. The average value of ¢ is
a bit smaller than Eq. (3.3) (by about a factor 2/3) but we adopt it for the
better description of the spectrum tail which is contributed more effectively from
beamstrahlung with larger £.

3.1 Energy Spectrum of Final Electrons

Let ¥(FE,t) be the energy spectrum function of electrons at time ¢ normalized
as [Y(E,t)dE = 1. We assume that the emission of a photon takes place in
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infinitesimally short time instance, at least for linear colliders in the near future.
Then the evolution of the spectrum function can be described by the rate equation

%’ft.’ = —N.,(E)z,/’(E,t)+/F(E,E1)¢(E1,t)dE1 . (3.1.1)
E

Here, N, (E) is the average number of photons per unit time and F is the radiation
specrum function; i.e., F(E,,E1)dE> is the transition probability of an electron
from energy E) to the energy interval (E;, E; + dE;) during time interval dt.
Obviously, F(E>.E;) = 0 if E5 > E; and F does not include the probability to
stay at the same energy without photon emission. The sum over the whole energy
range gives the number of photons:

E;
/F(EQ,EI)QIE2 = N,(Ey) . (3.1.2)
) ,

The quantum-theoretical spectrum function F is well-known,

N¢
F(E'\E)= z5 /(&)
o : (3.1.3)
1 2y 2
$e) = 5y | Kontonde + 32 Kyt
y
with
w 1 1E-E" 1,1

where K’s are the modified Bessel functions, N the number of photons per unit
time by the classical formula, « the photon energy,and ¢ = E'/FE the fractional
energy. The number of emitted photons per electron can be expressed as

. ar.N
N.’ = 7CIL,0(£1)’ with Nd = 2.1201 n 7y s (315)

where Up(¢) is the ratio of the quantum-theoretical number of photons to that
from the classical theory, and is found to be”

_ 1-0.598¢ +1.061¢5/3
B 1+ 0.922¢2 ’

Uo(€) (3.1.6)

where the relative error is within 0.7%.
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An approximate formula for the energy spectrum of electrons after collision
can be therefore derived. The details are given in Ref. 10, where the spectral
functien 4(¢) (¢ = E/Ey) is found to be

-y

d(e) > e [5(5-1)+ le_ h(lel/?')} , (3.1.7)
with
A+1oc
1 ~1/3
h(z) = 5 exp(zp +p)dp (A>0)
Aiso (3.1.8)
ot n
- Z z
- ~ n'T'(n/3) °
and
1 ; £1y
Ny = ——N, N, . 3.1.9)
YTitay YT 1x Gy ( '

(This formula does not exactly satisfy the normalization condition except for
&1 — 0 which leads to Ny = N, = N,.) The function h(z) can be estimated very
accurately by with relative error less than 2%. Figure 19 compares Eq. (3.1.7)
with the simulation results using the parameters for the TLC and the ILC."" The
design parameters of the two colliders are summarized in Table 1. The histograms
in Fig. 19 are from simulations and the dotted data are computed from Eq. (3.1.7).
"The agreement is excellent.

3.2 Maximum Deflection Angle

The particle which once lost a large fraction of its initial energy through beam-
strahlung would, in principle, be severely deflected by the beam-beam field and
cause background problems for high-energy experiments. Consider an electron
which emits a hard photon at a particular time during the collision and results in
an energy €FEy, with ¢ < 1. The effective disruption parameter for this particle
becomes D;/e and Dy/e. One might think that Egs. (2.6.10) and (2.6.11) are
still applicable by replacing D by D/e. However, the collision of a single particle
on a beam with the disruption parameter D/¢ is different from the collision be-
tween two beams with D /e, although the qualitative feature is the same; i.e., the
disruption angle increases linearly in D for D £ 1 and more slowly for D 2 1.

A simulation was done by monitoring low-energy test particles through the
collision process. The maximum deflection angle for a given ¢ is found to be
roughly:
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Fig. 19. Electron energy spectrum for TLC and ILC parameters.

o D/e
oz \/1+ (0.75D/e)*/3

. (ex1) (3.2.1)

Omaz ~

where D = D;(Dy) and 0 = 0;(0y) for the horizontal (vertical) angle.

The minimum value of ¢ can, in principle, be as small as 1/4. But the real
problem is about how small a ¢ should one care. Since the number of photons
N, per beam particle for linear colliders in the near future is of order unity.
the spectral function %(¢) given in Eq. (3.1.6) is always dominated by the factor
e~ ¥ in the spectrum tail, where y > 1 (in logarithmic sense). Therefore, if the
acceptable background count is n out of N electrons, then the minimum ¢ of
concern is approximately determined by y = log(N/n), or

1
min = T1¢ log(N/n)

(3.2.2)

With this value of €, one can directly estimate the maximum deflection angle using
Eq. (3.2.1). Since the dependence on n is only logarithmic, one can set n = 1.
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Table 1. Parameters for TLC and ILC (Ars =17 mm)

TLC ILC
Eq [TeV] 0.5 0.25
N 8 x 10° 7 x 10°
or [nm] 190 440
oy [nm] 1 3
o, (pm] 26 65
R 190 147
¢; [mrad] 2.58 x 10712 5.2 x 10712
€y [mrad] 2.33 x 10~ 5.2 x 10~
D, 0.033 0.027
D, , 6.27 3.9
Ay 0.0002 0.0017
Ay 0.60 0.37
* L/ Lo 1.61 1.71
) 0.15 0.01
* N, 1.33 0.38
& 3.43 0.19

* Quantities computed by simulations.

Thus, for example, €m;n = 0.013 (0.188), 6; mer = 10 (0.95) mrad and Oy.mar =
0.4 (0.15) mrad for TLC (ILC) parameters.

4. ELECTRON-POSITRON PAIR CREATION

During the collision of the e*e™ beams, there are finite probabilities that a
photon will turn itself into a e*e™ pair. Once the e"et pairs are created with
lower energies in general, one of the two particles in each pair will have the same
sign of charge as the oncoming beam. (For the sake of argument, consider a low
energy et moving against the positron beam). Unlike the case of a low-energy
e~ moving against a positron beam, where the potential tends to confine the
particle in the beam profile, in the case of a positron the potential is unconfining
and the particle can, in principle, be deflected by a large angle and thus create
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severe background problems. This effect would therefore impose a contraint on
the final focus design. '

It occurs that the ete™ pair can be created by either real or virtual photons.
These photons, in turn, can pair-produce through two different physical processes.
namely, the coherent and the incoherent processes. While the incoherent process
has been studied earlier.”’* it is recently realized'”'that the coherent process is
even more severe.

Recall that in the case of radiation by e~(e*) during beam-beam collision.
there are essentially two mechanisms that induce the radiation. Namely. there
is an “incoherent process, or Bremsstrahlung, associated with the individual

+ scatterings, and there is also a “coherent process due to the interaction

e e
between the radiating charged particle and the macroscopic beam-beam EM field.
At high energies and strong fields, the coherent process tends to dominate over
the incoherent one. This is actually why our discussion on beam energy loss has

been focused only on the beamstrahlung process.

The beamstrahlung photons once emited would have to travel through the
remainder of the oncoming beam before entering into free space, and would there-
fore turn themselves into e~e* pairs. Analogous to the case of radiation. photon
pair creation also involves coherent and incoherent processes. Here again. at high
energies and strong fields the coherent process will dominate over the incoherent
one.

4.1 Beamstrahlung Pair Creation

It is well known that the cross section for incoherent pair creation is

o(ve = eete™) ~ %ar? Iog(4::2E)cm2 , (4.1.1)
which is a very slowly varying function of the photon energy w. For TLC, v =
1 x 10°; the cross section is ~ 5 x 1072¢ cm? for photons at full energy. The beam
parameters for TLC listed in the above Table gives the average number of the
beamstrahlung photon per beam particle as N, ~ 1.3. On the other hand, it can
be shown’“that the effective luminosity for such a cascading process is 1/2 of the
original. Thus, the number of e~“e* pairs created per bunch crossing can easily
be evaluated:

- 1 N,L
cre- = 0(1€ = ee‘“e‘)—f’;ﬁ ~2x10° | (4.1.2)
P

where L. = 1.3 x10%3cm™2%sec™!, and frep = 220 sec™! in this design. To be sure.
this process provides a non-negligible amount of e~e™ pairs.
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The rate of photon pair creation in a homogeneous magnetic field has been
studied by many people,”) and has been generalized to inhomogeneous fields by

Baier-and Katkov!® In the asymptotic limits the rate can be expressed as

3v3 oY e—8/3x

dI_ 16v2 A~ Cox kil (4.1.3)
dt ) 15 213 T(5/6) ot -
FE w57 x>

Here x = Tw/FE plays the similar role as T in the case of beamstrahlung. Notice
that y is independent of the initial particle energy 4, as the process does not care
where the photon was originated. Let

di oY
To a very good approximation.m
-1,- 4 .
T(x) = 0.16x ]1\12/3 (51) , (4.1.5)

for all values of y.
Integrating over the collision time (again. only half of the e~e™ collision time)

we have
\/3_ o,aT

T(x)
2 A (4.1.6)

= ';'ncIT(X)

Next we evaluate the mean value of T(x) by weighting over the beamstrahlung
spectral function,

dnyg 1ao, 7 €2y -

w7 {/Ks/s(r)dr+ 1+€y1&z/3(y) ; (4.1.7)
Yy

and
r d Ed |
_ an bl
(T(Y)) _/T(x) = dw// o . (4.1.8)

0 0

The total number of e"e™ pairs created through this coherent process is therefore
1
oo = 5 Nana(T(Y)) (4.1.9)

A plot of (T(T)) is shown in Fig. 20, where the solid curve is from the exact
form of dny/dw in Eq. (4.1.7) and the dashed curve corresponds to an asymptotic
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expression for dny/dw at large y. The closeness between the two curves suggests
that only the spectrum tip contribute effectively to the coherent pair creation
process From the TLC parameters, ng ~ 1.9, so we find that

N& - ~5x107 (4.1.10)

which is much larger than the incoherent process.
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It should be noticed, however, that (T') drops exponentially for T < 1. There-
fore, for next generation linear colliders at the range of 1 TeV, which would typ-
ically have T ~ 1, it would not be at all difficult to redesign the machine such
that the coherent process can be entirely suppressed. For the above-mentioned
TLC parameters the condition is T < 0.3. This, ironically, is an over-kill since
the incoherent process corresponds to T ~ 0.6, as can be read from Fig. 20.

4.2 Energy Spectrum

Since to a large extent N, is of the order unity and quite insensitive to other
parameters, and since we usually choose to fix the luminosity in a design, the in-
coherent e~e* pairs can not be easily suppressed. It is thus important to evaluate
the energy spectrum of the pair created et. Assuming constant probability in
finding the e* at energy e E < w, the spectrum can be derived to be

2/3 3 :
7(3/2) Z_ND,YY3F(e,T) . (4.2.1)

Nev(e) = 18721(1/3) ym

The spectral function F(e, T) is plotted in Fig. 21 for T = 0.2. At the small ¢
limit, F(e,T) x 1/e.
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Fig. 21. The spectral function for incoherent pair created e™.

The energy spectrum of the pair produced positron from the coherent process
can also be obtained from the same basic equation that gives rise to Eq. (4.1.3).
without integrating over the final energy. It can be shown that the spectrum is

d*1 1 am 1 8 R
= Br o — sinh® y K /3(a) + (1+ tanh? y) K (422
Indl = Jin 5 el —n) Loy b vRis(a)+ (14 tan Wkpla)] . (42.2)

where E is the energy of the positron, and w the photon energy, both in units of
the primary electron energy,

1 w
cosh?y = = ,
4 n(w —n)
and
a= i cosh? Y
3x

Figure 21 is a plot of Eq. (4.2.2) with T = 1.0, in units of am/+/37y. The two
curves correspond to beamstrahlung photons at full, i.e., x = 1.0, and half of the
primary ete™ beam energy. We see that the spectrum is considerably narrower
than the corresponding incoherent process. This is even more so when x becomes
sufficiently less than unity. An intuitive way of understanding this fact is to realize
that, although the coherent process at T ~ 1 has much larger probability than the
incoherent one, the eqivalent photon energy of the beam-beam field at is range is
barely above the invariant mass threshold for pair creation. This is also reflected
by the steep exponential decrease of the function (T'(Y)). Thus the ete™ pair
tend to share the initial photon energy evenly, and the damage of the coherent
process at the TeV range dose not seem to be too harmful.
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Fig. 22. The positron energy spectrum from coherent pair

creation for T = 1.

4.3 Deflection Angle

Finally, we evaluate the deflection angle of these low-energy positrons by the
beam-beam field. As a rough estimation, we assume that the vertical field bevond
the beam height extents constantly to a distance equal to the beam width o,. It
is then easy to show that the deflection angle for the et with energy ¢ is

2 o /D 2
37 =V=E . b2 7§9d ;
6 = (4.3.1)
2% Qg‘ ’ 06 S % ed

The deflection angle in the above expression is plotted in Fig. 23. For a 1 GeV’
et, 6. ~ 45 mrad. The information on the transverse monemtum can be easily

deduced from the above expressions via p; = eb,.
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