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ABSTRACT 
. 

Three major effects from the interaction of e+e- beams - disruption, beam- 
strahlung, and electron-positron pair creation - are reviewed. For the disrup- 
tion effects we discuss the luminosity enhancement factor, the maximum and rm$ 
disruption angles: and the “kink instability . All the results are obtained from 
computer simulations. Scaling laws for the numerical results and theoretical ex- 
planations of the computer aquired phenomena are offered whereever possible. 
For the beamstrahlung effects we concentrate only on the final electron energ\ 
spectrum resulting from multiple photon radiation process. and the deflection an- 
gle associated with low energy particles. For the effects from electron-positron 
pair creation, both coherent and incoherent processes of beamstrahlung pair cre- 
ation are discussed. In addition to the estimation on total number of such pairs. 
we also look into the energy spectrum and the deflection angle. 

1. INTRODUCTION 

There are three major phenomena induced by the beam-beam interaction 
which are important to the design of high energy linear coiliders. Namely, t,here 
is the disrzlption process where particle trajectories are bent by the collective 
EM field provided by the oncoming beam, and there is the beamstruhlvng process 
where particles radiate due to the bending of the trajectories. The third major 
phenomenon, i.e., the electron-positron pair creation, is associated with the fact 
that during collision any high energy photon has a finite probability of turning 
itself into a e+e- pair with lower. energy in general. 

The most important impact of disruption is the deformation of the effective 
beam sizes during collision, which causes an enhancement on the luminosity. In 
addition, the disruption angle affects the constraints on the final quadrupole aper- 
ture. When the two beams are colliding with certain initial offset, the disruption 
effect between the two beams would induce a kink instability, which imposes a 
constraint on beam stability. Ironically, this instability helps to relax the offset 
tolerance for flat beams because the offset beams tend to find each other during 
the initial stage of the instability. Under a multi-bunch collision mode, however, 
the kink instability will largely degrade the luminosity through the relatively long 
growth time. On the other hand, the direct impact of beamstrahlung is the loss of 
the available energy for high energy events, and the degradation of beam energy 
resolution because of the stochastic nature of the radiation. Furthermore, the low 
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- energy particles resulting either from beamstrahlung or from pair creation would 
be severely deflected by the strong beam-beam field, and would therefore impose 
constzaines in the design of the linear collider interaction point region. 

Most of the issues raised above can be studied by decoupling the disruption 
and the beamstrahlung effects. The energy loss due to beamstrahlung may modif! 
the luminosity enhancement, but this effect can be ignored since we are onl? 
interested in the case where the average energy loss is small. ConverseI?.. the 

. average energy loss. the final energy spectrum and the pair creation process can be 
studied by assuming no disruption without compromising too much on accuracy. 
There is, however, one issue where the two effects are strongly coupled. This is 
the maximum disruption angle associated with the large deflections from the lon 
energy particles. 

In this lecture we review what has been studied on these issues. The computer 
simulations are performed using the code ABEL (Analysis of Beam-beam Effects 
in Linear colliders) described in Ref. 1, but improved considerably since it ivas 
first written. Although it is attempted to make this lecture pedagogical. man! 
details are reluctantly omitted to avoid lengthiness. The reader is urged to consult 
the sited references in these circumstances. 

2. DISRUPTION EFFECTS 

It will be shown in this chapter that all the disruption effects can be well 
described by two Lorentz invariant parameters. Namely, one is the disruption 
parameter D, defined as .. 

D 2r,a,N 
Z,Y = 

Yflz,y (a, + Qy) ’ 
(2.1) 

where r, is the classical electron radius, y the Lorentz factor of the relativistic 
beam, and uZ, oy, ur the rms beam size. Physically, D measures the strength of 
mutual focusing between the two beams. The other is the A parameter, defined 

’ -as 

(2.2) 

where pL,y are the P-functions at the interaction point of the e+e- beams. 

Physically, A measures the inherent divergence of the incoming beam. This 
is important because the collision process takes place within several o,‘s around 
the interaction point, and the natural variation of the beam size over such a 
distance due to the finiteness of the P-function would have significant impact 
on the disruption process. In the study of disruption effects one often chooses 
to fix the beam size 00 (for round beams) or oZ and cry (for flat beams) at the 
interaction point so that the nominal luminosity (in the absence of disruption) 
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can be computed. In such case A is related to the invariant emittance cn via the 
relation .4 = cnflz/yc7i. Futhermore, one can easily verify that A/D manifests the 
initial phase space area per particle of the beam in units of the classical electron 
radius: 

A fn 
-= - 
D r,-N ’ 

which is independent of the optics that the beam experiences. Similar arguments 
also apply to flat beams. 

In this lecture we assume the same initial parameters for the colliding electron 
and positron beams. The longitudinal coordinate s is fixed to the center-of-mass 
frame whose origin is the collision point of the two bunch centers. The time 
coordinate 2 is defined such that t = 0 when the two bunch centers collide. \\‘c 
further introduce the longitudinal coordinates z3 (j = 1,2) co-moving with the 
two bunches. The origin of zJ is the center of the jth bunch. and :, is positive 
along the direction of motion of the beam (see Fig. 1). 

t=o 
t--t-j--t--i 

_--- 
/ ’ 

7I,‘- - - -, 
/ / I 2 F- \ 

4’ 
z*=04\ 

, z,=z’ \- 
\ \ \ I 

,rZ,=O 
.\ --- z-r-‘---/-‘/ 

I 
0-87 s=o 5838A 1 

Fig. 1. Schematic diagram that defines the various coor- 
dinates of the two colliding bunches. For a test particle 
in bunch 1 at z1 = t, the relative coordinate with respect 
to bunch 2 is 22 = -2t - z. 

In our calculations we shall ignore the longitudinal component of the focusing 
force, which is of the order l/y smaller than the transverse component. Thus the 
coordinate zj of a particle is a constant in t. It is easy to see that particles in one 



- bunch that arrive at 9 at time t should have their co-moving coordinate 21 related 
to s by 

s=q+t. (2.4) 

where we adopt the convention that the speed of light c = 1. On the other hand. 
particles in the opposite bunch arriving at the same space-time point would have 
their co-moving coordinate z? related by 

s = -Q-t . (2..5) 

\\‘ith these relations in mind. the luminosit!. for .4 = 0 is defined b> 

L = 2f.Y2 J drdydsdt nl(s.y.q.t) n2(q/.za.t) , (2.6) 

where f is the repetition rate of collisions, and n,(z. y. z,.t) the distribution func- 
tion of the jth beam at time t, normalized such that 

J +r,y,+t) drdyd+ = 1 . j = 1,2 . (2.7) 

Sin& we ignore the longitudinal force. the longitudinal distributions are constant 
in time, i.e., 

nJ(w,+t) d4/ = n&J = &- 
z 

In the absence of disruption, the luminosity in Eq. (2.6) can be straightfor- 
wardly integrated (assuming Gaussian distributions) to get 

& = fN2 
4*ao2’ 

(?.9) 

the above expression should be modified to take into account When A # 0, 
the variation of the beam cross section due to the change of the &function around 

- the interaction point. This can be done by introducing a reduction factor VA: 
00 

VA = ’ 
(2.10) 

such that the luminosity for a finite A in the absence of disruption is 

CA = TA&I . (2.11) 

Numerically, VA 21 0.76 at A = 1.0, and rapidly approaches unity for A < 1. 
Since a reasonably designed accelerator would presumably be chosen to work in 
the regime where A < 1 to avoid degradation on luminosity, we find it convenient 
to use Co as a reference parameter for all values of A. 
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When the disruption is included, the effective luminosity L would be different 
from Lo, and a luminosity enhancement factor HD is introduced to account for 
the change 

L 
HD z - . 

LO 
(2.12) 

Note that with HD so defined without 77~ involved, it is possible that HD 5 1 
. when D is small but A is large. 

By the same token. we introduce a disruption angle enhancement factor Ho. 
In the weak focusing limit where D < 1, the approximate solution of the equation 
of motion for a particle Lvith impact parameter r,-, can be shown to be 

dr r,h 
z - 

-77-g. 
ftnal 

r*iJ 

Thus the nominal disruption angle can be defined as 

(2.13) 

(2.14) 

The effective disruption angles 8~ for an arbitrary D is generally different from 
80, so He is defined as 

60 

He - 80 . (2.15) 

2.1 Luminosity Enhancement Without Offset 

Our primary interest is the enhancement of luminosity due to the mutual 
pinching of the two colliding beams. The details have been discussed in Ref. 2 for 
round beams and will be given in Ref. 3 for flat beams. As was pointed out in 
Ref. 2, the luminosity is infinite if the initial beam is paraxial and the compu- 
tation is perfectly accurate. This is because a paraxial beam can be focused to 
a singular point. In reality, however, a beam will always have certain inherent 
divergence, and the singularity is only approached asymptotically. To account 
for this effect, as mentioned earlier, a parameter A,,, = a,//3i,y is introduced,‘) 
which is proportional to the emittance for a given beam size o,,~. The computed 
enhancement factor HD = L/to, where Lo is the geometrical luminosity without 
the effect of the depth of focus related to A,,, taken into account, is plotted in 
Fig. 2 as a function of D, and A, for flat beams. 

The data in Fig. 2 are obtained by using a distribution function which is 
uniform in z and Gaussian in y and z (UGG), instead of a three-dimensional 
Gaussian distribution (GGG), for easiness of computation. The enhancement 
factor of GGG distributions for a given D, can be deduced from a superposition 
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1.0 

lDd(l 

1 10 100 

DY 6157A' 

Fig. 2. Luminosity enhancement facior as a function of 
Dy, computed with four difcrent values of ‘4,. The A, 
values are so chosen that they are equally separaicd on 
the logrithmic scale. 

Fig. 3. Luminosity enhancement factor for round beams. 

of UGG results with disruption parameters ranging from 0 near the horizontal 
edge to mDY at the beam center. The enhancement factor for round beams 
is shown in Fig. 3. 

By comparing Figs. 2 and 3, one finds that the enhancement factor for flat 
beams scales roughly as the cube-root of the corresponding value for round beams: 
which obeys the following empirical scaling law that fits all data points in Fig. 2 
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to within 10% accuracy: 

H~=i+D’/~(~)[in~~+i)+?ln(~)] . (2.14 

The reason for the flat beam enhancement not being scaled as a square root of 
the corresponding value for the round beam is because the horizontal focusing can 
enhance the vertical pinch effect (and vice versa) in the round beam case. whereas 
for flat beams the pinch in the major (horizontal) dimension can hardly affect the 
disruption in the minor dimension. 

In both cases. the Chen-Yokoya ,results indicate a logrithmic divergence of 
HD as a function of ,4: or A,. In addition. HD is monotonically increasing as a 
function of D, or D,. at least up to D =lOO. This second point is qualitatively the 
same as that found by Fawley and Lee” but in contradiction to Holebeek5’ and 
Solyakb’ where the enhancement factor first saturates before eventuall!. decreases 
at large D’s. 

The difference appears to be due to the different ways of handling stochastic 
.-errors. In a Monte Carlo simulation the initial condition is generated by random . 

numbers, which introduces a statistical fluctuation. and therefore an asymmetry. 
of the order l/ fi, lY, being the number of macro particles. This asymmetry will 
be amplified during collision (i.e., kink instability) due to the beam-beam force. 
especially when the disruption parameter is large. The fact that the number of 
macro particles in a simulation is typically much smaller than the actual particle 
number, this fluctuation is artificially enhanced if no proper action is taken. To 
minimize this computation error in the study of luminosity enhancement without 
offset, the particle distribution function should be symmetrized at every time step 
in the calculation, so that the beam-beam force has the up-down symmetry at all 
times for the flat beam case. Similarly, in the round beam case only the radial 
force is computed. This process eliminates the possible instability triggered by 
computation errors. 

The actual collisions are expected to have some unavoidable initial offset in 
alignment and skewness in distributions. This effect will be discussed in the next 
section. 

In order $0 analyze the physical mechanism of the disruption process which 
give rise to the HD behavior shown in Figs. 2 and 3, it is useful to investigate 
the time evolution of Ho. The differential luminosity (per unit time), dL/dt, can 
be defined as 

dL 
dt 

= 2f NZ J dxdyds nd~,wl,t) dw,at) . (2.1.2) 
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By the same token the differential luminosity enhancement factor, dHD/dt. is 
defined by 

dHb 1 dL 
-=zdt dt 

(2.1.3) 

such that 

Ho= - 
J 
Oc dHD & 

dt ’ 
-0C 

In the absence of disruption it is easy to see that 

dHD -= 
dt 

(2.1.4) 

(2.1.5) 

and from this expression J(dHD/dt) dt = 1, by definition. Figure 3 shows dHD/di 
as a function of time for various values of D for round beams. Silimar beha\.ioi 
is also seen for flat beams, though not as dramatic. Here the parameter A is 
fixed at 0.05, and the time t is in units of 0*/c. In spite of the fact that the Ho 
cur\.es in Fig. 3 are reasonably smooth for each fixed value of A, the curves shoJvn 
in Fig. 4 reveals different characteristics throughout the entire range of the value 
of D. 

For very small and very large D’s, dHD/dt varies as a Gaussian function 
(although for large D regime there are small wiggles superimposed), while for 
medium values of D there is an obvious spike. 

For very small D, e.g., D 6 0.6, we find that dHD/dt varies essentially as 
Eq. (2.1.5), which reflects the square of the longitudinal particle distribution of 
the bunch. When D w 0.5, a second peak appears at t 2: 1.6 u,/c. The peak 
grows as D gets larger, and eventually becomes the dominant source for the lumi- 
nosity enhancement by D 2 0.7. Notice also that the location of the second peak 
shifts gradually to the left as D increases, where the strong disruption induces the 
phenomena to occur earlier in time. Furthermore, while the buildup of the second 
peak becomes steeper, its falloff becomes smoot,her as D increases. This phenom- 
ena of a second peak appears in the region 0.5 S D S 5. Beyond D N 5, the 
differential luminosity evolves into a new regime. The “second” peak now occurs 
right near the beginning of the collision, and its smooth falloff now recovers the 
Gaussian-like variation, except that there appear to be high-frequency wiggles su- 
perimposed. While the time evolution of dHD/dt in both the small and the large 
D regimes behave similarly, their absolute values are distinctively different. 

It turns out that the underlying physical mechanisms are indeed very different 
in the above mentioned three regimes of D, classified as follows: (1) the small D 
(D S 0.5), or the we& foczLsing regime, (2) the medium D (0.5 d D 6 5). or 
the transition regime, and (3) the large D (5 5 D), or the pinch conjnement 
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Fig. 4. Computer analysis on the time evolution of the 
luminosity enhancement factor HD, at various di.erent 
values of D with A = 0.05. 

regime. In the following sections we shall provide theoretical descriptions that 
qualit,atively explains’the phenomena occurs in the three regimes. 

2.2 The Weak Focusing Regime 

The weak focusing regime corresponds to the range 0 < D S 0.5. For such 
small values of D, dHD/dt is essentially described by the Gaussian function in 
Eq. (2.1.5). Th e correction to this expression to the first order in D can be derived 
in the following way. For the sake of argument we assume A = 0. This is justified 
because it turns out that there is no divergence at A = 0 in the correction term 
linear in D, i.e., to this order the correction arises only through the radial motions 
of the particles. 

The equation of motion of a particle at zr in a bunch is 

d2r 4h’r, 
F= -r fo(r) nz(-2t - 21) , (2.2.1) 
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with 

(2.2.2j 

where nTo(r) is the unperturbed radial distribution function normalized such that 
J nro(r) rdr = 1. T o d erive the first order correction Ke had assumed unperturbed 
distribution on the right-hand side of Eq. (2.2.1). The solution of Eq. (2.2.1) with 
initial conditions r = ro: and dr/dt = 0 at t = -oc is given by 

r(t.21) = rg - % jo(r0) g(t.q) . 

with 

(2.2.3) 

i 

dtz n,(-21, - q) = 
J 

dt, (t - tl) n,(-2tl - q) . 
--o= -CC -CK 

Equation (2.2.3) can be inverted as 

4iYr, 
r0 A r+- 3 So(r) 9(t. 21) . (22.-l) 

within the same order of accuracy. For our purpose we like to know the perturbed 
radial distribution function n,(r) at (t,rl). This can be found by 

4r; 1 n,l(r,t,q) = %o(ro) - 
d(r?) 

(2.2..5) 

= 72,0(r) 1 + [ T (-& % j0(7-)+nr0) g(f,ri)] I 

Accordingly, the luminosity can be evaluated as 

Lcx J rdrdzl dz2 nz(.q) 72,(22) wl(r,t,~l) %l(rA~2) 1 7 
2=-(z1+z2)/2 

= J rdr dq dz2 n,(q) nz(-72) [nro(r)12 

x {I+? (& 2 fo+n,o) [9(t.--1)+9(1:~2)]}f=-(*,+i2),2 ’ 
(2.2.6) 
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where the leading term (unity) corresponds to the nominal luminosity Lo. The 
integration over r can be carried out, which gives 

Ldn,ojo+ 
n,o dr 

nro) = l 7 rdr n90 . (2.2.7’) 

0 

Thus the luminosity enhancement factor for small D is 

(2.23) 

X 
J 

dzl dzz n,(q) n,(=z) g(t. =I) + g(t. =z) 1 f=-(;I+i2)/2 
Since the two colliding bunches are symmetric. g(t.q) and g(t. ~2) contribute 
equally to Ho. where 

. 
1 oc 

g(t. fl) = 
J 

dtl(t -t,) n;(-2fl - q) = ; 
J 

TdT n;(7 + zz) . 
f=-(a+zz)/? -m 0 

(2.2.9) 
Therefore 

(2.2.10) 

Now we introduce normalized coordinates p = r/00, and < = Z/O,. Then 

HD = I+D[$$$‘] Td( jrdrn,([)n,(r+() . (2.2.11) 

0 0 

For Gaussian and uniform distributions, this leads to 

HD =l+Dx 
g (radially Gaussian) * (longitudinally Gaussian) 

$ (radially uniform) 5 (longitudinally uniform) 
(2.2.12) 
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This formula agrees very well with the simulation results for D S 0.6. Notice 
that for D << 1, the empirical expression for HD in Eq. (2.1.1) behaves as D”/‘. 
which is-by no means close to the linear behavior in Eq. (2.2.12). This is main]! 
because of the need to suppress the strong &(1/A) dependence in Eq. (2.1.1) in 
the small D regime. This strong &(1/A) dependence, however. is necessary to fit 
the medium and large D regimes, 

Rigorously speaking, HD cannot be Taylor expanded around D = 0. In 
deriving Eq. (2.2.4) we have assumed that the first term r-0 on R.H.S. of Eq. (2.2.3) 
is much larger than the second term. This is not the case when t becomes large. 
no matter how small D is. One obvious example is that at the focal point the 
two terms would become equal. For D << l? however, this focal point lies far 
beyond the tail of the oncoming bunch, thus the subtlety mentioned above is 
alleviated. To be more explicit, from linear optics it is easy to see that the focal 
length in the weak focusing regime is proportional to 0,/D, thus the densit\- of 
the oncoming beam around the focal point is proportional to exp {-l/2 D’} < 1. 
Since HD comes from multiplication of the local densities of the two bunches, the 
contribution from the focal point is exponentially small. 

‘-2.3 The Transition Regime 

The transition regime is characterized by the appearance of the second peak 
in dHD/dt with relatively short duration. This phenomena also conforms with 
the fact that in this regime the first focal point lies inside the bulk of the on- 
coming beam. Because of the strong focusing, the deformation of the oncoming 
beam cannot be ignored. As we will show later in this section, the leading order 
correction in D for the target bunch deformation is equivalent to the second order 
contribution in D to the focusing force. To set the stage for the second order 
calculations, however, we shall still start with the first order approach where the 
equation of motion is given by Eq. (2.2.1). For small I in a Gaussian distribution 
we have 

d2x 4Nr, x (2t + %d2 
p= 

--- 
&y 2+, exp - 2a; > 

20 x 

It suffices to solve the equation 

d2x 20 x 
z= -x z exp 

(2.3.1) 

(2.3.2) 
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which arises from a coordinate transformation from f to t+zr/2. Let us denote the 
two solutjions to Eq. (2.3.2) by ur(t) and uj(t), with initial conditions at t = --3c 

Ul = l$c? f ) 212 
0 

=t+o f . 
0 

(2.3.3) 

respectively. We are interested in the solutions near the focal point, which for D S 
5 occurs at to - Q/D. By d fi ‘t’ e x-n Ion, at the focal point ul(to) = 0. ?;umerical 
integration then gives the following approximate solution: 

til(fO) 30 2 - 4 7 . (0.5 2 D 2 5) , 
.? 

while 

u?(to) 1 = - - 2 - - 02 4 
kP0) 30 

- (0.5 5 D 6 5) . 

The last relation comes from the \l:ronskian property: 

(2.3.1) 

(2.3.5 j 

q(f)U$) - til(t)u#) = 1 . (2.3.6) 

The general solution to Eq. (2.3.2) is therefore 

x = X(pl(f) +&Q(t) . (2.3.7) 

Transforming back to the original coordinates, we have the solution to Eq. (2.3.1) 

5 = XOUl (t + $) +x& (f$ ?) . (2.3.8) 

Generally, x; < 1, so from Eqs.(2.3.4), (2.3.5) and (2.3.8) we see that a particle 
at zr would be focused to the axis at time to m 0,/D, or 

(2.3.9) 

The focal point is thus at 

22 = -2 -*1 N 2$ . (2.3.10) 
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This means particles at different longitudinal positions ~1 in one bunch would all 
be focused to the same point 22 ‘N 20,/D, but at different times. 

This ‘naive picture, however, contradicts simulation results. Two diagnoses 
were performed to monitor the detail processes of beam focusing in this regime. 
Figure 5 shows the time evolution of the average radius ~(2, Z) of a set of selected 
z-slices with 21 ranging from -20, to $20, for D = 1.0 and A = 0.05. Here r is 
defined as 

where the radial particle distribution function n,(r) is normalized such that J n,( 7%) 
rdr = 1. The above definition is equivalent to the definition of the standard de\.i- 
ation 00 in the limit of a Gaussian distribution, but in general it puts more weight 
on the radii that have higher particle densities. This is particularly inspired b\- 
the observation that during the collision a bunch tends to develop into a core 
and a halo, and the conventional definition of the rms value would not reflect the 

.crucially important role of the core. 

One finds in Fig. 5 that most particles at different Z’S are focused almost 
simultaneously, at t N 0.8 aZ/c, which differs with Eqs. (2.3.9) and (2.3.10). This 
fact is also reflected by the relatively short duration of the second peak in dH~/dt. 
Indeed, the full-width half-maximum (FW:HM) of the second peak turns out to 
be around 0.4 u,/c throughout the range of 0.7 s D s 3. One further diagnosis is 
shown in Fig. 6 for dHD/dz as a function of z. This is the cumulative contribution 
of each z-slice of one beam to the luminosity enhancement. If all the particles are 
focused at the same 22, as the strong-weak picture suggests, then dHD/dz must 
show a sharp spike. On the contrary, Fig. 6 shows a smooth curve manifesting 
the longitudinal Gaussian distribution of the beam. 

To account for these facts, we proceed by including the deformation of the 
on-coming beam to the first order in D. To this order, the deformation of a 
longitudinal slice at ZI is given by Eq. (2.2.5), and that for the on-coming beam 
is obtained by simply replacing ~1 by 22 = -2t - 21, i.e., 

nrl(r,t,r2 = -a - 21) = n,o(r)[l+~(&!$fo+n,o)~(zl)]. 

(2.3.12) 
It is interesting to observe that t does not appear on the R.H.S. of the above 
equation. We can thus improve the unperturbed equation of motion by,replacing 
fo(r) with 

r 
1 

flh4 = ; J 747., t, 22 = -2t - q) rdr . (2.3.13) 
0 
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Fig. 5. Time evolution of the average radius r (in units 
of UO) of a set of selected :-slices wiih 21 ranging from 
-2a, to $2~~ for D = 1.0 and A = 0.05. n’ofice that 
in this regime of D, diflerent slices are focuscd to their 
m inimum radius at about the same time, in this case at 
t ‘v 0.8uJc. 

0 
-2 -I 0 I 2 

Fig. 6. Cumulative contribution of the luminosity en- 
‘hancement factor dHD/dz as a function oft. The Gaussian- 
like distribution indicates the simultaneity of the focusing 
process for diflerent t-slices. 

Substituting Eq. (2.3.12) into Eq. (2.3.13), we find a simple expression: 

fl(r,zl) = fo(r) [I + %  nrO(r) s(3)] . (2.3.14) 
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Actually, the above inclusion of the deformation of the on-coming beam, with 
the disruption parameter D intact, can also be int.erpreted as the inclusion of the 
modification of D to the next order, namely, 

D + D 1 + y nto(r) s(;r)] . (2.3.15) 

with the distribution fo(r) unchanged. From this viewpoint the focusing force for 
the bunch core near the axis is increased by a factor: 

4 ,Vr, 
1+- S(Zl) 

Y 
n,o(r) g(zl) = 1 +4D - . 

0, 

Once this is seen, the result from the strong-weak picture (or the first order 
expansion in D) can be readily modified to include the next order in D. Namely. 
the focal point should occur at 

t - 21 
D [l + 4;g(q),u,] - ?? 

‘From the definition of g(zr), we find for small ~1 

,9(21)= 1 -, 
02 

k-s;+... . 

(2.3.17) 

(2.3.16) 

This implies that the ~1 dependence in Eq. (2.3.17) is almost cancelled provided 
that D is not too large (e.g., of order unity). Thus the minimum beam size occurs 
at the time 

t 
- tr(D) = D (1 +;,a) . 

(2.3.19) 

We are now ready to derive the luminosity enhancement factor Ho. The beam 
size of the slice at ~1 can be derived from Eq. (2.3.8) as 

=.:[4(t+~)+($)2u:(t+~)] . (2.3.20) 

Considering that the primary contribution to HD comes essentially from the high 
particle densities near the focii of both bunches, we concentrate on the beam size 
around t N tr(D), where ul(tf) = 0. Thus Eq. (2.3.20) becomes 

a; N u; 
0 1 k(q) 2 0 - q2 + B* ~2(9) 2 

[ I) 
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+.j [!g.(!$f)2+i!z] ( (2.3.21 ) 

where Eqs. (2.3.4) and (2.3.5) h ave been used. The same expression holds for 0.; 
of the second beam near t 2 tf. The enhancement factor is therefore 

HD = J dq dz2 & .? exp {-$$+} [ u;2u3] 

= 2 J ds dt & 
* 

= -$ J $ exp { -$} [z (y)‘+ %I-’ . (2.3.22) 

Since the contribution to HD essentially comes from around f - tf? we can ap- 
proximately carry out the above integral as 

JiF HD 21 A exp 
-1 

[D (1 + D/a)]’ ’ 
(2.3X3) 

Unfortunately, this expression does not fit the transition regime in Fig. 4 too 
well numerically. In particular, it is too sensitive to A, and Eq. (2.3.22) gives too 
-sharp a peak in dHD/dt. The disagreement mainly comes from the fact that tf 
is not strictly zr independent. The residual zr dependence in Eq. (2.3.17) would 
break the simultaneity of focusing among all the z-slices. As a result, at time if 
when a slice at zr reaches its minimum size ur, the overlapping oncoming slice at 
~2 may not have reached its minimum yet. This slight mismatch between ur and 
~72 would potentially relax the sensitivity of HD on A, as in Eq. (2.3.23). 

To incorporate the residual zr dependence in tf, numerical integration will be 
needed. Our result here, however, does indeed qualitatively explain the essential 
physical process which dominates the transition regime: namely, the luminosit>. 
in the transition regime is contributed primarily from a very narrow window of 
collision time when the longitudinal slices from head to tail of each bunch are 
focused to their minimum size almost simultaneously. 

2.4 Pinch Confinement of Bunch Core 

In the large D regime (D 2 5) the most striking phenomena is the confinement 
of a large fraction of bunch particles near the axis within a small equilibrium radius 
throughout the course of collision. ?Ve call this portion of the bunch the core, as 
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opposed to the halo particles that come from either never being focused to the 
axis or being focused but escaping. The occurance of this phenomena, however. 
is nothing like a phase transition that appears abruptly at a particular value of 
D. In fact, we already see certain signatures from the slices near the bunch tail in 
Fig. 5> where slices at t = -1.0, -1.5 and -2.0 tend to stay at a pinched radius. 
This is why we called the regime for medium D the transition regime. 

In this section we devise an analytic description of the large D regime guided 
by simulation results. Since the luminosity essentially comes from the confined 
core, we will emphasize the behavior of the core. This is handled, again, by the 
mean radius P of a longitudinal slice introduced in Eq. (2.3.11). However. for the 
sake of mathematical simplicity, the transverse distributions of each longitudinal 
slice is assumed t,o be Gaussian at any time. The evolution of the beam size is 
described by the rms beam size uj(z3,s) of a slice at tj that comes to s. Since we 
assume equal beams, we have by mirror symmetry 

U](%,S) = u2(2,-s) * (2.41) 

- --In the linear approximation of the focusing force. the equation of motion of a 
particle at ~1 in the first beam is given by 

d?x 
-j-$+1(1 (21,s) x=0 , (2.4.2) 

with 

li’](%],S) = (2.4.3) 

When D is very large, the actual beam size is rapidly oscillating during the colli- 
sion. We may smooth out this fluctuation in the focusing force Kr. In this sense 
we have introduced 52 in Eq. (2.4.3), w h ere the bar indicates a smoothing over 
some short interval of s. Our task is to solve Eq. (2.4.2) to obtain ~(zr, s) and 
from which to deduce the beam size ur so as to be self-consistent with 82 in Kr. 

In the case where D is very large and the particle in consideration is well inside 
the oncoming bunch (i.e., 1221 s ( some factor) xuZ), the WKB approximation is 
suitable to solve Eq. (2.4.2). Thus, in this case we have 

~(~1,s) = iu,2 Kl~l,s~il,a @I ~04 + C2sinW , 

where 

e,= ‘,,‘mds . J (2.4.5) 

(2.4.4) 
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Here we have introduced dimensionless constants Cl and Cz. In order to express 
them in terms of the initial condition PO and *A, we need a solution near the head 
of the oncoming bunch. where if\‘E;B fails. This will be discussed later. 

Since cos 81 and sin 81 oscillate very rapidly, we may put cos* 81 = sin* 81 = 
l/2 and cos 81 sin 81 = 0. Then, we have 

(2.4.6) , 

To get the smoothed beam size we average Eq. (2.4.6) over the initial distri- 
bution, from which we get 

with 

c= (; (ci+c:)) ) 

(2.4.7) 

(2.4.8) 

where ( ) denotes the average over the initial distribution. Then. we get from 
Eqs. (2.4.3) and (2.4.7) uo 6*(z*. s) 

‘h+ & dxj z2 =fl -2s ’ [ 1 
Similarly, for the second beam 

c 
&**,s) = - 00 %(Zl,S) 1 1 m &cm *I =t2+2s * 

(2.4.9) 

(2.4.10) 

Now we can solve Eqs. (2.4.9) and (2.4.10) self-consistently with the result 

h(Zl,S) = (2.4.11) 

Inserting into Eq. (2.4.3) we obtain 

Kl(%S) = g$ [u*n*h)]2’3 [04z2,1::“= *, _ 2s * (2.4.12) 

Here we have a remarkable formula saying that the beam size is determined only 
by local variables; namely, the longitudinal density of the beam of interest at ~1 
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and the longitudinal density of the oncoming beam at the same position. All 
the history of the particle is packed in one single parameter C. Keep in mind. 
howerer.+that Eqs. (2.4.11) and (2.4.12) do not apply to the head and the tail of 
the bunches. 

Figure 7 shows the time evolution of the beam size for five ;-slices at ~1 = 
1.0, 0.5, 0, -0.5 and - 1.0 or for D = 100 and A = 0.05. These five curves 
are then overplotted in Fig. 7(f). One finds that there is no distinctive difference 
among the five curves except for the shift in time according t,o their locations in 
the bunch. The slices abruptly shrink when entering the oncoming beam and soon 
reach some equilibrium “core” with small and rapid wiggles and a slow variation of 
the mean radii. The rapid wiggles are related to the oscillations of cos 01 and sin 81. 
whereas the slow variation agrees well with [r~~(r?)]-‘/~ x exp [(‘I - 2.~)~/60~~ 
in Eq. (2.4.11), which ensures the validity of the M’KB approximation. 

D= 100 A=0.05 
c I ’ I ’ II- I ’ I ’ 

-2 0 2 -2 0 2 

et/u, 5917A4 

Fig. 7. Time evolution of the beam site forfive selected .z- 
slices at q = 1.0, 0.5, 0, -0.5, and -l.Oa,, for D = 100 
and A = 0.05, shown in the figure fern 7(a) to 7(e), 
respectively. The five figures ape then over-plotted in 7(f). 
A confined bunch core can be obviously seen. 

In order to find HD we have to express Cl, Cz and C in terms of the initial 
conditions. To this end we need a drastic approximation. The fact that the beam 
size suddenly reduces to a small value suggests that we may ignore the focusing 
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force before the particles are focused to the core. Therefore, we shall assume that 
the focusing force 11’1 is given by Eq. (2.4.12) w h en 22 is well inside the oncoming 
beambut is zero near the beginning and the end of the collision. The boundary. is 
determined by the limit where \I-KB fails. The condition that the WKB is valid 
is given by 

-- (‘.-l.l4 1 

Since ~1 is a constant for a given particle, we can rewrite Eq. (2.4.12) as 

with 

(2.4.13) 

.-We shall ignore exp( -~:/60f). assuming that our particle is nowhere near the 
head and the tail of the beam. The solution of Eq. (2.4.11) for .s’ < 0 is 

s’zs;, . (2.4.17) 

where sA(< 0) is a solution to 

SC 4 
1 > 

4sp 1 
3 b uz exp e = ’ 

and is approximately given by 

(2.4.18) 

(2.4.19) 

The above s; is thus the boundary that partitions the t,wo zones for zero and finite 
Kl’s. Note that at s’ = si A’1 is given by 

(2.4.20) 
The solution with the initial condition zo and si at s’ = sd is then 

114 
cos e + xt, 

1 114 

Ii&;) Iil(S’) I 
sin0 , 
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where 

t9= j JGds’ . 
I 

SO 

(2.4.22) 

Note that we have ignored the derivative of ICI, which is always valid whenever 
the \I’IiB approsimat ion is applicable. Rigorously speaking. we should impose 
the initial condition at s = 0, not at s’ = si. Our treatment is justified because 
for very small .4 the deflecting angle xi at s’ = s; is much smaller than uo, whicll 
is the typical \yalue of ~0. 

Comparing Eqs. (2.4.21) and (2.4.4) we have 

i 
Cl = [ a; I&) I”, 2 = [w (z&y2 fn (J-g e)l”‘a (2.-1.2:3 

c* = [u21~l(s;)]-1’4 * . (2.4.24 

Averaging over the initial distribution gives 

and 

(2.4.25) 

(2.4.26) 

The latter merely insures the conservation of the linear emittance. Since we 
assume A << 1 and D >> 1, we have (C:) >> (Cz). Therefore, 

c*=; (Cf+c$ +:, , (2.427) 

which, together with Eq. (2.4.25), determines C self-consist,ently. We now get 

c = (E)“” [g (& $)I-l” . (2.4.28) 

While C still appears on the RHS of the expression, it varies only logarithmi- 
cally. We may substitute C on RHS with some constant times D1i3. As a good 
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approximation we get 

c = (E)“” In (f)l”” (2.429) 

which agrees with the exact solution of Eq. (2.4.28) within 1% for D X 10. Thus. 
the smoothed beam size in Eq. (2.4.11) is now written as 

a*(2*,.5) = 00 
9 l - 

326 Dh(D/‘2) 
. (2.4.30) 

and the focusing function is 

I<*(q.S) = [z D4 ln (t)]1’3exp { Z’k?;i)ZZ = ;1 _ 2cs . (2.4.31) 

These formulas apply for 

(2.4.32) 

Let us now calculate the enhancement factor HD. Analogous to Eq. (2.3.23) we 
have 

J 
dtldz2 

U; 1 
HD = 

uf(q,s) +u;(z*,s) 2 exp z* = 21 - 2s 
(2.4.33) 

-Note that 2 dsdt = dqdz2. If we replace u, in this expression yit.h the smoothed 
radius a3 in Eq. (2.4.29), we get 

(2.4.31) 

via numerical integration. As in the case of the transition regime where t.he 
slight mismatch between ur and ~72 should not be overlooked, in the confinement 
regime the rapid wiggling of the beam size also plays some role and, therefore, 
one needs to use uj instead of 8j. Averaging the square of Eq. (2.4.4.) over the 
initial distribution and using Eqs. (2.4.25) and (2.4.30), we get 

u:(q,s, = (xT(w)) 

= 6 $ (c2 cos* 81 + $ sin2 81) exp { ” Lfz’}Z2 _ z1 _ 2s . 
z - 

(2.4.35) 
At 01 = n/2, we have the minimum beam size ur N [(27r)‘i4 A/2@]uo. Notice 
that if we’ignore A2 and replace cos2 81 by l/2, we recover the smoothed beam 

24 



size in Eq. (2.4.30). h ‘evertheless the finiteness of A can still contribute to the 
luminosity. near the zeroes of cos 81. Substituting Eq. (2.4.35) into Eq. (2.4.33). 
the new HD now reads 

+eXP{&f} (C2cOs2Bi+~sin282 I,:=,, -2s . 
)I - 

(2.4.36) 
Since 81 and 82 are strong functions of ~1 and 22, and C’ >> AZ/A. we can 
approximately integrate the above expression to obtain 

HD = - 
J 

& cash ($$)I 
_. .- (2L37) 
for A < C. By numerical integration and by invoking Eq. (2.4.29). we finall! 
obtain 

where Xr = 0.880 and X2 = 2.28. The agreement with the simulation is not 
excellent but the SnA dependence is correctly expressed. We can also obtain 
dHD/dt, discussed in Section 2.1, by replacing dqdr2 in Eq. (2.4.37) with 2 dsdt 
and by integrating over s. Since only small Izr j and I.221 contribute in the integral. 
we may ignore the variation of cash in Eq. (6.37) as a rough approximation. In 
so doing, we obtain 

dHD J;s 
dt=v5&, 

(2.4.39) 

Comparing this expression with the unperturbed dHo/dt of Eq. (2.1.5), one finds 
that dHD/dt for large D is indeed Gaussian with a slightly larger coefficient for t’ 
in the exponent. This fact agrees with the simulation results. quite well. (Compare 
the figure for D = 100 versus that for D = 0.2 in Fig. 4.) Notice that the functional 
behavior exp( -3t2/2az) comes solely from the WKB part. On the other hand. the 
overal factor in Eq. (2.4.39), which comes from the truncation of Kr at the head 
of the bunch, like the case for HD, does not numerically reproduce the simulation 
results. . 
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2.5 Luminosity Enhancement With Offset 

Since the asymmetry in distributions tends to shift the center-of-gravity of 
the beams, it gives rise to the same effect as the initial alignment offsets. For this 
reason our study on the effect of imperfections is concentrated on initial offsets 
only. 

As will be discussed in the next section, an initial offset triggers a kink insta- 
bility, especially when the disruption parameter becomes large. As it occurs. this 
instability is not always harmful because, in the initial’ phase of the instability. the 
beams always tend to find each other, which prevents the otherwise rapid degra- 
dation of the luminosity for large initial offsets. Figure 3 sholvs the luminosit! 
enhancement factor as a function of offset AY (in units of by) for various values of 
D,. The dotted curve is the geometrical enhancement factor without beam-beam 
force. which is equal to exp (-ag/4). I!GG distribution is used and A, =O.‘z for 
all curves. The up-down symmetry is not enforced except for the cases at AY =O. 

From Fig. 8 one finds that the tolerance on alignment offset reaches an op- 
timum for values of D, between 5 and 10. \\‘ithin this range of D,, HD is still 
above unity even at L&, w 3. Beyond this region of D, the beam-breakup becomes 

‘-severe, while below the beam-beam attraction is not yet strong enough. . 

3 
2 

1 

0.5 

HD 

0.1 

0.05 

0 1 2 3 4 5 

IbM Av by) stnu 

Fig. 8. HD as a junction of offset AY for flat beams. 

The same data as in Fig. 8 is replotted in Fig. 9 as a function of II,, and 
each curve corresponds to a fixed value of A,. (The region of large D, and small 
AY is not very accurate because of its sensitivity to computing errors.) One sees 
a saturation and decrease of HD as a function of D, unless Ay = 0. One also 
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2 5 10 20 50 

IO.811 DY 6157A5 

Fig. 9. H,~J as a junction of D, for flaf beams. 

notices that the curves with small offsets, e.g., Ay = 0.2, resemble the results in 
‘Refs. 5 and 6, except that our offset was explicitly introduced. In designing a linear 
collider, one needs to estimate HD for the chosen D and A. This depends on the 
assesment of potential imperfections of beam-beam collision. Though arbitrary. 
it may be safer to a.dopt the curve for Ay = 0.2 or 0.4, instead of Ay = 0, as the 
effective enhancement factor. 

Similar exercise for round beams are shown in Fig. 10 for D up to 50. Here 
we find the same generic behavior as in the case for flat beams. 

10 

5 

HD 

Fig. 10. HD as a junction of oRset A for round beams. 
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2.6 Disruption Angles 

One important piece of information for linear collider design is the expected 
disruFtion angle. Knowledge of the maximum disruption angle is essential to 
determine the aperture of the last element in a final focusing system. so as to 
avoid being showered by the debris from the beam-beam collision. 

For round beams,the simulation results of the maximum and the rms dis- 
ruption angle reduction factors, H,““’ and Hi”“, are plotted in Figs. 11 and 12. 
respectively. The curves for A = 0 in the two figures reasonably agree with the pre- 
vious results.5 These curves for zero emittance can be well-explained theoretically..6 
which predicts the following generic functional behavior for both Hri’ and H,‘;” 
for A = 0, i.e., a linear increase for D CC 1 and a l/o suppression for D >> 1: 

a+bD, Dal, 
He,o - 

-sz;> D>>l, 
(2.6.1) 

where a, b and c are some numerical coefficients which are different for maximum 
-and rms angles, and which are to be fixed by the simulations. From Figs. 11 and 

12 we find 
0.8i + 1.57 D , D << 1 , 

mar 
Ho,0 5 1.84 

7-F’ 
D>l: (2.6.2) 

and 
0.78 + 0.20 D , D CC 1 , 

rmr 
H&O = 0.67 

3’ 
D>l. 

10-l 
10-l IO0 IO’ IO2 

1-88 0 5917A8 

Fig. 11. Maximum disruption angle as a junction D for 
round beams, computed with four diRerent values of A. 

(2.6.3) 
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. 1ililli, 
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I ,1/1111/ I I111111 

. . . . A= 
. . . . . . 0.4 
-.- 0.2 

Fig. 12. Rms disruption angle as a junction oj D for 
round beams. 

M ’hen A # 0, the inherent divergence of the beam cannot be overlooked lvhen 
the disruption is small. The natural rms divergence angle of a beam is 

while 

(2.6.4) 

a; = J a;2+,;2 = &a;. (2.6..5) 

Dividing both sides by 00, as defined in Eq. (2.14). we have the contribution from  
finite emittance: 

(2.6.6) 

where the definitions of A and D are used. The general expression for HBfmS is 
therefore 

HirnS = @ ;;")2+(H;;3)2 . (2.6.7) 

Inserting Eq. (2.6.3) for H&r’ and Eq. (2.6.6) for Hi;“, the above expression fits 
all the curves in Fig. 11 very well. Notice that the contribution of the second 
term  rapidly diminishes for D beyond unity. Thus the rms disruption angle is 
asymptotically independent of A. 

The situation for the maximum disruption angle is slightly more complicated 
since the maximum natural divergence angle for Gaussian distributions is not 
well-defined. However, as is the case for He,o, the functional behavior of Hz<” 
should be sim ilar to that of H,‘:‘, and the overall H,““” should be analogous to 
H;*s in Eq. (2.6.7). This is evidenced by the sim ilarity between Figs. 11 and 12. 
aside from  the numerical differences. 
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Now we examine the flat beam deflections. If the disruption parameter is 
very small: the transverse location of a particle during collision is nearly constant. 
Then-pne.can estimate the disruption angles 8, and 6, as functions of the initial 
transverse coordinates 10 and yo. For very flat Gaussian beams we have 

where the quantities in the square brackets can be expressed by the complex 
error function u?(z~/fia,) and the real error function erf(yo/flaY). Here the 
emittance is ignored. One finds that the maximum and r.m.s. disruption angle 
reduction factor to be . 

H irT; = 0.763 , (qJ = 1.310,) (2.6.10) 

;,:; = &$i ) (IO = 0. yo = cc) 

;, = JX’ , 
(2.6.11) 

(2.6.12) 

q:t = J7iG , (2.6.13) 

where the nominal angles e2,0 = Dzoz/o, and 19~ = Dyoy/or are assumed. These 
resemble the leading constant terms in Eqs. (2.6.2) and (2.6.3) when D << 1. 
(Rigorously speaking, for flat beams with large but finite aspect ratio, 19, reaches 
a maximum near yo - uz and then decreases; but this is not important.) 

- The distribution functions of He,,0 and He,,0 are shown in Fig. 13. The actual 
singularities at 8, = 8,,,,, and 8, = 0 are not supposed to be as sharp as those 

* in Fig. 13 because of finite emittance, various errors, and the disruption effect. 
However, we found from simulations that the qualitative difference between the 
horizontal and vertical angles still holds even for D,,, not much less than unity. 

Figure 14 shows the maximum and r.m.s. vertical disruption angle reduction 
factor He, (0, in units of Dy~y/~z), as a function of D,. Here we consider the 
case for small D, only. As in the case for round beams, the dependence on A, 
is not as significant as in the case of HD except for the small D, region, where 
the beam divergence is emittance dominated. (The distribution of initial crIl is 
truncated at 2.5 standard deviations in the simulation.) 
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Fig. 13. 
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Distribution of He,,,,0 for small D,,,. 

0.01 6 
1 10 100 

,O.M DY 6157Ll 

Fig. 14. Maximum and r.m.s. vertical disruption 
reduction factor. The four curves corrrspond to 
0.1, 0.2, 0.4, 0.8, respectively. 

The simulation results can roughly be fitted by 

Hivrns - 
1 

. [l + (0.5Dy)5]‘/6 

angle 
A, = 

(2.6.14) 

and HOTaz - 2.5 HiUrns. Here the contribution of the initial emittance (= Ayoy/oz 
for e y,rms) has not been included. The reason that the angle does not increase 
linearly in D, is that the particle trajectories are bent backwards and oscillate 
when D, is large. 
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So far, the collision is assumed to be head-on. For flat beams the disruption 
angle in the presense of vertical offset is also important in determining the aperture 
of the final quads. The mean deflection angle of the entire bunch can be written 
in the form 7) 

0, = f FDyHc(Dy.fJy) , 
f 

(2.6.1.5) 

where Ar, is the vertical offset in units of uy and the weak dependence on A, is 
ignored. For small disruptions, the function H, apprqaches the following analytic 
form 

A# 
H,( D,, A,) .= 

J 
e-y2i4dy . (2.6.16) 

0 

Figure 15 shows H, as a function of A, computed by simulations. where VGG 
distribution is assumed. 

1.5 

1.0 

0.5 

n 
0 1 2 3 4 5 

646 AY 6xX.5&? 

Fig. 15. Eflective center-of-mass deflection. The curve 
foray = 0 is analytic, while the rest are from simulation. 
The dashed line corresponds to the slope at the zero D, 
and zero Ay limit, which is equal to l/2. 

Roughly speaking, the maximum disruption angle in the presence of offsets is 
the sum of the center-of-mass deflection angle 0, and the maximum angle in the 
absense of offsets, Oy,maz. 

2.7 Kink Instability 

If one of the beams is displaced vertically for some reason, this offset triggers a 
vertical oscillation and, when D is large, the oscillation is enhanced by the beam- 
beam force. This phenomena is known as the kink instability. Figure 16 shows a 
specific example. 
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Fig. 16. An eramplc of kink instability for D = 20. .-1 = 
0.2, and AY = 0.2 

In the above figure the bunch is sliced longitudinally and the vertical coordi- 
iiate y of the center-of-mass of each slice (in units of gY) is plotted against the 
longitudinal coordinate s (in units of 0,). Each graph corresponds to a snapshot 
of the beam vertical position at a particular time i (in units of a,/~). The de\.el- 
opment of the instability can be seen in time sequence. The initial offset in this 
example is chosen to be 0.20, (full) and the disruption parameter is D, = 20. 

For uniform beams and small amplitude oscillations, the equation of motion 
for the beam particles can be obtained from fluid dynamics (the flat beam version 
of the equation is given in Ref. S), 

1; al *a 2 J27;D, 7 ?I* = -4(Y* -y& w; = -g--J . (2.7.1) 
I 

where y* is the y coordinate of e+and e- beams. Consider the space-time variation 
of yk to be of form exp{ikr - iwt + r$}. Th e non-trivial solution of the above 
equation should satisfy the following dispersion relation: 

2 2 

l = twL;pL)z + (wijolc)? * (2.7.2 

The most unstable solution is found to be 

y* = const. x exp [ a A~i(~wos -i)+;w$] . (2.7.3 

This solution is in reasonable agreement with the simulation shown in Fig. 16. 
Namely, the phase difference between e- and eS beams is varified to be x/3, and 
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the growth rate is as predicted. Furthermore, Fig. 16 clearly demonstrates the 
standing-wave nature of the kink instability. which agrees with the description of 
Eq. (2.7.3.). 

So far our discussion on the kink instability deals with collisions of two 
bunches. Another type of kink instability occurs during the collision of two bunch 
trains, each consists of NB bunches. One of the major problems of such a multi- 
bunch operation is the interaction between bunches before and after their colli- 
sions at the central collision point. The it* bunch in the electron bunch train 
will collide not only with the it’ bunch in the p ositron train, but also with the 
j( < i)‘* positron bunch before coming to the central collision point. Colliding tn’o 
flat beams at a relatively large crossing angle can help to avoid unwanted direct 
encounters between the outgoing bunch debris and the incoming fresh bunches. 
However, due to the long range nature of the Coulomb interaction. there still es- 
ists undesirable interference between two separated bunches at a distance. Since 
the crossing angle cannot be made arbitrarily large due to the luminosity. con- 
sideration, this long range interaction cannot be entirely suppressed. In fact. it 
imposes a severe restriction on the stability of the beams. 

. Consider the encounter between the nth positron bunch after collision and the 
rn I h (nr > n) electron bunch before collision at a distance L from the collision 
point. -4 schematic diagram of the system is shown in Fig. Ii. \\P assume that 
all the bunch encounters occur within the drift space around the central collision 
point. 

According t.o Eq. (2.6.15), the center-of-mass deflection angle for the 17” 
positron bunch is 

@,n = $ ~D,W,, A,,) , (2.7.4) 
* 

where Ayn is the relative offset between the mth electron and the nth positron 
bunch, in units of oy, at their closest encounter. The cumulative offset for the 
mth bunch before arriving at the central collision point is therefore 

A,,,=C~&(D,,A,)+& 3 
n<m 

where 6, is.the initial offset of the m.‘* beam, and the coefficient C is 

C = DzDY(;>’ , 
c 

(2.7.5) 

(2.i.6) 

and &Jd = 6,/u, is the diagonal angle of the bunch. 

The cumulative offset Am (in units of 8(1 + C)m-l) is plotted as a function 
of the number of bunches in Fig. 18. Since the factor Od/ec must. be larger than 
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Fig. 17. A schematic diagram of multi-bunch collision. 

unity in order that the crossing angle does not reduce the luminosity significantly. 
the condition for negligible growth of the instability, i.e., Ayn 5 6, according to 
Fig. 17, is roughly 

(A’, - 1) D,D, s 2 . (2.Y.i) 

This imposes a constraint on the allowable number of bunches per train. 

3. BEAMSTRAHLUNG EFFECTS 

The energy spectrum of the electrons is important for two reasons: (1) the 
tip of the spectrum, i.e., the distribution near the initial beam energy, provides 
information on the energy resolution for high energy physics events, and (2) the 
tailof the spectrum, i.e., the distribution of the low energy electrons, which had 
suffered severe energy loss through hard beamstrahlung, reveals the likelihood of 
finding large disruption angles. This second issue will be addressed in the next 
section. 
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Fig. 18. Cummulatizw ofsEt as a junction of the number of bunches. 

The energy spectrum of radiation can be characterized by the beamstrahlung 
parameter Y? defined as 

(3.1) 

where B is the effective field strength of the beam, and B, = m2c3/cli - 4.4 x 1013 
Gauss is the Schwinger critical field. For historical reasons, this parameter is 
related to the parameter [ introduced by Sokolov and Ternov, by a simple factor 
312: 

~ = (critical energy) = I33 = 
(initial energy) 2 “P 

;y 7 (3.2) 

where p is the instantaneous radius of curvature. Since the two parameters are 
trivially related, we shall employ either of them depending on the convenience of 
the situation. The typical value of t during collision is 

r2yN 2 [pL- 
cra,a,l+R ’ (3.3) 

where R = o~/Q~ is the aspect ratio of the beam. The average value of [ is 
a bit smaller than Eq. (3.3) (by about a factor 2/3) but we adopt it for the 
better description of the spectrum tail which is contributed more effectively from 
beamstrahlung with larger <. 

3.1 Energy Spectrum of Final Electrons 

Let $(E,t) be the energy spectrum function of electrons at time t normalized 
as JG(E, t)dE = 1. We assume that the emission of a photon takes place in 
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infinitesimally short time instance, at least for linear colliders in the near future. 
Then the evolution of the spectrum function can be described by the rate equation 

(3.1.1) 

Here, -Y,(E) is the average number of photons per unit time and F is the radiation 
specrum function; i.e., F(E?,Er)dEz is the transition probability of an electron 
from energy El to the energy interval (Ez:E2 + c/E?) during time interval dt. 
Obviously, F(E?.Er) = 0 if Ez 2 El and F does not include the probability to 
stay at the same energy without photon emission. The sum over the whole energ! 
range gives the number of photons: 

El 

J F(E?,El)dE2 = NJEl) . (3.1.2) 
0 

The quantum-theoretical spectrum function F is well-known. 

02 
f&Y) = AL- 

(3.1.3) 

57r 1+ (y [J K5/3ws + 1 + ty 51C2/3(ZJ)] ’ 

Y 

with 

-1) 7 (3.1.4) 

where K’s are the modified Bessel functions, NC1 the number of photons per unit 
time by the classical formula, LL: the photon energy,and E = E’/E the fractional 
energy. The number of emitted photons per electron can be expressed as 

NY = N,~Uo(~l), with NC1 = 2.12 
or, N 

02 + by ’ 
(3.1.5) 

where Uo(<) is the ratio of the quantum-theoretical number of photons to that 
from the classical theory, and is found to be’) 

W) = 
1 - 0.598[ + 1.061[5/3 

1 + 0.922[’ ’ 
(3.1.6) 

where the relative error is within 0.7%. 
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An approximate formula for the energy spectrum of electrons after collision 
can be therefore derived. The’details are gi\ren in Ref. 10, where the spectral 
function -Q(E) (E = E/Eo) is found to be 

G(E) 21 e-+ 1 6(E - 1) + $$(Nly1’3)] , 

with 
ASiX 

44 = & J exp(rrp-‘/3 + P)dP 0 > 0) 
X-is 

02 

c 

5” 
= 

n-l ~u-d3) ’ 

and 

N1 = 1 . 1 +tlY 

(3.1.7) 

(3.1.1) 

(This formula does not exactly satisfy the normalization condition except for 
<r + 0 which leads to Nr = N, = N,l.) Th e f unction h(r) can be estimated very 
accurately by with relative error less than 2%. Figure 19 compares Eq. (3.1.7) 
with the simulation results using the parameters for the TLC and the 1LC.I” The 
design parameters of the two colliders are summarized in Table 1. The histograms 
in Fig. 19 are from simulations and the dotted data are computed from Eq. (3.1.7). 

-The agreement is excellent. 

3.2 Maximum Deflection Angle 

The particle which once lost a large fraction of its initial energy through beam- 
strahlung would, in principle, be severely deflected by the beam-beam field and 
cause background problems for high-energy experiments. Consider an electron 
which emits a hard photon at a particular time during the collision and results in 
an energy EEO, with E << 1. The effective disruption parameter for this particle 
becomes D,/& and Q,/E. One might think that Eqs. (2.6.10) and (2.6.11) are 
still applicable by replacing D by D/E. However, the collision of a single particle 
on a beam with the disruption parameter D/E is different from the collision be- 
tween two beams with D/E, although the qualitative feature is the same; i.e., the 
disruption angle increases linearly in D for D 5 1 and more slowly for D 2 1. 

A simulation was done by monitoring low-energy test particles through the 
collision process. The maximum deflection angle for a given E is found to be 
roughly: 
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Fig. 19. Electron energy spectrum for TLC and ILC parameters. 

9 
u DIE mar - - 
uz 41 + (0.750/~)~/~ 

7 ww (3.2.1) 

where D = D,(D,) and u = o~(cT~) for the horizontal (vertical) angle. 

The m inimum value of E can, in principle, be as small as l/y. But the real 
problem is about how small a E should one care. Since the number of photons 
Iv-, per beam particle for linear colliders in the near future is of order unity. 
the spectral function +(E) given in Eq. (3.1.6) is always dominated by the factor 
e--Y in the spectrum tail, where y > 1 (in logarithmic sense). Therefore, if the 
acceptable background count is n out of N electrons, then the m inimum E of 
concern is approximately determined by y = log(N/n), or 

1 
Emrn = 1+ t1 log(N/n) * 

(3.2.2) 

With this value of &, one can directly estimate the maximum deflection angle using 
Eq. (3.2.1). Since the dependence on n is only logarithmic, one can set R = 1. 
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Table 1. Parameters for TLC and ILC (A,, = 17 mm) 

TLC ILC 

Eo [TeV] 0.5 0.25 

N 8 x log 7 x 109 

or [nm] 190 440 

BY bl 1 3 

g* [Pm1 26 6.5 

R 190 147 

cz [mrad] 2.58 x lo-l2 5.2 x lo-” 

cY [mrad] 2.33 x lo--l4 5.2 x lo-l4 

DZ 0.033 0.027 

4 6.27 3.9 

AZ 0.0002 0.001~ 

4 0.60 0.37 

* WC0 1.61 1.71 

*6 0.15 0.01 

* NY 1.33 0.38 

(1 3.43 0.19 

t Quantities computed by simulations. 

Thus, for example, Emin = 0.013 (0.188), 8,,,,, = 10 (0.95) mrad and Oy,mar = 
0.4 (0.15) mrad for TLC (ILC) parameters. 

4. ELECTRON-POSITRON PAIR CREATION 

During the collision of the e+e- beams, there are finite probabilities that a 
photon will turn itself into a e+e- pair. Once the e-e+ pairs are created with 
lower energies in general, one of the two particles in each pair will have the same 
sign of charge as the oncoming beam. (For the sake of argument, consider a low 
energy e+ moving against the positron beam). Unlike the case of a low-energ! 
e- moving against a positron beam, where the potential tends to confine the 
particle in the beam profile, in the case of a positron the potential is unconfining 
and the particle can, in principle, be deflected by a large angle and thus create 
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severe background problems. This effect would therefore impose a contraint on 
the final focus design. 

It occurs that the e+e- pair can be created by either real or virtual photons. 
These phot.ons, in turn, can pair-produce through two different physical processes. 
namely, the coherent and the incoherent processes. While the incoherent process 

13,14) . 
has been studied earlier? it is recently realized”)that the coherent process is 
even more severe. 

Recall that in the case of radiation by e-(e+) during beam-beam collision. 
there are essentially two mechanisms that induce the radiation. Namely. there 
is an “incoherent process. or Bremsstrahlung, associated with the individual 
e-e+ scatterings, and there is also a “coherent process due to the interaction 
between the radiating charged particle and the macroscopic beam-beam EV field. 
At high energies and strong fields. the coherent process tends to dominate over 
the incoherent one. This is actually why our discussion on beam energy loss has 
been focused only on the beamstrahlung process. 

The beamstrahlung photons once emited would have to travel through the 
remainder of the oncoming beam before entering into free space. and would there- 
fore turn themselves into e-e+ pairs. Analogous to the case of radiation. photon 
pair creation also involves coherent and incoherent processes. Here again. at high 
energies and strong fields the coherent process will dominate over the incoherent 
one. 

4.1 Beamstrahlung Pair Creation 

It is well known that the cross section for incoherent pair creation is 

a(ye + ee+e-) 
28 

- & log 
4wE 2 

( > ,2cm , (4.1.1) 

which is a very slowly varying function of the photon energy w. For TLC, y = 
1 x 106; the cross section is N 5 x 1O-26 cm* for photons at full energy. The beam 
parameters for TLC listed in the above Table gives the average number of the 
beamstrahlung photon per beam particle as NY w 1.3. On the other hand, it can 
be shown’3’that the effective luminosity for such a cascading process is l/2 of the 
original. Thus, the number of e-e+ pairs created per bunch crossing can easily 
be evaluated: 

N’ 
N&t? 

e+e- = -+(ye + ee+e-)- - 
f 

2x105 , (4.1.2) 
rep 

where lcee = 1.3 x 1033cm-2sec-1, and frep = 220 set-’ in this design. To be sure. 
this process provides a non-negligible amount of e-e’ pairs. 
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The rate of photon pair creation in a homogeneous magnetic field has been 
studied by many peoplei5’ and has been generalized to inhomogeneous fields b\ 

16) Baier-and’E;atkov. In the asymptotic limits the rate can be expressed as 

36 a-r -s/3x 

dl izzX,le , A<<1 : 
-= 
dt y ($y3 gyJ ~x-~/3 ) x >> 1 . 

(4.1.3) 

Here x = Y&/E plays the similar role as Y in the case of beamstrahlung. Notice 
that s is independent of the initial particle energy -J, as the process does not care 
where the photon was originated. Let 

To a very good 17) approximation. 

T(x) = 

(4.1.4) 

(4.3..5) 

for all values of 1. 

Integrating over the collision time (again. only half of the e-e+ collision time 
we have 

(4.1.6 

Next we evaluate the mean value of T(X) by weighting over the beamstrahlung 
spectral function, 

and 

00 dnb 1 CYU, -=-- 
dw = Y2 {J &apWz + 

Y 

(T(Y)) = jT(x)$dw 

E 

/J dnb dwdw . 
0 0 

(4.1.7) 

(4.13) 

The total number of e-e+ pairs created through this coherent process is therefore 

Ne’+e- = ;h:ncr(W - (4.1.9) 

A plot of (T(T)) is shown in Fig. 20, where the solid curve is from the exact 
form of dnb/dw in Eq. (4.1.7) and the dashed curve corresponds to an asymptotic 
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expression for dnb/dw at large y. The closeness between the two curves suggests 
that only the spectrum tip contribute effectively to the coherent pair creation 
process From the TLC parameters, n,l w 1.9, so we find that 

Iv,‘,,- -5 x lo7 , (4.1 .lO) 

which is much larger than the incoherent process. 

10-l 100 10' 102 
12.68 
6216Al T 

Fig. 20. The function (T(Y)) rs. r. 

It should be noticed, however, that (T) drops exponentially for T s 1. There- 
fore, for next generation linear colliders at the range of 1 TeV, which would typ- 
ically have Y m 1, it would not be at all difficult to redesign the machine such 
that the coherent process can be entirely suppressed. For the above-mentioned 
TLC parameters the condition is T 5 0.3. This, ironically, is an over-kill since 
the incoherent process corresponds to T N 0.6, as can be read from Fig. 20. 

4.2 Energy Spectrum 

Since to a large extent N-, is of the order unity and quite insensitive to other 
parameters, and since we usually choose to fix the luminosity in a design, the in- 
coherent e-e+ pairs can not be easily suppressed. It is thus important to evaluate 
the energy spectrum of the pair created e +. Assuming constant probability in 
finding the e+ at energy EE 5 w, the spectrum can be derived to be 

N,+(E) = 
7(3/2)*i3 a3 

-NDyT2’3F(~, Y) . 
18n*I’( l/3) -ym 

(4.2.1) 

The spectral function F(E,T) is plotted in Fig. 21 for r = 0.2. At the small E 
limit, F(c,T) 0: l/E. 
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Fig. 21. The sptctral function for incohermt pair crtatcd e+. 

The energy spectrum of the pair produced positron from the coherent process 
can also be obtained from the same basic equation that gives rise to Eq. (4.1.3). 
without integrating over the final energy. It can be shown that the spectrum is . . 

d?I 1 crm 1 -=-- 
dvdt 

[~sinh2ylil~~(a)+(l+tanh’y)li~~~(a)] 
,Liir Y ~(a - 7) 3x 

. (4.22) 

where E is the energy of the positron, and LJ the photon energy. both in units of 
the primary electron energy, 

1 
cosh2 y = - 

Ld2 
4 rl(w -77)’ 

and 
8 

a=G cosh2 y . 

Figure 21 is a plot of Eq. (4.2.2) with Y = 1.0, in units of orn7fi7r?. The two 
curves correspond to beamstrahlung photons at full, i.e., x = 1.0, and half of the 
primary e+e- beam energy. We see that the spectrum is considerably narrower 
than the corresponding incoherent process. This is even more so when x becomes 
sufficiently less than unity. An intuitive way of understanding this fact is to realize 
that, although the coherent process at Y N 1 has much larger probability than the 
incoherent one, the eqivalent photon energy of the beam-beam field at is range is 
barely above the invariant mass threshold for pair creation. This is also reflected 
by the steep exponential decrease of the function (T(T)). Thus the e+e- pair 
tend to share the initial photon energy evenly, and the damage of the coherent 
process at the TeV range dose not seem to be too harmful. 
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Fig. 25. The positron energy spectrum from coherent pair 
creation for r = 1. 

4.3 Deflection Angle 

Finally, we evaluate the deflection angle of these low-energy positrons by the 
beam-beam field. As a rough estimation: we assume that the vertical field beyond 
the beam height extents constantly to a distance equal to the beam width oz. It 
is then easy to show that the deflection angle for the e+with energ? 5 is 

8, = (4.3.1) 
The deflection angle in the above expression is plotted in Fig. 23. For a 1 Gel’ 
e+, 6, m 45 mrad. The information on the transverse monemtum can be easil! 
deduced from the above expressions via pl = ~0~. 
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Fig. 23. The d jl 1’ e ec ion angle as a function of e+energy. 
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