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ABSTRACT 

In this paper we present a damping ring design for the 
TLC (TeV Linear Collider). The ring operates at 1.8 GeV. 
It has normalized emittances of 7cZ = 2.8 pmrad and 7~ = 
25.4nmrad. The damping times are rZ = 2.5ms and rv = 
4.0 ms. To achieve these extremely low emittances and fast 
damping times, the ring contains 22 m  of wigglers. 

1. INTRODUCTION 

In this paper we discuss a damping ring for the TLC, 
a TeV linear collider.‘) The basic design goals of the TLC 
damping ring are compared with those of the Stanford Lin- 
ear Collider (SLC) damping rings in Table 1. The normal- 
ized horizontal emittance of the TLC ring is an order of 
magnitude smaller than that of the SLC ring, and the de- 
sired repetition rate has increased by a factor of two. Fur- 
thermore, the TLC ring needs to achieve an emittance ratio 
of 1OO:l. Thus the vertical emittance must be damped to 
a value three orders of magnitude smaller than the SLC 
emittance. This implies that TLC ring will either have 
much faster damping times than the SLC ring or be much 
l.arger, thereby damping more bunches at once. 

The present design of the TLC operates in a multi- 
bunch mode. The linac accelerates batches of bunches, 
where the bunches within a batch are separated by roughly 
20cm and each bunch contains 2 x 10” particles. To pre- 
vent multi-bunch instabilities we need to use a specially 
designed RF system; a discussion of multi-bunch instabil- 
ities is found in Ref. 2. In addition, we would like to op- 
erate the ring below the longitudinal microwave instability 
threshold. Thus, the threshold current must be 30% larger 
than that in the SLC ring. To achieve this without increas- 
ing the longitudinal emittance significantly, the TLC ring 
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Table 1. Basic parameters of the SLC and TLC 
damping rings. 

I TLC I YZl 
Energy 1~ 2 GeV 1.15 Gev 

Emittance, 76, 3.0 pmrad 36. pmrad 3, 

Emittance, 7cr 30. nmrad - 

Repetition rate 360 Hz 180 Hz 

Bunch length 4mm 5 mm4) 

Threshold batches of 10 1.5 x 10’0 4, 
Current bunches of 2 x 10” 

must have a very low impedance and a large momentum 
compaction. 

In the next section we discuss the design goals. Then 
using simple scaling laws, we show the dependance of the 
various design parameters such as the lattice, main bending 
field, bending angle per bend, etc. This is applied to illus- 
trate problems with the wiggler damping ring,‘) an option 
that seemed promising for low emittances and fast damping 
times. We then discuss the effect of damping wigglers and 
methods of changing the damping partitions. Because the 
parametric dependances become complex, we use a com- 
puter program to search for a lattice which satisfies the 
design criteria and uses a minimal length of wigglers. 

In Sec. 3 we present a design which meets all of the 
specified requirements. We discuss the various portions 
of the ring, the arcs, the insertion regions, and the wig- 
glers. We then detail the chromaticity correction scheme 
and the resulting dynamic aperture. Finally, in Sec. 5 we 
discuss tolerances and methods of loosening the tolerances 
on alignment and on the extraction kickers. 
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2. DESIGN CONSIDERATIONS 

2.1. BASIC PARAMETERS 

There are two main parameters we need to consider 
when designing a damping ring: the ring’s emittance and 
the damping times. The emittance of an extracted beam 
is 

C = C;e --2e + (1 _ e-w7 hng 7 (2.1) 

where ci is the emittance of the injected beam and thing is 
the ring emittance including the effects of intrabeam scat- 
tering. Here, r is the horizontal or vertical damping time, 
and t is the time the bunch is in the ring. The present TLC 
design requires that the extracted heam have normalized 
emittances of ye, 5 3 x 10e6 and 7~ 5 3 x lo-*. We as- 
sume an injected beam emittance of yei = 3 x 10b3, which 
is realistic for a positron beam and an order of magnitude 
too large for an electron beam. Thus the vertical emittance 
needs to be decreased by five orders of magnitude. Damp- 
ing the bunch for seven vertical damping times will reduce 
the first term of Eq. (2.1) by six orders of magnitude. The 
limit on the vertical emittance of the ring is then 

7cyring 5 2.7 x lo-* mrad . (2.2) 

In a storage ring built in the horizontal plane the vertical 
emittance is mainly determined by the coupling between 
the horizontal and vertical planes. Intrabeam scattering, 
which increases the horizontal emittance, has a very small 
effect on the vertical.6”) We will discuss the tolerances 
necessary to achieve the limit - Eq. (2.2) - in Sec. 5. 

The required damping times are determined from the 
desired repetition rate (360 Hz) the number of damping 
times per bunch (7) and the number of batches stored in 
the ring at once (Nb) 

1 
Tzz,Ty 5 - 

Nb 

frep # of damping times 
= NbO.397ms . (2.3) 

The maximum number of batches stored in the ring is lim- 
ited by the kickers needed for injection/extraction. We as- 
sume that the time for the kickers to turn on, extract/inject 
a batch, and turn off is less than 100 ‘1 ns. Thus the batches 
must be separated by at least 50 ns. Since the number of 
batches is roughly proportional to the size of the ring we 
can define an effective damping time as 

7,ff E 7-e 2 0.397ms , 
To 

where TO is the revolution time of the ring. 

For reasons we will discuss later, it is desirable that 
the horizontal damping time be less than or equal to the 
vertical; thus only the vertical damping time is limited by 

Eq. (2.3). Furthermore, assuming that rZ ,$ ry, the hori- 
zontal emittance of the extracted beam is very nearly equal 
to the horizontal emittance of the ring. Thus 

7cZhg 5 3 x 10m6 mrad . (2.5) 

Equations (2.4) and (2.5) determine the basic param- 
eters. Initially, to study these parameters, we make the 
assumption that all the bending magnets are the same and 
we ignore the effect of intrabeam scattering. Now we can 
write simple expressions for -ye=0 and rye~,s’ the two quan- 
tities we want to minimize: 

~~~~ = 8.47 x 10’s 
Y 

(2.6) 

7~0 = 3.84 x lo- 
13Y3 mla, 

z--E7 
(2.7) 

Here, pi is the local bending radius of the bend mag- 
nets and (‘M),, is the Courant-Snyder dispersion invari- 
ant which equals the average of ‘H z 772 + 2a71,7,$ + &-L2 
over the bending magnets. Also, JZ,Y is the horizontal (ver- 
tical) damping partition number, and fw is equal to PB 
divided by the average bending radius in the bending mag- 
nets, po. Note that with normal bends fw = 1, but in 
a wiggler ring5)where the bending magnets bend in both 
directions, fw < 1. 

The emittance of a ring can be reduced by reducing 
the dispersion in the bend magnets, reducing the strength 
of the bends, or decreasing the energy of the ring. Un- 
fortunately, the damping times are increased by reducing 
the bend magnet strength or decreasing the energy of the 
ring. This implies that the dispersion in the bends is the 
only free parameter. Unfortunately, it is constrained by 
the longitudinal microwave instability which increases the 
longitudinal emittance. 

At this point it is worth discussing three additional pa- 
rameters which constrain the design: (1) the longitudinal 
microwave instability which was just mentioned, (2) the 
dynamic aperture, and (3) the energy of the ring. The 
microwave instability, also called turbulent bunch length- 
ening, occurs at a given current when the longitudinal 
impedance is larger than a threshold, denoted (Z/n)i. Rk 
want to keep this threshold as large as possible to avoid 
bunch lengthening and longitudinal instabilities. It can be 
estimated as 

(Zln)t = 
(21r)3/2Eo$7,aF 

Ne2c ’ 
(2.8) -: 

where E is the energy, ur is the relative energy spread, and 
or is the bunch length. In addition, LY is the momentum 
compaction, N is the number of e+/e- per bunch, and e 
and c are the electron charge and the speed of light. Finally, 
F is a form factor which is greater than lo) 1. At the 1987 
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11) ICFA workshop on Low Emittance Beams, an impedance 
of 

Z/n 2 0.20 (2.9) 

was determined to be the minimum reasonable, physically 
attainable value. 

Next we should consider the dynamic aperture. The 
dynamic aperture of the ring is a function of the sextupoles 
needed to correct the chromaticity. To prevent particle 
losses the dynamic aperture should be many times the in- 
jected beam size. Unfortunately, rings with small emit- 
tances tend to have high tunes and large uncorrected chro- 
maticities. This makes the desired dynamic aperture dif- 
ficult to achieve. Thus we would like to choose a lattice 
which naturally has a large dynamic aperture. 

Finally, the other parameter we mentioned is the ring 
energy which we would prefer to have low. There are three 
primary reasons for this: (1) it makes the magnets cheaper, 
(2) it keeps the longitudinal emittance small, and (3) it 
makes bunch compression easier. The TLC requires that 
the damping ring bunch be compressed longitudinally by, 
roughly, a factor of 100. Since one does not want an uncor- 
related energy spread much greater than 1% in the linac, 
we need to perform at least a portion of the bunch com- 

12) pression at an energy 10 times that of the damping ring. 
Unfortunately, at higher energies it becomes more difficult 
to perform the compression without degrading the beam 
emittances. 

2.2. SCALING 

Now we can combine these expressions to determine 
the dependencies of the parameters. Using the definition 
of and maximum value for ryeff - Eqs. (2.6) and (2.4) 
- we find an expression for the energy of the ring as a 
function of the bending field and fw: 

Bo(KG)y2 = fw1’4;y~f1105 . (2.10) 

In this equation, JY is assumed to be equal to 1, since it 
cannot be changed without introducing vertical dispersion 
which would degrade the vertical emittance. Note that 
for our parameters, a normal ring, with saturated bending 
magnets (20 KG), must operate at 2.2 GeV to meet the 
damping time requirements. 

In a similar manner, using Eqs. (2.7) and (2.10), we find 
an equation for the emittance as a function of fw, (7f)mag, 
and Jz: 

Yml = 
3.25 x 1O-6 (‘H),,,fw 

Ty eff Jz ’ 
(2.11) 

Next we use Eq. (2.10), along with an equation for the 

relative energy spread in the ring: 9) 

(2.12) 

to re-write the expression for (Z/n)l (Eq. (2.8)) 

(Z/n)t = F  
5.43 x 10’1 UI afw 

N 
--. 
~yeff Jc 

(2.13) 

Notice that the energy no longer appears in Eqs. (2.11) and 
(2.13). It is determined by the main bending field and the 
desired damping time, 7yeff (Eq. (2.10)). 

In Eq. (2.13) we have ignored the constraints on the 
energy spread. A large energy spread reduces the lifetime 
and increases the longitudinal emittance. In practice we 
are limited to a relative energy spread of a couple temhs 
of a percent and thus there is a lower bound on a. Using 
(Z/n)l = 0.2 R, this bound is: 

a 11.19 x 10-r+&- . 
c 2 

(2.14) 

Notice that the bound is inversely proportional to the en- 
ergy, implying that a higher energy is desirable. In con- 
trast, the energy does not appear in Eq. (2.13) where the 
energy spread is a free parameter. In most cases, we will 
find that we cannot increase the energy spread sufficiently 
to gain from the l/y dependance of Eq. (2.14). 

If we assume that or x 4mm, we see that given an 
effective damping time, we only have six quantities: J,, 
Jo fw B, P-O,,, and a, which can be varied to fit the 
requirements on the energy, the emittance, and the longi- 
tudinal impedance threshold. Unfortunately, the system is 
more tightly constrained since the six variable parameters 
are not independent. 

The bending field, Bo, is determined by the energy 
and f,,,. We are then left with fitting the emittance and 
the impedance threshold, one of which we would like small 
and the other large. The parameter fw can be removed by 
considering the ratio (Z/n)l/yc,s. To optimize this ratio, 
i.e. make it large, we can increase Jz at the expense of Jc 
and/or increase the ratio a/(‘H),,s. The easier option is 
that of changing the damping partition numbers. They can 
be changed by using combined function bending magnets or 
a Robinson 13’r4) wiggler. Unfortunately, we do not wish to 
increase J, much beyond 2. Thus, we also have to consider 
maximizing the ratio of o/(H),,,. 

For a given lattice design, we can write down some ap- = 
proximate scaling laws. In most lattices, assuming that 
the phase advance per cell is held constant, (h’)bend 0: 
03 pave o( 02Lee,, and o cx 0 2. Thus the ratio of o/(X),,,, 
is inversely proportional to the length of the cell. Notice 
that unlike normal scaling laws for damping rings, the bend 
angle is not at our disposal for minimizing the emittance; 
it is determined by (Z/n)l. 

3 
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2.3. LATTICES 

In choosing a lattice we want one that naturally has 
a large dynamic aperture and a large ratio of cy/(‘?Qmag. 
The three lattices that seem best suited to our require- 
ments are the FODO lattice, the triple bending achromat 
(TBA) lattice proposed by Vignola,“) and the TME lattice 

described by Steenbergen.“) Wiedemann has compared the 
double focusing achromat (DFA) and triplet achromat lat- 

17) tices with the FODO lattice. He found that the FODO 
lattice had significantly better chromatic properties than 
the other two. 

The TBA lattice has been studied by Bisognano 18) 
with application to a 750 MeV storage ring for FEL’s and 
by Jacksonrg) for a I-2 GeV synchrotron light source. It 
has the advantage of probably being less expensive to con- 
struct than a FODO structure since fewer cells are needed 
to achieve the same emittance. In addition, the lattice, 
potentially, has a larger ratio of o/(3-1),,. Unfortunately, 
the lattices proposed to date have CX/(%!),,,,~ ratios that are 
an order of magnitude too small. 

The TME lattice would also be cheaper to build than 
a FODO lattice and it should be investigated further. In 
addition, another lattice worth examining would be an ex- 
treme version of the FODO lattice where combined func- 
tion bends completely replace the defocusing quadrupoles. 
This would be the most compact and could offer the best 
ratio of o/(X),,. Unfortunately, it may not be feasible 
to achieve the necessary gradients in the bends. 

For our initial design we chose to use a FODO lattice. 
This choice was based mostly upon the superior dynamic 
aperture characteristics of the lattice. Another advantage 
of the FODO lattice is that it allows for local chromatic 
correction, i.e. placing the correcting sextupoles next to the 
quadrupoles which generate the chromaticity. This results 
in looser tolerances on the vertical orbit; see the discussion 
in Sec. 5. 

While we can create a simple FODO design on paper 
that would satisfy the requirements, the necessary mag- 
netic fields make it technically unfeasible. The problems 
arise because extremely strong magnetic fields are needed 
in the quadrupoles to keep the cell length short. This leaves 
us the option of: (1) using combined function bends to min- 
imize the cell length, (2) varying J, and Jc, and (3) possibly 
using wigglers to decrease the required main bending field 
and increase the energy spread. Before discussing the use 
of separate wigglers, we feel it is useful to quickly discuss 
the wiggler ring option. 

2.4. WIGGLER FANG 

The wiggler ring design has excellent damping times 
at low energies. It achieves this, as wigglers do, by bend- 
ing the particle a lot while generating very little disper- 
sion. Since the damping times can be much shorter than 
a conventional ring, the wiggler ring can operate at lower 

energies and thus achieve the necessary low emittances. 
Unfortunately, the (Z/n)i of a wiggler lattice is lower than 
that of a comparable conventional ring. To understand this 
we have to compare (X),,,, and o in the two designs. 

N can be written as the sum of two squares: ‘H = 
~2//3 + (Q(Y + ni.)2//3. Since the second term depends 
upon 7: which does not contribute to o, we would like 
to keep it small. The wiggler magnet bends in both the 
positive and negative z direction, and thus n2 and VI, will 
oscillate. This will force the second term in (7-Q,,,,, to be 
larger. One could minimize the effects of the oscillations 
by making the wiggler period shorter, but one runs into 
technical limitations quickly. Another problem is that the 
length of the cells in the wiggler ring will be longer than in 
a normal ring. Using the scaling laws discussed at the end 
of Sec. 2.2, we can see that this increases (31),, without 
increasing 0. 

Before concluding this section, we note that many wig- 
gler ring designs were presented at the 1987 ICFA work- 

“) shop. Unfortunately, these all had very long bunch lengths 
(ul > 15mm). The long bunch lengths are necessary to 
meet the impedance limitations and to reduce the effect 
of intrabeam scattering. However, if the (Z/n)t is not an 
issue or if the bunch length is allowed to be longer, the 
wiggler ring is an attractive option. 

2.5. DAMPING WIGGLERS 

As was mentioned in Sec. 2.2, it is very hard to build a 
conventional or wiggler ring which meets all of the design 
criteria. This leads us to consider the effects of including 
separate damping wigglers in regions of zero dispersion. By 
locating the wigglers in regions of zero dispersion, (‘H),,, 
in the wigglers will be small, and thus one can significantly 
reduce both the damping times and the emittance. In ad- 
dition, damping wigglers increase the energy spread in the 
ring. Thus, despite the slight decrease in o resulting from 
the increased length of the ring, damping wigglers can sig- 
nificantly improve the ratio of (Z/n)l/yc,s. 

The scaling formulas Eq. (2.10) thru (2.13) can be mod- 
ified to include the effects of damping wigglers: 

B0(KG)y2(1 + F,) = I’4;~~f1105 (2.15) 

re z o = 3.25 x Iv6 ((‘H),,,, + 6~Fwpo/Sxk:p;) 
TV eta Jz (1+ Fw)2 

(2.16) 

(z,n)t x g5.43 x 10” c*o (1+ gKupo/37rp,) 
NT,.R Jc (1 + &l)2 

, (2.17) -i 

where the parameter F, is a measure of the effectiveness 
of the wigglers, 

F, E L ulpo/4np2, . (2.18) 

Here, L, and B,,, are the length and peak field of the wig- 
gler; z is the average beta function in the wiggler, and I;, 
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is the wiggler wave number, Ic, = 27r/X, where X, is the 
wiggler period. Also, ps and pw are the bending radii of 
the main bends and the wiggler. Both bending radii are 
proportional to the energy over the respective magnetic 

I fields. We have assumed sinusoidal wigglers, and thus the 
integral of B:(s) over the wiggler is equal to 1/2B& In 

. addition, we assume that z >> X,/2* so that the nL2pz 
term dominates in (‘FI)+. We do not, consider decreasing 
E significantly since that would increase the chromaticity 
of the ring and might decrease the dynamic aperture. 

Looking at Eqs. (2.15) thru (2.17), we can see that the 
largest effect occurs when po > pw and F, is large, i.e. 
when BO << Bw. Unfortunately, we are limited when in- 
creasing B, since the r& created by the wigglers will blowup 
the emittance. This constrains ihe period of the wiggler 
and can be expressed 

< 1.33 x 10g7ezsJ, . (2.19) 

We consider two cases, relatively long Nd-Fe-B hybrid 
wigglers and short superconducting wigglers. In the Nd- 

- Fe-B hybrid wigglers the maximum field can be specified 
as a function of the gap and the period 20) 

5.08 - 1.54$ >I , (2.20) 
w 

for 0.08 < g/X, < 0.7. To achieve a field of B, = 22 KG 
with a gap of 2 cm, X, must be at least 20 cm. This is much 
less than the limit imposed by Eq. (2.19); with K x 4 m, 
Eq. (2.19) limits X, << 35cm. In the superconducting case 
we use a 40 KG field and a 20 cm period. This is (arbitrar- 
ily) scaled from the 50 KG superconducting wiggler in the 
DC1 ring at LURE2’) with a 65 mm gap and 26 cm period. 
Assuming that E x 1 m  since the wigglers are shorter, the 
20 cm period is less than the limit specified by Eq. (2.19): 
X, << 29cm. 

If we assume that the condition Eq. (2.19) is met, we 
can use the simple scaling for (‘H)bend and a, discussed 
earlier in Sec. 2.2, to express 7ezs and (Z/n)i: 

@2Ldl 
ye’0 m  Jz(l + F,)2 

02 (1 +~F~Po/~~P,) 
(2.21) 

(Zln)t 0: 541 + Fw)2 1+ &vi&n, ’ 

where Lwig is the length of the wigglers and the associ- 
ated insertion regions and Grins is the total length of the 
ring. We would like to keep the wiggler lengths short, and 
thus it is desirable to maximize the wiggler fields and mini- 
mize the bending field. While decreasing the main bending 
field increases the cell length, it still decreases the emit- 
tance without decreasing the impedance threshold. Unfor- 
tunately, decreasing the main bending field and the length 
of the wigglers forces us to higher energies. 

Because the additional parameters make the analysis 
complex, a simple computer program was written that cal- 
culates yczs and (Z/n)t. It uses Eqs. (2.15) thru (2.17) and 
the relations for (X),,,, and o in FODO cells22) for the cal- 
culation. We chose phase advances per cell of v, = 0.3 and 
I+, = 0.1; while these phase advances do not minimize the 
emittance, they are chosen to be regions where the chro- 
maticity does not increase rapidly. The cell lengths are 
calculated by adding the length of two bending magnets 
to 0.8 m, length for the drifts and quadrupoles. We then 
calculate the ring length from the number of cells required 
plus three times the length of wigglers required, allowing 
space for dispersion suppression, quadrupole doublets, etc. 
in the insertion. We use the wiggler parameters: B, = 22 
$,X,=20cm,~=4mandB,=40KG,X,=20cm, 
& = 1 m, and solve for solutions with ye20 = 2.0 x 10P6 
and (Z/n)i = 0.2 R; the value of 7~~0 was chosen to allow 
for the increase in emittance due to intrabeam scattering. 
Finally, since wigglers are expensive, we attempt to mini- 
mize the length included. Tables 2 and 3 list our solutions 
with the shortest wigglers for three energies. 

Notice that the solutions for the superconducting case 
in Table 3 have a higher main bending field and smaller 
bending angles than those in Table 2. This occurs be- 
cause the stronger wigglers cause a larger energy spread, 
lowering the momentum compaction required to meet the 
impedance threshold (Z/n)t = 0.20. Thus one can de- 
crease the bending angle per bend, increase the main bend- 
ing field and decrease the length of the wigglers, see Eq. 
(2.21). Since we feel that the wigglers calculated are too 
expensive, and we do not wish to go much higher in energy, 
we need to also consider changing the damping partitions. 
This will further increase the energy spread and lower the 
emittance, allowing us to increase the main bending field 
and thereby decrease the length of the wigglers. 

Table 2. Solutions for a FODO lattice with 22 KG 
wigglers: 7czo = 2.0 X 10m6, (Z/n)t = 0.20. 

2.25 GeV 80 4.0 KG 28 m  250 m  

Table 3. Solutions for a FODO lattice with 40 KG 
wigglers: 7~~0 = 2.0 x 10m6, (Z/n), = 0.2 R. 

12.25 GeV 1 112 16.0 KG 17.5 m  1185 m  1 



2.6. DAMPING PARTITIONS 

. 

The damping partitions describe the relative rates of 
the horizontal, vertical and longitudinal damping. Since 
the injected longitudinal emittance is usually much closer 
to the damped value than is the horizontal or vertical, it is 
reasonable to increase the horizontal and/or vertical parti- 
tions at the expense of the longitudinal. As was mentioned 
earlier the vertical partition is effectively fixed, but we 
can increase the horizontal damping partition and thereby 
lower the horizontal emittance. In addition, decreasing the 
longitudinal damping partition increases the energy spread, 
and thereby (Z/n)t. 

The damping partitions in a ring can be changed by us- 
ing combined function bending magnets or Robinson wig- 
glers.r3)The partitions can be written: 9) 

Jz=,+fszlp(1’p2+2K1)ds J =3-J (224 

$ds/p2 ’ “’ 

where K1 is negative for a horizontally focusing quadrupole 
field. - 

In the case of a Robinson wiggler, Eq. (2.22) becomes 

J,=l+ % ‘LRobKl PO 

241+ Fw) PRob ’ 
(2.23) 

where L&b and PR& are the length and bending radius of 
the Robinson wiggler. Thus we see that we would like to 
place it in a region of high dispersion. Unfortunately, this 
causes the emittance to increase. The emittance blowup is 

A7cz = 
3.25 x 1O-6 1 

‘Ty eff Jz(1 + Fwj2 47r2 z &,b 

To keep the emittance increase small, the wiggler should 
be built so both P&J, and [KlI are large and it should be 
placed in a region where pz is large also. For example 
with the parameters: T]= = 20cm, /?= = 10 m, po = 5 m, 
and K1 = 17mp2, a wiggler length of 4 m  will increase Jz 
by 1.1 and increase the emittance by less than 5%. The 
problems with this are: (1) extra length is required for the 
wiggler insertion and (2) to achieve the strong quadrupole 
fields the wiggler would have to be built as large aperture 
quadrupoles with the beam passing off-center; technically 
this might present a problem. 

The other option, that of using combined function bends, 
seems to be easier. In this case Eq. (2.22) is 

(2.25) 

Here the emittance is not increased by the combined func- 
tion bends; in fact it should decrease slightly since the de- 
focusing quadrupoles could be made smaller, increasing the 

Table 4. Solutions for a combined function FODO lattice 
with 22 KG wigglers. -ye=0 = 2.0 x 10b6, (Z/n)t = 0.20. 

Energy # of cells Bo ICI L Ling 

1.75 GeV 73 13.0 KG 4.8mm2 27 m  145 m  

2.0 GeV 90 12.5 KG 4.2me2 18 m  160 m  

2.25 GeV 108 12.5 KG 3.7mm2 11 m  160 m  

Table 5. Solutions for a combined function FODO lattice 
with 40 KG wigglers: -fez0 = 2.0 x 10-6, (Z/n)t = 0.2R. 

Energy # of cells Bo KI -LB Lring 

filling factor. Furthermore, an additional insertion, which 
would decrease a, is not required. 

Since this is the more promising route, we calculate 
7~~0 and (Z/n)i as we do in Tables 2 and 3, except we 
include the effect of a defocusing field on J,. Obviously, 
it is desirable to have the largest defocusing field possible, 
consistent with limits on the energy spread. We calculate 
K1 by choosing the larger of two expressions: 

K1 = 
14KG-B. K = 20ItG-Bo 
Bp 0.0125 1 Bp 0.025 ’ 

(2.26) 

The first expression estimates the field achievable in an off- 
center quadrupole, assuming 14 KG pole tip fields and a 
beam pipe radius of 1.25 cm. The radius of the quadrupole 
is then the beam pipe radius plus the offset. The second 
expression estimates the field in a bending magnet with 
modified poles. We assume 20 KG maximum field with 
poles that extend to twice the beam pipe radius of 1.25 cm. 

The results for the conventional and superconducting 
wigglers are listed in Tables 4 and 5. Notice that when 
compared to Tables 2 and 3, the number of cells has in- 
creased and the main bending field has increased. Because 
the main bends are stronger, the required length of wiggler 
has decreased by roughly a factor of two. Obviously this 
is desirable. Unfortunately, increasing the number of cells 
and increasing the bend strength means that the bends be- 
comes very short, 13 cm for the 1.75 GeV case in Table 5. 
It is difficult to achieve the necessary field quality in such 
short bends since the end fields become significant. 

We use the results from Table 4 to pick a starting point i 
for our ring. We start with the lowest energy, conventional 
wiggler, design. This was chosen for the reasons mentioned 
previously in Sec. 2.1; namely, low energy makes the subse- 
quent bunch compression easier and the magnets are easier 
to build. In addition, although the low energy design re- 
quires more wigglers, it is smaller and therefore (hopefully) 
cheaper; we have not attempted to optimize costs in a rig- 
orous manner. 
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Fig. 1. Schematic of the TLC damping ring. 

Table 6. TLC damping ring parameters. 

Energy EO = 1.8 GeV 

Length L = 155.1 m 

Momentum compaction Ly = 0.00120 

Tunes uz = 24.37, q, = 11.27 

3. BASIC LATTICE 

A design for the TLC damping ring is illustrated in 
Fig. 1. The ring has a circumference of 155 m and operates 
at an energy of 1.8 GeV. There are six insertion regions, 
two for injection/extraction and four for wigglers. The arcs 
between each insertion region are composed of 11 combined 
function FODO cells. The ring has a superperiodicity of 
two. The parameters are listed in Tables 6 and 7. Table 6 
lists general parameters while Table 7 lists parameters for 
the ring with the wigglers on and off. The optical functions 
pz and pY and the dispersion function Q for half of the ring 
are plotted in Fig. 2. 

The ring would operate with 10 batches of 10 bunches 
of 2 x 10 lo electrons/positrons. The bunches in a batch 
are separated by 1 RF period, approximately 20 cm. Each 
batch is then separated by 50ns, leaving 1OOns for the 
kicker pulse to rise and fall. When the wiggleis are on, the 
normalized horizontal emittance, including the intrabeam 
scattering effects calculated by ZAP,23) is 2.75 x lo-“mrad. 
Because the ring operates at a relatively high energy, neces- 
sary to achieve the required damping rates, the intrabeam 
scattering contribution to the emittance is fairly small - 
about 27% of the ring emittance. The damping times are 
‘TV = 2.50ms and 7Y = 3.98ms. This allows each batch to 

remain in the ring for seven vertical damping times (vdt) 
when operating at a repetition rate of 360 Hz. Ignoring 
coupling of the horizontal and vertical planes, 7 vdt will 
damp a positron beam with an initial normalized emit- 
tance of 3 x 10v3 to an emittance of 2.7 x 10mgmrad. The 
alignment tolerances required to achieve the 1OO:l emit- 
tance ratio are discussed later in Sec. 5. 

6 
II 1 
d 2 

0 
0.06 

3 0.04 

M r 0.02 

0.00 
0 20 40 60 

Fig. 2. Optical functions for half of the ring. 

r 
Table 7. TLC damping ring parameters. 

Wigglers Off Wigglers On 

Natural 7~~ 

yez w/ intrabeam 

Damping, T= 

Damping, TV 

Rep. rate, f& 

Damp. partition, Jz 

Energy spread, oc 

Radiation/turn, UO 

Bunch length. uI 

Synch. tune, v, 1 0.006s 1 0.005s 

We wish to operate the ring below or close to the 
turbulent bunch lengthening threshold. The threshold is 
(Z/n)t = F x .2R where F is a form factor greater than 
one.“)While this impedance is very low (by conventional 
standards) we plan to achieve such a value by using a con- 
stant size beam pipe throughout the ring. The planned 
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pipe has a 1 cm inner radius which is slightly smaller than 
the SLC damping rings and is approximately seven times 
the beam size of an injected positron beam. 

0 0.2 0.4 0.8 0.8 1 1.2 

Fig. 3. Arc cell optics and magnets. 

3.1. ARCS 

The six arcs are constructed of 11 combined function 
FODO cells. The bends have an additional defocusing 
quadrupole gradient which re-partitions the damping. The 
optical functions and the magnet positions are plotted for 
a single cell in Fig. 3. The bend magnets bend an an- 
gle of 2.5“ and have normalized defocusing gradients of 
K1 = 5.0me2, i.e. a gradient of 300 KG/meter. The &F’s, 
the focusing quadrupoles, which are the strongest quadru- 
poles in the ring, have normalized gradients of -15.7mM2. 
Using a magnetic radius of r = 1.2 cm, 2 mm greater than 
the beam pipe, the QF’s have pole tip fields of 11.3 KG. 

This design has a little more space between magnets 
than the SLC damping rings do, but it is still tightly packed. 
There is 14 cm between the QF’s and the bends and 13 cm 
between the bends and the QD’s. Note that since the bends 
have large defocusing fields the QD’s are very short. Since 
space is tight and very strong sextupoles will be needed to 
correct the chromaticity, we plan to use permanent mag- 
net sextupoles similar to those successfully used in the SLC 

24) damping rings. 

3.2. INJECTION/EXTRACTION INSERTION 

The injection/extraction insertion regions have a 2 m 
drift space for septum magnets. On either side of the inser- 
tion drift there are additional 1.6 m drift spaces. The hori- 
zontal phase advance from the middle of the insertion drift 
to the center of these side drifts is approximately r/2, thus 
making them useful for the placement of the kicker mag- 
nets needed for injection/extraction. The optical functions 
for half an insertion are plotted in Fig. 4. 

s 

o.ooF ’ ’ ’ o ’ ’ a ’ ’ ’ ’ ’ 
0 2 4 6 

Fig. 4. Half of the injection/extraction insertion. 

The dispersion is set to zero in all six of the insertion 
regions. This is done in the injection/extraction regions 
to make it easier to match the extraction transport line to 
the ring. Experience on the SLC has shown that properly 
matching the various components of the collider is crucial 
for obtaining small spots at the collision point. In addition, 
zero dispersion should make injection of the large positron 
beams easier. 

3.3. WIGGLER INSERTIONS 

The wiggler insertions are very similar to the injec- 
tion/extraction insertions. Both insertions use the same 
dispersion suppression arrangement. The main drift in the 
wiggler insertion is 6 m rather than 2 m. There is also an 
additional quadrupole so that the wigglers can be continu- 
ously varied from full on to off while keeping the phase ad- 
vance across the region constant. The lattice functions for 
l/2 the insertion with the wigglers off are plotted in Fig. 5 
and the same with the wigglers on is plotted in Fig. 6. No- 
tice that the vertical focusing due to the wigglers allows & 
to have negative curvature across the insertion. 

3.4. WIGGLERS 

Wigglers are required to reduce the damping times by 
a factor of approximately 2.5. Thus, high peak fields are 
needed. Unfortunately, to prevent the wigglers from blow- 
ing up the emittance, short wiggler periods are also nec- 
essary. We chose a wiggler with a 24 KG peak field and 
a period of 20 cm. With this short period the wigglers 
actually lower the emittance. The wiggler contribution to i 
the emittance is dominated by the 7: generated by in the 
wigglers. Since BZ is approximately 4 m in the wiggler, the 
dispersion in the wiggler would have to be roughly 15 cm 
before its contribution to the emittance is comparable. We 
could have lowered /?= in the wiggler, but this would in- 
crease the chromaticity and likely decrease the dynamic 
aperture because stronger sextupoles would be needed for 
chromatic correction. 

8 



. 

mQDY QDZ [ mQDM m ,.,, 
A- III 

I yr 1 w 

- 12.5 L IIS n ‘1”“l”“l’~ 

~~~ 

~~: 

0 2 4 cl 8 

Fig. ‘5. Half of the wiggler insertion with wigglers off. 
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Fig. 6. Half of the wiggler insertion with wigglers on. 

The period and the peak field were chosen to be within 
15%25) of the limits for Nd-Fe-B hybrid wigglers as speci- 
fied in Ref. 20. If such a high peak field is not feasible, we 
can increase the energy of the design to 1.9 GeV and de- 
crease the peak wiggler fields to 21 KG, the maximum field 
specified in this reference. The vertical damping time re- 
mains 3.98 ms and the natural horizontal normalized emit- 
tance increases to 2.29 x IO-“mrad; intrabeam scattering 
further increases this to 2.85 x 10P6mrad. The small in- 
crease in emittance occurs because the horizontal damp- 
ing partition J, increases as the wiggler gets weaker, see 
Eq. (2.25). 

The wigglers are 5.6 m long, leaving 20 cm between the 
wiggler and the insertion quadrupoles. We modelled them 
in the lattice using hard-edged rectangular bends with the 
same peak field, 24 KG. The poles are l/4 of a period long 
and the drifts separating the poles are also a l/4 period 
long. Thus the model wigglers generate the same amount 
of synchrotron radiation as sinusoidal wigglers would, but 

the vertical focusing contribution is incorrect. With this 
model we should be over-estimating the vertical focusing 
and the four quadrupoles in the wiggler insertions should 
be able to easily compensate the weaker focusing. 

-10 -6 0 6 10 

Initial X position (mm) 

Fig. 7. Dynamic aperture for the chromatically 
corrected ring. 

4. CHROMATIC CORRECTION 

Before attempting to optimize the ring, we need to 
demonstrate that the chromatically corrected ring can have 
reasonable dynamic aperture. We currently correct the 
chromaticity with only two families of sextupoles located in 
the arcs. The integrated sextupole strengths are: K~SF = 
-52.0mv2 and 1<2~D = 68.7mm2. 

The phase advance of the cells is adjusted to cancel 
most of the first order geometries over an arc, 11 cells. 
The amplitudes of the first order geometric perturbations 
are proportional to: ‘4 

I dspz’2K2 (ei3$r + ,iloz + CC) 
arc 

J 
ds&f2&K2(e’d.+2ti, + ,@= + eih-2iv + CC) 

(4.1) 

arc 

where CC represents the complex conjugate. Since the cells 
are periodic, these integrals can be minimized by making 
the arc phase advances integral multiples of 2~. We chose 
cell phase advances of vzc = .270 and vyc = .OS6. Thus 

llv,, =3 11(3v,,) M 9 

ll(J4.c + 2v,c) = 5 ll(&, - 2vyc) = 1 . 
(4.2) 

While this choice of phase adva.nce cancels the first order 
geometries over an arc, it drives the octupole difference 
resonance, a second order geometric effect of sextupoles. 
Although we have not tried, we should be able to minimize 
the higher order geometric and higher order chromatic ef- 
fects with additional sextupole families. 
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We have not attempted any optimization other than 
adjusting the cell phase advances as described above. The 
dynamic aperture is, for the most part, larger than the 
physical aperture. The results of tracking 1000 turns are 
plotted in Fig. 7. Note that the plot is distorted; the beam 
pipe is be round. The dynamic aperture will decrease when 
errors and realistic wiggler induced non-linear fields are 
included, but with more sophisticated chromatic correction 
schemes it should not present a problem. 

5. TOLERANCES 

5.1. ALIGNMENT 

We need to calculate the effects of misalignments on 
both the dynamic aperture and the emittances. Errors 
in the machine decrease the dynamic aperture by causing 
tune shifts and higher order multipole fields on the closed 
orbit. In addition, errors will couple the horizontal and 
vertical planes and generate vertical dispersion, causing an 
increase in the vertical emittance. As mentioned in the 
previous section we have not yet attempted to optimize 
the chromatic correction scheme and the dynamic aperture; 
thus we only discuss the tolerances necessary to achieve the 
desired emittance ratio. 

In an ideal uncoupled ring there is no vertical disper- 
sion or linear coupling. Thus the synchrotron radiation 
opening angle, which is very small, determines the vertical 
emittance. In practice, this is not the case. First, vertical 
dipole errors and a non-zero vertical orbit in the quadrupole 
magnets will directly introduce some vertical dispersion. 
Second, a non-zero vertical orbit through the sextupole 
magnets, vertical sextupole misalignments, or rotational 
misalignments of the quadrupoles couple the horizontal and 
vertical planes. This coupling has two effects both of which 
increase the vertical emittance. It couples the horizontal 
dispersion to the vertical, causing an increase in the ver- 
tical, and it couples the z and y betatron motion so that 
energy is transferred between the two. 

Assuming uncorrelated misalignments, the vertical emit- 
tance due to the dispersion generated by quadrupole rota- 
tions and sextupole misalignments is: 

yey N 2Q3 h’:) @4d43 
- -%--F j- ds/p(s)2 

(17:) 1 
-r 2 sin2 f~ c ( Iw2PY@2 (5.1) 

y twds1 
0% 1 

BY N 8sin2 xv c v~2~)2PYYk , 
y {sext} 

where C, = 3.84 x lo-l3 m, 0 is the rotation angle, and 
ym is the vertical sextupole misalignment. KIL and K2L 
are the integrated normalized quadrupole and sextupole 

strengths. Likewise, the increase in the vertical emittance 
due to linear coupling is: 

_ 1 - cos 8, cos Qy 
Ey = ~za4(cos c!, - cos afy)2 {sext) 

where Q  = 27ru, and E = (0, +oy)/oy; c~,,~ is the horizon- 
tal (vertical) damping rate. Note that both the formula for 
the dispersion and linear coupling have resonant denomi- 
nators. The vertical dispersion grows as vy approaches an 
integer and the linear coupling contribution increases as 
vy approaches the linear sum or difference resonance. To 
minimize both these we chose the operating tunes Y, = .37 
and uy = .27. 

It is harder to estimate the effects of the dipole errors 
since, in addition to generating vertical dispersion, dipole 
errors cause a vertical orbit which is correlated from point 
to point. We consider the limit of an orbit fully corrected 
with dipole correctors. We then approximate the orbit by 
assuming that it is correlated between correctors, but un- 
correlated on either side of a corrector. In this case the 
vertical dispersion can be approximated as 

x 

where (y2)res/py is the residual orbit after correction and 
ty = -1/4nJ/ly(K~ + K2qz)ds is the local vertical chro- 
maticity of one cell or insertion region. Also, N,,,, is the 
number of correctors being used and Nir,s is the number 
of insertion regions. Note that this formula illustrates the 
advantage of local chromatic correction. The vertical dis- 
persion due to a vertical closed orbit is a quadratic func- 
tion of the local vertical chromaticity between correctors. 
This is one advantage of the FODO and TME”) lattices 
over the Chasman-Green type structures. In the FODO or 
TME lattices, sextupoles can surround each quadrupole, 
whereas, in the Chasman-Green lattice all of chromatic cor- 
rection is done at the center of each cell structure where 
the dispersion is non-zero. In our current design we have 
not yet attempted to minimize the chromaticity locally by 
correcting the arcs and insertions separately; all chromatic 
correction is done in the arcs. 

Using the same approximation, that the orbit is un- 
correlated across the correctors, the emittance due to the 
linear coupling is: 

m  (Y2)*es 
ey = 64 py c Ncorr x av a~ sin2 nAu sin2 rrA&u 

( C (IliL)i(I(2L)jPy,Py,~~cos A&,j) 1 (5’4) 
i, jEcell 

where the first sum is over the two values of Au, Au = 
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I+ f q,, and two values of A$ for each value of Au: 

A&j  = 
tizi,j, hi,j + 24, i,j; AU  = U, + UV  

dzi,j, dz i,j - 2&i,j; AU = U, - UY . 
(5.5) 

Here, 4i,j is the phase advance between sextupole i and 
j in the cell and &.u is the cell phase advance. Notice 
that the expression becomes large when the tunes are close 
to the linear coupling resonances and when the cell phase 
advances are close to the sextupole coupling resonances. 

Summing all of these contributions, we have 

-yEI x 028.9 x 1o-8 + yi10.5 x 10-6+ 

(Y2Les is-l.8 x 1O-6 , (5.6) 

v I 

where-0 is the quadrupole rotational misalignment in mil- 
liradians and ym and yres are the sextupole misalignment 
and residual orbit in millimeters. Thus the vertical emit- 
tame depends strongly upon ym and the residual orbit. We 
can specify tolerances by dividing most of the contribution 
between ym and the closed orbit: 

0 < 0.25mrad, ym <30pm, y,,, 5 100pm , (5.7) 
- 

where /?, was assumed to be 2 m. Notice that random sex- 
tupole misalignments y,,, are far more damaging than the 
residual orbit. In addition, with a vertical corrector in each 
cell, the residual orbit is strongly dependant on the BPM 
tolerances and only weakly dependant upon the magnitude 
of the dipole errors. Thus the BPM’s must be aligned to 
a tolerance of 100 pm minus the BPM measurement sensi- 
tivity. 

These results were verified with a computer program 
which, like PETROS, calculates the fully coupled emit- 
tances given a distribution of errors in the ring. Using 10 
distributions of errors, the program consistently corrects 
the orbit due to 200pm quadrupole misalignments to less 
than the 1OOpm orbit tolerance. Furthermore, the average 
value of +ycY is very close to the results of these analytic for- 
mulas. Unfortunately, the rms of YQ, is quite large, about 
70% of the average value, implying that we would need to 
tighten the tolerances to have confidence in the final emit- 
tance ratio. 

Fortunately, we can correct much of the coupling. Lin- 
ear coupling can be corrected with four orthogonal skew 
quadrupoles. Of course to correct the linear coupling, one 
has to measure the amount of coupling, and then separate 
the linear coupling from the effects of vertical dispersion. 
One option would be to use a number of profile monitors 
around the ring. The effects of the vertical dispersion could 
be subtracted off using the fact that the dispersion should 
oscillate at a harmonic next to the tune. Alternatively, we 
should be able to find the amplitude and phase of the lin- 
ear coupling by measuring the phase and amplitude of the 
uz f uy tune lines relative to the u, and q, lines. 27) We 
hope to test this technique on the SLC in the future. 

We can also correct the vertical dispersion. Skew quads 
in regions of horizontal dispersion act much like dipole cor- 
rectors when correcting a closed orbit. Just as when cor- 
recting a closed orbit, the first few correctors, skew quads 
in this case, do most of the correction. Obviously to cor- 
rect both the linear coupling and the dispersion, we have 
to perform the corrections in an orthogonal manner. 

5.2. KICKERS 

It is extremely important that the extraction kicker 
have very small jitter. Assuming linear optics, a one sigma 
jitter at the extraction septum becomes one sigma jitter 
at the IP. Actually, without BNS damping 

28,29) the jitter 
would be magnified many times by transverse wakefields in 
the linac. But with weak BNS damping, the linear approx- 
imation is fairly accurate. 

We would like to achieve a jitter tolerance of one tenth 
of the beam size o,,~ at the IP. This specifies a tolerance 
on the kicker. Assuming that the septum plate is 90” in 
phase downstream of the kicker, 

@<ajit where 
1 

0 - 3&k 
ajit I zgz 7 (54 

where z&k is the transverse displacement of the kicked 
beam at the septum. It is a sum of the distance between the 
closed orbit and the septum plate plus the septum thickness 
and some extra space for the extracted beam. 

This tolerance can be written in a more transparent 
form: 

E<L l/E 
@  - 10 &ept plate + lmm+N,J~ ’ 

(5.9) 

where ycext and rcinj are injected and extracted beam emit- 
Lances. N* is the distance between the closed orbit and the 
septum plate in units of the injected beam size. To prevent 
particle loses, the septum plate must be many sigma from 
the stored beam just after injection when the beam is the 
largest; we assumed NB = 7. The only other quantity in the 
tolerance is the septum plate thickness. Because a pulsed 
septum‘will introduce more jitter problems, we need to use 
a DC septum. The septum plate in a DC septum with 
strong fields cannot be made much thinner than 3 30) mm. 
Assuming Ytinj = 3 x 10m3 mrad and pz x 3 m, the jitter 
tolerance on the kicker is 

(5.10) 

Notice that this tolerance is mainly determined by the ratio 
of the extracted beam emittance to the injected emittance. 
The only way to minimize the tolerance is to reduce N,, 
increasing the particle loses due to scraping, or to reduce 
the injected emittance. 
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Such a tolerance will be difficult to achieve. One so- 
lution would be to use two kickers, separated by a phase 
advance of a, to cancel the jitter. One kicker would be 
placed before the septum and one located in the extrac- 
tion line. Unfortunately, this approach requires that the 
two kickers track each other over the time needed to ex- 
tract a batch, - 7ns. Since the tolerance for this bunch 
to bunch tracking is equal to the jitter tolerance, getting 
the two kickers to track maybe as difficult a problem as 
having a single kicker to achieve the jitter tolerance. An 
alternate approach would be to use a current source with 
feedback instead of a thyratron. Unfortunately, with cur- 
rent technology, it is not apparent that such a system could 
provide the necessary current.‘) To conclude, we have not 
yet found a viable solution to the kicker problem and it 
requires further research. 

6. SUMMARY 

In this paper we present a design for a damping ring 
for a TeV linear collider. The ring is baaed upon a FODO 
lattice where the bending magnets contain a gradient to 
re-partition the damping. In addition, damping wigglers 
are used to lower the operating energy and to increase the 
energy spread. If the length of wiggler required is too much, 
we have solutions at higher energies that need less. 

We demonstrate, using a very simple chromatic cor- 
rection scheme, that the chromatically corrected ring has 
reasonable dynamic aperture. We also calculate the toler- 
ances on the alignment and the vertical orbit necessary to 
achieve a 1OO:l emittance ratio and then discuss methods 
of correcting the coupling. Finally, we calculate tolerances 
on the extraction kickers and find that they are very tight. 
Unfortunately this tolerance depends mainly upon the ratio 
of the injected beam emittance to the extracted emittance 
and it is not easy to decrease. 

Finally, we note that we have more work in optimiz- 
ing the injection/extraction insertion regions to loosen the 
requirements on the extraction kickers. We need to im- 
prove the chromatic correction scheme and we should cal- 
culate the effect of errors on the dynamic aperture. We 
also should also take detailed looks at designs based upon 
the TME lattice and a version of a FODO lattice without 
separate defocusing quadrupoles. 
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