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ABSTRACT 

Soliton solutions in the nonlinear sigma model in 2 + 1 space-time dimensions 

are analyzed classically in the presence of the Chern-Simons term using a CP1 

map. Making an expansion in &p, the new contributions to the energy functional 

push the solitons to infinite size. It is further shown that including quantum 

zero-point fluctuations around the soliton vacuum in the long-wavelength limit is 

insufficient to stablize its size. 
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I. Motivation 

It is an attractive though unproven conjecture that the two-dimensional quan- 

tum Heisenberg magnet in the continuum and large spin limit is the nonlinear 

sigma model with or without further topological terms [l]. Making the standard 

map of the nonlinear sigma model to its CPr variant [2], a unique topological 

term can be written, namely the 2 + 1 dimensional Chern-Simons density. The 

origin of this term, though obscure physically [3], does have dramatic effects on 

the physics. The resulting spin-statistics transmutation is important in one sce- 

nario for the microscopic mechanism conjectured for high-Tc superconductivity [4]. 
- Polyakov et al. [6] b o served that since the spin-statistics effect is predicted in the 

long-wavelength limit, this same term may be sufficient to stablize the size of the 

solitons whereas arbitrary higher-derivative terms drop out of the theory in this 

limit. 

The bare CP’ theory is given by the Lagrangian density 

L = f(DpZ)+(DpZ) - ~(Z+Z - 1) ) 

with ,V = 0,1,2, D, = a,+iA, and Z a complex two-spinor (o, ,B). The theory has 

one dimensionful coupling constant f and constraint fields V(X) and A,(z). Finite 

energy solutions of the equations of motion are well-known [5] and are given by 

Zsol = (w/]w]) with w = w([+) or ~(5~) where t+ = zr + ix2 and t- = x1 - ixz. 

The simplest polynomial analytic function for w = u + ((t - &)/A)NV has en- 

ergy 2rf N where u and o are any convenient basis vectors in spinor space and 

the X denotes the size of the soliton. The expression for the energy in the case 

of static solitons is E = f J d2x(DiZ)t(DiZ) where A0 is zero via its equation 

of motion. This expression is invariant with respect to resealings x’ = KX. This 

dilation invariance of the bare CPr theory makes it possible for solitons of finite 

size to simply shrink to zero size thus making them only marginally stable against 

any perturbations. The resealing invariance also means that no stable minimum 

exists in the energy as a function of soliton size. In the long-wavelength limit, 
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higher derivative corrections to the theory drop out, and the remaining terms may 

collapse the solitons. For this reason, the Chern-Simons term, while introduc- 

ing higher derivative corrections and being relevant in the long-wavelength limit 

(e.g., the spin-statistics effect), is thought to play a crucial role in stabilizing the 

solitons [6]. Stabilization via quantum corrections around the soliton background 

will be weaker than the classical effects without the Chern-Simons term [7] by 

w4 

Higher derivative corrections by themselves introduce inverse powers of X in 

the energy functional. Except in the case of a careful conspiracy of signs (as in the 

Skyrme model), these terms will push the soliton configurations to infinite size. 

The paper analyzes two important effects of the Chern-Simons term on solitons; 

namely, the classical shift in the energy of the solitons and its effect on quantum 

corrections in the semiclassical picture. 

II. Classical Effects 

The full theory with Chern-Simons term is given by 

,c = f(DpZ)+(DPZ) - q$Z+.Z - 1) + B+,,AP”d”AP . (1) 

The 19 can also be written as (Ocp/47r2) with Ocp = r responsible for bose-fermi 

transmutations [8]. The last term makes the x(x) fields dynamical thus changing 

the theory drastically [9]. The equations of motion that result from Eq. (1) are: 

(D,Dp - $2 = 0 

z+z = 1 

A,ZtZ = -($) - ($)E&~A , 

(2) -i 

where Jp = i(~3~2+2 - Z+a,Z). 

For static solutions Z(xr,x2), the zero component of the last equation reads 

A0 = -(a/f)? x A. Th e e ua ions in this subspace of solutions are only gauge q t’ 
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invariant with respect to time-independent gauge transformations. Therefore, one 

cannot set A0 to zero by gauge fixing without changing the time dependence of 

the Z(x) fields. This equation which is Gauss’s law for this theory implies A0 is 

entirely determined by the other 2s. If we further look for solutions where the 

A(x)‘s are also static, the two other equations can be combined with this to give 

the equation 

A.=-& _ I 2 (3) 

Solutions to the last equation, Gauss’s law and the 2 equation constitute solitons 

with energy given by 

E = f J d2x [A: + (DiZ)‘(DiZ)] . (4) 
Since A0 is not related to the currents to leading order, we divide the cases as to 

whether A0 is zero or not. For configurations with A0 = 0, one gets A’ = -(1/2)J’ 

and e x y= 0. The solutions to the 2 equation are simply given by ZsOl (no other 

nontrivial solutions to this equation are known). However, for these solutions, we 

cannot satisfy $ x f= 0. Therefore, for A0 zero, there are no consistent solutions. 

Finite energy solutions require A0 to vanish at the boundary while D;Z > 

(l/r). Motivated by the ansatz for the vortex in Higgs theories, we try the following 

ansatz in circular coordinates (r, 4) for soliton solutions 

z = G(r)eiNQ [ 1 H(r) 
and require Ad = A(r), A, = 0 and A,-J = Ao( r). There is only one degree of 

freedom left in the Z’s since 2t.Z = 1 implies G2 + H2 = 1. Using this ansatz, 

it can be shown that the equations for the top and bottom component of 2 are 

related by a factor (G/H). Th ere f ore, the one independent equation will determine 

G(r). For arbitra.ry 8, the equations of motion for G(r), Ad and A0 become: 
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(6) 

A0 = - !k$(rAm) . 

The- A, equation of motion consistently sets it to zero for our ansatz. For the 

case 8 = 0, Gauss’s law implies A0 = 0, and the A equation of motion gives 

A4 = -(N/r)G2. Th e second order G(r) equation is solved whenever the first order 

equation G’ = f(N/r)GH 2 is satisfied. Imposing the boundary condition G = 1 

at infinity gives the well-known solutions at 6’ = 0, namely, G = (fN)/(l + f21v)i 

where i: = r/X with X the soliton size. For more general theta we have two coupled 

second order differential equations. We note that the boundary configurations 

2 = (eiN9,0 >? Ad = -P/r) g ive A0 = 0 at the boundary, winding number N 

and satisfy the equations of motion in addition to regulating the energy functional 

at large radius. That is, barring any pathological singularities, the solutions to 

the two differential equations with the same boundary conditions as the lowest 

order soliton solutions constitute new finite energy configurations of the theory 

with non-zero dep. Instead of pursuing the complicated problem of the complete 

analytical solutions, we instead perform a perturbative analysis in t9. 

In the case where A0 is fixed by the zs, one can examine solutions through 

an expansion in 6. An expansion in 0 is also an expansion in h, since in physical 

units, the true coefficient of the Chern-Simons term is 7~8. Moreover, the equa.tions 

of motion imply that higher powers of 13 occur with higher derivatives of the fields. 

Thus, in the long-wavelength limit, in the classical limit, and in the small theta 

limit taken simultaneously, we have 

(7) 
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Equivalently, one can use the nonlocal expression for the 2s in terms of the 3s [lo]. . 
The only dynamical equation left to solve is DiDi - (Z+DiDiZ)Z = 0 with 

i = 1,2 where we note that all the A0 pieces drop out. Because of the complicated 

expansion for Ai, this nonlinear equation has no obvious solutions. For solutions 

of the form 2 = ZsOl + 02, where 2 is not necessarily (anti-)analytic, one finds 

that the above equation and the constraint ZtZ = 1 lead to an overdetermined 

system of equations. Instead of expanding around ZsOl, if one starts with a general 

(anti-)analytic w with 2 = (w/]w]), the 2 equation of motion requires 

a;(0 x J)DIQZ = 0 , (8) 
- 

where Df = di - (2+8iZ), th e 1 owest order part of A’. This equation is certainly 

not obeyed by the standard lowest order soliton configurations given in Section I. 

If for some solution, this equation were satisfied as DfZ = 0, the energy vanishes 

identically where the expression for the energy density to lowest order is given after 

partial integration: 

4 = A; + (D;Z)+(DfZ) + 
0 

; 4(‘? x f))02(e x jj , 

since V x y - (D%)+(D%). I 3 F or solutions to this equation via $ x T N constant, 

the energy is not bounded. Since, we don’t know what nontrivial solutions of finite 

energy do solve this equation, we analyze the A’ equations to order o2 instead of 

order 03. To this order, the solutions of Section I are 

simply 41/2)i The energy is 

still good since A’ is now 

E = f J [ d2x A; + (D;Z)+(DfZ) 1 (9) 

Using the order 8 expression for Ao, the energy of the soliton with winding number 

N and size X is given by 

E = 27rfN + 47rfN3 (10) 
where B(x, y) is the beta function [ll]. 3% us, to lowest order in 0, the lowest 
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energy so&on is of infinite size. 

If we consider the equations for static 2 but time-dependent A’s, there are 

two cases again depending on whether A0 is zero or not. For configurations with 

A0 = 0, it is easy to show that the self-consistency of the equations of motion 

require the A’s to be time-independent also for which we know there are no finite 

energy solutions. For the case A0 N 9 x A, one obtains again nonlocal expressions 

for all the A’s in terms of the J’s [12]. Instead, one can make an expansion in 8 

using the equations of motion as before and the lowest order terms in the current 

are exactly the same as Eq. (3). For th is class of configurations, the 2 equation of 

motion and the energy functional is unchanged. There exist solutions then to the 

same order as before with large solitons preferred. 

Before we conclude this section, we briefly review the case of nonstatic solutions 

to the equations of motion. If one restricts A0 configurations to vanish at infinite 

radius [13], one can use the full gauge invariance of the equations of motion in 

Eq. (2) to set A0 = 0. The 2 equation of motion is modified to 2 - (Zt.%‘)Z - 

(DiDiZ) + (Z’DiDiZ)Z = 0. The A’ equations impose one more constraint on the 

2 fields, namely, 

0 ; (a.$ -(;)2Jo-jo+‘?.~=0 , (11) 

whose origin is essentially Gauss’s Law. As usual, the 2’s can be expressed nonlo- 

cally in terms of the 3s [la] and the perturbative formula is 

To order 19~, the constraint equation (9) reads Jo = (0/f)? x i A solution of 

the form 2 = exp(icp(x,t))Z,,i gives cp = (id/2f)($ x 1) + const. which makes 

A = -(1/2)J’to 82 f or which a static solution was found above. However, the 2 

equation imposes the familiar equation a;io(DOZ) = 0 just as before but now to 
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order 19~. As discussed earlier, this severely restricts the hope of an obvious solution. 

Interestingly, though, the lowest order beyond the bare theory is problematic for 

the nonstatic case. 

The CPr theory even without the Chern-Simons term induces higher order 

effective terms for the A, fields [14]. Th e 1 owest order gauge invariant term is 

p” (lI9)F,,~ * With this term present, Zs,,l is a solution to the equations of motion 

only to order [15] o2 and order (l/gf). For th e case of static solitons, we were able 

to show that the bare solitons still satisfy the equations of motion but a nontrivial 

contribution to the energy functional from the Chern-Simons term drives these 

solitons to infinite size. The nonstatic case is a complex problem even to next to 

leading order in perturbation theory. Since the classical analysis shows that the 

static soliton configurations satisfy the equations of motion to order d2, the role of 

quantum fluctuations needs to be examined. 

III. Quantum Fluctuations 

In Section II, we made an expansion of the classical equations of motion in 

powers of 8. To order 19~, static solitons solve the equations of motion. These con- 

figurations then are in the perturbative sense, points about which a saddle-point 

expansion can be made. By expanding the action around these classical configu- 

rations, we will obtain the spectrum of excitations in the soliton background [16]. 

Usually the spectrum to lowest order consists of noninteracting spin-waves having 

the energy E = Ciliwi(ni + (l/2)). Th e contribution of the zero point motion to 

the soliton energy is therefore Ci(l/2)Li. M a in k g a similar correction to the vac- 

uum energy, one obtains the quantum soliton mass in this semiclassical picture [17]. 

The main effect of the soliton background is to shift the eigen-frequencies of the 

spin waves Wi. In the path-integral point of view, the object of interest is the 

transition amplitude between all field configurations @ at time t = 0 to the same 

field configurations at a later time t = T. The correct expression in the canonical 

language is Tr(eiHT ) which in the path integral language becomes N J[d@]eis 

where @ represents all the fields and 5’ the action for our model. 
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Since the integral has an extremum at the soliton configurations to order 02, 

we shift the fields 2 = 2”’ + 2, A, = AZ + A,, and 7 = 77” + X, the transition 

amplitude becomes: 

n(eiHT) = NeiSct J [d@]S(~tZCz + .ZLli?)eiB , (13) 

where N is a normalization constant. It is straightforward to show that SC1 = -TE 

where E is given in Eq. (4) and is evaluated exactly in Eq. (8). Corrections to this 

arising from S will correspond to the zero point shifts in the Hamiltonian picture. 

The expression for 3 to quadratic order in the quantum fields is given by 

i$ =f J d3x Z+ [ - (D,D”)cz - q”]i - 2i&(Z;18‘~ + i+#‘.@) (14) 
+ A,P + eE~vAA&JA~ ) 

where 7” = t Zc,D, DpZ,l The first t erm represents the action for spin-waves in the 

soliton background. Only the last term is specific to the CP1 model with Chern- 

Simons term. This term is entirely independent of the classical background unlike 

the spin-wave term. Were this term not present, the A integration is a simple 

gaussian integration and the new effective action ,!?eff would give the appropriate 

zero-point contribution of the spin-waves to the soliton energy. We can obtain a 

similar effective action for the theory with the Chern-Simons term if we use instead 

the equations of motion for the A that emerge from ,!?. From ,!?, the variation 

principle gives A, = -& - (B/f)Epv~dVAA, with jc = ;(.ZJlaPi + it3PZc,). In 

this way, we are performing a second saddle-point approximation. We can similarly 

perform the same operation had we included cubic and quartic terms in 3. The 

resulting effective action to order o2 is 

Seff = f J [ d3x2+ - (D, D’“)” + qcz] 2 - f e&j“ + 0~&,cjX~~“~ . (15) 

Now the field integrations are to be done over 2 and St only. The last term has the 

pieces quadratic in 2 which when combined with the higher order terms is equal 

9 



to the Hopf term that comes from the Chern-Simons term in a 8 expansion [18]. 

The entire Hopf term represents the index lI,3(S2) and just represents the spin- 

statistics factor [19] for th e configuration 2,-l + 2. The remaining terms are exactly 

the same as the bare CP’ theory except that now A:’ N (O/f)? x Jcl. This new 

potential term in the wave-equation for the spin-waves is of order (O/f X2) apart 

from numerical factors less than one. Since the quantum fluctuations are O(ti), the 

change in the quantum fluctuations via the new A0 will be smaller by the factors 

&8. Even for Ocp = R, 8 is small enough that we omit this new potential term 

in order to study the leading quantum effects, that is to zeroth order in 0. The 

quantum corrections for the bare CPr are usually treated in the nonlinear sigma 

model language. The quantum fluctuations of the bare nonlinear sigma model have 

been fully addressed in both two and three dimensions [7,17]. 

Now we can combine the known results of the quantum fluctuations of the 

solitons in the nonlinear sigma model with the shift of the classical energy of 

these solitons in the presence of the Chern-Simons term to derive the new energy 

functional. Quantum fluctuations in the nonlinear sigma model break the dilation 

symmetry of the energy functional. When the zero point motions around the 

vacuum and the one-soliton background are taken into account, the result is to 

lower the classical energy of the soliton through a sum of phase shifts for spin- 

waves in the soliton background, or Egean = Eclass - (e) J dk tr[S(k)] where E is a 

constant of order ;ti. The minus sign in this equation is consistent with Quantum 

Mechanics, which predicts that the energy of the lowest state, in this case the 

soliton at rest, is decreased by second-order stationary perturbation theory. Using 

a large momentum cutoff corresponding to the inverse of the lattice spacing (&) 

in computing the zero point motion, the energy of the soliton to order tiQ is [7] 

(16) 

valid only for lcdX < 1 and where by A, we mean IX]. The quantum effects by 

themselves make larger solitons have lower energy. Larger solitons present a larger 
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disordered area relative to the N&e1 state and spin waves cost less energy on such 

a background compared to the ordered background. Varying with respect to A, we 

find no stable minimum satisfying lcdX < 1. 

Unlike the spin-statistics effect which holds in the long-wavelength limit, stable 

solitons do not emerge in the same limit even after the leading quantum corrections 

are included. Examining the last two equalities in Eq. (6), we see that the scale- 

breaking parameter is 0(0/f), which is th en the size of the exact solutions to the 

equations of motion. It is not clear whether perturbation theory to o3 is sufficient 

to see that this scale arises, since to d2, we have shown it does not. 

The spin coupling constant f is crucial to determining the final size as is the 

value of t3cp. Presumably the underlying dynamics of holes in the Heisenberg 

lattice determines both. The entire analysis above could also have been done by 

first eliminating the A’s in terms of the Z’s using the momentum exparlyion and 

then performing the saddle point approximation. 

IV. Conclusions 

The addition of the Chern-Simons term introduces an additional contribution 

to the energy functional for the nonlinear sigma model. In the continuum, this term 

destablizes the soliton. In fact, full solutions to the equations of motion either in 

the continuum or the lattice with the topological term are unknown. Solving the 

equations to next to lowest order and including quantum corrections to O(W), 

stable finite-size soliton configurations do not emerge. The effect of the Chern- 

Simons term in changing the wave equation for the spin-waves via the additional 

A0 potential terms needs to be examined. These corrections will appear with a 

minus sign and be of O(M). 

To find finite-size soliton solutions in perturbation theory then requires us to go 

to one higher order in 6. Remarkably, however, the full solutions to the equations 

of motion may be tractable. Using the ansatz we made in section II and writing 

the radial coordinate as 1‘ = tanx, the function G(r) in the case 19 = 0 and X = 1 

becomes simply sin x. Therefore, a Fourier expansion in x is an excellent basis set 
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for the full solutions for nonzero 8. The scale-breaking parameter sets the size of 

the resulting solitons to (0/f)( constant). Given the Fourier decomposition, it is 

straightforward to determine the unknown constant determining the physical size. 

This work is currently under progress. 

Once solutions of reasonable accuracy have been found, a greater understanding 

of the role of solitons in the onset of superconductivity is needed. Their stablility 

is dependent on the values of f and Ocp. If these topological structures are ob- 

servable, the above calculation could predict t9~p. Yet these parameters should be 

derivable somehow from the lattice Heisenberg model or Hubbard model. The role 

of the holes in stabilizing the solitons energetically is the subject of our current 

investigation. 

The author would like to thank Sebastian Doniach for many helpful hints and 

Dieter Issler for many points of advice. 
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