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ABSTRACT 
- . 

Through a special interplay of strong and weak interactions, small but sig- 

nificant pieces with a “wrong” flavor could be introduced into wave functions of 

mesons. Thus e.g., not only (US) pair, but also (ud] pair can be found with some 

probability within K+, etc. Possible importance of such “anomalous” terms in 

understanding of K-meson decays is discussed in a new scheme. The scheme is 

characterized by diagrammatic calculations of full amplitudes in long-distance 

environment. Two classes of models which correctly reproduce the main K- 

meson branching ratios and AI = l/2 rule are constructed. Predictive power of 

the scheme is then tested in a decay of a kaon into a pion and a light hyperphoton. 

The main idea, and both advantages and weaknesses of the proposed procedure, 

are thoroughly discussed. 

* Work supported by the Department of Energy, contract DE - AC03 - 76SF00515. 



1. Introduction - 
f 

The amplitude ATo for Ii’+ + r+r” decay is about 20 times smaller than -1 
amplitudes for two similar KS decay modes. Yet, almost any simple theoretical 

consideration would put these three amplitudes into the same range. It becomes 

even more obvious how small ATo is, when a comparison to CP violating KL + 

7rr decays is done. Despite the fact that CP violating phenomena are extremely 

rare, there is only another factor 20 difference between AZ0 and At- (Aio) . This 

puts ATo in the middle between CP conserving and CP violating amplitudes. 

What causes such a suppression of Ii’+ t 7r+r” ? Is the decay really suppressed, 

or - on the contrary - the decay modes of short and long-lived neutral kaons 

are largely enhanced ? It is in a way embarrassing that after so many years and - . 

: -- 

efforts we still do not have a convincing and widely accepted answer. Instead, more 

than a dozen different approaches are competing on a market, the most popular 

&es not always being based on the clearest physical pictures. With so many 

existing models, why to propose yet another one. ? First, we shall see that there is 

still enough room for new attempts, particularly if physics is presented in simple 

terms, and not obstructed by technicalities or completely lost behind layers of 

often mutually inconsistent concepts. Secondly, a new generation of highly precise 

experimental data on rare K decays is going to be available soon, and in order 

to benefit fully from these results, by then we should have a firm control over the 

basic theory. How could, e.g., we be sure that some seemingly unexpected result 

is an evidence for a new physics, and not just a consequence of imperfection of our 

existing models? The goal of the present article is certainly not to give an ultimate 

description of I< physics. Rather, it represents an attempt to trace a new and 

perhaps promising direction in theoretical analyses. In what follows, I will present 

a model based on several clearly outlined assumptions, check limits of application 

of these ideas, and discuss what new can be learned from them. Although the 

model is in a way still uncompleted, I hope that this analysis will bring us closer 

to better understanding of an important and extremely interesting subject. 
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The new model is based on the following three guidelines. - 
f (a) Kaon physics is determined mostly by long-distance (LD) effects, while 

-_. short-distance (SD) QCD can be ignored in the first approximation; 

(b) A key role in the explanation of the AI = l/2 rule belongs to a neutral, flavor 

changing s t d transition within a single quark line; 

(c) In evaluation of amplitudes only one concept and framework ought to be 

used. A combination of many various ideas and methods in a calculation 

should be avoided. 

- 

The reader will notice that the preceding assumptions are in a sharp contrast 

with some of the currently popular approaches [Il. Yet, all the assumptions are 

firmly embedded in physics, and some of them even have a long history. Addi- 

tionally, it should be recalled that we still do not fully understand the most basic 

I( + KT data, and it might be that only a sharp turn can bring us back to the 

ight track. The point (b) can be supported most easily. This idea stems from 

some analyses in the late 50’s and early 60’s, and has been with us since then. Its 

falls and rises are described in Appendix A. In spite of some alleged difficulties, 

s + d transitions provide the most elegant solution to the long-standing problem 

of hadronic I< decays. Much more controversial is the subject mentioned in (u) : 

the role of QCD in kaon physics. Since 1974, we are witnessing attempts to explain 

the kaon processes by using short-distance corrected effective Hamiltonians[‘-*I . 

In my opinion this elegant idea really should not be utilized in analyses of weak 

decays of light hadrons. In these processes, the lack of a large mass scale makes the 

use of the perturbative QCD very ambiguous. Furthermore, the actual sizes of the 

participating objects suggest that the long-distance QCD, and not SD corrections, 

govern the K decays. One might a.rgue that the heavy weak boson (IV), whose ex- 

change happens only while quarks are closely together, provides the required large 

scale, but this is actually not a good explanation. The large mass &fw becomes 

mainly consumed by the Fermi coupling constant G F N l/A!@!! , and the gluons 

accompanying the W emission are too rare (due to smallness of QCD coupling 
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constant at short distances) to be important. While the assumption (a) allows us -- 
f, to neglect SD corrections, it creates a different kind of problems. LD corrections 

cannot be properly summed (except maybe in simulations on gigantic lattices) and . 
one must rely heavily on intuition in dealing with them. I will assume that all 

important QCD contributions are absorbed in some semi-phenomenological wave 

functions of mesons and corresponding nonlocal vertices in momentum space, and 

will not make use of LD or SD QCD in any other way. Finally, in (c) a program is 

sought in which the full amplitudes are calculated directly, avoiding the use of var- 

ious reductions and extrapolations. Why not apply e.g. PCAC, and eliminate first 

some of the mesons from physical amplitudes? This is the very procedure followed 

in most of today’s analyses: amplitudes are related to much simpler two-body ma- 
.- trix elements, which are then estimated by other means. However, a simultaneous - . 

use of many different concepts in a single calculation might only bring troubles. 

Should we really endorse a reduction process in which several of the following 

&plements are tied together: current algebra, renormalization group equation, 

bag model wave functions, sum rules, spectators, lattice theories, hadronic pole 

diagrams, chiral models, vacuum insertions, l/N expansions, and so on? None 

of these concepts is problematic by itself. I only do not believe that any two of 

them should be matched without having first a firm control over double counting 

and overlaps, which are unavoidably present. But usually, nothing can be done 

to achieve the control. The list of objections to the usual procedure is far from 

being exhausted. How, e.g., to tolerate a great number of open and hidden pa- 

rameters in a calculation in which more than one concept is used? Or, can we 

truly believe in extrapolations which relate off-shell matrix elements to (on-shell!) 

experimental data, etc? I would particularly like to stress the problem of factoriza- 

tion. Whenever an amplitude is expressed in terms of two-body matrix elements, 

it is implicitly assumed that LD and SD effects can be separated. In reality, this is 

not very likely to happen. For example, one would never describe the double slit 

experiment by constructing a product of probabilities of passing through separate 

holes, because by doing this, one would lost all the important interference effects. 
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In a similar way, by assuming that SD corrections are reflected only in coefficients - 
f, of some operators, while LD parts are affecting solely the evaluation of matrix 

elements, one neglects all non-factorizable interference effects. How big an error -2. 
is that? I am afraid, a fatal one! There are indications [51 that due to an overlap 

between SD and LD QCD, the factorization is not possible in weak decays of 

light mesons. There are some special situations when making products of “short” 

and “long” will lead to a good approximation ( e.g., this might happen in some 

high-energy scattering), but generally, in low energy kaon decays the factorization 

can hardly be justified. 

- 

With all the above in mind, not too much freedom was left for the construction 

of the new scheme. The closest to the requirements was a diagrammatic calculation 

based on effective meson-quark interactions. The most remarkable feature of the 

: -- 

new model are “anomalous” vertices, with unusual flavor content. They are a 

result of s + d transitions happening inside the light mesons, and follow naturally 

f&m the assumptions (a) - (c). Both “regular” and “anomalous” vertices will be 

constructed and discussed in Section 2. Rules for evaluation of diagrams and 

amplitudes, together with an example, will be given in Section 3. Sections 4 and 

5, contain a brief review of the most important results. (More detailed study of 

the main K decay modes will be presented elsewhere). The concluding section 

is devoted to a critical examination of the proposed model. The role which s + 

d transitions have played in explanations of Ir’ decays is reviewed in Appendix A. 

Another model (“Model B”) f or anomalous vertices is presented in Appendix B. 

Throughout the work the four-flavor version of the standard model is used, but 

a generalization to more flavors presents no problem. The notation closely follows 

an earlier work F’ on the subject. (See also Refs. 7 and S). 
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2. Model 
-- 

f, 
In this section, the attention will be focused on the relationship between light 

mesons and their constituents. The final goal will be a construction of semi- 

phenomenological meson - quark couplings, which later will serve in diagrammatic 

calculations of various processes. A diagrammatic approach to I( decays was at- 

tempted earlier by Pascual and Tarrach”‘. There are however differences between 

Ref. 9 and the present work. In Ref. 9, e.g., only local meson - quark vertices were 

used, while here the vertices will be non-local. More recently, Gilmour PO1 has also 

presented a diagrammatic study of hadronic weak decays, but in a nonrelativistic 

framework. Here, I will develop a fully relativistic picture. 

Imagine the existence of a probe capable of determining the flavors and four- 
- . momenta of quarks within a meson, at a certain time. If the valence quarks ap- 

proximation is not too misleading, we would observe fractions ~1 = k + P/2 and 

a;= -k + P/2 of the total meson momentum P”, carried away by quark and 

antiquark respectively (see Fig. 1). We would also be able to plot a probability 

distribution H(k, P), for finding a combination of quarks with relative momentum 

q1 -q:! = 2k within th e meson. The probability distributions will in turn be related 
- to wave functions of the mesons, and vice versa . 

: -- 

: 

._ mesonL 1 

Fig. 1. Quark content of a meson in the valence approximation. The 
momentum of the antiquark is q2 = P - ql. 

Unfortunately, such a miraculous probe does not exist. Yet, on basis of rather 
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- general arguments, one can construct the distributions H(lc,P), and test them 
* indirectly in analyses of decay and scattering processes. An attempt of such a 

construction of the effective meson - quark couplings will be described in the -1 
remainder of this section. 

I will begin with the assumption that the distribution HM(k, P) for the meson 

M is proportional to 1/(k2 -CYMP~ )” . Th e p arameter a~ - as we shall see - has 

the value related to the weak decay constant fM of the particular meson. For all 

the mesons considered in our study, the relation GYM > l/4 is satisfied. The integer 

n is a free parameter. The above choice of HJM can most easily be understood in 

the rest system of a meson. The four-momenta of quarks are then reduced to 

4; = (zJ% a, qf = (El - 4w 4, where x is a number between 0 and 1, and 

iU stands for the mass of the meson. When the above momenta are substituted - . 

: -- 

in the assumed expression for HM, the resulting probability distribution peaks 

for values of Ic near to l/2, i.e., when the available energy is shared uniformly 

between the quarks. Similarly, the probability is higher for the smaller values of 

the relative momentum l@‘l. Situations less likely to occur are, according to the 

proposed form of HM, those in which the relative (three-) momentum is large, 

or when the energy is consumed mainly by one of the quarks. This picture is in 

harmony with a common sense description of mesons. An asymmetry in z would 

probably improve the agreement with experiments. It might be introduced by 

adding a I;.P piece into denominator of HM, but for sake of simplicity I will not 

do that. Needless to say, the presented choice is by no means unique, and devoted 

model builders are encouraged to find and test different functional forms. 

The determination of the probability distribution is not yet completed. The 

proper Lorentz structure must be introduced. For pseudo-scalar mesons, this could 

be achieved by putting y3y5 term in the numera.tor. The normalized distribution 

now assumes a form of a matrix, 

HM (E, P) = PM hd!ze3 I95 
(k” - CYMP2 )” ’ (1) 

where ,B is a dimensionless normalization constant. (More on CY and p in the next 
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section. See also Ref. 6). It remains to add the confinement into the model. This - 
c is not an easy task. I will assume a zero probability for finding free, on-shell quarks 

in a meson. In other words, I want a decay of the meson into a pair of free quarks 
-1 

to be absolutely forbidden. This will be accomplished by sandwiching HM between 

(F + P/2 - ml> and (F - p/2 - ma), where mr(m2) denote the current masses 

of quarks which are attached to the meson. Then, it is the equation of motion, 

that prevents the unwanted decay to free quarks. The resulting expression, the 

nonlocal vertexi61 

(2) 
.- will be used in a diagrammatic description of mesons, and weak processes in which - . 

mesons participate. Superscripts ;, j in (2) denote colors, and Sij reflects the 

color conservation. The effective vertex I’ contains implicitly all the interactions 

@ween quarks to the moment of contact with our capable “probe”. Gluons hidden 

in the vertex are responsible for the nonlocal structure of I’ . The situation is 

symbolically described in Fig. 2.. 

: -- 

How and where to use the effective vertices ? An illustration of the concept 

might be in place here. Consider r+ + iu decay. To obtain the nonleptonic part 

of the amplitude (see Fig. 3), we should first multiply the probability of finding 

u and d quarks with relative momentum L, by the probability that these quarks 

meet and form a W meson. Next, contributions of all possible relative momenta 

must be summed up. As a consequence, the amplitude contains an integral 

Note that Feynman propagators of u and d quarks will cancel similar factors in I’. 

After the cancellation, the integral in (3) can be easily evaluated, and a straight- 

forward calculation leads to the amplitude. We shall return to this example in the 

next section. 



- 

- 

c 

-. 

E 

Fig. 2. Nonlocal, effective coupling of quarks to a meson. 

Fig. 3. Hadronic part of T+ + e; decay. P is the momentum of the 
pion, k the loop momentum. 

U + ==c K 
.a* r + K 

Fig. 4. Substructure of an “anomalous” vertex. 
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Until now, the flavor of quarks was mostly ignored. It was implicitly assumed - 
f that e.g., in the case of I(+ meson, the probe would reveal a presence of u quark 

and s antiquark, with the probability equal to one. However, weak interactions . . . 
can change the situation. Consider the diagram in Fig. 4. If W boson is captured 

by the same quark line by which it was emitted, the probe will detect d instead 

of s ! What is the probability for such a flavor changing transformation within a 

line? Without the gluons, for bare quarks, the process is down by l/M&, and thus 

practically unobservable. Miraculously, gluons (and this is true for both “self- 

energy” gluons, and those exchanged between two different quark lines) act as a 

catalyst, and in their presence the probability for s + d transition gets increased 

2 to much more comfortable l/Alw. Therefore, the probability distribution a( L, P) 
.- for finding a quark with the “wrong” flavor in a meson, is of the order GFSC, where 

- . s and c denote the Cabibbo angles (s = sin Oc, c z cos 0~). In many processes 

this will still be invisible, but - as we shall see - in certain situations even 

sfich a small contribution becomes very important. For example, the probability 

of forming dd pair in KS is small, but once the pair is formed, the meson can 

decay very quickly through a fast, flavor conserving process. The smallness of fi 

is thus in some cases counterbalanced by an increased likelihood of the subsequent 

strong-like subprocess. 

The functional form of fi(k, P) can only be guessed. In order to keep the 

analysis as simple as possible, I will again assume the probability distribution in 

the form of an inverse power of (k2 - oP2). Guided by some one-loop arguments, I 

am proposing the following expressions for the distribution H, and the “anomalous” 

(named so, because of the presence of the “wrong” flavor) vertex function I’ : 

&/@,P) = GFsc J? pm My &” I? (X + YY5) 
(k” - aMp2 )n+l ’ (4 

(5) 

Here, Q2 denotes square of the momentum in the line in which s -+ d transition 

occurs (& is either E - P/2 or k + P/2). Q and ,B are the parameters already 
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-- defined in “regular” functions (1) and (2). The numerator in fi(lc, P) contains the 

f, (X + Yyc,) matrix with mixed chirality. This is a consequence of the violation of 

parity in the weak transitions. The model does not predict magnitudes of X and .L. 
Y, and they should be determined experimentally. For simplicity, I will assume 

that X and Y do not depend on M. It is interesting that in some processes only 

X contributes (e.g., in li’ + n-r ), while in other decays Y is important (e.g., 

in K + 7r + yy , where yy denotes a hyperphoton ), or a combination of both 

appears (e.g., in K + 7r~v ). As a consequence, it will, e.g., be impossible to relate 

directly I< + 7r7r and I< -+ vyy decays, without introducing further assumptions. 

We shall return to this problem in Section 5. 

- 

-- 

Not only that the flavor and chiral structure of the anomalous vertices is un- 

usual, there is also an important characteristic related to isospin. Since in the 

direct s + d transition the isospin is changed by only l/2 unit, the anomalous 

vertices can not contribute to AI = 3/2 processes [Ill. In other words, in the anal- 

&is of e.g., I<+ + 7r+r” (which is a pure AI = 3/2 decay), all diagrams with 

anomalous vertices should exactly cancel. This clearly provides a mechanism for a 

successful description of AI = l/2 rule. Namely, the hadronic K* decays will be 

influenced by regular vertices only, and - as a rule - the regular vertices produce 

small amplitudes. On the other hand, the amplitudes AS will mainly depend on 

the magnitude of X. Large X will produce big AS, but will not in any way spoil 

A* amplitudes. A detailed presentation of the mechanism can be found in the 

next section. 

Finally, in order to get some control over the model-dependency, I have con- 

structed another anomalous probability distribution. It is presented in the Ap- 

pendix B. The expressions (4) and (5) in this section will be referred to as “Model 

A”, and the alternative model from the appendix will be called “Model B”. 
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3. Rules _- 
f. 

.-- 
In this section we shall consider how the effective vertices can be put to work 

in a diagrammatic calculation of light meson decays. One must first construct all 

possible (lowest order) Feynman diagrams of a process, using quark, lepton and 

electroweak boson lines. Gluons, according to the scheme, should be neglected. 

Instead, new quark - meson vertices (both regular and anomalous) should be used 

to close quark lines. Mesons are always on-shell, external particles, and can not be 

used as intermediate states. In closed fermion loops a summation over Fermi and 

color degrees of freedom must be performed. Accordingly, a trace calculation and 

the factor (-3) will accompany every quark loop (the negative sign in the factor 

is a consequence of the Fermi statistics). Elementary particles (quarks, leptons, .- 
- . . . .) and point-l h i -e electroweak interactions are described by the usual Feynman 

propagators and vertices. The nonlocal effective vertices should be described fol- 

lowing the general rules derived in the preceding section. In order to accommodate 

various symmetries and the fact that mesons can be both ingoing and outgoing 

objects, some additional refinement will be needed. E.g., formulae (2) and (5) 

correspond to the situation when an incoming meson decays into two quarks, but 

in some diagrams we shall also need to know the probability for forming an outgo- 

ing meson out of two quarks. Furthermore, a distinction between mesons forming 

an isotriplet, isodoublet, or isosinglet, should be visible in effective vertices. The 
: -- complete expressions for the vertices, given below, are therefore slightly different 

from the expressions derived in Section 2. 

The regular meson - quark - antiquark vertices will be denoted in diagrams 

by heavy dots (see Fig. 5). Whenever an ingoing meson is encountered, the vertex 

function l?$(l;, +P) should b e inserted in the formula for the amplitude; when a 

meson in a diagram is outgoing , introduce I’% (Ic, -P). Here, 

The probability function HM(IC, P) is given by Eq. (1.) . X is the Clebsch-Gordan 
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- 
* 

-. 

r(k ;P): 

gi( k-P/z) 
Fig. 5. Regular vertices for ingoing and outgoing mesons. (For 
anomalous vertices, replace I? + F, and encircle the heavy dot). 

- . 

(CG) coefficient, with the value +l for K*,7r* vertices, +1/a for I’, 

I<?(&), KL(Sd) and KS(&) vertices, -l/A for r’(dd) and K’(sd) vertices, etc. 

Constants (Y*, CUK, . . . , in HM could be related to values of weak decay constants 

fr, fK, - - -3 while &, PK,. . . , properly normalize the wave functions. One findsL6] 

-. 

PM = 4n crz;;’ J(272 - 1)(2n - 2)/3 . (8) 

The anomalous vertices will be denoted by encircled heavy dots (see Fig. 6). As 

discussed earlier, these vertices are a result of s + d (or d + .s ) weak transitions 

within a meson. Therefore, in an anomalous vertex, a d quark will be attached 

where an s quark appears in the corresponding regular vertex, and ve’ce versa: an 

s quark instead of the regular d quark. E.g., while the flavor structure of regular 

vertices can be K+(su) and ?r’(c?d), th e anomalous vertices will be I{+(&), r’(Sd) 
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-- 
f: 

7-l + u 
==@c S 

- . 

n 
-;3t 

S 
U 

d 

U 

Fig. 6. Anomalous vertices for light ingoing mesons. 

yfyj=$q:; d 
Fig. 7. Substructure of the anomalous K’(dd) vertex. 

and 7r”(&). The complete anomalous vertex functions are 

Momenta of particles are assumed to be the same as in Fig. 5. The conventions for 

(zt) signs, and CG coefficients X, are the same as in formula (6). The probability 

distribution &M (k, P) is defined in Section 2, Eq. (4), and contains the square of 

momentum of the quark line in which the flavor is changed. In R’, KL and KS, 

such a transmutation can happen in both quark lines. Therefore, e.g., the full 

anomalous vertex KS (dd) contains a factor (compare to Fig. 7) 
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The first term originates from the s + d transition in the upper line of the regular - 
c KS(&) vertex, and the second term is related to s + d transition in the lower 

quark line of K’(sd) (Fig. 7). Factors ztl/fi are the CG coefficients. (For the -. 
KL(dd) vertex, both terms in the analogous expression would be positive, because 

of different CG coefficients). 

We can now return to the example mentioned in Section 2, namely the 7r+ + & 

decay. To the lowest order in weak interactions the decay is represented by the 

diagram in Fig. 8, and the amplitude becomes (compare to Eq. (3) ) 

. 

(’ > 
2 

A= .-% 
w5 (11) 

. 

gere, (;)2 in front of the integral is a remnant of the two quark propagators, and 

c’- denotes the cosine of the Cabibbo angle. The integral can be easily calculated, 

and with definitions (7) and (8) for CUM and PM, one obtains 

(-3) i2/& Tr { . . . } 

(12) 
= (-)“icfx PP . 

The amplitude (11) now gets the familiar form (Note: g2/8M$,, = G~/fi ), 

A = (-)n+l 
* (13) 

This is no surprise, since the relation (7) between CrM and fM was determined just 

in a study of Me2 decays. 

Also contributing to the process is a diagram (Fig. 9) with an anomalous 

vertex, but this diagram is very suppressed. The hadronic part of the corresponding 
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c 

-. 

f 

-. . 

Fig. 8. The regular contribution to 7rr+ + iv decay (P = t + T). 

Fig. 9. The anomalous contribution to 7rr+ + e;/ decay. 

amplitude AANOM is 

= (-)” i c f,Pp 
[ 

s!~2(x + Y) 
Jz (i-z)] - 

(14 

Since GFM~~ - lo-’ , s2 = sin2 8c - 10V2 , and (X + Y) is of order 0(l) (see 

the next section), the anomalous contribution is many orders of magnitude smaller 

than the regular one in the expression (12). C onsequently, the anomalous diagram 

can safely be ignored in this decay. In the similar I(e;! decay, the ratio AANOM/A 

is slightly larger (- 10s6), but still negligible. In some other decays the situation 

will be identical: the anomalous vertex, due to a hidden s + d transition ads a 

second weak interaction, and the related “anomalous” amplitude becomes much 
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smaller than the first order (in weak interactions) regular amplitudes. However, 

we shall see in the next example that sometimes the suppression is absent, and 

then the diagrams with anomalous vertices become not only important, but also 

dominant, overshadowing all other contributions. 

- Fig. 10. A characteristic regular contribution to K -+ 7r7r. . 

*Consider K + z7r decays. We already know that diagrams with anomalous 

veriices should not contribute to AI = 3/2 decays. Indeed, it is easy to demonstrate 

an exact cancellation of “anomalous” diagrams in IC+ + ?r+7r” . ATo therefore 

receives a non-vanishing contribution A;,, from the regular diagrams only. A 

characteristic diagram is presented in Fig. 10. The decay is Cabibbo suppressed, 

and of the first order in weak interactions. The amplitude can be written as 161 

(15) 
where I - l/2 is a number whose exact value depends on the parameter n in (1). 

In Ref. 6 it was also shown that the regular contributions to the decays of KS are 

of the same order, since the diagrams are very similar: (A~-)REG N (Aio)~~~ - 

AiiEG - This certainly can not account for the experimental results: we know that 

AS amplitudes are much bigger. Could this time the diagrams with anomalous 

vertices make a difference? Consider diagrams for KS + rr+n- sketched in 

Fig. 11 (A similar set can be constructed for KS --) 7r07ro ). In rl2, the anomalous 
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c&tributions (Fig. 9) were negligible. On the contrary, by analysing Fig. 11, one 

finds no suppression ! Although the encircled vertices are of the order GF, they 

also change the flavor structure in such a way that no further weak interaction is 

needed to complete the decay. Consequently, the regular diagram (Fig. lo), and 

the diagrams with anomalous contributions (Fig. ll), are all of the same order in 

weak interactions. 

m 
K 

U 
>v 

+ + 

- 

Fig. 11. Anomalous vertices in KS + 7rlr+?r- decay. 

According to the rules, the amplitude for the first diagram in Fig. 11 can be 

written after some rearrangement as 

-. 

41) = Jz GFsc ( Pdfg-l ) ( j3,M;n-3 )2 (-3) i3 J & 

-$ [ (AT+:)‘- (k-g)2] Tr{ (p+g-md) ‘(:TzY5) (16) 

Here, the denominators are 

B=k2-qP2, C = (k - R/2)2 - c&T2 , D = (k + S/2)2 - axR2 , (17) 

and P, R, S are momenta of KS, R-, 7rr+ respectively. It is easy to see that Yy5 

term from the anomalous vertex does not contribute. Indeed, traces of all terms 

18 



- proportional to Y vanish. The analytic calculation with expressions similar to (16) 

f is impractical, but after the evaluation of traces, one can calculate the remaining 

(convergent!) integrals numerically. Details of this calculation will be presented -. 
elsewhere. In our particular case, the amplitude (Eq. (16) ) finally gets the form 

GFSC 
A(l) = 1/2 M$f,r X - f(1) . (18) 

(The sign “tilde” in this article will always be used to denote the anomalous contri- 

butions). X is the parameter from the anomalous vertex, and 1”(l) a number which 

sharply depends on the model-parameter n. For n = 5, one, e.g., finds i(l) M 5 , 

and the ratio of the typical regular (Eq. (15) ) an anomalous amplitudes becomes d 

- . 
(4l)lAiL&=5 - (j(l)/l),,5 x - 10 x . (19) 

-. 

@hen the other two diagrams in Fig. 11 are evaluated, the complete anomalous 

amplitude As- for this decay approximately becomes A$ - 241). Let As- 

denote the total (regular + anomalous) amplitude. The famous ratio As-/A+ 

can now be expressed in terms of X. Indeed, from Eq. (19), one finds (for n = 5) 

&/A+ M 241)/A& M 20 X (20) 
In the derivation of (20), I have neglected (As-),,, , and have assumed As- x 

AS-. It follows that if the model adopts the value for X close to 1, the successful 

parametrization of the A1 = l/2 dominance can be achieved. For a different 

parameter n, a different value of X will do the job. Once the n is chosen and the 

constant X is fixed, the model gains a predictive power, which should be used in 

analyses of other processes. More on K + ~7r, and some other K deca.ys will be 

presented in the next section. 
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4. Detailed Study of Main Decay Modes of Kaons -. 
f 

In the previous section some important features of the model were briefly il- 

lustrated. This section is devoted to a detailed analysis of the main decay modes 

of K mesons. Parameters of both regular and anomalous vertices are fixed, and 

the theoretical results are compared to experiments. Finally, in the next section, 

the predictive power of the theory will be tested in an interesting rare decay. 

. 

We shall first consider processes in which the important contribution comes 

from diagrams with regular vertices only. The processes are listed in Table I. For 

completeness, not only K decays, but also 7re2 and 7rl3 decays will be analyzed. 

Within the scheme, it is possible to describe all these leptonic and semileptonic 

decays by adjusting only two parameters, oyn and a~. The results summarized 

in this section correspond to the choice n = 5, where n is the power in the de- 

nominators of vertex functions. Parameters a? were determined in an analysis of 

n” + P+Y and I<+ + p+v decays. The procedure is described in Ref. 6, and will 

not be repeated here. The correct decay rates are found with the values 

af’ = 2.387 ? cg’ = 0.822 (21) 

The index in parentheses stands for n = 5. The above values correspond to fir = 130 

MeV, f~< = 160 MeV, ,& = 1998.6, and ,BK = 28.1, see the expressions (7) and (8). 

Once the (Y’S are fixed, a straightforward procedure leads to the decay rates for 

other processes listed in Table I. A look at the Table reveals a general agreement 

between theoretical and experimental numbers. Only the results for I(e3 decays 

deserve some further discussion. Let us consider one particular decay channel, 

Ii+ + r”e+v , (Th e ar g uments are similar for all the other I-f3 decays). The 

diagrammatic calculation (see Fig. 12) gives the amplitude 

W -A) = --z ’ GF”l{ (P+R)r FF”(&2)+(P-R)r F!“(Q2)} u,y,(1-r5)ve . gj fi 
(22) 

P and R are momenta of the K+ and TO, and Q = P - R is the momentum 
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PROCESS THEORY EXPERIMENT 

7r+ --+ p+v INPUT” 100% 

e+v 1.3 x 10-4 1.2 x 10-4 

7r”e+v 1.0 x 1o-8 1.0 x 1o-s 

r-c+ --$ p’v INPUTb 0.64 

e+v 1.6 x 1O-5 1.5 x 10-5 

7r”e+v 0.035 0.048 

7r”p+ v 0.023 0.032 

rcrc,‘, wv-,+, > 0.66 0.66 

KL + 7r-e+v [or 7r+e-fi] 0.14 0.19 

7r-p+v [or r+p-V] 0.10 0.14 

I<-e+v [or K+e-F] 2.7 x lo-’ n.a. 

VG )lWqf3 > 0.66 0.70 

KS + 7r-e+v [or 7r+e-ti] 2.5 x 10V4 n.a. 

7r-p+v [or 7r+p-V] 1.6 x 10m4 n.a. 

I{-e+v [or K+e-fi] 4.7 x 10-l’ n.a. 

Table I. Theoretical (with parameter n = 5) and experimental 
branching ratios for decays in wl1ic.h only diagrams with regular vertices 
contribute. The first two significant digits a.re displayed in the results. 
Comments: (a) Input for a,; (13) Input for cry. 
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transferred to leptons. For n = 5, the form factors are defined as[‘] 

- 
‘c, 1 P 

FEx(Q2) = ((Y,cYK)~(M,M~)~ dx 630x4(1 - x)’ 
1 
0 

[ (1 - x)M; f xM$] / [ (1 - x)cr,M; + x cr~M$ - ix(l -x)Q2 ]* . 

- . 

- Fig. 12. Decay I(+ + r’e+v. 

(23) 

Since the expression (22) has the standard form’12-141 , the disagreement be- 

tween the theory and experiments must have been caused by the numerical values 

of the functions given in (23), or more precisely - by the magnitudes of Ff” and 

FFX at Q2 N 0. In the case of an ideal SU(3) y s mmetry, these values would have 

been equal to 1 and 0 respectively. In the real world SU(3) is broken, but the 

symmetry breaking is believed to produce only the second order effects, making 

e.g., the form factor F”” 0 + ( ) just slightly smaller than 1. The SU(3) breaking in 

the model described in Sect. 2, is - on the other hand - directly related to the 

masses of x and K, and the form factors are more strongly affected. With the 

parameters (21), one finds Ff”(0) = 0.763, and F:“(O) = -0.472. As a con- 

sequence, the amplitude and the branching ratio become smaller than expected. 

One could probably push all the I(e3 branching ratios higher by playing with pa- 

rameters and by changing the form of wave functions. However, such a procedure 

-- 

: .- 
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t 

Fig. 13. Color suppressed regular diagram for I(+ + 7r+?r” decay. 
The amplitude comes out to be l/3 (= l/N) of the value resulting from 
the diagram in Fig. 10. Here, N is the number of colors. 

would not significantly increase our understanding, and therefore no fine tuning 

.- was attempted in this work. After all, though slightly too small, the amplitudes 
. for Kfs decays are almost at the target. 

-. 

It is easy to see that in all the decays considered in Table I, the anomalous 

contributions are many orders of magnitude smaller than the regular one, and could 

therefore be safely neglected. A different situation occurs in I(+ + 7r+w” decay. 

Individual diagrams with anomalous vertices in this decay are not suppressed. 

However, when all the diagrams are summed, the total anomalous contribution 

adds exactly to zero. As explained earlier, the cancellation is related to the isospin 

structure of the anomalous vertices. Consequently, even in this process, only the 

diagrams with regular vertices determine the amplitude. The relevant diagrams 

are presented in Figs. 10 and 13. With form factors F*(Q2) as defined in (23), 

the total amplitude for I<+ + 7rr+7ro decay can be written as 

The result (24) is very similar to the old “vacuum saturation” result’151. Our model, 

however, not only gives the form, but also determines the values of form factors 

F*. The first summand in the factor (1 + l/3) comes from the diagram in Fig. 
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- 10. The second one, namely l/3 EE [color]-‘, originates from the diagram in Fig. 

f. 13, indicating that this diagram is “color suppressed”. Numerically, the amplitude 

.-- (for n = 5 model) becomes A,, - + - 39 eV. The measured value, however, is about 

two times smaller. Obviously, in hadronic decays our simple model does not work 

as good as in the semileptonic decays. It produces the right order of magnitude for 

the AI0 amplitude, but can not do much better than that. A minor adjustment of 

wave functions, mentioned in the discussion of the semileptonic amplitudes, would 

not help here. It is more likely that some important feature is not completely 

covered by the presented simple version of the model. E.g., it is possible that in 

the scheme in which explicit gluons are forbidden, the color suppressed diagrams 

get overestimated. Indeed, it is easy to see that the agreement with experiments 

- 

-. 

: .- 

becomes better if those diagrams (see Fig. 13) are neglected. Another possibility is 

that the relative sign between diagrams in Figs. 10 and 13 is different. With the 

change of the sign, the factor 1 f l/3 = 4/3 would become 1 - l/3 = 2/3, and the 

a’mplitude would be reduced just by two, as required. However, the relative sign 

between diagrams is directly related to the adopted rule “minus sign for each closed 

fermion loop”. The sign would change if we disobey the rule, but presently I see no 

justification for such a step other than to obtain an agreement with experiments. 

Another interesting proposal was put forward by Scadron’161, several years ago. He 

suggested a replacement of the factor G~/1/z by G~/2fi in all hadronic decays, 

due to a symmetrization JtJ t $(JtJ + JJt), and a noncommutativity of the 

hadronic currents. The receipt was successfully applied in a study of decays of 

charm particles [16’. Such a factor l/2 would clearly also help in K(+ + 7r+7r” decay. 

It would reduce expression (24) just to the right value. Finally, it might happen 

that the difference is caused by the SD QCD corrections, which were neglected 

in the first approximation. This possibility was thoroughly discussed long ago in 

the landmark papers by Gaillard and LeeL2’, and Altarelli and MaianiL3’. I do not 

expect SD QCD to account for the huge factor 20 in the A1 = l/2 rule, but might 

accept that it changes some results for a factor of 2. Obviously, there are many 

possible directions for an improvement of the scheme, and one should find out which 
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one fits most naturally into the model. Admittedly, the factor 2 disagreement in -. 
5. the amplitude is a serious problem[“‘, but I hope that this is a “curable disease”. 

-. Therefore, I will continue the analysis of the remaining two-body hadronic decay 

modes, keeping in mind, however, that due to theoretical uncertainties the model 

could be trusted only to a certain degree, e.g., up to a factor of 2 or 3. 

Decay 

I<+ + 7r+7r” 

I@ --) n-+7r- 

KS ---f TroTTo 

KL + 7r+7r- 

KL --+ 7r07ro 

Model A Model B Experiment 

0 0 18 eV 

389 eV 

(285 X($) eV (-55 X$.)) eV 

372 eV 

0.9 eV 

0 0 

0.8 eV 

Table II. Amplitudes for K --+ 7r7r decays. The anomalous contri- 
butions, calculated in models A and B (with n = 5), are compared 
to experimental results. The latter were obtained from the measured 
decay rates[“’ , by using IAEXPI = (SnM?;- I’/ I$,‘1 )l/‘. The statistical 

factor 2/2 is included in (A:A~)ExP. 

The full advantage of the anomalous vertices can be seen in the study of de- 

cays of the neutral kaons. Though the regular vertices also contribute to KL and 

KS decays, they can not account for more than 15 % of the total Aio or As- 
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- amplitudes. Indeed, it was shown in R.ef. 6, that 

- . 

l+ (A&)REG=+~A+~ (AS-) REG = -?A+ 
2 $-O 7 

(25) 
(A:dREG = 0 (A$-) 

\ I 
7 REG =o 

(Note that the second line in (25) reflects the absence of CP violation in the four- 

flavor model). Numerically, the (A’)REG amplitudes are not bigger than 50 eV, 

while the experimental numbers are on the order of 400 eV. From now on, I will 

therefore totally neglect the regular diagrams in the analysis of the KS + lr%- 

decays, and rely only on diagrams with anomalous vertices. Within the scheme, 

the first to consider are the diagrams in which only one of the regular vertices 

is replaced by a vertex with an anomalous flavor structure. Such diagrams for 

KS + n+r- decay are depicted in Fig. 11, and one of the amplitudes, A(l), is 

displayed in Eq. (16). Th e remaining two amplitudes are 

k(2) + 43) = % ( p&!lf~-3 ) ( &&y-2 )2 (-3) i3 / & 

(Ic+$-pe -- 
2 

m, ) KX+Y75) 
U 

p+l 
} - (k-g)‘Tr{ (p+$-md) 

The denominators B, C, and D were defined in Eq. (17). When contributions of 

all three diagrams are summed, the total anomalous amplitude can be written as 

(27) 
Here, 1 denotes a sum of loop integrals which must be calculated numerically. In 

the Model A, with n=5, one finds I” + fc5) - * - 5.00 . (For the Model B results, see 
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Appendix B). X in (27) is th e unknown parameter, sitting in the anomalous vertex, - 
f see Eq. (4). 0 ne also easily finds that Ato = A$-. The anomalous amplitudes in 

terms of the parameters X are given in Table II, for both Model A and Model B. -- 
If the anomalous vertices are responsible for the A1 = l/2 dominance, the free 

parameters must assume the values, 

X6) N 1.3 (Model A) , X(“s, 2~ -6.8 (Model B) - (28) 

With these values, two KS -+ ~7r amplitudes get the magnitude of about 376 eV. 

The remaining fine splitting between (A&)ExP and (A~-)ExP could be achieved 

if the small regular contributions (25) are added to the a.nomalous amplitudes 
.- with a certain phase angle. It is also important to note that in KS -+ rn- decays 

- . 
only the parameter X can be determined, but nothing can be said about the 

other parameter characterizing anomalous vertices, namely Y (see Eq. (4) ). As a 

working hypothesis we can assume that this parameter has a value not too different 

from X, and set Y M X . However, this is only a hypothesis, which still has to 

be confirmed (or rejected) in analyses of other decay channels. 

-. 

: .- 

What have we seen so far is that the diagrammatic calculation in the long- 

distance scheme can accommodate to a good degree of accuracy all the major decay 

modes of K (and K), provided the parameter X has the proper value. It remains to 

examine the predictive power of the model. That will be done in the next section, 

in an analysis of one interesting, though not yet observed, decay mode of K+. 
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5. I< Decays and Fifth Force - 
f 

-- 
Once we are convinced that some model successfully describes the basic IC 

decays, we usually apply the model in a subsequent study of rare and/or unobserved 

kaon decays. This has repeatedly been done in the past, and will also be carried out 

in this work. Only such a procedure truly tests the predictive power of a scheme. 

Indeed, while a theoretical study of e.g., Ii’ + mr decays is always in one or the 

other way affected by the well measured experimental numbers, the real nature of 

a model is revealed only when one is not in temptation of reproducing some of the 

firmly established data. 

The decay channel which will be analysed in this section is li’+ -+ r’+yy. Here, 

- yy is the “hyperphoton” - an ultra-light vector particle (with the mass possibly 
. 

: .- 

smaller than lo-’ eV) associated with the so-called fifth force[lgl. This force might 

be responsible for effects observed in recent experiments measuring deviations from 

the ordinary gravityL20-251. Note that the deviations in some of these experiments 

might also be a sign of a short range quantum fluctuation in gravitational theory, 

and thus possibly unrelated to the fifth force. It would be much easier to distinguish 

between the two competing hypotheses if a clear effect is observed also in I< decays. 

This is the main reason for renewed interest in I-C+ + r+yy. Indeed, a better 

experimental limit and a reliable theoretical description of this decay, could lead us 

to a firm confirmation of the fifth force, and give an important piece of information 

on its character and strength. Several excellent articles[26-2g1 about the new force 

were published recently, and the reader is referred to these reviews for further 

details. Presently, the experimental limit[301 on the branching ratio for Ii’+ + n+yy 

decay is B < 4.6 x lo-*. A new experiment[311 is expected to push this limit to 

the range 10-r’ in the near future. The decay has also been studied by four 

groups of theorists[32-351 . An essential step in all the theoretical analyses was to 

relate matrix elements of K + rnyy to those of K + 7~ decays, and each group 

devised different methods to achieve that goal. Surprisingly, the quoted results 

for the branching ratio are spread over two orders of magnitude (see Table III). It 
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will be interesting to see how our long-distances oriented model, with the direct 

t evaluation of amplitudes, compares to the other analyses. 

The coupling of the hyperphoton to a quark can be described by the vertex 
c- 

i f cq 7Y where f denotes the general strength of the fifth force, and Cq is the 

hypercharge of the interacting quark. For example, C, = Cd = l/3, C, = -2/3, 

c, = 413, etc. In the nonrelativistic limit, the above form of the vertex corre- 

sponds to the Yukawa potential V = (f2/47r) exp(-br)/r. Note that Fischbach’s 

group 
[27--29,331 uses a different Yukawa coupling, and their constant f2 is 47r times 

smaller than the one used here. (This fact is important in the numerical comparison 

of various results, and has been taken into account in the Table III ). 

-- 

Fig. 14. One of the regular diagrams for I(+ + 7rr+yy decay. Hy- 
perphoton can be emitted by any of the quarks. Thus, three additional 
diagrams should also be considered. 

Two classes of diagrams have to be considered in an analysis of I(+ --$ 7r+7y 

decay. In the first class, the diagrams are constructed without use of the anomalous 

vertices. A typical diagram is presented in Fig. 14. When three similar diagrams 

are added, and the amplitude calculated with cy’s and p’s as determined in (21), 

one finds 

AKEG= 
. GFSC 

-zJZffirf~[0.042]P' + . . . . (29) 
Pr is the momentum of the kaon. The dots denote the part of the amplitude 
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proportional to the hyperphoton momentum Q’. (This latter piece does not affect 

* the decay rate). Had (29) b een the only contribution, the branching ratio would 

have been of the order B - 2 x 1013 (f/m~)~ eV2, which is much smaller than 
-. 

B obtained in the other analyses’32-351, and beyond the present experimental limit. 

However, we know that the second class of diagrams, those with anomalous vertices, 

should also be considered. They are presented in Fig. 15. 

- 
Fig. 15. The four diagrams with anomalous vertices. 

: .- 
In the Model A, after some rearrangement, the sum of the corresponding am- 

plitudes can be written as 

AiNOM = % ( Ph-MEm3 ) ( &M~n-3 ) f Y (-3) / $$ (30) [ Mii 
&7(l) - C&P(2) + M2 CJ’(3) - CJ(4) 

vn+l p * vn Un+l 1 7 
where 

V= k2--cuKM; , U=(k+Q/2)2-d4: , (31) 
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and - 
c 

J’(1) = 

Jr(4) = 

When all the traces are calculated, and the loop integrals evaluated, the relevant 

part of the “anomalous” amplitude in Model A, with n = 5, becomes 

GF SC 
AiNoM = -i - 

.- 
Jz ffxfrc [ 4.7116 1’$1] I=’ + . . . (33) 

- . 
In a similar way ALNo, can be calculated in the Model B (for the result see 

Appendix B). It is important to note that the amplitude (33) is proportional to 

the parameter Y from the anomalous vertex (4), and not to X which played a role 

in the K + ~7r decays. This is the place where the assumption X M Y (discussed 

after Eq. (28) ) enters. If one uses Y(t) = 1.3 (compare to Eq. (28) ), it becomes 

-. 

: .- 

clear that the anomalous amplitude (33) completely dominates over the regular 

one, Eq. (29). Consequently, I(+ + 7r+yy is another process in which regular 

diagrams could be totally neglected: diagrams with s --+ d transitions contain 

all the important physics! (A similar conclusion follows also in Model B). When 

the absolute square of the amplitude is multiplied by the appropriate phase-space 

factor, and divided by the total width, one finds the branching ratio B. For Model 

A, this becomes 

A 2 f2 B = 26.7 [ ysj] --+ x 1016 eV2 (34) 
Here, my is the mass of the hyperphoton. In Table III, parameters Y* (and YB) 

are replaced by their numerical values, and the branching ratios are expressed in 

terms of the unknown quantity (f/my)‘. 
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- . 

Ref. I B ( in 1016 eV” ) COMMENT 

Aronson et.aZr3’ 1 0.5 (f”/m$) I (4 

. [321 Suzuki 4.4 (f”/m$) (b) 

35.4 (f2/m$) (4 

Bouchiat et. a?41 I 30.0 (f2/m2,) I (4 

Lusignoli et. aP51 31.0 (f2/m2,) I 

this work 45.0 (f2/m2,) (4 

2.5 (f’/m$) (f> 

Table III. Various theoretical predictions for the branching ratio 
B = I’(K+ + r+7Y) / r(li’+)ALL - All the results are given in 
terms of f2 normalized according to the convention described in the 
text. Comments: (a) The common four-momentum in two-body ma- 
trix elements is taken to be the pion momentum; (b) With r2 = 1.5 
(r2 is an enhancement factor due to a presence of the short-distance 
gluons); (c) With r2 = 12 ; (cl) Corresponds to x = 0.29 choice. (x 
is a correction factor required because of an extrapolation to the zero- 
momentum pion); (e) Model A , assuming 7;) = X6) = 1.3 ; (f) 
Model B , assuming Y(F) = X& = -6.8 . 

: .- From the theoretical viewpoint, it is significant that the Model A and Model 

B results are so different, although both models gave the identical description of 

Ir’ -+ 7rr. Clearly, the choice of wave functions plays the major role in a study of 

rare decays, and this is true not only for our diagrammatic approach, but also - 

as seen from Table III - for all previous analyses. The big spread of the results 

basically reflects our inability to deal with long distance physics. An optimistic 

view, that if we can correctly describe the main K decay modes it automatically 

means we can trust the method in rare decays, is not at all supported by the above 

study[361. Fortunately, in our example the physical consequences are unaffected. 

Even the lowest branching ratio in Table III seems to be excluded by experiments. 
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Indeed, an upper limit on the strength of the fifth force can be deduced from the - 
5. Table, and one finds 

-- 

f3 5 9.2 x 1O-24 eve2 = 60 G, rng [meterI 
““y 

, (35) 

where G, is the gravitational constant, and rnH is the hydrogen mass. The up- 

per bound (35) is not in agreement with findings from geophysical and other ex- 

periments. Therefore, it was suggested’371 that the fifth force might be coupled 

not exclusively to the hypercharge, but rather to a combination of hypercharge, 

strangeness and isospin. Then a window for a superlight, vector carrier of the fifth 

force is still open. 

- . As a final remark, let me repeat that results in the Models A and B were 

obtained with the assumption that Y M X. With this assumption, the results more 

-. 

or less fit into the broad region charted by the other studies of the process. However, 

if’by some reason it comes out that Y << X, the picture changes completely. In 

that case, the branching ratio for I{ + nyy process becomes very small, and 

possibly even dominated by regular diagrams. As a consequence, even the pure 

hypercharge coupling of the fifth force could be saved. This possibility will be 

thoroughly discussed in another work. 
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6. Concluding Remarks -. 
f, 

. 

Almost every physical problem can be approached from various starting points. 

This is also true for problems encountered in K decays. In recent years we have 

seen many attempts to explain Al = l/2 rule, CP-violation, and other phenomena 

related to kaons, by assuming the short-distance dominance and usefulness of the 

operator expansion. Even in analyses on lattices, sets of SD operators played a 

significant ro1e~8-401 . On the other hand, it was somewhat frustrating to see that 

alternative models, built on different concepts, did not meet wider attention. In 

this work I am introducing a model that perhaps could successfully compete with 

the simplicity of the standard SD approaches, although it is based on directly op- 

posite set of starting assumptions. Short distance QCD corrections are completely 

neglected, and all other QCD corrections are absorbed in some highly nonlocal 

vertex functions. The trade marks characterizing this new scheme are probability 

distributions sitting in quarks-meson vertices, and the use of diagrams in a direct 

calculation of full amplitudes. 

The probability distributions are related to wave functions of mesons, and 
- as explained earlier - they appear in two different varieties: the regular and 

the anomalous one. The regular distributions give probabilities of finding the 

standard quark contents within a given meson. An anomalous distribution takes 

into account the possibility that one of the quarks within a meson undergoes a 

change of flavor due to the weak interactions. Our study of vertices and diagrams 

shows that two typical situations might occur. Very often diagrams with anomalous 

vertices are either completely forbidden or of the second order in weak interactions, 

and consequently highly suppressed. In such situations the amplitudes of the 

corresponding processes are determined by regular diagrams only. There is also 

a second type of processes, in which the suppression does not happen, and both 

regular and anomalous contributions are possible. We can “postulate” that in the 

latter situation the anomalous contributions absolutely dominate over the regular 

one. The best support for this “postulate” comes from K + rr decays: I<+ + 
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- r+r” is in the first category (anomalous vertices are forbidden), while the similar 

t decays of KS and KL are in the second. Clearly, any parametrization of vertices 

.L. which makes anomalous amplitudes much bigger than a similar regular one, leads 

immediately to the Al = l/2 d ominance and “explains” large AS and surprisingly 

big CP-violating AL amplitudes. Of course, the “postulate” and the “explanation” 

mentioned above were dictated by known experimental facts. However, once the 

measured values are used to fix a few parameters of the model, a certain degree of 

the predictive power is achieved, and the model becomes a useful tool in analyses 

of other processes. 

The assumption that all important physics is hidden in regular and anomalous 

wave functions clearly reveals the long-distance character of the scheme. Therefore, 

the parallel use of diagrams might at first look strange. Indeed, we are accustomed 

to see diagrams in perturbative calculations, but not in analyses of long-distance, 

and thus nonperturbative phenomena. However, a closer inspection shows that the 

diagrams primarily have a book-keeping role. Basically, we are still dealing with 

various probabilities (e.g., the probability of finding a quark within the meson, 

likelihood of propagation of that.quark, etc.), and diagrams help to account cor- 

rectly for these probabilities and their summation. Another good thing about the 

diagrams is that they enable a better qualitative understanding of decay processes, 

in terms of clear physical pictures. The processes are not shattered into pieces 

which are then treated separately. On the contrary, a full diagram reminds us that 

the related process should be considered as an irreducible unit. 

In addition to some of the above mentioned desirable properties, the scheme 

also has its dark sides. There are two kinds of problems which yet have to be 

attacked and - hopefully - overcome. The first category was already discussed 

throughout the text, and is closely related to phenomenology. Not only that 

we need better probability distributions (i.e., “wave functions”), but also a the- 

ory which will shed some light on the form and parameters of the distributions. 

(Presently, the form is imposed by the requirement of simplicity, and the parame- 

ters determined from experiments). The factor two debacle in Ii’+ t n+r” decay 
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Fig. 16. Two-body hadronic weak decay of a meson. Dots indicate 
gluonic corrections. 

will most likely dictate introduction of one additional “rule” to our list. 
. 

There is also a second class of problems, inherent to the scheme itself. Consider, 

e.g:, Fig. 16. The left diagram is properly treated by the model. The denoted QCD 

corrections are already included in the effective vertices, and with appropriately 

chosen probability distributions there should be no problems with that type of 

diagrams. A d’ff 1 erent situation is presented in the right diagram. Here, some 

gluons are allowed to be exchanged between different effective vertices. These 

QCD corrections are certainly not accounted for in the scheme. How important 

are they? In some of these diagrams, the momentum flow reveals a dominance 

of momenta of the order Mw, and thus they represent the SD QCD corrections. 

The latter - according to the scheme - are not so important and could be ignored 

in the first approximation. In the remaining diagrams in which gluons connect 

effective vertices, the dominant loop momenta are unfortunately not related to 

Mw. Consequently, it becomes very difficult to say anything about the importance 

of diagrams from that subgroup. The scheme automatically ignores them, but I 

do not know how seriously this affects the results. 

Closely related is a problem caused by gauge invariance of the underlying 

theory. It is easy to see that the required invariance forces us to introduce higher 
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Fock states in all wave functions of mesons. This is illustrated in Fig. 17, and 
- 

5. 
more thoroughly discussed in Ref. 7. For each nonlocal vertex M(qij’), there 

should exist related vertices with one, two, etc., gauge particles (photons, gluons, 
-. W-bosons) attached to the prime vertex. Whenever we opt for the lowest Fock 

states only (and this, as a rule, has been done in most of the existing analyses), we 

jeopardize the gauge invariance. The radiative decays were not considered in this 

work just for that reason. In principle however, the model could be expanded in 

such a way that it also includes e.g. M(qQ’)-y vertices. This expansion is a must 

if radiative I< decays are to be considered in the model. (In a similar way, W can 

be introduced into vertices. However, there are some indications “I, that this will 

not affect results described in Sections 4 - 6 ). 

Fig. 17. The gauge invariance dictates appearance of higher Fock 
states in effective (both regular and anomalous) vertices. G denotes a 
gauge particle, e.g., a gluon or a photon. 

In conclusion, the first step has been made in a development of a new scheme for 

the study of I< decays. Main features, the dominance of LD corrections, evaluation 

of the complete amplitudes, and importance of s + d transitions, are unified in a 

simple, effective model. A need (and also a possibility) for significant improvements 

exists, but even in the present form, the model enables a look at some interesting 

aspects of I( decays not previously studied. Further improvements of the scheme, 

and a better general understanding of QCD and confinement, might eventually 

bring us closer to the final solution of one of the major problems in hadronic weak 

interactions. 
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Appendix A : Use of Direct s + d nansitions 
in K Decays - Brief History 

-- The major role in understanding of IC decays is attributed in this work to 

weak s + d transitions within a single quark line. While presented here in a 

new context, the idea is by no means a novelty. In 1960, in an article by Oneda, 

Pati and Sakitaflll, the s -+ d transitions were for the first time seriously studied 

as a possible source of AI = l/2 rule. A picture from that paper, with slightly 

modernized notation, is reproduced in Fig. Al. The (tis)(du) combination which 

results after the contraction of the weak boson in diagram (a), allows both AI = 3/2 

and AI = l/2 transitions. On the other hand, the (2~) combination in diagram 

(b) is transforming as a pure AI = l/2 piece. The authors presented arguments 

- for dominance of the diagrams (b), and concluded that this might provide a most . 
natural explanation of the observed AS >> A&,. Indeed, diagram (b) contributes 

to KS decays, but does not affect K* + w*7r” in which isospin changes for 3/2 

units,. Therefore, if (b) really dominates, the A1 = l/2 puzzle is solved. This first 

proposal was met with no enthusiasm. Apparently, it came too early. Weak bosons 

were not yet firmly established, Cabibbo mixing was not invented, and a clear need 

-~ for a triplet of hadronic subconstituents will emerge only a couple of years later. 

(a> (b) 
Fig. Al. Diagrams for s -+ u + ?r- decay, from Oneda et al. article. 
The original notation (A,p,n, B) is changed to (s,u,d, W). 
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The situation changed in early 70’s. Three quarks became a reality, and the 

t fourth was anticipated[l”. In 1971, the Glashow-Salam-Weinberg model was shown 

by t’Hooft to be renormalizable, and two years later, thanks to the property of .L. 
asymptotic freedom, the QCD became the main candidate for the theory of strong 

interquark forces. At that time, s --+ cl transitions reentered analyses of I< de- 

cays, now truly in the quark environment: Gaillard and Lee[” considered various 

two-body [&I operators, but eventually decided against their use in an effective, 

strangeness changing Hamiltonian. They discovered that some of the operators 

were suppressed by the GIM mechanism [411 , while the others could hame been trans- 

formed away by redefinitions of fields. It should be noted that instead of diagrams, 

the operators now became the main subject of interest, and there were several 

reasons for this change. First, it was believed that interactions of quarks bound in - . 
hadrons were - at short distances - properly described by scattering of (almost) free 

quarks. The scattering amplitude corrected by QCD, could in turn be described by 

field operators. Thus, an “effective Hamiltonian” consisting of quark fields, could 

have carried at least some information relevant for a hadronic physical process. The 

Hamiltonian formalism had been known and loved in analyses of Zeptonic weak in- 

teractions for many years, and Hamiltonians built up of hadronic currents were 

also widely used in pre-quarks days “‘I. It was therefore natural to use a knowledge 

gained with old Hamiltonians to relate matrix elements of the new multiquark op- 

erators to physical decay amplitudes. There was yet another advantage of dealing 

with operators: a systematic study of certain QCD corrections to diagrams was 

possible by studying the renormalization of corresponding operators. Indeed, the 

renormalization group equa,tion, when applied to Green functions with operator 

insertions, reveals coefficients of the leading (g2 lnp”)” terms. Here, p2 < 0 is 

a “renormalization point”, and g is the QCD coupling constant. By dimensional 

reasons, the same coefficients appear with the leading (g2 In ,‘), terms in related 

diagrams, where M is a large scale in the process (often a mass of the weak boson). 

It should be remembered that although diagrams of a physical process and quark 

operators in a Hamiltonian are related, in hadronic physics these two concepts still 
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ought to be distinguished. The fact that quarks are tightly bound in hadrons is 

not always properly reflected in the effective Hamiltonians, and in some cases this 

might be a source of confusion. (On the contrary, in leptonic processes, where 

asymptotic states are free spinors, diagrams and leptonic operators may be used 

interchangeably). 

. 

; : : d : i G 
Fig. A2. A gl uon is emitted from the loop, and the GIM suppression 
disappears. 

Following the Gaillard and Lee conclusions”’ , physicists for a while ignored the 

s -+ d transitions in studies of K decays. However, in 1977, these transitions got a 

big push indirectly, in a work by Shifman, Vainshtein and Zakharov’421. These au- 

thors realized that diagram in Fig. A2 was not suppressed by the GIM mechanism, 

thus being of the order GF rather than GF/~W& . To find the “short distance” 

contribution of series of diagrams in Fig. A3, Shifman et al:21 constructed the 

(“penguin”) operator, [@‘( 1 - ys)t”s&,G&, , and analysed it via the renormal- 

ization group. (D,V,is a covariant derivative acting on the gluon energy momentum 

tensor). They were able to collect all QCD corrections of the form (g2 In mz)n. 

Though of the right order, the coefficient of the penguin operator still came out to 

be very small. The hope was that this might be compensated by an enhancement 

in calculation of matrix elements, expected because of an unusual chiral structure 

of the operator. Despite some controversy, the penguin terms became a standard 
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Fig. A3. A class of QCD corrections related to s -+ d transitions. 
The third quark line, which acted as a “spectator” in Shifman et al. 
analysis, is denoted only in the first diagram. 

part of the effective Hamiltonian approach, and caused a renewed interest in the 
- . s + d transitions. 

Not everybody was thrilled by a calculation of amplitudes in terms of two- 

body matrix elements of operators. A “diagrammatic” approach, with a direct 

calculation of complete amplitudes, was attempted by Pascual and Tarrach”‘. They 

introduced local quark-meson vertices, and absorbed strong interactions effects 

into phenomenological weak decay constants, f~,f~, and in constituent quark 

masses. By neglecting external momenta, they were able to calculate physical 

amplitudes in terms of simple momentum space integrals. A big enhancement for 

diagrams with s + d transitions (Fig. A4) was reported. The strongest criticism 

of their work comes from the fact that authors did not include all “self-energy” 

diagrams into analysis. It was argued (see e.g. the work by Chia1431 ) that missing 

diagrams, with an unphysical Higgs particle, would have cancelled the dominant 

GF contribution found in Ref. 9, making diagrams in Fig. A4 too small to be 

important. We shall see later that such a criticism, though perfectly valid in 

a general analysis of the renormalization of s - d self-energy, might not be as 

devastating in the special situation described by Pascual and Tarrach[“. 

In 19S0, the role of s + d transitions was reanalyzed once more. Scadron144’451 

concentrated again on transitions in which no gluons were emitted from the s - d 

42 



- 

f 

Fig. A4. One of diagrams for K” -+ w7r decay, from Pascual and 
Tarrach article. The wavy line is a W boson. 

quark line, and named them “tadpoles”. (Note that in “penguins” at least one 

. virtual gluon connects s - d line with another quark line, producing effectively a 

four-quark interaction. On the contrary, “tadpoles” correspond to pure two-body 

operators.) Scadron considered both diagrams and operators, and concluded that 

(i).diagrams (Fig. A5) are not suppressed, but of the order GFrnz in the hadron 

environment, and (G) at least some of the two body operators [d (l,y5, $,j%y5 )s], 

contrary to earlier claims, do survive in Hamiltonians. The argument is that a uni- 

tary rotation can only remove two operators (say, [dls] and [&ss]) but thereafter, 

the rotation is fixed and no further redefinition of fields is allowed. Additionally, 

the wave function renormalization can not help to eliminate the remaining opera- 

tors, when quarks are not free but confined in hadrons. With respect to diagrams, 

Scadron’s analysis of Fig. A5 was done in the renormalizable gauge, but again - 

as in Ref. 9 - without an inclusion of charged Higgs contributions. 

Such an apparently incomplete procedure was met with some skepticism. In 

1984, Chia[431 published a systematic analysis of s - d self-energy diagrams. His 

work confirms that in the field theory, after an addition of unphysical Higgs parti- 

cles and the renormalization, the leading GFrnz terms in Fig. A5 are washed away, 

leaving only a highly suppressed and unimportant contributions. Note however 

that this result might not be relevant for Pascual and Tarrachl”, and Scadron’st44’451 
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Fig. A5. An s - d self-energy diagram. 

works. The quarks in their approach were not current quarks, but quarks im- 

merged in hadrons and already dressed by &CD. If so, no further renormalization 

was needed, and since unphysical particles are mainly required to complete the 

renormalization procedure, maybe indeed there was no need for Higgs diagrams in 

- their analyses. This argument was to some degree substantiated in a recent article 

by Shabalin’461. He did take into account Higgs particles, and also added all possi- 

-. 

: -- 

ble gluon corrections along s - d line in Fig. A5. A large enhancement, not present 

when QCD is turned off, was obtained. So, gluons acted as catalysts, speeding 

up the process, just as in Refs. 9 and 44 was supposed. However, according to 

Shabalin’s calculation, the sum of all short distance corrections gives GF In rnz 

rather than GFrnz used in Refs. 9 and 44. Shabalin’s work was carefully studied 

by Guberina, Peccei and Picek [471. They debated the procedure by which the QCD 

summation[461 was performed. Generally, they found operators corresponding to 

the dressed diagram in Fig. A5, to mix with both gauge non-invariant operators 

and those disappearing by equation of motion. Thus such operators are beyond 

reach of the usual renormalization group analysis, and the summation of leading 

log terms is probably not possible. Guberina et al!71 also stressed that in the 

chiral perturbation theory, I< + vacuum matrix elements of all two-body [ds] 

operators are suppressed. This would be bad news for “tadpole” operators in con- 

ventional approaches: physical amplitudes are often related just to these matrix 

elements. 

The use of perturbative QCD in studies of kaon decays has lost some of its 
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popularity in recent years. At the same time, hfonte Carlo simulations on discrete 
- lattices gained credibility. Non-perturbative contributions to I{ decay amplitudes 

c 

-. 

are usually deduced from studies of matrix elements of weak Hamiltonian on a 

lattice. It is interesting that even in lattice simulations, the direct s + d transitions 

seem to play a significant role. They are represented by the so-called “eye” graphs 

(See e.g. Bernard et d8’, and also Ref. 49 ). It remains to be seen whether this 

. 

will be confirmed when more reliable calculations, with bigger lattices and a direct 

evaluation of amplitudes (and not through the use of PCAC) become possibleLsol. 

Confronted with many uncertainties in determination of higher order (both long 

and short) QCD contributions to s --+ cl transitions of confined quarks, the present 

author1G-81 proposed in 1985 an inclusion of these transitions into wave functions 

of I{ and 7r. The resulting nonlocal “anomalous vertices” were characterized by 

unusual flavor structure: in addition to u and s quarks, u and d pair was also 

present in I<+, etc. The idea is further expanded in this art.icle. 

-~ 

: -- 

- In many other works s --+ d transitions were analysed or referred to, either in 

--terms of diagrams or in terms of operators. Let me mention just a few. Ahmed and 

Ross [‘I1 presented an early analysis of [(ts] operators. Tadi& and collaboratorsL5”, 

and the -4mherst group [531, thoroughly studied the role of penguin operators in 

explanation of the AI = l/2 rule. Gilman and Wise [541 * [551 , and Guberina and Peccel , 

analysed penguin contributions to CP-violation. Chau [5c1 parametrized all two- 

body K decays in terms of several generic diagrams, reserving a prominent role for 

those with s -+ d transitions. For a follow-up of Scadron’s work see Ref. 57. Eeg[“’ 

used Shabalin’s dressed self-energy diagrams [461 . m study of some rare li’ decays. 

Not all the explanations of the AI = l/2 rule in K decays rely on s + 

d transitions (see e.g., Stecll’531, Preparata et ~Zj6~““, and TerasakiLBZ1 ). Still, 

these direct transitions provide one of the most elegant and simple solutions to the 

long-standing problem. h1aybe one clay we shall be a,ble to calculate exactly the 

effect of such transitions. Or, if this turns out to be impossible, we still might ben- 

efit from the concept by ha.ving a better qualita.tive description, or by introducing 

a more suitable parametrization. The idea has been with us too long to be taken 
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lightly. In Ge ll-Mann’s’631 words, “ . . . we should really either bury this thing, or 

else make use of it.” The  advice was given in 1955, when the concept of neutral, 

flavor changing direct transitions was only in diapers, but remains equally valid 

and actual today. 
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Appendix B : Alternative Model for Anomalous Vertices - 
* 

I have repeated all the calculations mentioned in the main text in an alter- 
-. native model. The goal of that study was to learn something about the model- 

dependency. In the alternative model (“Model B”), the probability distribution 

for anomalous vertices has the following form (compare to Eq. (4) ): 

2 p (XB + YBys) 
(k2 - aMP2)n ’ w 

Note that the power in the denominator is n, instead of n + 1 used in the Model 

A. Expressions (5) and (9) remain unchanged, and so do the rules for evaluation 

of diagrams. Although the difference might look as a minor one, values of loop 

integrals change considerably in some cases. 
- . 

Consider first the anomalous part of the 7r+ --+ & amplitude (Fig. 9). Instead 

.” of the expression in the second line of Eq. (14), one finds 

(-)” i c f,PP 
i 

~j&“(x*+y*)~ J.&-L 
Jz ( 7r n-3 >I . VW 

Equation (16), for the amplitude A( 1) in KS + ~+7r- decay, becomes replaced by 

: -- -$ [ (k+$)‘-(k-i)‘] Tr{(p+%-md) P(XB&yBr5) 

The remaining two amplitudes, Eq. (26), get changed in a similar way, leading to 

the total anomalous amplitude (compare to Eq. (27) ), 

cm 
GFSC 

Model B = - 
Jz 

iv;< fr x* * jB . 

With n = 5, one finds I”* + f$) = -0.97 . Therefore, in order to describe the 
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- experimental value A$ - 376 eV, one must choose 2;) N -6.8 . 
z 

When the decay K+ + 7r+ry is considered, one finds that the amplitude 

.-- AANOM becomes (compare to Eq. (30) ) 

AIhO~ = s ( p&-ALf;;-3 ) ( paA!p-3 ) f YB (-3) 
I 

4 
(Y$ 

VW 
1 

1 

C,J’(l) - C&7’(2) + CJ’(3) - C&J’(4) - 
73 11” U” 1 

This expression gives (with n = 5) 

(AiNOM)Model B = +i [ 0.2114 7;) 
- . 

and the branching ratio 
. . 

]P’+... ) w 

- 
B 2 f3 B = o-0537 &5,1 ---& x 10IG eV2 (B7) 

Whenever masses of quarks were required in calculations, in both Models A 

and B, the values 

mu = ma = 0.010 GeV , m, = 0.150 GeV ? VW 

were used. The other numerical consta.nts, GF = 1.1664 x 1O-23 eVm2, s = 0.222, 

c = 0.975, AJK = 0.495 GeV, and &I, = 0.140 GeV, have the standard values (see 

e.g., the Pa.rticle Data brocllure[181 ). 
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