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1. Introduction 

One possible difficulty with using conventional technology such as a drift 

chamber tracking device at the SSC is the worry that the event rate and multi- 

plicity will simply swamp the detector and make it useless for interesting physics 

studies. The only way to answer such concerns rationally is to model a detec- 

tor accurately and reconstruct interesting events after they have been overlaid 

with background events. This is what Gail G. Hanson set out to do in 1986, 

later with the help of Bogdan Niczyporuk. I joined the project in February 1988, 

shortly after Niczyporuk left to work at CEBAF. This note mainly describes the 

GEANT Monte Carlo program we used to model the tracking chamber, with a 

few comments about the GEANT environment at SLAC. Obviously, it mainly 

describes the programming efforts of other people. 

- 

: -- 

- The tracking chamber we have been modeling is part of a large solenoid 

detector”’ studied during the Berkeley Workshop in 1987. The design is along 

fairly conventional lines: it consists of a microvertex detector surrounded by first 

a central tracking chamber and then a calorimeter. These are placed in a 2 T 

magnetic field, with muon chambers, the coil flux return, and another set of 

muon chambers placed radially. It is not a proposal for a detector - simply an 

exploration of what a reasonable detector at the SSC might be. 

GEANT was imported to SLAC by the SLD collaboration. SLD computer 

experts David Aston, John Brown, and Terry Reeves reconstructed the source 

from PAM files and installed it at SLAC. They did an immense amount of work 

making the system work and interfacing it to SLAC unified graphics. We of the 

SSC effort have taken their implementation of GEANT and have used it with very 

little modification. Members of SLD have continued to develop their GEANT, 

casting the program into the collaboration’s IDA-JAZELLE environment. We 

have used the standard, CERN version with the data manager ZEBRA. However, 

the work of Aston et al. has been invaluable to this project; without it we would 

have had to put in much more work to get started. We are also very much 
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2, indebted to their kind answers to our many questions while we were trying to 

.L. understand GEANT. 

This note describes GEANT in general, with examples from the SSC tracking 

chamber study. There is also a section on running GEANT at SLAC, again with 

examples from the SSC study. Finally, there is a short section on ZEBRA, the 

data management system used by GEANT. 

2. The GEANT Detector Simulation System 

GEANTi2’ is a large general purpose system of detector description, sim- 

ulation, and graphical representation tools which was developed explicitly for 

High Energy Physics experiments. First written nearly 15 years ago to model 

SPS experiments, it has been used by many collaborations in most of the HEP 

community’s laboratories. The current version, GEANTS, was rewritten in 1983 

and includes more emphasis on the description of complex geometries as well 

as more sophisticated modeling of calorimetry. It includes the General Hadronic 

and Electromagnetic Interaction Shower code GHEISHA[“’ which in turn includes 

the electromagnetic shower package EGSL4’ . GEANTS is being used by many ex- 

periments at LEP, SPS, LEAR, HERA, and SLC, and continues to be receptive 

to the users from those collaborations. 

GEANT3 is a collection of FORTRAN77 routines, grouped together into 

several modules. It relies extensively on CERN Library routines, including the 

data manager ZEBRAi5’ . The modules each perform one particular class of 

functions and are: 

l the GEOMetry package to describe the experimental setup; 

l the CONStants package to keep the particle, material, and tracking medium 

parameters; 

l the PHYSics package to model particle interactions with the matter in the 

detector; 
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l the KINEmatics package to generate simulated data from parameters in 

the standard physics PHYS package; 

l the TRAcKing package to transport the resulting particles through the 

simulated detector, taking into account the various geometrical boundaries 

and the materials in the detectors; 

l the HITS package to record the responses of the detector to the particles; 

l the DRAWing package to draw the detector, the particle trajectories, and 

the hits; 

l the I/O PAckage to record or retrieve events on an external device in a 

machine-independent way; 

l the (X)INTeractive package to allow the GEANTS user to edit many pa- 

rameters and execute commands. 

Many of these modules contain dummy and default user subroutines; these 

are called whenever the user may have application-dependent procedures to per- 

form. For programming ease, the names of these routines always begin with the 
- 

characters GU. 

Units throughout the system are grams, centimeters, seconds, and kiloGauss. 

The GEANTS user is expected to provide the data to describe the detector, 

to code the relevant GU subroutines, to assemble the required modules and their 

attendant routines into a logical, executable program, and to provide data cards 

which control the execution of the program. Because most of the effort involved in 

creating a good GEANTS program is in the geometry description of the detector, 

the following section describes the GEOMetry package in some detail and uses 

the DRAWing package to illustrate some of the tools available. Fortunately for 

GEANTS programmers, the DRAWing package allows the user to check easily 

that the detector description, in principle an easy task in coordinate geometry, 

does in fact correspond to the physical attributes of the detector. 
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i 2.1 THE GEOMETRY PACKAGE: GEOM 

The general structure of the geometry description package is a nested tree 

form. By convention, an overall supervolume is defined to contain the entire de- 

tector. Within this supervolume are various volumes, usually each corresponding 

to a subdetector such as a central calorimeter or drift chamber. These volumes 

are defined with a name, a shape, and necessary parameters such as dimensions, 

material physical properties, tracking properties such as the magnetic field, and 

a local coordinate system. Then they are placed in the supervolume with the 

correct copy number, position, and rotation. The GEANT system allows for thir- 

teen shapes, including tubes, boxes, spheres, trapezoids, and cones. Each shape 
. 

has its own defined coordinate axes. 

Each volume can in turn be partitioned into subvolumes such as the hadronic 

and electromagnetic sections of the calorimeter or drift chamber superlayers, and 

these placed appropriately. Multiple copies of a (sub)volume can be placed in 

the same or different volumes. 

Each (sub) 1 vo ume can be segmented equally into divisions, such as calorime- 

ter modules or drift chamber layers. These divisions can be created along any of 

the three axes of the mother volume - whether Cartesian, cylindrical, or spherical. 

A given volume and all its properties can be repeated several times in a manner 

which minimises the information storage. This is particularly useful in the very 

common case of several nearly identical subdetectors within one large detector. 

This nesting can be repeated up to 15 times to provide the desired level of 

description - down to the O-rings and bolts, if necessary. Each detector level has 

its own name or set of names, depending on how it was created. There are user 

and system volume numbers at every level to distinguish several nearly identical 

volumes, if necessary. Each level may have its own coordinate system. 

This structure has several advantages. It follows the usual conceptual method 

of starting with the whole and subdividing each part until the desired level of 
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detail is reached. It allows for quick, easy reference to each detector part as, say, 
- - the eighth wire of the first superlayer of the third module of-the drift chamber. 

Its recursive definitions make modification of the detector description relatively 

easy. 

The VOLUME definition 

. The unique, initial volume which encompasses the entire setup is defined with 

no location; the reference frame related to this volume is the master reference 

system or MARS. 

- 

In the simulation of central tracking for the SSC, the entire detector is called 

GLOB and contains five levels of description. The central drift chamber, which 

nearly fills the entire GLOB volume, is called CHAM. It consists of thirteen 

tubular modules called MD01 to MD13. Here, the ‘MD’ designates a module 

and the rest the module number, with module 1 closest to the center and modnle 

13 outermost. The module radii and lengths in z are explicitly defined by the - 

program. Each module contains one GEANT volume called a superlayer. Be- - - 

cause volume names are limited to four characters by GEANT, the superlayers 

are designated by the letter ‘S’ and a three digit number. The first two digits 

refer to the module which contains the superlayer; the last digit refers to the su- 

perlayer number within the module. Since the current application has only one 

superlayer per module, the superlayers are called SO11 to S131. Each superlayer 

has eight divisions or layers. GEANT requires that all divisions of a given volume 

have the same name, so the layers are called LO11 to L131, in direct analogy to 

the superlayers. The layers, at the fifth and final level of detector description, 

are distinguished by their volume numbers only. 

A representation of the structure, created using the interactive package and 

the command 

DTREE GLOB 0 10001 

is in figure 1. 
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f The geometrical definition is achieved with only a few GEANT calls. First, 

-1 GLOB and CHAM are created with: 

CALL GSVOLU('GLOB', ‘TUBE',l,AVOLG,3,IVOL) 
CALL GSVOLU('CHAM', 'TUBE',4,AVOLCH,3,IVOL) 
CALL GSPOS(~CHAM',1.~GLOB',O..O.,O..O,‘ONLY') 

.- 

This creates a tubular volume called GLOB which is made of material number 

1, with shape parameters contained in the array AVOLG of three parameters 

(minimum radius, maximum radius, and half-length along z), and receives a 

volume number IVOL. It similarly creates a volume CHAM, then uses GSPOS 

to position CHAM copy 1 into GLOB, with the reference frames equal, and 

specifying that if a point is in CHAM it is in no other volume. . 

- 

Then modules and superlayers are created by a loop over: 

CALL GSVOLU(NAMESM,'TUBE',4,AVOLM,3,IVOL) 
CALL GSPOS(NAMESM,1,*CHAM',O.,O.,O.,O.,'ONLY') 
CALL GSVOLU(NAMESS,'TUBE',5,AVOLM,3,IVOL) 
CALL GSPOS(NAMESS,l,NAMESM,O..O.,O.,O.,'ONLY') 

These, called thirteen times to create the thirteen modules and superlayers, 

create tubular volumes of the name kept in the variable NAMESM (names - 

module, or MD01 to MD13) which are made of material 4, and have shape 

parameters AVOLM(3). The NAMESM are placed as ‘only’ volumes into CHAM. 

There are also tubular volumes of names NAMESS, (names - superlayer, or SO11 

to S131) similarly created but out of medium 5, and placed into the modules 

NAMESM. 

It would also be possible to position a number of modules with the same 

shape but different dimensions by defining a generic shape with an alternate call 

to GSVOLU: 

CALL GSVOLU(NAMESM,'TUBE',4,AVOLM,O,IVOL) 

(notice the fifth variable, the number of shape parameters, is set to zero) and 

use the subroutine GPOSP, which takes a copy of a named, previously created 
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volume and places it at a specified location and rotation. 

Finally, each superlayer is divided into layers: 

CALL GSDVN(NAMESL,NAMESS,NLAY(IMOD,ISLAY),l) 

This specifies GEANT is to create division NAMESL (names - layer, or LO11 
to L131) from NAMESS, with NLAY slices or divisions along the l-axis. NLAY is 

an array with dimensions the number of modules and the number of superlayers 

per module, currently set to 13 and 1, respectively. At the moment, NLAY is 

always 8. Notice all the layers created this way have the same name; they are 

distinguished by their volume numbers only. 

.- The GEANT system allows for other sorts of divisions: the subroutine GS- 

DVT allows the user to specify a division STEP, rather than the number of 

divisions NDIV, as well as the medium number. There are plans for GSDVX 

which would allow for specification of a STEP as well as NDIV, along with the 

origin of the first cell and the tracking medium. This would create gaps at either 

end of the mother volume. 

The data which drive the GEANT calls are kept in the user common block 

DCGEOM. This contains the number of modules, number of superlayers, mini- 

mum and maximum radii for modules, superlayers, and layers, the half-length of 

the modules along the beam direction, the number of sense wires in each layer of 

a superlayer, the cell width in a superlayer, the azimuthal angle of the arbitrarily 

chosen first wire in the layers, and the electron drift velocity: 

COMMON /DCGEOM/ NMOD, NsuLAY(201, NLAY(20.20). RMMIN(20). 
* RMMAX(20). RSMIN(20,20), RSMAX(20.20). RLMIN(20.20.20). 
* RLMAX(20,20,20), XMLEN(20). NSWIRE(20.20). 
* SWIDTH(20.20). PHILAY(20.20.20). VD 

To save enormously on processing time, GEANT does not know about the 

details of cell structure or wire placement. It is the SSC user who must keep track 

of the details of cell structure and wire position. While this saves tremendously 

on computing time, it costs in loss of these data when the detector geometry 
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2 is written to tape or disk. An important improvement of the current system 

-. would save the more detailed data in a ZEBRA structure and record them with 

the GEANT geometrical information. The ability to input the DCGEOM data 

in a more user-friendly way, perhaps using a menu, would be another useful 

improvement. 

Ordering and Closing the Detector Geometry 

GEANT has a specific search order to find in which volume a particle is. 

This ordering may be specified explicitly, by frequency of entry, or geometrically. 

In the SSC tracking example, the search order is defined geometrically: that is, 

GEANT keeps track of the limits of each of the contents of a volume, and which 

contents are in each of the sections defined by the surrounding coordinates. This 

is specified with: 

. 

CALL GSORD(‘GLOB’ , I) 

This orders the entire detector GLOB along the l-axis, radially. 

After all volumes and positions and orderings have been defined, the geomet- 

rical and search data should be stored. This is done by: 

CALL GGCLOS 

: _- 2.2 THE PHYSICS CONSTANTS PACKAGE: CONS 

After the geometrical representation of the detector is complete, the user 

must still define the materials which fill the detector volume. This material may 

be a pure material such as liquid argon or copper, or it may be a nonexistent 

average of several materials. This is useful when modeling a drift chamber, for 

example: a material can be defined with the average properties of the gas mix and 

wires, eliminating the need to model every wire separately. There is also a routine 

available to make mixtures or compounds from previously defined materials. 

Defining the material 

The subroutine GMATE will simply store necessary constants for sixteen 
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standard materials, including Hydrogen, Lead, and Air. 

The subroutine GSMATE is more versatile. Not only can the user define 

only those standard materials needed for the particular application, but also any 

other material or mix. The routine requires the user-defined material number 

and name, along with its atomic weight and number, density, radiation length, 

absorption length, and other (optional) user parameters. 

For the SSC central tracking case, where the detector is surrounded by air 

and is a mixture of Mylar, glue, stainless steel wires, argon, and ethane, this is: 

CALL GSMATE 
(15,'AIR$'. 14.61, 7.3, 0.001205. 30423.24, 6750.. 0.0) 

. CALL GSMATE 

(18,'STRAW$', 21. 7, 10.0, 0.023, 1370., 61.6, O,O> 

. These define material 15 to be air, with the given atomic weight, atomic 

number, density, radiation length, absorption length, and no other parameters. 

Material 18, called ‘straw’, has the shown properties and is actually a weighted 

average of appropriate amounts of gas, Mylar, and wire. Material number 15 is 

used for air because that is the listing in the standard material constants table 

of GEANT; number 18 for the straw mixture because there are sixteen entries in 

the default GEANT list and 17 has been used for Mylar in a previous version of 

this program. 

Defining the tracking medium environment 

After the physical constants of the detector materials are defined, the tracking 

environment and tracking parameters must be specified. The routine GSTMED 

defines most of these; the user provides such data as the magnetic field, multiple 

scattering maximum, tracking precision, and a minimum step size. Here, tracking 

precision refers to how close a particle must be to a volume boundary before it 

may cross it. 

The user may also change default energy cutoffs with the routine GSTPAR, 
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standard particle parameters with GPART, and particle branching ratios and 

-: decay modes with GSDK. 

In the current application, this is: 

CALL GSTMED 
* (1;SPACE$',15,0,3,20.0,5.0,0.5,0.1,0.20,0.1,0,0~ 

CALL GSTMED 
* (4;GASTUBE$',16,1,3,20.0,6.0.5,0.6,0.1,0.05,0.1~0,0~ 

CALL GSTMED 
* ~6;STRAWM1X$',18.1,3,20.0,6.0,0.5.0.1,0.06~0.1,0,0) 

This code defines three media: space, which surrounds the chamber itself; 
. gastube, which is the material between modules and superlayers; and strawmix, 

which is the actual material of the tracking chamber. Both space and gastube 

consist of material 15, air. However: space is not a sensitive volume while gastube 

is; and the tracking precision is 0.20 cm in space and 0.05 cm in the gastube. 

Strawmix is made of the average straw material, but otherwise has the same 

parameters as the active gastube. These parameters, in order, are: the medium 
- 

number; the medium name; material number; 1 if this is a sensitive volume, 0 else; 

the magnetic field tracking flag which defines the method used to track a particle 

within the magnetic field; the maximum magnetic field value; the maximum angle 

a particle is allowed to turn in one step; the maximum displacement allowed in 

one step due to multiple scattering; maximum energy loss allowed in one step; 

the tracking precision; a minimum step size; and a user-defined array of other 

optional parameters. It is the media numbers defined here which are used in the 

volume definitions described in Section 2.1. 

10 



2.3 THE PHYSICS PROCESS PACKAGE: PHYS 
- - 

An important part of the GEANT system is the PHYS package, which simu- 

lates the interaction of particles with the matter of the detector. GEANT should 

be accurate for processes from 10 KeV to 10 TeV, though there are some weak- 

nesses where experimental data are weak or incomplete. 

. 
The interactions are modeled in the standard way: first, GEANT samples 

the total cross section to decide the probability of a given process; second, it 

determines the final states using the differential cross sections; and finally it 

computes mean energy losses, multiple scattering, delta ray production, and so 

on. 

Hadronic interactions are calculated using GHEISHA’IiS1 although the use of 

TATINA”’ is available for backward compatibility. Electromagnetic interactions 

are included in GHEISHA; there are also-other cross sections svithin GEAPJT 

itself for energies up to 100 GeV. Muon interactions are modeled up to 10 TeV. - 

Ionization is modeled with a Landau distribution or by an explicit generation - - 

of delta rays. Similarly, a Gaussian approximation is the default for multiple 

scattering, though the slower and more accurate Moliere theory is also available. _ 

The interested reader should refer to the GEANT manual[” , or, for even more 

detail, the GHEISHA manual[” . 

2.4 THE KINEMATICS PACKAGE: KINE 

This package allows the GEANT user to store and retrieve information about 

event vertices and particle tracks. The routine GSVERT will store a vertex 

position and originating beam particle number and return a new vertex number. 

GSKINE stores 4-momentum, particle number, and originating vertex number 

for long-lived particles and returns a new track number. GFKINE retrieves 

the above information for a given track number. There is no retrieval routine 

for vertices, though the data are available from the common block GCKINE. 
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GPVERT and GPKINE will print the vertex and kinematic information for a 
- - given vertex or track number, respectively. 

The Interface to the ISAJET Monte Carlo 

The subroutine ISAEVEN, written by Giuseppe Ballocchi in February 1986, 

is the interface to the event generation Monte Carlo program ISAJET. It is not 

officially a part of the GEANT system, though it obviously fills an important 

function and is therefore included here. It reads an ISAJET output file, boosts 

the particles to the lab frame, and fills the GEANT track and vertex banks. It 

translates particle types from the ISAJET convention to the GEANT numbers. 

It is also the appropriate place to apply any cuts on acceptable particles to save 

on following those that miss the detector entirely or have such low momentum 

that they curl away before reaching a sensitive region of the detector. The current 

version applies transverse momentum and pseudorapidity cuts in this subroutine, 

and requires that particles be long-lived. There is also an event counter with the 

facility to skip the first NSKIP events in an ISAJET file before passing particles - 

to GEANT for processing. - _ 

The following GEANT calls are in ISAEVEN, separated by reference frame 

translation and other code: 

CALL GSVERT(VERTEX.O.O,UBUF.NBUF,NVTX). 
CALL GSKINE(PLAB.IGNAME,NVTX,UBUF.NBUF.NTRK) 

GSVERT stores the primary vertex, whose (x,y,z) position is stored in the 

array VERTEX. This vertex has originating beam track number 0, originating 

target track number 0, and no user buffer floating point variables (UBUF is empty 

and NBUF is zero). GSVERT returns NVTX, the assigned vertex number. Next, 

for each acceptable track, ISAEVEN calls GSKINE, which stores the particle 

four-momentum PLAB for particle type IGNAME from the vertex NVTX. Again 

there are no user parameters. The assigned track number NTRK is returned. 

There are other calls to GSVERT and GSKINE from within GEANT when- 

ever there is an interaction or decay. 
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2.5 THE TRACKING PACKAGE: TRAK 
-. 

. 

After a track is generated it must be propagated through the detector, all 

its decays and interactions with the contents of the detector calculated, and the 

secondaries tracked. GEANT does this by applying the equations of motion to 

the current particle over succesive steps and computing the four-momentum at 

each point. This means the particle trajectories are not perfectly smooth as in the 

real world; this slight inaccuracy is offset by a huge savings in computing time. 

GEANT has mechanisms for computing the step size, and constantly adjusts this 

parameter. The step size for a particle depends not only on the material through 

which it is travelling, but on its intrisic properties such as its lifetime, mass, 

and charge. The material mostly affects the step size because its radiation and 

interaction lengths influence particle energy loss and multiple scattering. Finally, 

the geometrical boundaries of the detector also come into play: the step size is 

limited by the path length between medium boundaries. 

The GEANT user should spend some time optimising various tolerances and 

cuts which limit the step size. These are called the tracking medium parame- 

ters, and are stored as described in the CONS section description of the routine 

GSTMED and GSTPAR. They include: the maximum angle a particle is allowed 

to turn in one step due to the magnetic field; the maximum allowed displace- 

ment due to multiple scattering in one step; the maximum fractional energy loss 

allowed in one step; the tracking precision or boundary location accuracy for 

crossing medium boundaries; the minimum step size due to either energy loss or 

multiple scattering; and the energy cuts, different for each type of particle, below 

which a particle will not be tracked. 

13 



- 

f 
2.6 THE DETECTOR RESPONSE PACKAGE: HITS 

There are two different kinds of detector response in the language of GEANT: 

hits and digitizations. A hit is detector information recorded at tracking time. It 

is analogous to the actual value of quantities the detector is designed to measure, 

such as particle position or energy loss and position. A digitization simulates the 

measurement of the geometrical quantity by a a detector element, such as a time 

and wire number or ADC signal and tower number. Presumably digitizations 

include all required inefficiencies and uncertainties. 

The GEANT user must define both hits and digitizations, decide how the 

data are to be packed, and later call a GEANT utility to store them. In the . 
current application, this means: 

DATA NBITSV/l6,16,16/ 
DATA NAMESD/‘WIRE’.‘TIME’/ 

DATA NBITSD/2*16/ 

DATA NAMESH/~XPOS’,‘YPOS’,‘ZPOS’,‘E ‘/ 

DATA ORIG/500.,600.,500.,O./ 

DATA FACT/4*10000./ 

DATA NBITSH/4*32/ 

CALL GSDET 
* ('CENT',NAMESL,l,NAMESL,NBITSV,l,2OOO,6OO,ISET,IDET~ 

CALL GSDETH('CENT',NAMESL,4,NAMESH,NBITSH,ORIG,FACT) 
CALL GSDETD(‘CENT’,NAMESL,2,NAMESD,NBITSD) 

The call to GSDET assigns the detector element (layer) NAMESL to be part 

of the user-defined detector set CENT. All layers are part of CENT: the detector 

set convention is an aid to storage of the detector response data. There is one 

volume descriptor, NAMESL. This has been defined earlier with the volume 

definition calls described in Section 2.1. NBITSV is a vector of dimension 3 

which defines there are to be 16 bits per datum. This is user-defined detector 

type 1. There are 2000 words allocated at first for the primary hits bank, and 
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c 
500 words allocated for the digitization banks. ISET and IDET are returned and 

give pointers to the set CENT and the particular detector element within CENT. 

GSDET is called once for every layer. 

GSDETH defines the hit parameters for set CENT, subdetector NAMESL: 

there are 4 elements per hit, whose names are kept in the array NAMESH (x, 

y, z, energy); there are NBITSH (4*32) bits available for packing the variable 

values. ORIG and FACT define the packing of the data precisely: the ith integer 

variable IVAR(1) of NBITSH(1) b’t 1 s is stored such that IVAR(1) = (VAR(1) + 

ORIG(1)) * FACT(I). 

. 
GSDETD makes a similar definition for digitizations within the set CENT, 

subdetector NAMESL: there are two elements per digitization, called wire and 

time, which are packed in 16 bits each. 

_ The GEANT user must also store the hits and digitizations. Hits are stored 

in the routine GUSTEP, a user subroutine called at the end of every step. In this 

subroutine it is possible to decide whether to store a hit, and do so if desired. It 

is an easy call: 

CALL GSAHIT(NSET,NDET,NTRA(NT),NBV(NT),HITS(l,NT),IHIT) 

This call stores a hit for set NSET (always 1 since there is only one detector 

set, CENT), subdetector NDET, track NTRA(NT), volume numbers NBV(NT) 

where the current step is, the array of hit elements HITS(4,NT). The hit number 

IHIT is returned. 

When all the tracks in an event have been followed through the active detec- 

tor, GEANT calls GUDIGI. In this routine the GEANT user should sort through 

all the hits and record digitizations. In the SSC tracking version, GUDIGI finds 

the wire closest to a hit, calculates the particle’s distance of closest approach to 

this wire, and determines the signal drift time. It also removes multiple hits on a 

wire, taking only the first digitization if later ones are within the chamber dead 

time. Finally, it stores the digitizations: 

CALL GSDIGI(NSET,NDET,NTRA(NT~,l,NBV~NT),KDIGI~l,NT~,IDIG) 
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This call stores a digitization for set NSET (again, only CENT), subdetector 
- - NDET (same as module number, since there is only one superlayer per volume), 

track number NTRA(NT), volume numbers NBV(NT). The digitization data are 

kept in the array KDIGI(2,NT). The digitization number IDIG is returned. 

2.7 THE DRAWING PACKAGE: DRAW 

The drawing package is an important debugging tool. It draws the detector, 

making it easy to check that the geometrical specification does indeed correspond 

to the intended detector. It draws the detector geometry tree structure. It draws 

particle trajectories, making ckecks of the magnetic field and various cuts easy. 

Finally, it draws hits (but not digitizations), making it possible to tell at a glance 

if hits are being recorded properly. 

Unfortunately, CERN’s graphics do not interface easily to the SLAC SJS- 

tern. SLD computer experts Dave Aston and Terry Reeves have spent immense 

amounts of time building a graphics interface for GEANT. Without their work 

most of the SSC study would have been much more difficult and much slower. 

Unfortunately, there are still unsolved bugs in the graphics SLAC interface. The 

most annonying bug loses occasional parts of the graphics output - things are 

sometimes just not drawn. There are theories that this is due to the GEANT- 

UGS interface, though the exact form has been very elusive. 

The DRAW package exists in both FORTRAN subroutine and interactive 

forms. The two are identical: the interactive package simply translates into the 

the corresponding subroutine call. The difference in the calling mechanism is 

trivial: to draw the particle trajectory for track number 17, for example, the 

FORTRAN command is: 

CALL GDXYZ(l7) 

while interactively the command is: 

DXYZ 17 
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Notice that ‘CALL G’ and the parentheses are dropped in the interactive call. 

This is the general rule. If there are several arguments for a call, then spaces, 

not commas, should separate the arguments. 

. 

Because the drawing package is more efficiently used in the interactive version, 

all the examples that follow will be for that form; to make FORTRAN calls out of 

them, the GEANT programmer should generally add ‘CALL G’ at the beginning, 

commas between the arguments, and parentheses around the argument list. 

Drawing the Detector 

There are several ways to draw cuts and projections through the detector. 

A very useful one is DCUT, which has as arguments: the detector name; the 

axis which is normal to the cut plane of the view (that is, the axis along the 

line-of-sight); the distance from the origin the cut plane is placed; the u and v 

coordinates of the volume origin on the screen; and the u and v scale factors. .- 1. 
Note that DRAW calculates the detector origin placement with the scale factors: _ 

the picture placement will change if the origin stays the same but the scale factor _ 

\ changes. The visible part of the screen is a 20.x20. square, with the lower left 

corner at (O.,O.) and the upper right corner at (20.,20.). This means the center 

is at (lO.,lO.), not (O.,O.) as the unwary user might suspect. 

To draw the entire detector GLOB sighting along the z-axis (the 3-axis) but 

otherwise centered requires a scale factor of 0.05. The interactive command for 

this is: 
- DCUT GLOB 3 0 10. 10. .05 .05 

Notice the axis definition is an integer while the other numerical arguments 

are real numbers. In general GEANT requires the proper form for its arguments, 

though it understands the ‘0’ which places the cut plane at the detector origin 

properly. Both upper and lower case work. Figure 2a shows the output of this 

command. 

Naturally, this important call does not follow the general naming convention. 
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f The FORTRAN is ‘CALL GDRAWC(parms)‘. 

Invoking any of the detector drawing commands sets position and scale pa- 

rameters which all subsequent drawings will use until the next detector command. 

These variables are not set at execute time, and must be set initially by DCUT 

or another detector drawing command. The impatient user can draw only one 

module (superlayer) to save time: 

DCUT MD01 3 0 10. 10. .05 .06 

.- 

The commands: 

DCUT MD12 3 0 IO. -140. 1. 1. 
DCUT MD13 3 0 IO. -140. 1. 1. 

. 
move the detector center to (lo.,-140.) and the scale factor is set to 1.: figure 3a 

shows the result. The layer lines are polygonal, not circular as defined, a vestige 

.of how the graphics are set up. Internally, the layer boundaries and positions are 

correct. 

Any scale factor and any detector center position is possible. 

Clearing the Screen 

The command: 

NEXT 

will clear the screen 

Drawing Tracks 

for the next drawing. 

Particle trajectories may be superimposed on a drawing of the detector or 

not. Particle numbers and names may be added, although they are drawn only 

where a particle decays or leaves the detector. 

DXYZ 17 
DPART 17 

The first line will draw the trajectory of particle 17, the second will draw 

the track number and name of particle 17. No particle specification or particle 
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c 
number 0 will process all the particles. Muon tracks produce dashed lines in the 

current version of DRAW; all others produce solid lines. Figure 2b shows all the 

tracks and particle identifications for a minimum bias 40 TeV SSC event. Figure 

3b shows a portion of the same event expanded to life size, created after the 

coordinate system was redefined with a DCUT command. Both 2b and 3b were 

created using: 

DXYZ 
DPART 

Drawing Hits 

DHITS 17 
- . DHITS 

- 

The first line will draw the hits for particle 17; the second for all particles. 

Figures 2c and 3c show the hits for all particles for the whole detector and 

a portion of the detector lifesize, respectively. Notice that the crosses which 

designate the hits do not always intersect the lines which represent the detector 

layers. This is because the layers are incorrectly drawn as a polygon, as discussed 

earlier. 

: .- 2.8 THE I/O SERVICE PACKAGE: IOPA 

The I/O package permits the user to read or write selected data structures 

to and from external media. Since these utilities use ZEBRA packages, it is 

possible to write to tape in a machine-independent format. This facilitates the 

use of several machines for one GEANT project. 

Opening and Closing a Logical Unit 

Each unit must be opened before GEANT can read from or write to it. All 

units should be closed before the end of the program. This is easily done with 

calls to GOPEN and GCLOSE. In the current example, this is: 

CALL GOPEN (LUN, ‘I', LEN, IERR) 
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CALL GLOSE (LUN , IERR) 

- 

These open and close unit LUN for Input (also available are Output and 

Exchange), with a maximum record length of LEN (set to 80). An error flag 

IERR is returned in each case. 

Reading and Writing Data Structures 

GEANT data are classed loosely into two types. Initialization data are gen- 

era1 throughout the run and include the particle parameters, the materials data, 

the media data, the volume parameters, rotation matrices (not discussed here), 

the detector set which includes hit and digitization parameters, and drawing 

parameters. A reference to the structure INIT means all the above structures. 

Event-wise data include the vertex and kinematic data; the trajectory space 

points; the hits; and the digitizations. 

The GEANT user should record or read the initialisation data at the begin- 

ning of each run, then the desired event-wise data once per event. This is easily 

done with a call to GSAVE or GGET. These have as an argument list the desired 

data structures and an opportunity to flag the routine that only the initialisation 

routines from the list should be processed. 

In the current SSC case, this is: 

CALL GSAVE(GO,LSAVE,-NSAVEJDENTJER) 

CALL GGET(GO,LGET,-NGET,IDENT,IER) 

Both calls have the same arguments: the unit number to read/write, a list 

of data structures to process, the number of structures in the list, a returned 

record identifier, and a returned error. If the number of structures to process is 

negative as in the above example, then GEANT picks out only the initialisation 

data structures. If it is positive, it processes only the event-wise structures. 

Reading From Multiple Volumes 

A common application is the writing of GEANT data onto several tapes and 

then reading from them in order to run an analysis. ZEBRA, unfortunately, 

20 



- 

t -. does not allow for multiple volumes on a file number. The usual FORTRAN 

volume number incrementing does not work because ZEBRA’s tape handling 

facility rewinds the tape and resets the volume number when it comes to the end 

of data. There seems to be no way of getting around this; the multivolume user 

must name each tape a new unit and reset the unit number within the GEANT 

program. One solution is to run the following code whenever ZEBRA comes to 
an end-of-data mark: 

NSEQH = NSEQH +I 
IF(NSEQH .LE. MAXSQH) THEN 

WRITE(LOUT.‘(" About t0 close unit". I~Y)LUNHGS 
CALL FZENDI(LUNHGS,'T') 
LUNHGS = LUNHGS + 1 
WRITE(LOUT,'(" About to open file number",I4)')NSEQH 
WRITE(LOUT,'(" Will now start reading from unit",I4)') 

* LUNHGS 
ISTAT = 0 
CALL FMOUNT(LUNHGS,IONE,ISTAT) 
IF(ISTAT .NE. 1ONE)IEND = 1 
WRITE(LOUT,'(" Completed FMOUNT with ISTAT",I4, 

* I a , IEND" ,131') ISTAT, IEND 
CALL FZFILE(LUNHGS,LEN;I') 

ELSE 
IEND = 1 
WRITE(LOUT,‘(" End of data on unit",I3)')LUNHGS 

ENDIF 
RETURN 

This bit of code increments a sequence number and checks that it is within 

a range set earlier. It then closes the current input file with FZENDI and incre- 

mentstheunitnumber. Itasksforthe mountingofthenexttapewith FMOUNT, 

which sends a message to the computer operator to hang the tape assigned to 
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f unit number LUNHGS. Then it opens the file LUNHGS with a call to FZFILE, 

-- and continues. 

Because defining several tapes to be mounted sequentially to one tape drive 

can be tricky at SLAC, here are the commands which will work. They belong in 

the job’s EXEC file, or wherever FILEDEFs are usually placed. 

'SETUP TAPE 181 SU4644 SL NORING ' 
'SETUP TAPE 181 SU4643 SL NORING ' 
'SETUP TAPE 181 SU4643 SL NORING ' 
'SETUP TAPE 182 SU4446 SL RING ' 
'SETUP END' 
dcb-' (RECFM VBS LRECL 19996 BLKSIZE 20000' 
'FILEDEF FT60FOOl TAP1 SL 2 VOLID SU4644' dcb 
'LABELDEF FT60FOOl VOLID SU4644' 
'FILEDEF FT6lFOOl TAP1 SL 3 VOLID SU4543' dcb 
'LABELDEF FT6lFOOl VOLID SU4643' 
'FILEDEF FT62FOOl TAP1 SL 4 VOLID SU4643' dcb 
'LABELDEF FT62FOOl VOLID SU4643' 
'FILEDEF 80 TAP2 SL 1 VOLID SU4446' dcb 

These commands ask for two tape drives, called 181 and 182. Each tape or 

file on a tape is assigned separately with the SETUP command. The FILEDEFs 

define unit 60 to be on the unit TAP1 (which is the same unit as TAPE lSl), 

a standard label tape, file 2, volume ID as given. FMOUNT requires a LA- 

BELDEF, which is simply a check on the attached tape identifier. Unit 61 is 

defined to be the next tape, and unit 62 corresponds to the next file on the same 

tape. Unit 80 is an output tape, and is designated to be mounted on the unit 

TAP2, or TAPE 182. 

It is not possible to write to more than one tape in one job. 
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i 2.9 THE INTERACTIVE PACKAGE: XINT 

The interactive version of GEANT is an important tool for designers of de- 

tectors and debuggers of programs. The user may call any of the basic functions 

of GEANT, in effect designing a detector interactively. This means it is possible 

to design or modify the detector geometry, change the media parameters, and 

manipulate the running conditions on an event-by-event basis. As described in 

detail in Section 2.7, it is possible to draw the detector, the particle trajectories, 

and the hits. It is also possible to debug programs more quickly and easily using 

interactive GEANT. 
.- 

. The package is based on the ZCEDEX17’ command processor, though a min- 

imal knowledge of ZCEDEX is required. In general the interactive commands 

parrot the regular FORTRAN calls exactly, with minor name changes and ex- 

tremely rare argument changes. The GEANT user who understands the FOR- 

TRAN version should have no problems using the interactive form. 

- 2.10 THE JOB FLOW 

Generally a GEANT program has an initialization section followed by a loop 

over an event-wise stepping through the detector. The initialization section de- 

fines and initializes space allocation for HBOOK and ZEBRA, initializes the 

GEANT physics data and drawing package, loads in the particle data, and de- 

fines the detector geometry. 

The event-wise loop generates or inputs the event kinematics (in the SSC 

example, from ISAJET), stores the event vertex, and then starts looping over 

tracks. The track-wise loop includes all secondaries, which are added to the track 

list as they are created. GEANT follows the track step by step, checking to see 

if the particle has entered a new volume or interacted. If the particle has entered 

or left an active volume, GEANT calls GUSTEP, thus giving momentary control 

to the user. If the particle has interacted, it stores new tracks and vertices. 
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-- 

After all the primary and secondary tracks are processed, GEANT calls 

GUDIGI, again giving control to the user for digitization purposes. The next 

call is to GUOUT, where the user may decide whether to store an event and may 

increment counters. This is the last call in the event-wise loop. 

After the desired events have been processed (or the job is close to its time 

limit), GEANT 1 c oses its files and outputs histograms. 

A flow chart of the SSC tracking program is in figure 4. 

3. Running GEANT at SLAC 

. It is not difficult to run GEANT at SLAC, though some care must be taken to 

build the correct machine environment. This chapter describes how to construct 

the vitrual machine environment for either interactive or batch GEANT and gives 

names and locations of working examples. 

3.1 SETTING UP THE VIRTUAL MACHINE 

- 

-. ._ 

The GEANT program with interactive graphics requires nearly 4M virtual 

memory to run; this does not include memory needed by ZEBRA to manipulate 

and store the resulting data. In practice, an 8M machine is necessary to run a 

useful GEANT program. Even with such a large machine environment, it is not 

possible to run GEANT with a debugger. 

The command 

q storage 

shows how much virtual memory the current machine has. 

dirmaint storage 8m 

invokes the Directory Maintenance Program to change the virtual machine size to 

8M, and is performed only once. The machine size will not change until another 

dirmaint storage command is executed. Users need to have special dispensation 

to have access to an 8M machine. 
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f The GEANT user must link to a few disks in order to have access to various 

-: TXTLIBs and other files. It is also very useful to have about 10 cylinders of 

space disk available to store GEANT output during program development. The 

following EXEC file asks for a 10 cylinder space disk, puts it into the user’s A- 

disk slot (leaving the user’s 191 disk in the B-disk spot), and attaches other disks 

required for GEANT. 

/* SET UP ENVIRONMENT FOR RUNNING GEANT */ 
Trace Off 

'SET CMSTYPE HT' 
"CP .LINK * 330 330" 
IF RC /= 0 THEN DO 

"SPACE ADDTEMP 330 IO" 
COUNTER = 1 
DO UNTIL RC=O I COUNTER=10 

"CP SLEEP 3 SEC" 
"CP LINK * 330 330" 
COUNTER = COUNTER + 1 

END 
END 
"SWAP A B” 

“ACCESS 330 A” 

'SET CMSTYPE RT' 
"GIME PUBEH 501 C ( QUIET" /* the main GEANT disk */ 
"GIME PUBEB IA4 D" /* has GEANT311 and other code */ 
"GIME PUBEB 198 HI1 /* has user-supported code, examples */ 
"GIME UGS77 Q" /* the Unified Graphics disk*/ 
"NEWS NEW CC" 

Exit RC 

A slightly different version of this EXEC can be found in GEANT EXEC on 
APP 191. 
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c 3.2 OTHER NECESSARY FILES 

The user must also have a copy of the GEANT control cards available for 

the program. These control the running of the job, with specifications for the 

number of events to run, physics processes to include, debug and other switches, 

and data structures to save or read. An example of these cards is in GEXAM8 

GEANTDAT on the APP 191 and is listed below. Other examples on PUBEH 

501 and the PUBEB 198 disk are all called GEXAMn GEANTDAT, with n an 

integer from 1 to 8. 

LIST 
TRIG 6 (process 5 events) 

. DEBU 1 6 1 (debug from 1st to 6th event, by ones) 

SWIT I=1 2=0 3=0 4=0 6=0 (user debug flags) 

ANN1 1 (annihilation flag) 

BREM 1 (bremsstrahlung flag) 

COMP 1 (Compton scattering flag) 

DRAY 1 (delta ray flag -. 
HADR 1 (hadronic process flag) 

LOSS 1 (energy loss flag) 

MULS 1 : .- (multiple scattering flag) 

MUNU 1 (muon nuclear interaction flag) 

PAIR 1 (pair production flag) 

PHOT 1 (photoelectric effect flag) 

SAVE 'INIT' 'DIGI' ‘KINE' 'JXYZ' 'HITS' (save these ds) 

PRINT ‘MATE' 'VOLU' 'TMED' (print these data structures) 

END 

A complete summary of the GEANT data cards is in the manual at BASE040- 

2. Meanings of the physics flags are at PHYSOOl-3. 

There are several examples of user code on the GEANT and APP disks; these 

are called GEXAMn FORTRAN. The system requires that the integer n in the 
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z FORTRAN and GEANTDAT file names match. The current version of the SSC 

-: tracking GEANT program can be found in GEXAM8 FORTRAN on APP 191; 

a more stable but less current version is in GEXAMS FORTRAN on the same 

disk. 

The GEANT source code is in GEANT311 FORTRAN and GEANG311 

FORTRAN on PUBEB 198. 

The SSC version also requires an ISAJET output file of events which are to 

be processed by GEANT. Naturally, each user will want to have the appropriate 

events to put through the detector simulation; however, for preliminary playing a 

file of quark jet events called ISAJET DATA is available on BON 191. It should 

be placed on the space disk at A. 

- 3.3 RUNNING G E A N T INTERACTIVELY 

- 

Once the virtual machine is set up and all needed files are in place, it is easy 

to run a GEANT simulation interactively: simply command 

geantint gexamn 

This invokes the EXEC file GEANTINT, which sets up the required file defini- 

tions, load libraries, and so on. It then invokes GOGEANT EXEC, which finishes 

setting up the running environment. It then loads, links, and executes GEANT 

with the user programs in GEXAMn FORTRAN and program control cards in 

GEXAMn GEANTDAT. If GEXAMn has not been compiled, GEANTINT will 

do it if the command is: 

geantint /ft gexamn 

Here, the /ft parameter causes GEANTINT to compile GEXAMn before linking. 

After GEANT is linked and loaded (which may take several minutes) and the 

geometry defined, the command 

trig 
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‘c, will process the first event. This may take quite some time; the SSC version 

-: has trackwise data printed to the screen so the user may follow the program’s 

progress. After the event is processed, GEANT will output the message: 

Type EXIT or <RETURN> thrice to get out 

and the user may command TRIG again to do the next event, or enter other 

interactive commands as described in Sections 2.7 and 2.9 or in the GEANT 

manual. It is important to clear the screen once before beginning to draw to it; 

otherwise the first drawing may not be scaled properly. This is done with: 

next 

The command 
. exit 

will finish an interactive session. 

- The execute files described here open and close a console file for the user. 

This console file has a name username CONnnnn, with a form of the date for 

nnnn, and is sent to the user’s reader. It can be treated as any other reader file. 

- 

z .- 

The current version of GEANT outputs all graphics to the file GOGEANT 

SEQ4010. There is no way to print only part of the graphics output generated 

during a given session; although Dave Aston has a solution, it has not yet been 

installed into the SSC version. The command 

tekprint gogeant seq4010 (pref imcgbl 

prints the graphics file in preformatted mode on the printer on the first floor of 

the computer building, IMCGBl. It is important to use the preformatted form 

of the tekprint command for these complicated drawings. 
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f 3.4 RUNNING GEANT IN BATCH 

To run GEANT in batch simply submit the EXEC file GEANTBAT. This sets 

up the BATCH environment, then executes GOGEANT. Examples of GEANT- 

BAT are on APP 191 and the GEANT disk PUBEB 501. It is important, how- 

ever, to remember that the batch machine requires the files it executes to be on 

the submitting user’s A-disk or on another disk explicitly attached by the job. 

To submit a batch job with an already compiled user program in GEXAMn 

TXTLIB, enter: 

batch submit (tim 8 tapes) geantbat gexamn 

. This submits an 8-minute job with tape setups. The other defaults such as an 

8M machine required for running are already stipulated inside the GEANTBAT 

and GOGEANT EXECs on APP 191. 

GEANTBAT also has an /ft parameter: 

batch submit (tim 4,notapes print 80k) geantbat /ft gexamn 

will compile GEXAMn FORTRAN before linking. - 

The available versions of GEANTBAT make use of the BATCH logging facil- 

ity: the EXEC prompts the user for comments about this particular job and keeps 

the results in a file called GEANT BATCHLOG on the user’s 191 disk. It also as- 

signs sequential names GEANTnnn, where nnn is a job number incremented only 

with GEANT jobs submitted this way. This is very useful for keeping GEANT 

jobs separate from other tasks and for keeping track of programming progress. 
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4. The ZEBRA Data Management System 

GEANT now uses the data manager ZEBRA. It was originally written us- 

ing the data manager ZBOOK and the use of ZEBRA is largely oriented along 

ZBOOK rules; the implementation of ZEBRA in GEANT is not optimal. Never- 

theless, although in theory the GEANT user need know nothing about memory 

management, in practice some knowledge of ZEBRA is very useful. This section 

is a short introduction to the basic ideas of ZEBRA. 

One major defect of FORTRAN is its lack of data structuring facilities. Its 

only ‘structures’ are arrays and common blocks, both of which must be defined by 

compile time. Since FORTRAN stores only locations of the beginning of arrays 

and commons, neither of these may be manipulated as an entity. The FORTRAN 

user spends much programming time manipulating data storage, or (more likely) 

wastes much storage space keeping empty or partially empty structures. 

ZEBRA is an attempt to offer true dynamical data management. Written at 

CERN, it is a collection of FORTRAN77 routines which provides a sophisticated 

system of data management. The routines are grouped into three packages, called 

MZ, FZ, and DZ or DIA. The memory manipulation package MZ contains all the 

initialization, allocation, and bank manipulation routines. The file management 

package FZ contains all the I/O routines. The diagnostics package DZ contains 

methods of displaying and verifying data structures. In general a routine within 

a package will have a name that begins with the appropriate two letters. 

The ZEBRA pointers and links are available within COMMON blocks, mak- 

ing the data available to the user. It is also possible to arrange the data storage 

in such a way as to keep relational information intact. 
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5% 4.1 DATA STRUCTURES 

The ZEBRA Bank 

The basic unit of storage within ZEBRA is the bank. This is a contiguous 

area of storage which includes I/O descriptor words, reference and structural 

links as pointers to data within the bank, addresses of the supporting and next 

banks, bank status words, and data. A program may have one bank or many. 

The Data structure 

. 

A data structure is a collection of banks which are associated with one another 

in some way. This association is determined by how they are linked together. 

Because banks are created dynamically at execution time, and because each bank 

contains its own structural links, there may be an arbitrary number of banks in 

a given application. This means there is no need to define a maximum dimension 

as for arrays or common blocks. The number of banks is limited only by the 

amount of storage allocated for ZEBRA itself. 
-. 

The simplest data structure is the linear structure. In this arrangement, each 

bank has a link called the ‘next link’ which points to the next bank in the system. 

A next link of zero means there are no more banks in the linear structure. Figure 

5 shows a representation of a simple linear structure. 

To access a linear structure, it is sufficient to point to its first bank. Then 

all the other banks in the structure are available. 

A more complicated structure is needed in many applications; for that reason 

there are also ‘down links’ and ‘up links.’ A down link points to a bank which 

somehow depends on the originating bank. For example, a vertex bank may have 

down links to all the track banks for particles which originate at that vertex. Or 

a detector volume bank may have a down link to the first of all the hits in that 

detector volume. A bank may have a large number of down links. A down link 

may point to the first bank of a linear structure. 
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An up link is the reverse of a down link: each bank has one up link which 

points to the bank on which it or its linear structure depends. If the up link is 

zero, then a bank is at the top of its tree. 

There are also origin links, which point to the structural link that supports 

the bank. That is, it points to the down link of the previous bank. 

Figure 6 shows a representation of the hits data structure JHITS in GEANT, 

which has all four kinds of links. 

Reference Links 

.- The use of the four structural links described above defines the form of the 
. 

- 

data structure: an intelligent structure design keeps the data ordered in an in- 

tuitive format which is easy to understand and remember. If a user wishes to 

*stablish links between banks that do not define the structure itself, reference 

links are available. These links keep references that the user wishes to record, 

but do not affect the data structure itself in any way. ZEBRA’s actions on ref- 

erence links are limited to reassigning them if banks are moved within memory. 

4.2 PHYSICAL STORAGE 

ZEBRA’s banks are kept in one or more contiguous areas of storage whose 

number and sizes are defined by the user at initialization time. These are called 

dynamic stores; each one resides in a separate common block. ZEBRA can handle 

up to 16 dynamic stores, though there are computer time overheads associated 

with the number of times ZEBRA must do something in a store other than the 

‘current’ one. GEANT has only one very large store, which in the SSC application 

is: 

PARAMETER ( MZEBR$ = 1000000 > 
COMMON/GCBANK/q(MZEBR$) 
DIMENSION Iq(l),Q(i),Lq(8000) 

EQUIVALENCE (Q(l) ,19(l) ,LQ(9)), (Q(l) ,LMAIN) 
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?!. and is initialized with a call to MZSTOR. Here one million words (!) are allocated 

-. to the dynamic store kept in the common block GCBANK. The effect of the 

EQUIVALENCE statement is to offset the arrays Q and LQ by eight locations. 

This is because there are eight structural links and other identifiers in a bank 

between the next link position and the beginning of the bank’s data. Then links 

are referred to as LQ(L+n) while data are IQ(L+n) or Q(L+n), where L is the 

offset due to the bank’s location within the store. Figure 7 shows the format of 

a ZEBRA bank. 

Divisions 

Each dynamic store has three divisions by default, although a different num- 

-. 

. 
ber may be created using MZDIV. The first division is used by the system; the 

other two are available to the user. Divisions associate banks which are some- 

how logically connected, and make I/O and bank dropping of these associated 

banks easier and faster. ZEBRA is also more efficient at handling links within a 

division. The dynamic store in GEANT has two divisions IXCONS and IXDIV, 

corresponding to initialisation (constant) data and event-wise data. 

Link Areas 

A user who wishes easy access to bank links should define a common block 

called a link area. ZEBRA will then maintain the links. GEANT has a link area 

which contains all the links to the several data structures: 

COMMON/GCLINK/JDIGI, JDRAW, JHEAD, JHITS. JKINE, JMATE, 
+ JPART. JROTM, JRUNG. JSET. JSTAK, JGSTAT, JTMED. JTRACK. 
+ JVERTX. JVOLUM. JXYZ 

Working Space 

Short-term working space is available within ZEBRA at the first part of a 

dynamic store. This is created by a call to MZWORK, and in GEANT exists in 

9000 words near the beginning of GCBANK. 
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f 4.3 MAINTENANCE OF THE DYNAMIC STORE 

When a program using ZEBRA begins, the dynamic store contains only a few 

system banks. As other banks are created, available space decreases. After banks 

are no longer needed they may be dropped with a call to MZDROP. After a bank 

is dropped the data stay intact until a bank reorganization takes place. When 

there is insufficient empty storage to create a new bank, ZEBRA will perform a 

garbage collection. In this procedure, which is undertaken automatically when 

there is insufficient memory to perform a requested operation, ZEBRA moves 

active banks to one contiguous area near the beginning of the dynamic store. 

This removes and overwrites old data from dropped banks. ZEBRA naturally 

resets all the links to point to the banks’ new locations. 

If a request for memory cannot be satisfied even after garbage collection 

ZEBRA experiences a fatal error and the job exits to QNEXT. In the current 

implementation of GEANT, this causes the job to die. Since any event simulation 

occasionally produces an exceptionally large event, an important improvement 

would be to have ZEBRA simply terminate the current event and continue. 

Another way of freeing memory space for immediate use is by wiping out 

entire divisions. This is done by a call to MZWIPE. It is particularly useful in 

GEANT: when all the event-wise data are no longer needed, a single call will 

erase them and make large amounts of space available for processing the next 

event. 

-. 

: .- 

4.4 I/O 

Writing to and reading from external media is quite easy within the ZEBRA 

system. The user need only call the appropriate input/output routine; ZEBRA 

maintains the data structures and their links. All of ZEBRA’s file manipulation 

routines are in the FZ package. The FZ package writes data either in ‘native’ 

or ‘export’ mode. ‘Native’ mode data are written in the representation of the 

machine at which the program is currently running, while ‘export’ mode data are 
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--I 
written such that they can be read by most of the computers used by the HEP 

community. There is also an RZ subpackage which is a database management 

system with sequential and direct access to data. It is a simple system but quite 

adequate for the needs of HEP experiments. 

GEANT uses the I/O routines FZIN and FZOUT, although calls to these 

are in the GEANT routines GGET and GSAVE and are not normally visible to 

the GEANT user. However, as discussed in Section 2.8, reading from multiple 

volumes in the ZEBRA system is difficult and some tricks are necessary. 

4.5 DEBUGGING 

- . 
In the current incarnation of ZEBRA within GEANT, the program alone 

requires an 8 Mbyte machine and is simply too large to run with a debugger. 

kowever, there is a diagnostic package DZ which includes methods for displaying 

or checking part or all of a dynamic store. 

-. 

The user communication array IQUEST also includes information for debug- 

ging. Kept in the common block QUEST, this array contains many pointers and 

error flags which describe the problem. A detailed explanation of these is in the 

User Reference Guide Book DIA. 
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FIGURE CAPTIONS 

1. The geometry tree structure of the SSC central tracking detector. 

2. a: The entire SSC tracking detector. The innermost single and outermost 

double lines are for the volumes GLOB and CHAM. The thirteen modules 

of eight layers each are clearly visible. 

b: A 40 TeV minimum bias event in the SSC central tracker. Particle names 

and numbers are also drawn. 

c: Hits from a minimum bias event in the SSC central tracker. 

. 

3. a: The top portion of the SSC central tracker, life size. 

b: A minimum bias event in the SSC central tracker, life size. 

c: Hits from a minimum bias event in the top portion of the SSC central 

.% tracker, life size. 

4. A flow diagram of the SSC tracking GEANT program. 

5. A representation of a simple linear structure, from Reference 5. 

-. 6. A representation of the Hit data structure JHITS in GEANT. 

7. The format of a ZEBRA bank, from Reference 5. 
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Figure 1: The SSC central tracking detector geometry tree structure. 
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Figure 2a: The entire SSC tracking detector. The innermost single and 
outermost double lines are for the volume GLOB. The thirteen modules 
of eight layers each are clearly visible. 
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Figure 2b: A 40 TeV minimum bias event in the SSC central tracker. 
Particle names and track numbers are also drawn. 
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Figure 2c: Hits from a minimum bias event in the SSC central tracker. 
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Figure 3a: The top pottion of the SSC central tracker, life size. 
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Figure 3b: A minimum bias in the SSC central tracker, life size. 
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Figure 3c: Hits from a minimum bias event in the top portion of the SSC 
central tracker, life size. 
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IIT initial&e GEANT and USW program and data cards 
--GZEBRA initialise ZEBRA 
--HLIMT lnitlalise HEJCOK 
--GINIT initialise GE4NT3 
--GZINIT initialise GEhNT3 
LLGDINIT initialise GEWl' drawing Package 
--GPART load in particle data book 
--GDXAL detectnr g-try 

--GSNATE 
--GSB(ED 
--GSVOW 
--GSPOS 
--GSDVN 
--GSDW 
--GSDETH 
--GSDEIQ 
--GSOUIJ 
--GGCLOS 

--GLooK/GPftI~ print detector definitions 
--GPHYSI physics for showering 
-4JHINIT user hlst definitions 

--HBcoKl 
--HBIGEI 

--GSAVE/GGET 

I loop over events 
-G'IRIGI initialisatiMl for event p-eSSi&l 
-cI G process one event trigger- 

-G%INE generate or Input event kinematics (fm ISAJET) 
--1SAEY-m 
--G-T store primary vertex 
--GSKINE 

-(xITREZV loop over tracks, including secondaries 

'--T?mK 

--GFINDS fill /GCS.WS/ aCCOrdZIg to /ccIRAI(/ 
--GIJFIW when entering and leaving volume I-+X VOL when inside volume: extrapolate track to exit point of current volume 

--QmxT 
-%'I'.... track particle, by type (G'NWW, GRIEUT, GTHADR, CRNOH, GTINO) 
--GFsmT fill bank for volume statistics 

initiallse physics processes 
--GNEDIA 

--GSVEIT store vert 
--(GSSTACK) 
--GSKINB 
--GSVERT (20) 
--GSKINE (20) 

I --UHTX determine volume 
--GICYL 

--GUDIGI 

I 

--GFHITS 
--GSAHIT 
--GSDJGI 

-GlJcuT 

I 
--G.SAVE/GGET 
--GPRINT according to switches 

-UGIAST 
I --GUST 

--HISTL-Q 

Figure 4: A flow diagram of the SSC tracking GEANT program. 
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Figure 5: A representation of a simple linear structure, from Reference 5. 
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Figure 6: A representation of the hit data structure JHITS in GEANT. 
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Figure 7: Format of a ZEBRA bank, from Reference 5. 


