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ABSTRACT 

-. 

_ 
_ _T.  

- -- 

We construct a new class of non-topological soliton stars which appears in 

global non-Abelian field theories coupled to classical Einstein gravity. It is the 

analogue of the Q-stars recently found in Abelian theories. If p (of order 10-l 

to lo* GeV) is a free-particle inverse Compton wavelength and mpl is the Planck 

mass, these objects have energy densities E - p4, radii p - mpl p2, global charges I 
9 - m$h3, and masses M - m$/p2 obeying a generalized Chandrasekhar 

limit. We give an explicit SO(3) example which demonstrates their very simple 

structure: the stellar surface reproduces the non-Abelian Q-ball, but within the 

star the fields are no longer constant. 
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1. Introduction 
i ,c- 

. Q-stars, introduced in ref. 1, are unions of non-topological soliton stars PI and 

Q-balls~3-51~ in which a thin surface shell of Q-ball connects an interior coherent 

field with the outside vacuum. The Q-star is stabilized by a conserved global 

charge. Assuming spherical symmetry 

ds2 = -B(p)-‘dt2 + A(p)-ldp2 + p2dn (14 

and rigid rotation in internal group space leads to equations of motion within 

the surface shell analogous to the equations of Newtonian mechanics; these give 

boundary conditions for the Einstein equations in the Q-star interior. 
- 

This paper concerns non-Abelian Q-stars, a general class of objects indepen- 

dent of any particular theory. We choose a simple model here, however, in order 

to clearly show their structure. 

--...- . - 
2. Setting Up the Q-Star 

Consider a global SO(S)-symmetric Lagrangian 

c = -; Tr g”“(a,c#)(avqs) - 2-r U(qs) , 

with a general renormalizable potential 

dP+$p3+.$$4 
. . 

G-4 

(2.2) 

---and 4 in the SO(3) 5 representation: real, symmetric, and traceless. Q-balls 
_- without gravity were studied in this model by Safian, Coleman, and Axenides, 

who showed that it includes the lowest energy solitons of the very similar SU(3) 
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i 
theory!“’ Resealing 

gives the simple form 

u_“‘fi, i2 
fi - 4” ; 4” ; I’34 ; 

2 3! 4! 

(2.3) 

(2.4 

- 

all energy densities will scale by p4/G2 if we also scale frequencies and lengths by 

w = pk and p = 5~ -‘. However, since the natural length in Einstein’s equations 

is (g/c)p-l with 

E E ds F 1.03 x 10-16(p/250 GeV) , P-5) 

--.. .- . 
- we actually scale 

is p=-x 
w 

(2.6) 

with 0 5 x < 1 inside the Q-star. S is a free parameter which merely sets the 

inner edge of the Q-star surface at x = 1. We will express all quantities in these 

units, drop terms of 0 (E), and use primes to denote x derivatives. We shall see 

that factors of i are basically unimportant to Q-star structure. 

-- 

The Gtt and G,, Einstein equations are then respectively 

A - 1+ xA’ = -S2x2(V + W  + U) 

A - 1 - x;B’ = S2x2(V + W - U) 
(2.7) 
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with 

J)=TrAA ai 2 E2 
2 ( 1 ax ljw (2.8) 

= -Tr :B [h,J]” . 

Note that V is of 0 (1) within the surface but of 0(c2) in the interior of the 

Q-star. 

In the last step of (2.8) we use the rigid rotation condition Eh$/t8 = ;[n,4] 

where 0. = pfi is an SO(3) f re q uency matrix; we can always diagonalize 4 = 
eiR 

4 diag e --iR and minimize the kinetic energy by assuming rigid rotation, setting 

the matrix R(p, t) = !X + C with C$d;ag independent oft. A global SO(3) rotation 

eliminates the constant C. Working in that basis we follow ref. 6 and write 

4diag = diag(&,&,&) = -& * diag(1 + y, -2, 1 - y) . P-9) 

If the vacuum does not break the SO(3) symmetry (i.e. i 2 $), there is a 

conserved charge 

Q E /- d3pd=i Jo = -;J d3pG B [+, c$] = i&j (2.10) 

in the diagonal basis. Then _ . 
._ ;c 2. 

_- 
1 

47rs3 
i=7 

/ 
x2dx -\/m 4; y2 h 

0 

(2.11) 
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and 

fj = -i& (2.12) 

The remaining Einstein equations are identical and related”’ by the Bianchi 

identity to the &field Euler-Lagrange equations 

LB [fi, $4 il] + 5 - ;Tr ($) = i2s2 ~A[m”+c’{~+;($-g)}] . 

(2.13) 

In the Q-star interior we can neglect the right hand side, obtaining a matrix 

equation almost identical to Eq. (2.28) of ref. 6. There are two novelties here: we 

have a local squared frequency w2 B(x), and we no longer have U = W throughout 

the interior. To first order in c we replace the latter condition by a first integral 

of Eq. (2.13) , 

- 

(V + W - U,I:z: = 1 dx (;A’ + ;B’) . 
a 

(2.14) 

This shows that the pressure vanishes within the entire surface; for a = 1 and 

(b - a) of O(c), 

jIi G v+w-u = 0. (2.15) 

At x = 1 we also obtain an implicit boundary condition for Eqs. (2.7), 

[W - U],,, = 0 , (2.16) 

c 
_- which indicates that the inner surface of the Q-star is the Q-ball of ref. 6. In- -- 

._ -+-tegrating Eqs. (2.7) and derivatives across the surface layer where (2.15) holds 
_- shows that up to 0 (c) A, B, and B’ are continuous across the surface, while 

A’(1) + 2S2U (1) matches to the Schwarzschild A’(l+) just outside the surface 
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region where U vanishes. The Schwarzschildmass measured by distant test par- 
,+- titles is--obtained by integrating the Gtt equation; 

. 1 
4zs3 

M = GP~ 
/ 

x2dx(V +W ;t U) = ipi@ , (2.17) 
0 

neglecting the mass in the thin surface. Integrating only to x = 0 gives the second 

boundary condition, A(x = 0) = 1. 

. The equations of motion within the Q-star now take a form independent of 

i, 

” 4” i “3 I 
d+,+,~$ -zTr 2G2B (31 - $3) diag(l,O, -1) . (2.18) 

- 

Then multiplying (2.13) by 4 and tracing yields 2W = Tr (4. LW /r%$). Applying 

(2.16) we obtain expressions for the fields at the inner edge of the surface region: 

42(l) = y (f;;)2 

z=l 

(2.19) _ 

- h2B(1) = (2.20) 

correcting Eq. (2.37) of ref. 6. Taking the (2,2) component of (2.18) yields 

3 i&+2~2+8 

y2(x) = T 2 2-iI& ’ (2.21) 

which combined with the above trace yields a quadratic equation for ~$2. Taking 

the root that matches the surface Q-ball, we obtain 

1- 4k2B(x) 
d2(4 = 2i { 1 - 4iG2B(x)}2 + 8J;{4G2B(x) - l} . 

-- (2.22) 

_- We may now substitute for C&(X) and y(x) in Eqs. (2.7) and solve numerically 

for A(z) and G2B(x). We require only an explicit form of the boundary condition 
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on G2B(x). Eq. (2.19) substituted into (2.21) at x = 1 yields 
,c- _- _ 

. [(i - l)(y2 + 3)3 + 16(y2 + 3)2 - 72(y2 + 3) + 961 = 0 , 
z=l 

(2.23) 

and a real solution requires i < l!“’ In terms of cy = 16/(1 - i) 2 18, the real 

solution is 

y”(1) = -3 + g + [a($fo+3)+30gqq1’3 

+ [a(g-;a+3) e3a/5]1’3. 
(2.24) 

With (;r2B(1) now known explicitly from (2.20), we have the required boundary 

condition. The external Schwarzschildform B(x)-1 = (1 - G/47rSx) in addition 

leads to 

iZ2 = [ij”B(l)] 1- -$ , 
( -1 

(2.25) 

which completes our solution, given i and S. 

3. Discussion and Results 

Our solution in resealed units depends only on the scaled coupling i and 

the size S. Numerical solutions of the Einstein equations were obtained using 

the program COLSYS.‘71 For small size (S < 1, the ‘Q-ball regime’), gravity 

is negligible and we simply recover the Q-ball, exemplified in Figs. 1 and 2 

where the fields are,almost constant for S 5 0.05. As S increases, all the fields ; 
_- .P. start to vary and we enter the Q-star regime. The surface layer must however 

._ -- 
always be a Q-ball, requiring $ \ ‘i < l!“’ The naive expectation that gravity 

_- could help stabilize a Q-star with i 2 1 against such self-repulsion is unjustified. 

Accordingly, in the Q-star interior as well as in the surface Q-ball, the boson field 
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and charge density vanish when i + l-, while ij approaches the free-particle 
,c- value of--l/% Similarly, the entire Q-star smooth1.y approaches the new vacuum 

when i + L+ 9 , breaking the SO(3) y s mmetry. For i < i the new vacuum of 

course has a negative energy density, which produces the usual embarassment 

when coupled to gravity. 

The existence of the Q-ball solution and thus the Q-star imposes a more 

general restriction on the form of U(+);“’ W - U must be an effective “one- 

particle potential” with x playing the role of time in a mechanical equation. The 

Q-ball is a solution which rolls in the effective potential, coming to rest at the 

I31 vacuum value of 4 at large radius. A renormalizable potential compatible with 

this behavior must therefore include a cubic term, and indeed as i + 0 the Q-star 

contracts to vanishing size, mass and charge. (The respective densities diverge as 

jm2, but the volume vanishes as g”.) From Eq. (2.17) , we also see that Q-stars 

obey a generalized Chandrasekhar relation, M - G(m$/p2). 

- 

Turning now to more detailed examination of the solutions, figs. 3 and 4 show 

the fields inside the star (0 5 x 5 1) for two values of the size S, with a typical 

coupling i = 0.6. Fig. 1 confirms that at x = 1 all the solutions become the 
- same Q-ball (with i = 0.6); they also satisfy very accurately the Schwarzschild 

condition A(1) = B-‘(l) = 1 - G/47rS. The mass here increases faster with 

S than the volume (S3); Fig. 2 shows that in the Q-ball regime, S =S 0.05, the 

average density is constant, but as S increases the density does too and we lose 

the homogeneous ‘Q-matter’ limit. Gravity causes the fields to “sag” towards 

the center (compare Figs. 4 and 3) and increases the central density above the 

Q-ball value when S rises beyond the Q-ball range. In addition to this change of 

field intensity, the relative sizes of the local eigenuahes of 4 also change inside, 
_- because y changes. Of course this is not equivalent to local SO(3) rotations; 

._ 
--gravity does not couple to global symmetries. For large S, the star becomes 

_- highly relativistic and approaches a black hole, $l = 47rS. Eq. (2.25) shows that 

& redshifts to zero in this limit, since G2B(1) is fixed by i. 
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The stability analysis of Q-stars is a straightforward extension of the Q-ball 
,c- analysis, [61181 Classically Q-stars are stable, supporting a spectrum of surface 

. and acoustic waves similar to the Q-ball case!‘] Semi-classically they are stable 

against dispersal into free particles because w < p/2, the free-particle frequency; 

Fig. 5 shows the binding energy. Quantum mechanically with r$ decaying only to 

fermions, gravity makes no essential difference to the surface evaporation scenario 

of ref. 8; the Q-star lifetime is in that case of order 10m7(250 GeV/p)2 seconds!” 

. In conclusion, we have seen that a global non-Abelian symmetry leads to no 

essential difficulties in constructing Q-stars. 

- 
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FIGURE CAPTIONS 
i ,c- _- _ 

. 1) & and y - 3 as functions of x, for S = O.Oi, 0.15, 0.25, 0.29, and 0.305. 

2) Resealed mass density, Gc3/47rS3 as a function of S. 

3) A, B-l, $2 and y as functions of x; S = 0.2, i = 0.6. 

Note that y is divided by 10 here and in the next figure. 

4) A, II-‘, $2 and y as functions of x; S = 0.3, i = 0.6. 

5) Solid line: resealed mass, $lc3 as a function of resealed charge @z3. 

Dashed line: $l = i, to show the binding energy. 
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