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I. Introduction. In this letter we take the first steps towards a complete evaluation 
of the ratio 8/c from first principles. To do this, one must combine a nonperturbative 
evaluation of certain hadronic matrix elements (ME) with standard renormalization group 
scaling. Here we calculate the matrix elements using the lattice approximation. 

Our result is a qualitative conclusion: the effects we find tend to reduce 8/c from stan- 
dard estimates. Combining this with a recent reevaluation of the importance of isospin 
breaking [l] puts 8/c below the sensitivity of present experiments, though possibly mea- 
surable in planned experiments. The present result for c//t: is +.0035 f .003 f .002 [2] , 
and the next generation of experiments hope to reach a sensitivity of .0005. 

Our calculation uses the staggered discretization of fermions, rather than that pro- 
posed by Wilson. With the lattice technology available at present, this choice is preferred 
for an evaluation of 8. The problem for Wilson fermions is the lack of GIM cancellation 
after the top quark has been integrated out [3] . This presents no difficulty for staggered 
fermions (41 [5] , and we work here in the effective theory just above the charm quark scale. 

In the three generation standard model both E and 8 are,‘to good approximation, 
proportional to sin6, 6 being the CP violating phase in the KM matrix. Thus the ratio 
c’/c can, in principle, be predicted, once one knows the various KM angles (0;) and the 
top quark mass (mt). Necessary ingredients for this prediction are the ME of operators 
in the weak Hamiltonian (NW ) between appropriate hadronic states. Those ME needed 
for c can be estimated using a variety of continuum techniques, giving a result uncertain 
to about a factor of two. Future lattice calculations will reduce this uncertainty, though 
present calculations cannot. By comparison, the continuum estimates of the ME needed 
for 8 are less reliable. Thus even a semi-quantitative result from the lattice is of interest, 
and this is what we provide here. 

To be precise, what we actually calculate are the ME needed for the imaginary part of 
the K -+ rr decay amplitudes. To convert these into a result for c’ we need also to know 
the real parts of these amplitudes. These we take from experiment. To further convert 
to a result for c’/e we must face the uncertainties in s; = sin(8i) and in mt, as well as 
those in the ME needed to calculated c. We do this by using the experimental value for E 
(2.27 x 10-3) and lumping all the uncertainties into the product ~2~2~3~6. 

The dominant contribution to c’ comes from operators with a LR chiral structure. 
These operators also contribute to the real part of the K + ~7r amplitude. It has been 
suggested that they have large matrix elements, and that this can explain the AI = f rule 
[6] . The arguments for this are carried out at a scale ~1 << m,, where our calculations 
do not apply, and all perturbative calculations are suspect. The same arguments can also 
be used to predict a value for c’. This allows us to test this line of reasoning indirectly, 
since we can roughly evaluate c ‘. .Our results suggest that LR operators are subdominant 
even for ~1 << m,. The only escape is the possibility that the Wilson coefficients of these 
operators have been underestimated, as has been suggested recently [7] . 
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2. Theory. At scales JJ in the range m, < /.L < Y?& the dominant CP violating part 
of ?lw is 

ImUw = GF 
-$(sls2c2s3s6) c zioi- 

i=6,7,8 

The Z are Wilson coefficients, multiplying the operators 

0s = s,7,(1 + 75)db c qb7& - 75)Qa 
q=u,d,s,c 

O7 = %7j$ + 75)& c 
q=u,d,a,c 

% jfbr/L(l - 7&b 

08 = %7,(1 + 75)db c 
q=u,d,a,c 

F qb7/& - 75)&p 

(2) 

These operators appear when the top quark is integrated out. 0s is induced by strong 
interaction penguin diagrams, 07 by electromagnetic penguin graphs. 07 in turn gives 
rise to 0s upon renormalization group scaling. & and zs are both proportional to CY,,. 
Inserting Im J/w in the standard expression for 6, and using lowest order current algebra 
to convert K -+ z7r amplitudes into K -+ z ME, we find 8 I I - 

E 
= 5.8 x lo3 GeVS4 Isr@,c2sss61 I(T+l?60;UbtIK+)I 11 - nl 

(3) 

Here w x l/22 is the ratio of I = 3/2 to I = l/2 kaon decay amplitudes. The factors of 
R, (R .3 - .4), and Q (k: .04 - .06) arise from isospin breaking [l]. The combination of 
angles that appears is bounded above by 4 x lo- 4. The superscript subt will be discussed 
later. We stress that (3) is only true to zeroth order in an expansion in mk/A2, where 
A k: 1 GeV. For the present, though, this is sufficient. 

In the NC + 00 limit, one can show that, to O(mq) 

(~+/08IK+> = (~+I08I~+)VIA = f~ jK(6, m:m m 
U 

yzrnd 
mk fK 

- 4m,mK- 
8 u 

,2 ‘7 - 1)). 
8 A 

(4 

Note that this tends to a constant as mq + 0. In fact, to work consistently to O(mq) we 
should drop the second term in (4), though this has little effect numerically. One can also 
show [7][8] that 

3 



This vanishes like m=mK in the chiral limit. The conventional vacuum insertion approxi- 
mation (VIA) also yields (4) and (5), but in addition has 

(7r+lO7lK+)vrA = 3~+[08lK+)VIA. (6) 

Using these approximations we can rewrite (3) as 

& 

I I 
- = 5 x 1o-3 
6 

(“+IwbtI~+) 
(~+IolybtlK+)VzA 

ll _ q 

$2 = .23 
% +& (7r+ lZ707 + F808 IK+) (r+ lofybt IK+)VzA 

emp 
aernz6 (Z$ +z,) (~+1081K+)VzA (~+IWb*IK+) ’ 

(7) 

The estimates of the Z discussed below suggest that the ratios of Wilson coefficients ap- 
pearing in (7) are close to 1. In VIA all the ratios of ME are also unity, so that in this 
approximation we have ]c’/c] = 1 - 2 x lo- 3. What we can best evaluate on the lattice 
are the ratios of ME calculated with and without the VIA, as this cancels some of the 
systematic errors. Plugging the results into (7) allows us to extract a lattice estimate of 
8/c. 

Our method for transcribing 0s onto the lattice has been explained in detail in ref. 
[5]. In the notation given there 

(7r+10;ubtlK+) = -2(P$ + Pi) + (21; + Ii(s) - 21,’ - Ii(s)) + O(g2) (8) 

The “eye” contractions, denoted by Ii etc, are subdominant, and we drop them. They 
do not have the l/m: enhancement factors of (5), and can be ignored even if they are 
enhanced sufficiently to explain the AI = 3 rule. The O(g2) corrections have not been 
calculated, and so we work to O(gO). The symbol P - for “penguin” - indicates that “figure 
eight” and eye contractions have been combined. It is this that gives the suppression factor 
of fK - f?r in (5)[9] . 

In ref. [5] the (8 ,8 ) p L R o erators 07 and 0s were not considered. It is simple to extend 
the notation defined there to accommodate these operators. One must introduce A = 0 
and A = 4 eight contractions. Those with one color loop we call E,’ and E:, respectively, 
and those having two color loops Ei and Ez. Then the transcription is 

~. (~+107IK+) = 3(&j - Ej) + P(j + Pi + +(I; - If(s) - 1; + Ii(s)) + O(g”) 

(n+l08lK+) = 3(Eo” - E;) + P; + Pi + f(ll’ - I;(S) - 1; + I;(S)) + o(g2) 

(g) 

Again we drop the O(g2) parts, and the subdominant eye contractions. As discussed below 
equation (4), to be consistent we should not include P; either. The contractions leading 
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to the Ej are, in fact, the figure eight part of the Pj, and so their numerical evaluation 
requires no extra labor. For example, E,2 is the average over configurations of the product 
of the kaon correlator and the pion correlator. Ez is the only one of the Ef which does 
not vanish in lattice VIA, and its approximant is obtained by averaging the pion and kaon 
correlators separately, and then taking their product. 

Since we drop the I; from (8) and (9) the charm quark does not appear in any of 
the contractions we calculate. The charm quark influences the calculation only indirectly 
through its effect on the Wilson coefficients. Thus we need only calculate propagators for 
light quarks. 

To complete the definitions we must explain the superscript subt on 0s in (3). As first 
noted in [lo] and elucidated in [3], 0 6 can mix with the dimension 4 operator 

s = is7&+ 75)(& - &)d. 

One can undo this mixing in a variety of ways [5], all equivalent at lowest order in m,, 
though differing in higher orders. The most straightforward method is to form OgBUbt - 
06 - pS, and adjust p so that (O]O,BUbt]Ko) = 0. Th is we use for the results of Table 2. 
We will comment below on the variations between methods. No subtraction is needed for 
the Ej, which cannot mix with S. 

3. Lattices and Renormalization Group Scaling. Our results come from 25 configura- 
tions on a 123 x 30 lattice. We use an improved action, which in the notation of ref. (111 
is 

S = 10.5(ReTr(UF) - .12ReTr(Ue) - .12ReTr(Us) - .04ReTr(UrX2)). (10) 

We calculate quark propagators with masses .005 and .040 in lattice units, applying an- 
tiperiodic boundary conditions in all directions. We use five base points within the 24 
hypercube, which allows us to measure the ME of all the required operators. We also have 
propagators from one base point at other masses with which we can calculate masses and 
decay constants. 

The improved action is designed to be as near as possible to the renormalized tra- 
jectory for pure gauge theory. Using the tree level relation to determine the bare charge, 
we find it much larger than at the corresponding point on the Wilson axis with the same 
lattice spacing (based on the string tension), i.e. g2/4n = .41 compared to g2/4z = .08. It 
is also larger than the continuum cy. evaluated at a scale p = l/a. However, a calculation 
of the non-perturbative /? function with this action [12] gives a result for Ap much smaller 
than the asymptotic value. This shows that the tree level relation is not valid and that we 
should use a smaller effective bare charge. The relationship between lattice and continuum 
charge needs to be calculated. For the present we simply assume that the continuum and 
lattice coupling constants are equal. 
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To complement the lattice calculation of matrix elements, we need the coefficients 
Fe, z7 and &. To the accuracy we are working, it is appropriate to use the leading 
logarithm results embodied in the Renormalization Group (RG) equations of ref. [l3] 
. The only unknown is the value of cr, to put in these equations, or, equivalently, the 
value of the one-loop A to use. Numerically, the difference can be significant because the 
ratios of continuum to lattice A values are typically large. However, as discussed above, 
for our action we use the continuum formulae of ref. [13] with the lattice values of A 
set equal to typical continuum values. Thresholds are treated in the usual way, matching 
occurring when the quark mass satisfies mu = 1. The RG equations are run down to 
p = l/a = 1.7GeV. We use mb = 4.5GeV, and vary mt from 30 to 70GeV. For 
A = .1(.3) GeV we find -Es = .08 - .09 (.12 - .15), -&/cr,, = .14 - .21 (.lO - .17), and 
-538/&,3 = .03 - .06 (.04 - .09), where the ranges come from varying mt. Thus we have 
53 % - .l and (r7/3 + zs)/aem k: - .l, which explains the values used in (3). Note, these 
coefficients are smaller by a factor of roughly 2 than those obtained by running the RG 
equations down to ~1 such that CX~(~) = 1. 

4. Results. We first clarify the expected behavior of the ME as m, and wLK vanish. 
We should find that (zr+ / OesUbt ]K+) oc ?&mK+O(m~) while (z+]or,s]K+) cc l+o(m,), 
as exemplified by (4) and (5). These behaviors are guaranteed on the lattice, provided the 
lattice correlators are dominated by the leading pion and kaon poles, and that m, and mK 
are small enough. One can also show under these conditions, that the lattice VIA gives 
both (4) and (5). The crucial question is then whether these assumptions are valid for our 
lattice. 

We can test this by studying simpler quantities such as m$/rnl + m2 and various def- 
initions of jr [4]. Th ese should all behave as a + b(ml + m2) + O(mi), with relationships 
between the coefficients a and b. Table 1 shows our results for mp, m,, j,“, fi, fg. Results 
for mesons with both equal mass quarks and unequal mass quarks are given. The chiral 
behavior agrees quite well with expectations: the various fr have small linear variations 
with m. In addition the intercepts and slopes are consistent with the expected relation- 
ships, though within quite large errors. We can also extract the physical fK/f* - 1, and 
we find .22, consistent with the actual value. Thus the absolute values of the slopes b are 
reasonable. 

We can find the lattice spacing using the values of fr or mp extrapolated to zero 
quark mass. Both yield l/a k: 1.7 GeV. Thus our lightest pion has a mass of about 300 
MeV. Using the Q mass, or the ratio m4/m,(,,), we find m,a k: .03. Thus mq = 0.04 
is slightly heavier than the physical strange quark. Further, note that in physical units 

ma w 50 MeV, which is much smaller than the known value of k: 125 MeV. Similar low 
values have been found in other quenched simulations [14] . They must represent an 
artifact of the quenched approximation, for the following reason. We have constrained the 
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RHS of m(xx) M 4rnz jz to match with the continuumvalues. Since (XX) is overestimated 
in the quenched approximation, m, must come out too small. 

Our results for the ME are given in table 2. We quote physical ME, the MKn of ref. 
[5]. The table includes results for PJ, which, though unimportant for e’/c, allow a test 
of the relation PO’ = Pz/3, which is true in VIA. The lattice VIA to PO2 and Ei are also 
shown. Errors come from binning into subsamples. For comparison we show also ?nrmK, 
the expected chiral behavior for Pi and Pz. 

The best way to use the table is to form ratios to the VIA values, and insert the results 
in (3). This approach is actually essential because equations (4) and (5) suggest that the 
ME are inversely proportional to the lattice value of m,. Since the lattice m, is too small, 
we would obtain considerable overestimates of the ME if we converted to physical units 
directly. 

VIA works very well at the heaviest quark masses, but breaks down as mq decreases. 
This is particularly true of PJ and Pz. PO2 dro ps to one half of VIA, while Pi possibly 
changes sign. Despite the large difference between PO2 and its approximant, both are 
consistent with the required chiral behavior. In fact, it is the VIA result which deviates 
more from proportionality to wLKmK. These deviations are presumably O(mq) corrections, 
their magnitudes being consistent with the variations in fr. The same is not true for Pi. 
We stress that it is crucial to find the correct chiral behavior if the current algebra argument 
relating our ME to c’ is to hold. Clearly, we need more mass points and smaller errors to 
provide a significant test. 

The results for EA and Ez are much cleaner but are less dramatic. Ei exceeds 
its approximant by 20% at small quark masses, while, within the errors, the relation 
E; = E,2/3 holds. All the results are consistent with mq independence as mq + 0. 

The data for Pi and Pi are too poor to allow stable fits in nearly all cases. In VIA 
these ME vanish, and so we expect them to be small at large quark masses. We can place 
bounds on the ME from our data, and we find that these are an order of magnitude below 
the Pi and PO2 results for the heaviest two quark masses. For the lightest quark masses, 
however, the bounds are an appreciable fraction of the Pi and PO2 results. Thus it is 
possible that the ratio of the total ME of 0s to its VIA value will be increased from the 
value coming from table 2. 

We have no data for Ei and ,942 because of an oversight. Both of these vanish in VIA, 
and, based on the success of VIA for EA and Ei, we expect them to be small. 

~ There are systematic errors in the subtraction procedure which are not included in the 
results of table 2. First, there is an error in the calculation of the subtraction coefficient 
p. We have estimated this by hand, and find it to be comparable to the quoted statistical 
errors. Second, there are other ways to do the subtraction, using the ME of 0s between a 
kaon and the vacuum, or using the induced value of (sd) [5]. All methods should agree as 
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mq + 0. Although, they diverge for the higher masses, we find that they do agree for the 
lightest mass point, within the quite large errors. This gives us some confidence that our 
lowest mass result is reasonable. 

A further source of concern is the “wrap around” contributions allowed by our bound- 
ary conditions. These introduce an oscillating component in our data for PJ and PO2 at 
the lightest two masses. This is shown in the figures of ref. [15] . The uncertainties this 
introduces are supposedly included in our error estimates, but this needs to be checked by 
repeating the calculation using fixed BC. 

5. Conclusions. Given all the caveats, what we extract from our results are two 
trends. The first and clearest is that the ME of 0s are smaller then expected in VIA. The 
second is that the ME of 07 and 0s are somewhat enhanced compared to the VIA, though 
this is less convincing. Returning to (7) the implications for c’/c are clear. Both differences 
from VIA reduce c’/c. Note that the factors n, and n, I are unaffected. Assuming the ME 
of OsBUbt is reduced by 2, while those of 0s are increased by 1.2, the factor 1 - n nearly 
vanishes. The electromagnetic penguin contribution itself cancels more than half of that 
of the strong interaction penguin. Thus c’/c may be reduced significantly from its VIA 
value, and could even change sign. Since the VIA value is at the present experimental 
sensitivity, it may well be that increased sensitivity is needed to reach the standard model 
prediction for c’/c. 

In conclusion, although the actual numbers we have extracted are not to be taken 
too seriously, it is more likely that the general trends we find are correct. Of course, the 
list of approximations, and consequent undetermined systematic errors, is the usual long 
one. In particular we need more data at small quark masses, using propagators calculated 
with fixed BC. Nevertheless we consider it significant that the methods we have adopted, 
in particular the use of staggered fermions, and the subtraction technique, appear to work 
well with our relatively small sample of lattices. 
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ml (m2) .O .005 .Ol .02 .005(.04) .04 

mrr .180(15) .245(10) .335(10) .358(7) .469(5) 

mP .45 .50(10) .55(5) .66(2) 

f," .055 .056(6) .064(7) .073(5) .072(3) .088(2) 

fk .053 .052(6) .055(4) .056(4) .056(4) .058(4) 

fi .064 .067(5) .087(5) 

Masses and decay constants. Values for ml = m2 = 0 are obtained by extrapolation. The 
various definitions of fr are given in ref. [4]. f," corresponds to the physically measured 
fTT, and should differ from the other definitions only at O(mq). 

Results for physical ME, in lattice units. The ME are taken between a pion with compo- 
sition qlql, and a kaon with composition ?j2q1. 

10 


