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Abstract 
The SLC luminosity1 is reached by colliding beams fe 

cussed to about 2 pm transverse sizes. The Final Focus System 
(FFS) must enable, beyond its basic optical design,‘z the de- 
tection and correction of errors accumulated in the system. In 
this paper, after summarizing the design, we review the sen- 
sitivity to such errors and the ability to correct them. The 
overall tuning strategy involves three phases: single beam spot 
minimization, steering the beams in collision and luminosity 
optimization with beam-beam effects. 

Summary of Optical Design112 
Focussing the beam to a small transverse size would be 

easy if the input phase space (transverse emittance and energy 
spread) were small enough. A monoenergetic beam with hori- 
zontal emittance tr = c&7; would, for example, be focuased 
to 0; = u$‘l*/L a distance I’ from a lens with focal length 
l/f = l/l’ + l/L (see Fig. 1). In a more realistic beam with 
finite energy spread UE, rays on the edge of the energy distri- 
bution are focussed at an axial position displaced by I’uE, thus 
adding 21’oEo; to the overall size (a factor 2 is put in since at 
least two lenses are used to focus both planes). This chromatic 
aberration is negligible if cuE < ui2/21’. In the SLC where 
u: z l.Spm, c LI 3 lo-lo mrad, UE z 0.002 and 1’ = 5m (com- 
puted to the principle plane of the final lenses), it amounts to 
u&,,,, L- 4pm, and thus dominates the spot. 
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Fig. 1. A simplified Final Focus. 

The resulting luminosity, computed by averaging the usual 
expression over the two beams’ energy distributions (assumed 
square with half-width UE), is given by: 

where F’u~(~E)/u;~E is a measure of the aberration. It is 
shown versus 8’ in Fig. 2, normalized to L](&m,~~ = 0), for 
an as-built FFS with no chromatic comoensation IF E 15m). 
Independent of c, it gives the optimum’ /3’ for s&h an FFS. 
For oE = 0.002 and /3& = 1.5 cm, L is down by a factor 
3.5. This is not as low as what we get directly with the size 
estimate because the aberration spreads the edges of the bunch 

‘out more than its core, and because the luminosity is a sum of 
squares. 

l Work supported by the Department of Energy, contract 
DE-AC03-76SFOO515. 
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Fig. 2. Relative luminosity loss versus p’ and u, 
for a Final Focus without chromatic correction. 

Compensation requires a special Chromatic Correction 
Section (CCS) upstream of the final lens. In a simplified CCS, 
two dipoles of strength B separated by 21,,,, are imaged by a 
quad with focal length 1,,,/2, resulting in a 1” order achre 
mat (see Fig. I). Near the quad is a sextupole of strength 
S, in which the field varies quadratically with excursion, and 
in which rays with energy deviation 6E are transported off- 
axis. This produces a stronger overall quad for rays both off- 
angle and off-energy (SUE term), which offsets the weaker fo- 
cussing in the final lens. Equating the contributions to (I~,,,~~ 
from the final lens and from the sextupole (neglecting the CCS 
quad), we find that M = I’jL, RI = l’/i&,, B and S scale like 
S a RI/MB. 

Unfortunately, the sextupole also deflects rays solely off- 
energy or off-angle, thus giving terms in B2 and 6&. Can- 
celling these two new aberrations requires that the CCS be 
made of two consecutive and identical sections, with sextupoles 
in pairs r phase shift apart and sequential symmetry for the 
q-function. The real system,2 designed to focus achromatically 
in both planes, uses telescopes, each consisting of two triplets, 
instead of the lenses. This minimize&s the dominant 86~~46~ 
terms and suppresses the other 2md order term in z6~,y6~ while 
demagnifying in both planes. The chromatic correction, also 
done in both planes, requires two sextupole families. Cou- 
pling effects between them can significantly enhance 3’d order 
chromatic and geometric contributions and must be minimized. 
The three dominant terms are 86;, e26~ and B3. Neglecting the 
final lenses, these terms scale like S2B2u&$M, S2Bu,&zM2 
and S2u;‘iUMs. Substituting for thi sextupole strength needed 
to correct, we get v, .v and Fw. For 
given phase-space volume, space constraints and desired P’ the 
overall effect of these aberrations is minimized adjusting M,B 
and S to balance them out. An approximate criterion’*’ is ob- 
tained equating the two 1” terms giving uF=uEB. Physically 
this means that monochromatic and chromatic sizes should be 
about equal in the sextupoles. 
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These considerations are relevant not only to the design, 
but as we shall see, to the ezperimentaf tuning strategy: We 
must in effect insure proper optical matching into the CCS 
to maintain the optimization. The whole system is shown in 
Fig. 3. It includes two more sections to match the Arc lattice. 

Fig. 3. Schematic of FFS. 

Sensitivity to Optical Mismatch 

In real operation, both the volume and shape of the injected 
phase space differ from specification because of errors, thereby 
increasing u*. 

Enhancements in e, from wakefields in the Linac or syn- 
chrotron radiation in the Arc, as well as an imperfectly mini- 
mized ok, are uncorrectable in the FFS. The damage can, how- 
ever, be reduced somewhat by retuning the betatron match 
into the CCS. For larger e, u’ is first dominated by the 
3rd order e26~ term. Varying p’ to minimize the overall 
(f/P + (u~f/P’)~)t size gives L a c- 4 for /l&, a cf. Similarly 
for DE (now with 6&e) we would get L a ui2 for /I$,, a ui if 
the bunch remained gaussian. Actual simulation (MURTLE4) 
shows close to linear loss with weak dependance on 0’ (see 
Fig. 4). 

Optical distortions from gradient errors upstream are 
mostly linear5 and can be corrected within some bounds. 
The primary effect results from a la’ set enhancing u’ di- 
rectly by correlating positions with angles or with 6~ at the 
IP. This amounts to axial offsets in the waists, x-y coupling 
(~4 or y0 terms) and anomalous nZ,r. The axial waist offset 

must be corrected to better than /3’=0.75 cm, since 
$4 P’ + Awaiat’/P*, and uZ,r to better than 1 mm. A 2nd 
set affects luminosity indirectly by perturbing the IP angu- 
lar spread, through the magnitude of < e2 > and < I$~ >, and 
through anomalous n~,b and &$ coupling terms. Smaller spread 
increases p’ linearly. Inversely, a larger spread reduces it but 
also enhances the 3rd order @a’$, e26E and es aberrations, as 
the criterion for optima! balancing is no longer satisfied. The 
relative luminosity loss versus /?* is shown from simulation in 
Fig. 4 for different UE. The shape is the same as in the chro- 
matically uncorrected case in Fig. 2. Here, although the CCS 
has left 3rd aberrations, it has removed the dominant 2nd order 
terms, thereby raising L1”“Z and shifting & towards smaller 
values. The tolerance on /3’ is about &20%. Outside this 
range, the spot will not have the design size even if the 18’ set 
of distortions are corrected. For p* too large, f a l/p* from 
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Fig. 4. Relative luminosity loss versus p* and uE 
for a Final Focus chromatically corrected to 2nd 
order. 

linear optics. For /3* too small, f falls off, first linearly, than 
parabolically, as it becomes dominated by 3’d aberration. 

Optical Corrections 

The FFS could in principle be designed to fully match op- 
tical distortions generated upstream. Accumulated errors of 
any size would then be left for correction there. This is not 
feasible in the SLC because of the Arc, where minimizing syn- 
chrotron radiation induced emittance growth requires a rea- 
sonable optical match throughout. The la’ step to specify the 
matching solution is to set tolerances for the Arc and its input 
match to avoid large growth. Investigating such tolerances is 
beyond the scope of this paper. Let us simply mention that 
the blowup is small6 for random imperfections three times the 
specified tolerance.’ Input mismatch and systematic errors are 
more damaging. 

The distortion’s size then determine the range over which 
the FFS must be tunable, and the above sensitivities how well 
one must match. Not all parameters are important. With no 
pinch effect initially and with oE basically set by the Linac, 
we consider distortions only in the four betatron dimensions 
and in their couplings to energy. Betatron space is described 
by the usual u-matrix,8 with ten terms oij=< zizj >. The 
R-matrix describing the lattice has 16 terms. Output phase 
space is related to input by u,,t = RuinRt where R’ is the 
transpose of R. For linear optics and neglecting synchrotron 
radiation, Poincarrd invariance requiresgIl that & be symplec- 
tic: 

R’SR=S, with S = 
0 0 0 -1 (2) 

0 0 1 0 

thereby restricting the number of free terms in R to ten. Apply- 
ing the same algebra to the u-matrix, we find that the betatron 
space can only be perturbed by the optics in six independent 
ways. With the four dispersions nz,e,r,$, we thus have a total 
of ten independent distortions to correct. 
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We choose to represent them by those for which tolerances 
were given above: the five IP angular sizes < f12 >, < d2 >, 
< 04 > and qe,#, and the five correlations of IP positions to 
angles and energy < z0 >,< yd >,< y0 > (or < zd >) and 
nZ,r. Ideally correction would be done upstream of the CCS, 
to avoid perturbing its optimization relative to the Final De- 
magnifier. This is possible for 7, but only partially possible for 
betatron space. 

Dispersion is corrected perturbing the n-match with four 
quads,2 installed in pairs x/2 and A phase shift from the IP, 
to control spatial and angular n, respectively. Each pair con- 
sists of an erect and a skew quad for control in both planes. 
Naturally orthogonal for small input qr,+ (the two erect ones 
perturbing the match of the horizontal lattice dispersion, and 
the two skew ones coupling it into vertical), they are coupled 
if it is large. Correction range is limited by quad strengths but 
also by the particular orientation of input r). Some specific val- 
ues make them ineffective. This happens, for example, when 
9 ~~ma’ous exactly cancels r)$‘ice. The domain of correctable 
nZ,e therefore has a dead zone (see Fig. 5). With n:gg’ mod- 
ulating around 35 mm with maximum slopes of f18 mrad, 
uncorrectable cases appear if, for instance, the horizontal be- 
tatron phase in the back of the Arc is off by a quarter of a 
modulation cycle with the appropriate sign. Gross control is 
thus required upstream to bring q within capture range. 
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Fig. 5. Domain of correctable horizontal dispersion. 

Betatron matching is split across the CCS, in the 
/?-match and Final Demagnifier. The three angular terms 
< e2 >, < d2 > and < l?d > are adjusted upstream of the 
CCS with two of the P-match quads and a skew quad, allow- 
ing to control the ratio of betatron to chromatic sizes in the 
sextupoles. The three waist offsets < z0 >,< yd > and < yfl > 
cannot be adjusted within the P-match independently of the 
angular terms. The are taken out at the very end, with two of 
the final lenses and a Znd skew quad. This strategy does not 
maintain exactly the relative optimization of the Final Demag- 
nifier and CCS, as the last lenses are tweaked. The luminosity, 
somewhat derated as some 2nd order aberration reappears, can 
be restored readjusting the sextupoles. Except for some cases 
of large errors, this is a small effect. With present hardware, 
the correction range is about f40 x p’ for waist control (or 
30 cm for p’ = 0.75 cm) and a factor 3 in either direction 
for angular spread. Simulations and calculations show that 

random errors three times those expected in the Arc can be 
handled. 

Overview of Tuning Strategy 

Turning 12 coupled knobs guided only by the IP spot-let 
alone optimizing two colliding beams-would be very difficult 
without an ordered procedure. Since measuring pm-size beams 
is not straightforward, we must minimize the number of tuning 
experiments requiring IP information by diagnosing as many 
aspects of phase space as possible before demagnification or 
wherever conventional instruments are adequate. 

Our tuning strategy begins with optical matching of a sin- 
gle beam using strip-line Beam Position Monitors (BPMs) with 
about 20 pm resolution and phosphor screens with about 3.5 pm 
resolution. At the IP, crude measurements are done using thin 
carbon wires, about 5 pm in diameter, from which spot sizes 
and centroids are inferred by scanning. Such wire targets and 
BPMs near the IP have been designed for initial commission- 
ing, but are also part of the early detector configuration. 

After both beams are minimized, they are brought and kept 
in collision, first with BPMs near the IP, and then exploiting 
the electromagnetic fields from the bunches, which for small 
enough size and large enough population cause them to be 
deflected if they miss each other.” The ability to detect this 
effect determines the size and intensity to be reached in the 
single beam phase. We shall see that about 5 pm and a few 
10” particles is adequate. 

Finally we maximize luminosity looking at beam-beam ef- 
fects in three ways: magnitude of deflection, synchrotron ra- 
diation from the collisions (Beamstrahlung)r2 and disruption 
imaged in the extraction-lines.13 Detector background” mini- 
mization is not covered here. 

Single Beam Spot Minimization 

We first correct anomalous input q. BPMs at the end of 
the Arc and in the FFS are used to measure beam motion ver- 
sus energy. This does not give the position-energy correlation 
within the bunch if anomalous n exists where the energy is var- 
ied, but gives a good estimate if the Arc is (as expected) the 
dominant contributor. As more accuracy is needed, one must 
constrain rl in the Linac or measure spot sizes directly. With 
1% energy scans, we determine q to a few mm, or about 5% 
of the Arc average. Using a model, we determine rQ’$‘oua 
from a least-square fit to the measurements and calculate the 
matching solution. Locally orthogonal =knobsn are derived for 
fine-tweaking. We first correct the P-match, to enable measur- 
ing betatron phase space there. Final settings for IP correction 
will differ if the CCS and Final Demagnifier generate I], for ex- 
ample, through orbit errors. The resulting q~p is mostly spatial 
as the lenses there are z/2 phase shift from the IP. Final IP 
correction is inferred from BPM measurements and from mea- 
suring u’ versus the derived orthogonal knobs, using the wire 
targets. 

Betatron phase space is then diagnosed measuring spot size 
on a screen versus the strength of an upstream quad, and fitting 
a parabola. I5 Special emphasis is put on emittance, to help 
guide tuning in the Arc. Since c enters as a overall scale, we 
must resolve the parabola’s minimum. For a quad and a screen 
separated by I, this requires c12/p >> r2, where r is the screen 
resolution. This condition is met before demagnification, in the 
/?-match. A setup with about 100 pm minima in both planes 
is installed. Twiss parameters, found from the parabola’s axis 
and branches, serve to diagnose gross betatron mismatch. x- 
y coupling obscuring the c-measurement is diagnosed looking 
at the tilt of the spot versus quad strength, giving another 
parabola and three more terms. With nine terms in total, we 
can in principle fully determine betatron space. In practice, 
being mostly interested in c, while betatron mismatch is better 



measured elsewhere, we simply correct for the measured x-y 
coupling. 

Betatron mismatch is best diagnosed in the Final Demag- 
nifier, where angular and spatial sizes are naturally separated. 
Using the three P-match knobs, we first set the three angular 
terms < e2 >, < d2 > and < 6’4 >, looking at a nominally 
round spot on a high-p screen upstream of the Final Triplet. 
We begin, first ignoring cr,,,, by standing the beam upright 
using the skew quad. Then, taking c=,~ into account, we per- 
turb the two sizes with the erect quads, so as to best satisfy 
the Kpt a ci scaling law (minimizing 3’d order aberration). 
After this, the beam will have the predicted size at the axial 
position where it comes to a waist, although that place may 
be offset from the IP. Correction, amounting to cancel < z0 >, 
< yd > and < z6 > terms, is calculated sweeping the three 
Final Triplet knobs and measuring u& versus strength. As 
in the phase-space measurement, only the parabola’s axis and 
branches are needed. The axis give the offsets and the branches 
the derivatives of size versus strength. In principle, resolving 
the minima is not essential. With all lenses z/2 from the IP, 
it can be shown that the skew quad is fully orthogonal to the 
two other waist controls, provided the < 04 > coupling term 
is properly nulled; however, the latter two are coupled. The 
algorithm first orthogonalizes them using the derivatives and 
then sets them based on the measured axis. The skew quad is 
adjusted equivalently before or after. r]rp can also be cancelled 
with such parabolic sweeps. Final minimization is achieved it- 
erating all the corrections. 

Steering the Beams in Collision 

The average mutual deflection of two gaussian beams col- 
liding at an offset A is” 

@(A) = -2;N’ ’ - c”pf2/2u+) qupluT) (3) 

where re is the classical electron radius, -y the relativistic factor, 
hrT the number of particles in the target and oT,p the target 
and probe sizes. F(r)=w is a form factor computed for 
small A by folding in the probe distribution. It reduces the 
average for A c= u, whereas it should be dropped for A >> u, 
as the beams then see each other as point charges. Deflection 
versus offset is shown in Fig. 6 for 50 GeV beams with 5 x 10” 
particles and 2, 5 and 10 pm sizes. Detection is best done 
at the system’s high-p points, near the Final Triplet, where 
it translates into the largest possible shift. Special BPMs are 
designed l6 for this purpose. 

The tuning method proceeds in three steps: 
1. Initial beam finding: After bringing the beams close 

with BPMs near the IP, one of them (the most intense) is 
toggled on and ofi while the other is measured at the outgoing 
high-b point. This gives the shift induced by the collision, the 
sign telling in which direction to steer. For large A and with 
numerical factors, we get 6X0,,(Z.4rn) = w. 

2. Beam centering: Scanning one beam across the other en- 
ables optimal centering on the zero-deflection symmetry point 
(see Fig. 6). The largest shift occurs for A ? 1.50~ giving 
6XzZ(pm) Nu w. With 20 pm measurements and 
about 2 x 1O’O particles initially, we expect good signals for 
u 5 5pm. This sets the goal for single beam optimization. 

3. Feedback: The mutual deflections are also used to keep 
the two beams in collision. In simple versions of such feedback, 
we sample position deviations from an initial reference at recip- 
rocal high-/3 points on ingoing and outgoing paths. Drifts in the 
offset are approximated by A(t) a (6X0”,(t)-6X,,(t)). A slow 
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Fig. 6. Beam-beam deflection versus offset for 
three spot sizes. , 

version of such a system, with a time constant of about 20 sec- 
onds, is available as an extension of existing software.” More 
sophisticated pulse to pulse schemes with optimal filtering’s of 
specific frequencies are in progress. 

Luminosity Optimization with Beam-Beam Effects 

Algorithms based on three beam-beam signals are in 
progress. 

1. Magnitude of deflection: The maximum deflection pro- 
duced in the centering scan is a strong function of beam sizes 
and can be used for tuning. For centered beams, this signal 
allows separating improvements in the two planes, but unfor- 
tunately not in the two beams. This can be seen noticing that 
after normalizing by NT,P, conservation of the total transverse 
momentum implies equal average deflections for each beam. 
The maximum must thus be symmetric in the two beam sizes, 
making it hard to know which one needs to be optimized (ex- 
cept by sensing derivatives). 

2. Beamstrahlung:12 The total photon flux emitted in the 
collisions is a strong function of beam sizes. For each particle, 
N1 a a, Jp2 = e2 Jo=, where ur, 0 and p are the bunch-length, 
deflection angle and radius of curvature. For centered beams of 
equal size oR and populations Nr,p, Beam 1 radiates Nytn’ a 
NI N; j”ZuR 2 . Without the shape of the photon beams it is hard 
to separate the two planes. One can however distinguish the 
larger from the smaller by scanning one across the other. This 
is the reversed situation from the deflection signal, making the 
two methods complementary. The reason is the e2-dependence 
of N-,, leading to a sum of squares for Nyta’. The dependence 
of Nfota’ from the probe versus A is indicated in Fig. 7 for a 
targ& with equal, larger or smaller size. 

3. Disruption: When beams have been made small and 
intense enough, they act as lenses for each other, thereby in- 
creasing their angular spread after collision. In the linear ap- 
proximation, ul grows by about 50% for beams with 2 x 10” 
particles and 2 pm transverse sizes. Monitoring of this ef- 
fect will be possible in the extraction lines, by imaging IP an- 
gles on screens through optics designed for the planned energy 
spectrometers. l3 Tuning for the largest possible spot on these 
screens will then maximize luminosity. 
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Fig. 7. Total beamstrahlung flux versus offset for 
unequal transverse beam sizes. 
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