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ABSTRACT 

The exact formulae for the capture of WIMPS (weakly interacting massive 

particles) by a massive body are derived. Capture by the earth is found to be 

significantly enhanced whenever the WIMP mass is roughly equal to the nuclear 

mass of an element present in the earth in large quantities. For Dirac neutrino 

WIMPS of mass 10 to 90 GeV, the capture rate is 10 to 300 times that previously 

believed. Capture rates for the sun are also recalculated and found to be from 1.5 

times higher to 3 times lower than previously believed, depending on the mass 

and type of WIMP. The earth alone, or the earth in combination with the sun 

is found to give a much stronger annihilation signal from Dirac neutrino WIMPS 

than the sun alone over a very large mass range. This is particularly important 

in the neighborhood of mass of iron where previous analyses could not set any 

significant limits. 
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1. Introduction 

As part of their argument that WIMPS (weakly interacting massive particles) 

could explain both the ‘dark matter problem’ and the ‘solar neutrino problem’ 

Press and Spergel (1985) gave an estimate of the capture rate by a massive body, 

of WIMPS in a Maxwell-Boltzmann distribution .in the galactic halo or galactic 

disk. Their argument made admittedly crude assumptions about WIMP phase 

space which they hoped would introduce errors of no more than a factor of two. 

They were satisfied with this level of accuracy because of the ‘order of magnitude’ 

character of their argument. The Press and Spergel calculation was equally valid 

when the probability of a given WIMP interacting with the body was of order 

one and when it was much less than one. This was an important feature for them 

because, to solve the solar neutrino problem, it is best to have WIMPS with much 

larger than weak interaction cross-sections. 

Subsequently, a number of workers have realized that if WIMPS and anti- 

WIMPS were both present in the galactic halo, they would tend to collect in 

the sun (Silk et al. 1985; Gaisser et al. 1986b; Srednicki et al. 1987; Griest and 

Seckell987) and earth (Freese 1986; Krauss et al. 1986; Gaisser et al. 1986b) and 

annihilate there, possibly giving rise to a neutrino signal which could be measured 

by proton-decay detectors. These authors have made use of the Press and Spergel 

formula for capture. The typical WIMP of interest in these analyses comes 

from some elementary particle theory such as supersymmetry and is expected to 

have roughly weak interaction cross-sections. Thus, for these WIMPS, it is only 

necessary to consider the limit where the probability for interaction with the 

massive body is much less than one. In this limit, the formulae for capture can 

be calculated exactly. Further, there is good reason to use the exact solution. 

Whereas Press and Spergel were only interested in demonstrating an order of 

magnitude plausibility, these more recent papers have had the aim of placing 

definite upper limits on the abundance of various types of particles. If the capture 

rate is 50% higher than the Press and Spergel formula, then the limits on these 
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abundances are 33% lower. This alone would be reason for doing the exact 

calculation. 

As it happens, the Press and Spergel formula is remarkably accurate when 

applied to the sun. In most cases, the errors introduced by the phase space 

approximation are negligibly small. The two main errors in their calculation come 

from other sources. First, they dropped a factor of two between their equations 

(2.6) and (2.7). S econd, they neglected to take account of the fact that the sun 

is moving with respect to the frame in which the WIMP distribution is isotropic. 

This motion reduces the capture rate by a factor of - .75. (There are additional 

smaller errors which tend to cancel one another.) Thus, in many applications, 

one can correct calculations done using the Press and Spergel formula simply by 

multiplying by 1.5. However, in other cases, notably that of heavy WIMPS, the 

calculation cannot be simply corrected and must be done over. 

On the other hand, when the Press and Spergel formula is applied to the 

earth, it produces results which are too low by one or several orders of magnitude. 

This has led to the belief (Gaisser et al. 198613) that the annihilation signal 

from the center of the earth would be unimportant compared to that from the 

sun. Press and Spergel assumed that those WIMPS whose average energy loss 

in a single collision was at least as great as their energy-at-infinity would be 

captured, and the remainder would not. For the sun, this cut-off occurs well 

into the Boltzmann tail. The escape velocity even at the surface of the sun is 

618 km/set whereas the mean WIMP velocity (taken to be equal to the mean 

halo velocity) is only 300 km/set. Thus, according to this assumption, nearly all 

the WIMPS which interact with the sun would be captured by it. For the earth 

however, the escape velocity is only 11.2 km/set at the surface and 14.8 km/set 

at the center. Therefore, only WIMPS from a very small and sparsely populated 

region of phase space would be captured. When the WIMP mass is not closely 

matched to the mass of the nucleus with which it interacts, this is a reasonable 

approximation. In this case5 not only is the average energy loss less than what 

is needed for capture, but the entire range of energy losses is also less. However, 
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if the masses are closely matched, and if the collision is ‘head on,’ or nearly so, 

then the WIMP will lose nearly all its energy. The higher the WIMP velocity, 

the more nearly head on must be the collision for the WIMP to be captured, 

and hence, the less likely it is that a given collision will result in capture; but 

this suppression is more than compensated for by the fact that these high-energy 

WIMPS come from a large and densely populated region of phase space. 

The net result is that for WIMPS whose mass is near that of 160, 24Mg, 28Si, 

32S , 4oCa, 56Fe, or 58Ni the capture rate is greatly enhanced. ‘Near’ must be 

more precisely defined, but it will turn out that virtually the entire mass range 

from 10 to 90 GeV is near enough to one or more of these resonances to make 

previous calculations irrelevant. 

In section 2, I derive the general formula for capture of WIMPS in a ho- 

mogenous (but not necessarily isotropic) distribution, by a spherically symmetric 

body. I apply this general formula to the case where the distribution is Maxwell- 

Boltzmann (possibly as seen by a moving observer), the WIMPS have an isotropic, 

velocity independent cross-section, and the body is at zero temperature. 

In section 3, the resulting formulae are applied to calculate the capture rate of 

Dirac neutrinos by the earth. In section 4, the capture rates for Dirac neutrinos 

and photinos by the sun are calculated. 

In section 5, the calculations for the sun and the earth are combined to place 

limits on the halo density of heavy Dirac neutrinos. These limits are twice as 

good as those previously reported over most of the mass range between 15 and 

70 GeV, and are about 20 times better in the neighborhood of the mass of iron 

(52.4 GeV). Th e p revious limits in this neighborhood had been particularly weak 

relative to the expected abundance of such particles (if they exist), because these 

particles would have been strongly depleted in the early universe by annihilation 

through a virtual 20. Limits are also placed on scalar neutrinos. 

In section 6, I discuss the,angular distribution of the flux coming from WIMP- 

anti-WIMP annihilations in the earth’s core. The angular dispersion is not neg- 
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ligible but it poses no significant obstacle to distinguishing between the signal 

and the neutrino background. 

In section 7, I derive the formula for capture of WIMPS in a Maxwell- 

Boltzmann distribution, by a body at finite temperature. This formula is very 

considerably more complicated than the corresponding zero temperature formula 

and it introduces corrections of order 1% in cases of interest. For this reason, 

it is of little ‘practical value.’ However, it has a beautiful symmetry with the 

analytic formula for WIMP evaporation from a body at finite temperature. 

In section 8, I estimate the probability that a WIMP which is newly captured 

into a high orbit will ‘escape’ before it ‘settles down’ into a low energy orbit in 

the earth’s core. 

In the main body of this paper, I assume that the scattering cross-section is 

isotropic and velocity independent. For Dirac neutrino WIMPS this assumption 

is valid provided that the WIMP does not ‘see’ the structure of the nucleus; 

that is, that the WIMP scatters off the nucleus coherently. After the paper was 

originally written, Spergel (1987) pointed out that this coherence tends to break 

down for heavy WIMPS. 

In the appendix I derive the formulae for capture which take this lack of 

coherence into account. When applied to the earth, these formulae produce no 

qualitatively new effects and do not significantly alter the quantitative results 

except over a narrow mass range. Moreover, they are much more complex and 

difficult to interpret than the formulae based on a constant cross-section. For 

these reasons, it is appropriate to present the main analysis using the simpler, 

and fairly realistic, assumption of constant cross-section. Note however, that all 

figures are based on the more precise formulae contained in the appendix. 

On the other hand, lack of coherence has dramatic effects on the capture of 

WIMPS by the sun, especially in the mass range above 20 GeV. These effects are 

also analyzed in the appendix. 



2. Analytic Theory Of WIMP Capture 

Consider the problem of the capture of WIMPS by a thin spherical shell of 

material, which is in a spherically symmetric gravitational field. The shell has 

radius r and thickness dr. The escape velocity at the shell is v. The WIMPS have 

a velocity distribution (away from the gravitational field) f(u)du. I will initially 

assume the distribution is isotropic. I define n;(w) to be the rate per unit time 

that a WIMP with velocity 20 will scatter to a velocity less than v when traveling 

through the medium which makes up the shell. 

Consider now an imaginary surface bounding a region of radius R, which is 

so large that the gravitational field at R is negligible. Then the flux of WIMPS 

going inward across the surface is (Press and Spergel 1985) 

if(u) u du dcos20 0+;, (2.1) 

where 0 is the angle relative to the radial direction. Changing variables to the 

angular momentum per unit mass, 

J = Rusin8 (2.2) 

and summing over all the area elements on the surface, one obtains the total 

number of WIMPS entering the region per unit time, 

47rR2; f (u) u dug. P-3) 

A WIMP whose velocity at infinity is u, will have a velocity at the shell w, 

where 

w = (u2+v2)$. (2.4 

To be captured, it must scatter to a velocity v or less. For any given WIMP 
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entering the imaginary shell, the probability that this will happen is simply 

fl;(w)dl 
W  

(24 

where 
dl - = k[l- (&)2]-tdr 2 8(rw - J), 
W  

P-6) 

is the total time the WIMP spends in the shell material. In equation (2.6), the 

2 and the d-function appear because the WIMP intersects the shell twice or not 

at all, depending on whether rw is greater or less than the angular momentum. 

The radical appears because a WIMP with finite angular momentum will not hit 

the shell orthogonally. 

Multiplying the conditional probability (2.5) by equation (2.3), substituting 

in equation (2.6), and integrating over all angular momenta gives the number of 

WIMPS captured per unit time per unit velocity, 

4m2dr f(“)du wC2, (w). 
U 

Thus the total WIMP capture rate per unit shell volume is just 

dC 
dV= J 

mdufowil- (w). 
U 

V 

0 

(2.7) 

(2.8) 

In the above equation, w is regarded as a dependent variable which is given by 

equation (2.4). 

In deriving equation (2.8), I assumed that f(u) was isotropic. Had this 

assumption been dropped, then the flux going across a single area element could 

not have been given in the simple form of equation (2.1). In this case, however, 

the summing over all such area elements would have, in effect, averaged over the 

angular distribution in all dkections. This average is, of course, isotropic, so the 

assumption of isotropy was not really necessary. 

7 



I now specialize to the case where the shell is at zero temperature and the 

interaction cross section, o, is isotropic and velocity independent. Let the shell 

be composed of a single type of nucleus with mass m and number density n. Let 

the WIMPS have mass M. Then simple kinematics tells us that the fractional 

WIMP energy loss in a given collision, AE/E, will be in the interval 

AE P OS---- 
E ‘g 

where 

(2.9) 

Moreover, the distribution of energy loss is uniform over this interval. On the 

other hand, scattering from velocity w to a velocity less than 21, requires an energy 

loss of at least 

AE w2-v2 u2 
72 w2 =p* (2.11) 

Combining expressions (2.9) and (2.11) g ives the probability that a given scat- 

tering will leave the WIMP with less than escape energy, 

4. c1- 
PJ ( 

4 

The rate of scattering from w to less 

U2 U2 2) ecj$ - 2). 

than v is just the product of the total rate 

(2.12) 

of scattering, onw, with the conditional probability (2.12). This result may be 

written, 

n2,(w) = !qv” - !Q) (qv2 - !cu”). 
W  CL P 

Now let the WIMPS have a Maxwell-Boltzmann distribution, 

fo(u)du = n,Az” exp(-z2)dz, 
ri 

(2.13) 

or a Maxwell-Boltzmann distribution as seen by an observer moving with velocity 
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fv(U) = fo(u) exp(-n2)Sin~~Vzrl) 

where z is the dimensionless velocity, 

22 - MU2 
2kTw ’ 

(2.15) 

(2.16) 

77 is the dimensionless observer velocity, 

(2.17) 

and Tw is the temperature of the WIMP distribution. Equation (2.15) may 
be derived by writing equation (2.14) in component form’ and then making a 

Gallilean transformation. Following Press and Spergel (1985), I define a ‘velocity 

dispersion’, B, in terms of the WIMP temperature, 

(2.18) 

I will assume a velocity dispersion 

B = 300 km/set. (2.19) 

(Later I will calculate the change in the capture rate for a small change in the 

velocity dispersion.) Since the earth and the sun are orbiting the galactic center 

at - 250km/sec, r] may be evaluated 

rl - 1.0 (2.20) 

In terms of the dimensionless velocity, equation (2.13) may be written 

WC&-(W) = g (A2 - z2) B(A - z), 

where 

(2.21) 

(2.22) 

Using equations (2.14), (2.15), and (2.21), one may evaluate equation (2.8) to find 
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the capture rate: For an observer at rest with respect to the thermal distribution, 

the rate is 

dco V2 -= 
dV 

(~)+OnnwGS[l - 
1 - exp(-A2) ; 

A2 1 (2.23) 

for an observer moving with (dimensionless) velocity 7, it is 

dC, _ 6 
( > 

; 212 1 -- - 
dV T 

annwU-- 
u2 2qA2 

[(A+A- - :)(x(-V,V) - x(A-,A+)) + iA+emA1 - iA-evA$ - qe-“‘1, 
(2.24) 

where 
b 

x(a,b) GE / exp(-y2)dy = $]erf(b) - erf(a)] 
a 

(2.25) 

and 

Ak=Af~. (2.26) 

If the WIMP has only a small probability of scattering during its entire 

trajectory through the body, one may calculate the total probability of capture 

by dividing the body into a series of shells and summing the probabilities of 

capture due to each. Then the capture rate for the entire body may be written 

RB 

c= 

J 

4m2dr$ 

0 

(2.27) 

where RB is the radius of the body. For convenience, define v,,, as the escape 

velocity at the surface and introduce the dimensionless gravitational potential 

(J-2 
Vest 2’ (2.28) 

For the earth 4 ranges from 1 to 1.8; for the sun it ranges from 1 to 5.1. 
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In any actual calculation, one should use equation (2.24) rather than (2.23). 

However, the functional form of equation (2.23) lends itself much more readily to 

analysis. In order to take advantage of this simplicity while maintaining formally 

correct expressions, I introduce the correction factor, &(A), 

&l(A) - dC, (4 /dV 
dCo(A)/dV ’ 

(2.29) 

One may obtain the limiting forms of &, (A) by respectively examining equations 

(2.23) and (2.24), and equation (2.15). The limits are 

(2.30) 

For the case q = 1, the limits are - .75 and - .37. Thus, moving with respect to 

the halo decreases capture. This is reasonable because the average kinetic energy 

of the thermal WIMPS increases in this frame, making capture more difficult. 

Using equations (2.23) and (2.29), equation (2.27) may now be written in the 

suggestive form 

MB C = [(-$“onwt7] [-] [- 
m “;;f ($)I [Ed41 (#I - l -;;A2)$$ 3 

(2.31) 

where MB is the mass of the body and Dirac brackets indicate averaging over 

the mass of the body. Each of the five bracketed quantities can be identified 

as playing a distinct role. The first is the interaction rate of a flux of WIMPS 

with a single nucleus in free space. The second is the number of nuclei in the 

body. The third is a ‘focusing factor’ which determines the maximum capture 

rate of the body. The fourth is an overall suppression factor due to the motion of 

the body. The fifth is a (possible) suppression factor due to mismatching of the 

masses. The first four quantities are easy to calculate and (apart from factors 

hidden in a) independent of the WIMP mass. In the limits A >> (<)l, the last 
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quantity also has a simple dependence on the WIMP mass. For A > 1 it is one. 

For A < 1 it is 

CL L3 lq (O) Vesc2 ‘” ( > - -~-- 
PC 4I,(=J) @ (j 

0 
1 * 

(2.32) 

If the velocity dispersion, B, is slightly greater (less) than the value assumed 

in equation (2.19), the capture rate will be slightly less (greater). From equations 

(2.31) and (2.32) one may evaluate this effect in the limits A > (<)l, assuming 

that the velocity of the sun in the disk does not change: 

(2.33) 

3. Resonant WIMP Capture By The Earth 

For purposes of this calculation, the earth may reasonably be divided into 

two zones, the mantle and the core. Each may be regarded as uniform in compo- 

sition. The fraction of total earth mass which is due to mantle elements is (Stacy 

1977) 0(30%), Si(lS%), Mg(l4%), Fe(G%), Ca(l.S%), Al(l.l%), and Na(0.4%). 

There are two main competing models for the core. The first (Stacy 1977; Ring- 

wood 1979) has Fe(24%), Ni(S%),and S(S%). The second (Ringwood 1979) has 

Fe(26%), Ni(3%), and 0(3%). I will show results for both models, and use the 

minimum of the two when setting limits. In my numerical calculations, I eval- 

uated 4 at each point in the earth, based on the earth model in Allen (1967). 

However, for purposes of qualitative discussion, it is sufficient to note that 4 

ranges between 1 and 1.4 in the mantle and between 1.4 and 1.8 in the core, and 

to simply take the values of 4 to be 1.2 and 1.6 respectively. 
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With this approximation, A may be evaluated for the mantle and the core 

A 
pa l/20 

- F l/17 * { 1 
(34 

From this and equation (2.32), it is clear that for most WIMP masses and for any 

given earth element, A will be much less than one and capture will be suppressed 

by a factor 

P l/1600 

-c > /CL: l/1200 ’ (3.2) 
However, in a narrow mass range 

there will be a ‘resonance.’ 

(3.3) 

It is therefore to be expected that the graph of capture as a function of WIMP 

mass will be dominated by a series of dramatic peaks at each of the elements which 

is well represented in the earth. In fact, a number of peaks tend to merge. Figure 

1 shows the separate contributions of each of the most important elements in 

the earth to the capture of Dirac neutrino WIMPS. (The first core composition 

model is assumed.) The cross section for each element is assumed to be (Griest 

and Seckel 1987) 

,=c1Q2 mM X 5 2 X 10-40cm2 
CL: (GeV)2 ’ (34 

where 

Q-N-(1-4 sin2 &,)A N N - (.124)2 (3.5) 

is slightly less than the neutron number. For each element in the earth, equation 

(2.31) can be written 

C = 4.0 x 1016/sec 

where p.4 is the halo WIMP density normalized to .4 GeV/cm3, f is the fraction 

13 



of the earth’s mass due to this element, and the brackets indicate averaging over 

the mass distribution of the element. From this formula, one may approximately 

calculate the capture rate by hand. 

Figure 2 shows the total capture rate for both models of the earth’s core. 

Also shown on this graph is the capture rate for the sun. The scales of the rates 

from the two bodies are adjusted so that equal heights on the graph represent 

equal annihilation fluxes at the surface of the earth. 

4. Correction Factors For The Sun 

WIMP capture by the sun is, of course, described by equations which are 

formally identical to those used above for the earth. In the case of the sun, 

however, A tends to be greater than 1 unless the mass of the WIMP is grossly 

mismatched relative to that of the nucleus: 

(4.1) 

Thus, A will remain above 1 even at the surface of the sun and even if the masses 

are mismatched by a factor of 25. Using the standard solar model (Bahcall et al. 

1982), I have calculated 

(“>, = 3.16 ( c$),. = 3.40 (“>,,, = 3.23, (4.2) 

the average values of $ for hydrogen, helium, and an element which traces the 

mass of the sun. Using the last, one finds that A does not drop below 1 unless 

the masses are mismatched by more than a factor of 80. However, since the sun 

is mainly hydrogen, and since one is, in principle, interested in the capture of 

heavy WIMPS, even these drastic mass mismatches could come into play. 

For Dirac neutrinos this turns out not to be the case. The reason is that 

in every mass range, under the assumption of constant cross-section, capture 
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is dominated by elements which are roughly equal in mass to the WIMP mass 

(Griest and Seckel 1987). A s an example, consider the capture of a 50 GeV 

WIMP. It is true that, averaged over the sun as a whole, the suppression factor 

for hydrogen is about .3, but in this mass range, even unsuppressed hydrogen 

would account for only 8% of the capture rate. I have numerically calculated 

the capture rate using the standard solar model (Bahcall et al. 1982) for the 

solar structure and hydrogen and helium distribution, and Cameron (1983) for 

the abundances of other elements. I find (see Fig. 3) that the error made by 

assuming no suppression (A = 00) is less than 10% over the entire mass range of 

1 to 100 GeV. (When one takes account of lack of coherence, there is considerable 

additional suppression for high mass WIMPS.) 

Figure 2 shows the capture rate by the sun for Dirac neutrinos assuming a 

halo WIMP density of 0.4 GeV/cm 3. For each element in the sun the capture 

rate of equation (2.31) can be written, 

c = 4.1 x 1025/set 

where f is the fraction of the sun’s mass due to this element, 

Q& = 3g; = 3(1.25)2, P-4) 

and the Q of the remaining elements is as before. 

If equal numbers of WIMPS and anti-WIMPS are captured, and if the halo 

density is sufficiently large, all the WIMPS which are captured by either the 

sun or the earth will be annihilated. To properly compare the expected fluxes 

from the two bodies, one should scale down equation (4.3) by the square of the 

ratio of the distances of the sources, before comparing it with equation (3.6). 

When this is done, the pre-factor in the solar equation is only about 1.8 times 

the pre-factor in the earth equation. This shows that the relative strength of 

the annihilation signals depends on the details of the ‘resonance structure’ of the 

earth, a conclusion which is borne out by Figure 2. 
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On the other hand, for WIMPS with overwhelmingly axial couplings, suppres- 

sion due to mass-mismatching can play a very significant role. This is because 

hydrogen is virtually the only thing in the sun which couples axially. (In the 

earth, there is some 23Na, 27A1, and 2gSi which couple axially (Goodman and 

Witten 1981), but this proves insignificant). Figure 3 shows the ‘correction 

factor’ to the naive, unsuppressed calculation for photinos and Dirac neutrinos 

as a function of mass. For Dirac neutrinos, both the constant cross-section and 

the coherence-suppressed capture rates are shown. To correct previous calcula- 

tions, such as those by Gaisser et al. (1986b), one must fold in the factor of 

1.5 mentioned above. Note that in the range of 50 to 100 GeV, the combina- 

tion of these two correction factors is of order l/2 to 1/3’for photinos. Given 

the already extremely low expected event rates reported by Gaisser et al., this 

suppression means that it will be very difficult to either detect or place limits on 

heavy photinos by using the sun. 

5. Combined Earth-Sun Limits On Dirac Neutrinos 

According to Figure 2, the earth and sun are roughly comparable sources of 

Dirac neutrino annihilation fluxes. However, before this comparison can be made 

precise, three differences in these sources must be taken into account. First, the 

flux from the sun is virtually a point source whereas that from the earth has 

a finite angular distribution. Assuming one had detectors of sufficiently good 

angular resolution, this means that one could more easily distinguish the solar 

flux from background. In the next section I will show that this is not a significant 

factor. 

Second, the signal from the earth will be ‘filtered’ (by the earth itself) 100% 

of the time whereas the signal from the sun will only be filtered about 50% of 

the time. This is important if one is counting events which happen in the rock 

outside detectors. Events which occur above the detector must be thrown out 

because they are mostly due to cosmic rays. This means that in experiments of 
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this type and for equal fluxes from the sun and the earth, statistics are twice 

as good for the earth. In this section, however, I will be considering event rates 

occurring inside the detector. 

Third, the rate at which Dirac neutrinos are annihilated is not necessarily 

equal to the rate at which they are captured, even if the halo is composed of 

equal numbers of particles and anti-particles. If the rates are equal, I will refer 

to this as ‘full signal.’ As I will show below, for any given WIMP mass, there 

is a definite halo density above which both the earth and sun will be at full 

signal. Below this level, the sun will still be at full signal, but the earth signal 

will be suppressed relative to this by a factor proportional to the halo density. In 

this halo density range, the earth signal would quickly dwindle relative to that 

of the sun. However, over much of the WIMP mass range of interest, the halo 

density at which this effect sets in is far below what could detected with today’s 

detectors using either the earth or the sun. The stage will then be set to place 

specific limits on Dirac neutrinos in the halo by using the earth and sun signals 

in combination. 

I will assume that the WIMPS which are captured collect near the center of 

the earth in an isothermal distribution at some temperature T, which is somewhat 

less than the central temperature of the earth. This latter quantity is a matter 

of some dispute among geophysicists (Sleep 1987), with estimates ranging from 

4.5 to 5.5 ~10~ “k. I will express my results in terms of Ts, the temperature 

normalized to the midpoint of this range. The density of the earth will be assumed 

to be p = 12 gm/cm2 in the region of interest. Under these assumptions one may 

use formulae I derived previously (Gould 1987) to show that evaporation is not a 

significant factor for WIMPS above 12 GeV. Thus, in this mass range, the number 

density of WIMPS in the earth is entirely determined by competition between 

capture and annihilation. Griest and Seckel (1987) have shown that under these 

conditions, the rate at which Dirac neutrino WIMPS are annihilated is 

C tanh2[(aC)ir], (5.1) 
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where 

1(4 a = 32-v- 
Vl 

and r = 4.6 billion years is the lifetime of the earth. In equation (5.2), VI is the 

effective volume of the earth, 

x 1024cm3TiM-g 5 20 C-4 

and (av) is the non-relativistic annihilation cross section times velocity. This 

latter quantity may be evaluated (Griest and Seckel 1987), ,assuming 7.4 annihi- 

lation channels, 

(av) = 7.4 x 10-25cm3/sec PaMto (5.4 

where M2o is the mass of the WIMP normalized to 20 GeV and 

Pa = (4M2 - m$,)2 + rgmi (5.5) 

accounts for the 20 propagator and resonance. I take the mass of the 20, mz, to 

be 93 Gev and its width, Pz, to be 2.5 GeV. Combining these formulae one finds 

that the argument of the hyperbolic tangent is given by 

(Cc+ = 20P;(Cle~.4)+MjoT5-i (5.6) 

where p.4 is the halo WIMP density normalized to 0.4GeV/cm3 and Cis is the 

capture rate in units of 1018/sec when the density is at this normalized value. 

From this expression, one can see that the earth will be at full signal down to 

very low WIMP densities. For definiteness I will take full signal to mean that 

this argument is at least 2.5, since tanh2 2.5 - .97. (A similar analysis (Griest 

and Seckel 1987) shows that sun is at full signal down to much lower WIMP 

densities.) 
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I now turn to the problem of detection. I (arbitrarily) assume that event 

rates of at least 1 per kiloton-year are detectable, and lower event rates are not. 

If experimenters believe that their detectors are better or worse than this value, 

they have only to proportionately adjust the limits which I derive below. I assume 

(Gaisser et al. 1986b) that a fraction 0.21 of the annihilations will go directly to 

massless neutrinos and that the neutrino-nucleon cross-section is 

ou + 0~ = 1 X 1O-38 &cm’. 

(I have ignored all neutrino production arising from the decay of other annihila- 

tion products like b and c quarks. In terms of absolute numbers this production 

is of the same order as that which I am including. In terms of signal, however, it 

is much less significant for two reasons. First, these neutrinos are of much lower 

energy and so, by equation (5.7), are much less likely to give rise to a signal. Sec- 

ond, unlike the directly produced neutrinos, they are not monochromatic, and 

hence are more difficult to distinguish from the background). Keeping in mind 

that there are 1.9 x 104’ nucleon-set in a kiloton-year and that it takes 2 WIMPS 

to annihilate, the event rate per kiloton-year at full signal is given by 

C M -cmZ,ec~10-38- 
47rR; Gev 

1.9 x 1040 - 78Gl3P.4M20. (5.8) 

Thus, under these assumptions, the earth can be used to put very good limits on 

the density of Dirac neutrinos in the halo. 

Figure 4 shows the halo WIMP density which will produce a signal of 1 event 

per kiloton-year from the sun alone and from the combined earth-sun sources. 

To combine these sources, I used the square root of the sum of the squares of 

the fluxes due to each. (This method of combining signals is conservative. With 

sufficient angular and/or energy resolution, the background can be made negli- 

gibly small, in which case the simple sum of the two signals is more appropriate. 

See section 6.) Also shown on the graph is the WIMP density at which the earth 
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ceases to be at full signal. Better detection means better limits on WIMP density 

until this line is reached. For halo WIMP densities well below this line, the earth 

signal is suppressed and one must use only the sun. If, for example, detectors 

were capable of seeing 0.1 events per kiloton-year, then the sun (dashes) and the 

earth-sun (solid) 1’ lmit curves in Figure 4 could both be moved down by a factor 

of 10 (1 unit). However, wherever the earth-sun curve fell below the full-signal 

limit curve (dots), one would have to take account of the fact that the earth was 

not at full signal before setting limits on the halo WIMP density. In principle, 

at sufficiently low halo WIMP densities, use of the earth signal would also be 

compromised because it could not be distinguished from background. This is 

discussed in the next section. It turns out that this restriction comes into play 

only in a narrow mass range near 45 GeV. It is shown in dot-dash. 

Over most of the mass range, these limits are about twice as good as those 

previously believed (Gaisser et al. 1986b). However, in the neighborhood of 

the iron resonance, centered at 52.4 GeV, the limits are 20 times better than 

before. This range is particularly important because the abundance of Dirac 

neutrino WIMPS of this mass range, if they existed, would be highly suppressed. 

They would have been depleted by annihilation in the early universe due to their 

proximity to the 20 resonance. The number of WIMPS that one ‘expects’ to be in 

the halo is proportional to the number which were created in and then survived 

the big bang. The proportionality constant depends on many model-dependent 

factors. In order to abstract from these factors as far as possible, I examine the 

relative detectability of WIMPS of various masses. This I take to be the product 

of the detection rate per unit halo WIMP density (eqn. (5.8)) with the inverse 

annihilation rate (eqn. (5.4)). In figure 5, I have plotted this quantity normalized 

to its value at a WIMP mass of 34 GeV. Detectabilities based on the sun alone, 

and on the earth together with the sun are shown. The role of the iron resonance 

in overcoming some of the effects of the 20 resonance is evident. 

What has been said about Dirac neutrinos can easily be extended to scalar 

neutrinos (particles which are predicted by supersymmetry). The elastic cross- 
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section of scalar neutrinos with nuclei (except hydrogen) is simply four times the 

cross-section for Dirac neutrinos (Gaisser et ~2. 1986b). They would probably 

annihilate almost 100% of the time into ordinary massless neutrinos. Thus, their 

signal would be 4/.21 - 20 times greater than that of Dirac neutrinos, and so the 

limits on their halo abundance are 20 times lower. The annihilation cross-section 

for scalar neutrinos is highly model dependent. Typically it is larger than for 

Dirac neutrinos. However, before the earth is used to place limits on a specific 

model, it must be checked that the annihilation cross-section in this model is 

sufficient for the earth to be at full signal. 

6. Angular Distribution of Annihilation Signal 

As in the last section, I assume that the WIMPS collect in an isothermal 

distribution in the center of the earth and that the earth’s density is uniform in 

the region of interest. In contrast to the previous section, however, no assumption 

need be made about the form of the annihilation cross-section, nor about the 

relative density of WIMPS and anti-WIMPS. 

The number densities of WIMPS and anti-WIMPS are separately proportional 

to 

-M@(r) 
exp( kT ) = ex&j$ 

0 

where 

2 - 3kT 
r” = ~TGM~’ 

(6.1) 

(6.2) 

The annihilation rate is proportional to the products of the number densities of 

the WIMPS and anti-WIMPS, that is, to the square of expression (6.1). Consider 

a cone whose apex is at the surface of the earth and whose axis goes through 

the earth’s center. Let the cone have half-angle 8 and angular thickness de. 

Parameterize position along the cone by 1, the distance to the apex. The distance 
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from the center of the earth to the cone at its closest point is then 

rmin(8) = Re sin 0. (6.3) 

Let the distance from the apex to this closest point be lo(e). The volume element 

is 

dV = 27rZ2 dZ d cos 0. (6.4 

Thus, the flux at the apex originating from this volume element is proportional 

to 
cam 8 
-exp - 

([ 
rkin(e) + (’ - zo(e))2 

12 
6~~12 dl dcos(J 

The integral of this expression over all 1 is proportional to 

exP(- 

(6.5) 

(6.6) 

Finally, the definite integral of this expression from 0 to 8 is proportional to 

Since 

R2 
l-exp( - ---$sin2B). 

r0 - = .12T5iM2;h, 
Ra3 

(6.7) 

(6-8) 

98% of the signal will originate within a 14” cone for 20 GeV WIMPS. 

If the halo WIMP density were sufficiently low, then the signal from this 

98% cone would be of the same order as the background. In this case, further 

improvement in the angular resolution of the detector could isolate the point-like 

solar signal from the background, but would yield no enhancement for the earth 

signal. Then it would be inappropriate to combine the earth and sun signals. 
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However, the background signal (from neutrinos produced by cosmic rays in 

the atmosphere) is (Gaisser et al. 1986a) 

M20 

‘o33 (Mzo + .015)3 ’ + I ;4:20 1 (6.9) 

per kiloton-year per steradian, assuming an energy resolution of 1 GeV. This 

means that the background signal in the 98% cone is 

.006T5(Mzo + .015)-3 1 + 
.45 

l+M20 1 (6.10) 

per kiloton-year. 

Over most of the mass range of interest, this background signal would com- 

pete with the earth signal only when the earth signal was already well below 

full signal, and thus was of no use anyway; but in a narrow range near the 20 

resonance, the background could become a problem before the earth fell below 

full signal. This is shown in Figure 4. 

I must emphasize that the background limits discussed in this section are 

the theoretical limits assuming that detector angular resolution can be narrowed 

to the intrinsic angular width of the earth signal. The actual problem with 

background in any given experiment will, of course, depend on the actual angular 

resolution. 
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7. Capture By Bodies At Finite Temperatures 

In this section I will relax the assumption, made half-way through section 

2, that the capturing shell is at zero temperature. It will now be assumed to 

be at temperature T. The WIMPS will still be assumed to be at temperature 

Tw. I will consider only the case when the shell is not moving with respect to 

the thermal distribution. Equation (2.8) is still valid, but now n;(w) must be 

re-evaluated, 

f-l;(w) = ’ dv’R(w + v’), 
J 
0 

(7.1) 

where R(w --) v’) is the rate per unit time that a WIMP with velocity w scatters 

to velocity v’. I have previously evaluated this quantity (Gould 1987) and found 

2 CL2 R(w --) v)dv = i--bn 
7rz CL 

~[x(*p_,B+)e-~(v2-w2) + x(fa-, a+)] , 

where 

~rf E (m/SkT)$(p+v f p-w), 

& = (m/2kT)i(p-v f p+w), 

(74 

(7.3) 

(7.4) 

and the upper (lower) sign in equation (7.2) refers to the case when w < (>)v. 

Equation (7.1) may now be evaluated, 

n:(w) = f ---&~f~[p(*Ctr+e-a5 - a-e-*:) 

+(p - 2pcr+cr- - 2p+p-)x(&a-, cx+) + 2p~x(f/3-,P+)e-~(V2-W2)], 

(7.5) 
Here n+ is the rate per unit time that a WIMP with velocity w scatters to a 

velocity greater than 21. It was derived in the aforementioned paper. The steps 
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and identities necessary to evaluate Sz- are identical to those used for n+. Using 

equation (7.5), one may now integrate equation (2.8), giving 

exP(-M;V2kT,)} ;(2+jt(T&,,,, 

1 
exp [ - ( 

p-v Mu2 
F%)] [F($ - 7, + ,,;: p)lx(~7-97+) 

+ ++cL - $ + rY(b - ;)lx(ia-,a+) 

. 

In these equations, 

rk E (m/2kT) f (pv f tw), P-7) 

ET/i, 
Tw 

(7.8) 

V-9) 

and all quantities are to be evaluated at w = v = the escape velocity. Here 

dE/dV is the evaporation rate for WIMPS in a thermal distribution at temper- 

ature Tw which is cut-off at the escape energy, when they are driven by a truly 

thermal distribution of nuclei at temperature T. This was also derived in the 

aforementioned paper and again, all the steps and identities which are necessary 

to evaluate the capture integral are the same as those used in doing the evapora- 

tion integral. The reader will note that, apart from an overall Boltzmann factor 

and some sign changes, the equations for capture and evaporation are formally 

identical. 

For the earth, most of the capture occurs when p - 1. In all cases of interest, 

the ratio of the earth temperature to the WIMP escape energy, E = 2kT/Mv2, is 
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much less than one. In this limit, equation (7.6) becomes 

dC 
(“)tonnwV$[l - 51. 

dV= TIT 
(7.10) 

This is a correction of c/2 relative to the zero temperature formula, equation 

(2.23). For WIMP s of order 25 GeV the escape energy and earth temperature 

should be evaluated in the region where there are elements of this mass range, 

namely in the mantle. For WIMPS of order 50 GeV, they should be evaluated in 

the core. In either region, E is approximately 1%. Thus the finite temperature 

correction to the previous calculations is a reduction in capture rate of order 

0.5%. 

8. Securing Capture 

In the above analysis, a WIMP was considered ‘captured’ when its energy 

was reduced below escape energy. It was implicitly assumed that once the WIMP 

was in a bound orbit, it would follow a trajectory which would take it through 

the earth until it again collided with a nucleus, lost more energy, and so on. The 

process would continue until the WIMP reached thermal energies at the center 

of the earth. But mightn’t something happen to the WIMPS, especially those in 

high-energy orbits, that would prevent them from being ‘securely captured’? 

This question was posed by Krauss et al. (1986). They suggested that since 

it was very probable that the WIMP’s first bound orbit would be a high-energy 

one, and since most of the evaporation of the ‘securely captured’ thermal WIMPS 

came from the high-energy part of their distribution, that it was possible that a 

significant fraction of the newly captured WIMPS would evaporate before they 

could ‘settle down.’ I will show below that this is an effect of order e2. However, 

there is another source of capture disruption, namely the moon, which has order 

e effects. 
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As in the previous section, I restrict my attention to the most important 

(and simplest) case, p = 1. In this case, it is clear from equation (7.5), that the 

probability of evaporation is exponentially suppressed for WIMPS whose energy 

is more than kT from escape energy. But from the analysis of section 3, we know 

that of the WIMPS which are captured, only a fraction E = 2kT/Mv2 initially 

scatter to energies above this threshold. Again using equation (7.5), one now 

finds that the probability that a WIMP in this energy range will scatter to a 

higher (as opposed to lower) energy is also E. Thus the probability that a given 

newly captured WIMP will evaporate before it settles down is bounded above by 

E2. 

The moon poses a much more serious threat to securing capture, and one 

which is much more difficult to analyze. The radius of the moon’s orbit is about 60 

times the radius of the earth. Thus, about 1% of the WIMPS which are captured 

by the core, and about 1.4% of those captured by the mantle will have essentially 

radial orbits taking them out to the ‘lunar sphere.’ These orbits will have a 

period on the order of a month. During each such period, the WIMP will travel 

through the earth. The ‘optical depth’ of the earth will vary widely depending 

on the mass and orbit of the WIMP, but may be generally estimated to be of 

order 10m2. After roughly a hundred such orbits, the WIMP will scatter, losing 

about half its energy, and thus more effectively securing its capture. However, 

during these hundred orbits it is quite possible that the moon will disrupt the 

WIMP’s orbit enough that it no longer intersects the earth. In this case, its 

further trajectory will be entirely governed by celestial mechanics until such time 

as it either escapes or is redirected into an earth-intersecting orbit. 

,., . . 

For WIMPS initially in orbits which go out to the lunar sphere, or even half or 

a third that far, it seems quite likely that their orbits will be initially so disrupted. 

It appears to be a fairly difficult problem in statistical celestial mechanics to 

determine the eventual fate of these WIMPS. However, one may estimate that 

some, perhaps a few per cent, of those initially captured, will either escape or 

go into orbits which have an extremely low probability of again intersecting the 
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earth. This means that the above calculations should be modified by a small, 

but difficult to calculate correction. 
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APPENDIX Lack of Coherence 

In the main body of this paper, I assumed that the Dirac neutrino cross- 

section is velocity independent and isotropic. This assumption is strictly valid 

only if the WIMP does not ‘see’ the structure of the nucleus; that is, if the 

momentum transfer, q, is small compared to the inverse of (the root means square 

of) the nuclear radius, R: 

qR << FL. (Al) 

Spergel (1987) h as recently pointed out that this condition is not necessarily 

satisfied for heavy WIMPS hitting the earth with typical halo velocities. 

In this appendix, I will assume that the cross-section is anisotropic and ve- 

locity dependent. I will take this dependence to be described by a ‘form-factor’ 

suppression 

1 F(q2) j2= exp(-s). (A4 

In terms of the WIMP’s energy loss, AE, this may be expressed 

1 J’(q2) 12= exp(-AE/&) (A3) 

where 

E. E 3tL2 
2mR2 (A4 

is the characteristic coherence energy. By generalizing the argument given in 
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section 2, one may determine the scattering function, n;(w): 

!-l,(w) = (onw) exp(-AE/Eo)d(M~,2) 
u2 
7 

where Q is now the low-energy total cross-section. This may be evaluated; 

wn,(w) = f [exp(-as2) - exp(-bz2) exp(-A2(a - 6))] (A6) 

where 

(A5) 

The parameter a is the characteristic halo WIMP energy in units of the coherence 

energy. Using an estimate (Eder 1968) 

R - [.91(G) 4 + .3] x 10-13cm W) 

for the nuclear radius, a may be evaluated: 

At the resonances 

.Ol, .04, and .22. 

a - .014 x ~m~o(m~o + .12)2. w 

of oxygen, silicon, and iron, the values of a are respectively 

Using equations (2.15) and (A6), equation (2.4) may be evaluated 

(AW 
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where 

A=A(l+a)i ArA(l+b)i W) 

While equation (AlO) is itself fairly inscrutable, it is easy to compare its im- 

pact on WIMP capture by the earth relative to its simpler counterpart, equation 

(2.24). First note that if either of the conditions 

1) b < 1 or 2) aA < 1 (Al4 

are satisfied, then the two equations are essentially identical. The first condition 

says that the kinetic energy loss of virtually any WIMP hitting the earth is 

small compared to the coherence energy. The second condition says that for 

those WIMPS which may possibly be captured, the highest possible energy loss 

is small compared to the coherence energy. (Note that these interpretations 

make use of the fact that the kinetic energy which the WIMP acquires by falling 

into the earth’s gravitational field is small compared to the coherence energy.) 

From the second condition one may immediately conclude that equation (AlO) 

introduces no effect except possibly at resonances. Away from resonances, where 

by definition A < 1, the second condition is always satisfied. Moreover, for 

the oxygen and silicon resonances, the effect is very small by virtue of the first 

condition. Thus the principal effect of replacing equation (2.24) by equation 

(AlO) is to somewhat suppress the iron resonance. One may explicitly evaluate 

the ratio of the two formulae at a resonance: 

exp(--aG2) x(0,4> 
(l+a)$ X(0,9)(1+a)-2’ (Al5) 

For oxygen, silicon, and iron this is respectively .99, .94, and .72. 
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The effect on the sun is more significant. Because the solar gravitational 

potential energy is much greater than the mean kinetic energy of WIMPS in the 

halo, the kinetic energy of the WIMP at impact is more or less independent of 

its energy-at-infinity. The relevant dimensionless parameter is thus 

W) 

instead of b. This parameter represents the maximum possible energy loss in 

units of the coherence energy. Note that when the WIMP mass is much greater 

than the nuclei mass, expression (A16) has the limiting form 

2 4 - 1.2m;&z~o + .12) 323. 
. 

Thus, lack of coherence will never have an effect on capture by helium no matter 

how heavy the WIMPS are. Similarly, there will only be a modest effect on 

capture by oxygen. However, there will be considerable suppression of capture 

by silicon and iron, even for WIMPS as light as 10 GeV. Indeed, explicit numerical 

calculation shows that, whereas iron had been thought to dominate capture of 

high mass WIMPS, in fact, it places third behind oxygen and helium. I mentioned 

in section 4 that, under the assumption of constant cross-section, capture is 

dominated by nuclei whose mass is of the same order as that of the WIMP. It is 

not surprising then, that when account is taken of lack of coherence, solar WIMP 

capture tends to be highly suppressed above the mass of oxygen. This is shown 

in Figure 3. 
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FIGURE CAPTIONS 

1. RESONANCES: Log10 of capture rate in inverse seconds of Dirac neutrino 

WIMPS of various masses (in Atomic Mass Units) for various elements in 

the earth. Shown are 160, 28Si, 56Fe-58Ni (all solid), 24Mg (dots), and 32S 

(dashes). The envelope is total for all elements including those not shown. 

The first core model has been assumed. The assumed halo WIMP density 

is 0.4 GeV/cm3. 

2. EARTH VS SUN: Total capture rate in inverse seconds of Dirac neutrino 

WIMPS of various masses (in Atomic Mass Units), assuming a halo WIMP 

mass density of 0.4 GeV/cm3. Rates are shown for first (solid) and second 

(dots) core models, and for the sun (dashes). The solar rate is scaled down 

by a factor of 5.5 ~10~. Note change in scale at 46 A.M.U. 

3. SUPPRESSION: True capture rates by the sun as a fraction of what the 

rate would be if mass-mismatching could be ignored. Ratios for photinos 

(solid) and Dirac neutrinos (dots and dashes) of various masses (in GeV) are 

shown. The lower Dirac neutrino curve takes account of lack of coherence 

(see appendix). 

4. LIMITS: Maximum halo WIMP density (in GeV/cm3) which would be 

undetectable at detection rates of 1 per kiloton-year. Limits are shown 

based on the sun alone (dashes) and the earth in combination with the 

sun (solid) for Dirac neutrino WIMPS of various masses (in GeV). Also 

shown is the minimum WIMP density at which the earth will be at ‘full 

signal’ (dots) and the density at which the earth signal would drop below 

background (dot dash). 

5. RELATIVE DETECTABILITY (defined in the text) for Dirac neutrino 

WIMPS of various masses (in GeV). The logarithmic scale is arbitrarily 

normalized to the value at 34 GeV. 
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