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1. Introduction 

If the known left-handed neutrinos are exactly massless, neutrino physics 

becomes relatively simple. There are no neutrino oscillations, no mixing among 

different generations, no neutrino decays, no mass pattern to explain, no interplay 

between Dirac and Majorana masses, etc. There is “only” one problem: We must 

find some exact symmetry which prevents the neutrinos from acquiring masses 

to all orders in the standard model as well as in the presence of all possible 

new physics effects which go beyond the standard model. No such principle is 

known and most theories beyond the standard model actually allow a variety 

of contributions to the neutrino mass. Consequently, it is widely believed that 

neutrinos do have masses. In this paper we assume that neutrinos are light, but 

not massless. 

If the neutrinos do have masses, we immediately face a long list of new ques- 

tions. We may have right-handed neutrinos with new interactions. The number 

of fundamental parameters of the standard model increases. We have not only 

unknown masses but also Cabibbo-like generation mixing among leptons and at 

least one KM phase leading to CP-violation. All the unsolved problems con- 

cerning the masses and mixing angles of quarks and charged leptons, suddenly 

arise in the neutrino sector. We are likely to have neutrino oscillations in vac- 

uum, possibly enhanced in matter. Neutrinos are likely to decay in various ways, 

raising the question of their lifetimes and decay branching ratios. We may have 

both Dirac and Majorana mass terms, leading to neutrino mass matrices even in 

the case of one generation and to interesting mass patterns in the realistic case 

of several generations. 

The existing experimental information on all of these issues consists only 

of upper limits. There is no conclusive evidence for neutrino masses, mixing, 

oscillations or decays. No one has seen evidence for right-handed neutrinos, 

Majorana masses or CP-violation in the leptonic sector. 

The present direct limits on the masses of the three known left-handed neu- 
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trinos are [1,2,3]: 

m(v,) 518 eV 

m(vP) 1250 keV (14 

m(v,) 570 MeV 

It is very clear that these neutrinos are much lighter than the corresponding 

quarks and charged leptons in the same generations. How can we explain this 

fact? In principle, the Dirac masses of the neutrinos are free arbitrary parameters 

of the standard model. In order to “account for” the tiny ve mass, all we have 

to do is to declare that the single Higgs doublet of the minimal standard model 

couples to V, with a Yukawacoupling which is smaller than l’O-l”. This would be 

unsatisfactory for two independent reasons. We do not understand the reason for 

such a small Yukawa coupling and, even if we did, we do not know why it applies 

only to neutrinos and not to any other fermions in the standard model. Such 

a situation cannot be rigorously ruled out but it would be extremely unnatural 

and we assume that it does not occur. 

An alternative possibility is to assume that left-handed neutrinos have only 

Majorana masses which are due to their direct coupling to a Higgs triplet carrying 

two units of lepton number. However, in order for these masses to be extremely 

small we must have either a tiny vacuum expectation value for the Higgs triplet 

or, again, extremely small Yukawa couplings. Such a possibility is as unlikely 

and unnatural as the previous one and ute assume that it does not occur. 

There must be a good explanation for the fact that left-handed neutrinos are 

much lighter than all other fermions. Fortunately, we have a general mechanism 

which can lead to such an explanation. Assuming that we have some physics 

beyond the standard model and that it corresponds to a new energy scale 

A >> Mw, we may describe its low energy effects in terms of an effective La- 

grangian. Such a Lagrangian may include a dimension-five term of the form 
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where 4 is the usual Higgs doublet of the standard model, UL is any left-handed 

neutrino and h is an unknown dimensionless effective coupling constant. With 

the usual symmetry breaking of the standard model, such a term would yield a 

neutrino Majorana mass of the general order of magnitude of: 

M(y) = F (1.3) 

Ordinary fermion masses are of order h’ (q%), w h ere h’ is the usual Yukawacoupling 

of r#~ to fermions. It is therefore clear that the resulting neutrino (Majorana) mass 

is substantially smaller than the normal (Dirac) mass of an ordinary fermion 

(quark or charged lepton) by a ratio: 

M(u) = h (4) 
M(f) 

j-jn <Cl (1.4 

For sufficiently large A we can easily get extremely small neutrino masses. 

The above scenario is sufficiently general to accomodate a wide variety of 

theoretical ideas which go beyond the standard model. The only crucial ingredi- 

ent is the existence of a new energy scale A and the ability of the new physics to 

induce an effective term of the necessary form (or, possibly, a higher dimension 

term yielding a neutrino mass which is inversely proportional to a higher power of 

A). The best known realization of the above mechanism is the “see-saw” matrix 

[4] for neutrino masses. 

In this paper we assume that the general mechanism responsible for the 

small neutrino masses is of the type described above. We combine information 

coming from cosmological considerations, theoretical particle physics arguments 

and indirect relations to experimental measurements of other processes in order 

to set severe upper bounds on the masses of the three known neutrinos. 

Our analysis runs along ,the following lines [5]: Cosmology leads to a well 

known bound on the masses of stable neutrinos [6,7]. However, neutrinos with 

4 



masses (except the lightest one) are practically certain to be unstable. In that 

case, cosmology provides us only with a relation between the mass and the life- 

time of the unstable neutrino [8]. S UC h a relation, by itself, cannot exclude any 

neutrino mass-value. However, for any given neutrino decay-mode in any given 

model (“standard” or “beyond standard”) we may derive additional relations 

between the mass and the lifetime of the decaying neutrino. By combining the 

cosmological and the particle-physics constraints for the decay modes of the same 

neutrino we may then be able to exclude certain mass ranges and to derive strong 

bounds on the neutrino mass. 

Neutrino decays within the standard model as well as spme neutrino decay 

modes in some “beyond standard” models were discussed by earlier authors. In 

this paper we attempt to complete the discussion for all decay modes in all “pop- 

ular” classes of theories which go beyond the standard model. For completeness, 

we briefly review previous results and combine them with our own results in order 

to draw our final conclusions. We find that, under very reasonable assumptions 

which we clearly state, the masses of up and vT must be smaller than 65 eV. Un- 

der slightly stronger assumptions we further conclude that vP is probably lighter 

than 4 eV and V, is lighter than 0.02 eV. We also conclude that the scale A re- 

sponsible for the neutrino masses is probably above 50 PeV (1 PeV = lo3 TeV). 

These results are significant as they improve upon the direct experimental limits 

by three to six orders of magnitude. 

The structure of this paper is as follows: 

In Section 2 we rederive the cosmological bounds on neutrino masses and life- 

times. In Section 3 we introduce the see-saw mechanism and set our notations 

for the neutrino mass matrices and mixing angles. Sections 4 - 10 are devoted 

to the study of neutrino decays within the framework of several classes of mod- 

els. The case of the standard model is described in Section 4. In Section 5 we 

set the stage for discussing neutrino decays “beyond the standard model” and 

briefly mention some models.which introduce extremely high energy scales. We 

continue with Left-Right Symmetric (LRS) models (Section 6), horizontal sym- 
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metries (Section 7), substructure (Section 8), supersymmetry (Section 9) and 

models with spontaneously broken global symmetries (Section 10). All models 

of Sections 4 - 10, together with the cosmological constraints of Section 2, lead 

to strong bounds on the neutrino masses. In Section 11 we study the see-saw 

mechanism in some detail, introduce a so-called “reasonable see-saw” assumption 

and show that it implies even more stringent bounds on neutrino masses. The 

combined information obtained in Sections 2 - 11 gives: 

m(u,) 5 65 eV; m(up) 5 4 eV; m(u,) 5 0.02 eV. 

In Section 12 we study the implications of the cosmological bounds on the decays 

of hypothetical fourth-generation leptons. Finally, in Section 13 we discuss our 

conclusions on neutrino masses, and their implications on the scale of physics 

beyond the standard model. 

2. Cosmological bounds 

2.1 COSMOLOGICAL PARAMETERS 

Massive neutrinos contribute to the energy density of the universe. The 

requirement that this contribution should not exceed the present energy density 

of the universe, excludes a certain range of masses for stable neutrinos [6,9,7], and 

defines an allowed range for the mass and the lifetime of unstable neutrinos [8, lo]. 

There are two cosmological parameters that determine these limits: the Hubble 

parameter HO, and the present energy density of the universe pu. Equivalently, 

we can use the two parameters h and R defined by: 

HO zh - 100 [ km/sec/Mpc] 

PO -npc 

pC is the critical density, corresponding to a flat universe: 

%!.!? = 1.1 - lo4 h2 [eV/cm3]. 
Pc = 87rG 

(2.1) 

(2.2) 
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Current estimates of h and !I are [ll, 121: 

1 
ii 

<h < 1 

i-l <2 
(2.3) 

Once h and h2 are known, the cosmic scale factor R is determined through Ein- 

stein’s field equations. Consequently, the age of the universe to is given in terms 

of these parameters [13,9,14]: 

t 
0 (2.4 

p = 1 for a matter-dominated (MD) universe, and p = 2 for a radiation- 

dominated (RD) universe. We will approximate the numerical factor in eq. (2.4) 

by lOlo years. The age of the universe is estimated (independently of the esti- 

mates (2.3)) to be [ll]: 

lOlo years < to < 2 . lOlo years (2.5) 

and more probably, in the range (1.2 - 1.8) . 10” years. We define the function 

f(a) by rewriting eq. (2.4) as to = q . lOlo years. The lower limit in eq. (2.5) 

puts an additional bound on h and n, namely 

h I f(n). (2.6) 
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2.2 STABLE NEUTRINOS 

For stable primordial neutrinos we require 

(2.7) 

where [n(~i)] 0 is the present number density of the neutrino vi. The sum runs over 

all neutrino flavors. Neutrinos decouple at a temperature TD, when the expansion 

rate of the universe becomes larger than their interaction rate: TD M 5 MeV. 

Neutrinos with a mass m(v;) 5 TD decoupled when their number density was 

equal (up to a statistical factor of order 1) to the photons number density. The 

present number density of each such flavor of neutrino is 

[n(u& = &]. M 110/ems 

Using eqs. (2.1), (2.2) and (2.8), we get from eq. (2.7): 

c m(4) < 100 n h2 eV 

(2.8) 

(24 

From eq. (2.6), the weakest limit is derived when n[f(n)12 is maximal. For a 

MD universe, this corresponds to R = 2 and h = 0.57: 

c m(ui) 5 65 eV 

For a RD universe, the upper limit corresponds to R = 1 and h = k: 

c m(ui) 5 25 eV 

(2.10) 

(2.11) 

The larger the age of the universe, the more stringent these limits are. For 

example, if to = 1.3 - 1Oro years, the limit is 25 (6.3) eV for a MD (RD) universe. 

The standard cosmological model assumes that the universe has been MD for 

most of the time. Thus we use eq. (2.10) as the limit on stable neutrinos mass. 
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Note that in order to saturate the bound (2.10) we must assume that the 

universe is closed (0 > 1) and that all or most of the dark matter consists of 

neutrinos. If the universe is flat (n = 1) or open (n < 1) or if particles other 

than neutrinos have an important contribution to the dark matter, we may obtain 

much smaller upper bounds. 

For neutrinos heavier than a few MeV, eq. (2.8) does not hold: if at the time 

of decoupling TD < m(vi), the neutrino density [n(vi)]D is much smaller than the 

number density of the photons. If these neutrinos had followed their equilibrium 

density till the time of decoupling, their number density would have been smaller 

by the Boltzmann factor exp[-m(vi)/kTD]. H owever, the small number density 

suppresses the anihilation rate of the neutrinos long before TD is reached. The 

actual number density obeys (7,151 

++i) = (aA+ {[+‘i)12 - [%~&-‘i)]~} - 3ff'+'i) (2.12) 

where (UAV) is the thermal average of the anihilation rate, and neq(vi) is the 

number density of the neutrino at equilibrium. This equation is solved numer- 

ically. It is found [7,15] that in the relevant range of mass, the dependence 

of the neutrino number density on the neutrino mass can be approximated by 

n(ui) o( [rn(vi)Ie3. R e q uiring that the contribution of such neutrinos to the mass 

density of the universe should not exceed the present upper limit of that density, 

gives [16] 

m(ui) 2 3.4 GeV [flh2]-li2 (2.13) 

for stable Majorana neutrinos (for Dirac neutrinos the limit is lower by approxi- 

mately a factor of 2). The weakest limit corresponds to R = 2 and h = 0.57: 

m(vi) 2 4.2 GeV. (2.14) 

Thus, a stable neutrino must be either lighter than 65 eV or heavier than 4.2 

GeV. 
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2.3 UNSTABLE NEUTRINOS 

Neutrinos with masses between 65 eV and 4.2 GeV may exist, provided that 

they are unstable: once they decay, the energy density of the decay products 

decreases as K4, instead of the Rm3 dependence of the mass density before the 

decay. 

The contribution of an unstable neutrino to the present energy density of the 

universe, is related to its mass density at the time of decay 7, through 

4 

(2.15) 

The relation between the neutrino mass density at the time of decay and at the 

time of decoupling is 

Eqs. (2.15) and (2.16) give: 

I’uO = [iqipu(tD~ ($)“I ($) (2.17) 

(2.16) 

The quantity in square brackets is the would-be present mass density of the 

neutrino if it were stable. For a RD universe t CC Tm2. Thus the limits on 

unstable neutrinos, anologous to eqs. (2.9) and (2.13) are: 

5100 R h2 eV [for m(ui) 5 a few MeV] 

<lOW1’ $-I h2 eve2 [f or m(ui) 2 a few MeV] 

(2.18) 

(where in the second equation we used the approximation n(vi) cc [rn(vi)lT3). 

10 



The weakest limits [14] correspond to n = 1 and h = k: 

[m(ui)12T(ui) 12 - 1020 eV2 - set [for m(4) 5 a few MeV] 

[m(ui)lv4r(ui) 11.5 ~10~~~ eVp4 - set [for m(z+) > a few MeV] 
(2.19) 

Again, if the universe is older than the lower limit in eq. (2.5), or if there 

are important non-neutrino contributions to the dark matter, the bounds (2.19) 

become more stringent. For example, if to = 1.3.10" years, both bounds in eq. 

(2.19) are lowered by a factor of 12. 

If there are charged particles or photons among the decay products of the 

neutrinos, there are additional astrophysical effects to be considered: 

a. The black-body radiation background should not be distorted [17,18]. 

b. Primordial nucleosynthesis should not be affected [17,19]. 

c. The flux of 7 rays at the positronium anihilation line should not exceed the 

observed flux [20]. 

d. Deuterium should not be destroyed by photodisintegration [21,22]. 

Each of these effects leads to an allowed range for the lifetime of such a 

neutrino. When combined, they give an upper bound of order lo4 set on the 

lifetime [23]. 

If there exist both stable and unstable neutrinos, the bounds on the stable 

neutrinos masses may be modified: if an unstable neutrino decays into stable 

neutrinos, their number density increases and the bound on their mass is more 

stringent; if there are charged particles or photons among the decay products, 

they affect the temperature of the photon gas but not that of the neutrinos and 

consequently, the limit on the mass of the stable neutrinos is somewhat relaxed 

P4 * 
To summarize: Stable netitrinos are either lighter than 65 eV or heavier than 

4.2 GeV. Unstable neutrinos may have a mass in the “forbidden range”, if their 

11 



lifetime ft,dfilZs the bounds (2.19). The bounds on the neutrino mass and lifetime 

are shown in Fig. 1. 

3. Neutrino mass-matrices and mixing 

3.1 SEE-SAW MATRICES 

In the introduction, we discussed how new physics at a scale larger than the 

SU(2)L-breaking scale may explain the lightness of the neutrinos. The best- 

known realization of this mechanism is the see-saw mass matrix [4]. 

The general form of the neutrino mass matrix is , 

M= . (3.1) 

In the n generation case, M is a 2n x 2n matrix, and each of the sub-matrices in 

eq. (3.1) is an n x n matrix. We define L, D and R, the mass scales of ML, mD 

and MR respectively: 

L E [det ML]‘in ; D s [det mD]l’n ; R - [det MR]‘/~ P-2) 

mg is the Dirac mass matrix: 

where h is a Yukawa coupling and 4 is the usual Higgs doublet of the standard 

model. As C# is needed in order to give mass to other fermions, mD # 0 unless 

additional symmetries are invoked. In general, D should be comparable to the 

charged fermions masses. MR and ML are the Majorana mass matrices for right- 

handed and left-handed neutrinos respectively: 

(M~)ij =hSeLiDLj (S) 

CML)~~ =hALYLivLj (AL) 
(3.4 

where S is a Higgs singlet and AL is a Higgs triplet. 
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The Weinberg relation, Mw = Mz cos 8w, is in good agreement with exper- 

iment. In order to preserve it we must have (AL) < (4). At the same time, 

(S) does not break the gauge symmetry of the standard model. Consequently, it 

may obtain arbitrarily large values. It is likely that (S) is determined by some 

new physics beyond the standard model. All such models have scales A 2 TeV, 

and some even have A >> TeV. Hence R >> D. If 4, S and AL are all present, 

minimization of the Higgs potential gives [25,26] (AL) (S) - (4)2, consistent 

with the above hierarchy of v.e.v’s. 

In the following discussion we assume that ML is negligible or zero. The 

neutrino mass matrix of eq. (3.1) acquires the form: 

M= . P-5) 

Diagonalization of M gives n light mass eigenstates, with masses 0 g . This 
( > 

is the see-saw principle: the higher the scale R, the lighter are these neutrinos. 

The other n mass eigenstates are heavy, with masses O(R). 

MR may be induced by (S) b u i may also be an explicit singlet mass term t t 

or a result of a higher order correction in some “beyond standard” theory. We 

assume that R 2 TeV, and give our results in units of [$$I. There is no 

convincing theoretical model with R < TeV. However, on purely experimental 

grounds, the limits (1.1) are consistent with R-values as low as 50 GeV. Some 

ad-hoc models may actually assume R = 50 GeV. 

The ratio g must be very small. For R 2 1 TeV and D 5 m(r), we expect 

$ 5 0.002. Even if R - 50 GeV, g 5 0.04. 
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3.2 LEPTON MIXING 

Neutrinos with a non-vanishing mass imply possible mixing among genera- 

tions: the mass eigenstates may differ from the weak interaction states. 

The mass matrix (3.5) can be brought into a block-diagonal form by a unitary 

transformation, M --$ UTMU. We write U in terms of four n x n submatrices: 

u = ua ub 
( > UC Ud 

which have to fulfill: 

u?mgua -I- U~mD& -I- U~~MRU, = 0. ’ 

The light neutrinos mass matrix is: 

UTmD& i- UfmgUa + UTM&,. 

The solution of eq. (3.7), to order g is [27]: ( > 

Ub=-@=mDM$+O 

Ua =I - irnDMi2rng + 0 

Ud =I - $M,-‘mgrnDMil 

(34 

(3.7) 

(3.8) 

(3-g) 

The mass matrix for the light neutrinos (eq. (3.8)) is 

04 
-mgM~lm$ -I- 0 R3 ( )I 

The mass matrix is brought into a diagonal form by ar 

(3.10) 

1 additional unitary trans- 

formation, UTMU + VTUTMU V. The matrix V is of the form 

(3.11) 

Both Va and Vb are unitary. 
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We diagonalized M in two stages, because in this way the information about 

the mixing between left-handed and right-handed neutrinos is contained in U, 

while V depends on the mixing among generations. 

The left-handed neutrinos are related to the mass eigenstates by the following 

transformation 

UL = uavaul + Ubvbuh (3.12) 

ul(h) are the light (heavy) mass eigenstates. The light neutrinos are almost purely 

(to 0 [g] ) left-handed. The mixing matrix (among the light states) for the 

charged W-boson interactions is U = U,V,. As Ua is different from the unit 

matrix only by terms of 0 $$ , 
( > 

we can take as a good approximation U = Va. 

Thus, U is unitary to a good approximation. The mixing matrix for the neutral 

Z-boson interactions is n = V,TZ.fzUaVa, which is somewhat different from the 

unit matrix because Ua is not unitary. 

3.3 EXPERIMENTAL CONSTRAINTS 

As yet, there is no conclusive experimental evidence for non-vanishing lepton 

mixing. There are two kinds of experiments that put constraints on the mixing 

terms in U: 

a. Depletion experiments, in which the known flux of the neutrino produced 

in the experiment, is compared to the flux of the same flavor of neutrino 

at some distance. 

b. Oscillation experiments, in which the known flux of the produced neutrino 

is compared to the flux of a different flavor at some distance. 

These experiments lead to constraints on the mixing angles for sufficiently 

large Amfj = Imf - rng I, but to no limits on these angles for smaller Amfj. For 

all the range of masses that we are interested in (Am,“j larger than tens of eV2), 

the asymptotic constraints on U apply. The strongest upper limits on UeP, U,, 
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and U,, come from the BNL [28] and Fermilab [29] experiments: 

uecr 5 0.029 ; ue7 5 0.17 ; up, 5 0.031 (3.13) 

These upper bounds were derived under the simplifying assumptions that the 

mixing matrix is real, and that for each two flavors one may use an effective 2 x 2 

mixing matrix. 

U,, is further limited by r + eu experiments [30]. The limits are obtained 

by search for monoenergetic peaks in this decay, and by its branching-ratio mea- 

surement. The limits are mass-dependent. Typical values are 

Ue7 SO.05 [for m(u7) 2 1 MeV] + 

U,, <0.003 [for m(uT) > 20 MeV] 
(3.14) 

For most of the decay modes that we study, mixing angles as given in eqs. (8.18) 

and (,!?A$) are negligible, and we identify the weak doublets with the physical 

states. We will explicitly use the bounds (3.13) and (3.14) whenever a non- 

vanishing mixing is significant. 

4. Neutrino decays in the extended standard model 

The minimal standard model contains neither right-handed neutrinos nor 

Higgs triplets. Thus, left-handed neutrinos are exactly massless. We begin our 

discussion of neutrino masses by studying an extended standard model, in which 

right-handed neutrinos are added. In that case, left-handed neutrinos will have 

masses and may decay. The possible final states for the decay of an unstable 

neutrino ui into two or three final particles are: 

Uj •I uk •I 4 ; uj+C++C-; Uj+7; uj+7+7 (4.1) 

where Uj, Vk, y represent any neutrino or antineutrino lighter than vi. The ue+e- 

decay mode is allowed only for i = r (as m(ui) 2 2m(e) is required). Decays into 

four or more particles can be safely neglected. We now consider each of these 

decay modes. 
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Unlike other fermions, neutrinos may have flavor changing neutral currents 

at tree level. A non-vanishing Majorana-mass for right-handed neutrinos breaks 

down the GIM argument [24], and the Z-boson can mediate a neutrino decay 

into three lighter ones: Vi + UjUkDks As shown in Section 3, the mixing matrix 

is C! = V,TUzUaVa. Thus, the mixing terms are 0 g : ( > 

CIij = [ v~mDMj$2m~va 
1 ij 

(4.4 

We choose to work in a basis where mg is diagonal. For example, in the two 

generation case 

mD(h) 0 
mD= 

0 mll (?J 
(44 

In such a basis, the charged leptons mass matrix may be non-diagonal, but this 

does not affect Cl. The matrix MR is a general symmetric matrix. The matrix 

V, diagonalizes the light neutrinos mass matrix rnDi&‘rn~. Typically [Va], - 

33 zz Ll . Then eq. (4.2) gives: 

fZij - mD(h)mD(uj) 

R2 (4.4 

As the neutrino masses are m(ui) - -3 we conclude that the coupling of 

the Z-boson to neutrinos of diferent generations is 

m(4m(uj> 
[%I2 - ~2 P-5) 

The width for the Z-mediated decay into three neutrinos is then estimated to be 

I?(Ui ---) UjUkfik) - [ m(“$(u.il] 

1 
m(4) 
44 (4.6) 
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For the uP ---) U,U,D~ decay, we assume m(u,) 5 18 eV and R > 1 TeV and obtain 

r(up)[m(up)]6 2 1.6 * 1O57 eV6sec. (4.7) 

This, together with the cosmological bounds (2.19), gives 

m(up) 2 80 MeV [-J--J5 [zw]-l’lo (44 

in clear contradiction with the experimental upper bound. We therefore conclude 

that, if uP + U~U~D~ via Z-exchange were the only decay mode of uP, we must 

have m(up) 5 65 eV. 

We may now consider the decay u, -+ UjukDk. There are four possible modes, 

with each of j and k = e or p. We assume m(u,) 5 18 eV, m(up) 5 65 eV, 

R 2 1 TeV. We obtain 

7(ur)[m(u,)]6 > 1.7. 1O56 ePsec. P-9) 

The cosmological bound can be fulfilled with 

m(u7) 2 65 MeV [-Lt...-] 1’5 [ mcu;i;e;c”‘,] -l’lo (4.10) 

Even if we allow R to be as low as 50 GeV, we still get m(u7) 2 35 MeV. If 

neutrinos dominantly decay into three lighter neutrinos (via Z-exchange), then 

up is lighter than 65 eV and u, is either lighter than 65 e V or heavier than 95 

Me V. 
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4.2 uT --$ u,e+e- 

If u, is heavier than 2m(e), it can also decay to a final u,e+e- state. The 

dominant contribution is by W-exchange. The decay width can be written as: 

This gives the relation 

7-(ur)[m(uT)]5 = (Ue,)-2 3 - 1O34 eV5sec 

(4.11) 

(4.12) 

The cosmological bound on the energy density (eq. (2.19)) can be fulfilled with 

m(uT) 2 5 MeV. However, as charged particles are produced in this mode, the 

additional astrophysical constraints described in section 2 apply [22]. Thus we 

should have r(u7) 5 104sec, which can be fulfilled only for m(uT) > 10 MeV. 

4.3 Ui-)Uj+r 

The decay vi + uj7 is described by one-loop diagrams, with a W-boson (or a 

charged Higgs boson) and a charged lepton in the loop. This mode was analyzed 

in detail in Ref. [31]. The decay width is 

r(ui 4 Uj7) = 
~G~[m(yi)15 

64z4 
[ 1 

2 

c uja”iaF(ra) 
a 

where ra = [m(la)/M(WL)]2 and the function F(r) is given by 

F(r) = 3 
4(1 - r)2 [ 

-(2 - 5r + r2) + ‘;::‘I . 

(4.13) 

(4.14) 

For the three known generations ra < 1, in which case F(r,) --+ -% + $ra. From 

the analysis in Section 3 we get Ca UiaUja = 0 . Thus we expect I cx r:, 
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which gives [31]: 

r(ui)[m(4)]5 = (Ui,Uj,)-2 4 - 1O43 eV5sec. (4.15) 

This and the cosmological bound (2.19) give 

(4.16) 

However, the requirement that the radiative lifetime should be shorter than 

lo4 set completely excludes this mode. 

4.4 Ui+Uj+7+7 

The vi --+ Uj77 decay [32] proceeds via a box-diagram. Although it is a 

higher order process than the one-photon decay, it is not GIM suppressed. The 

dominant contribution comes from the lightest charged lepton which is heavier 

than the decaying neutrino. Thus, the decay width depends on the p couplings 

rather than the r couplings. The decay width is 

r(ui 4 Uj77) = 
~G$bh)15 

64~~ 

which gives the relation [32] 

T(ui)[m(ui)]’ = (Ui,Uj,)-2 6 - 1O73 eV’sec. (4.18) 

This and the cosmological bounds (2.19) give 

(4.17) 

(4.19) 

Again, when the astrophysical constraints are taken into account, this mode is 

excluded. 

Thus, within an extended standard model, only u7 can fulfill the cosmological 

constraints on a heavy neutrino, provided that its mass is between 10 MeV and 

70 Me V. 
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5. Beyond the standard model 

5.1 NEW DECAY MODES AND DECAY MECHANISMS 

In the previous section we concluded that, ulr should be lighter than 65 eV 

and u7 is either lighter than 65 eV or with a mass in the range 10 - 70 MeV. 

Can these bounds be evaded in models beyond the standard model? 

In such models we may have additional neutrino decay modes, correspond- 

ing to new light particles suggested by the models. These could be Majorons, 

familons, sneutrinos and possibly other new particles. In addition, the four modes 

discussed above (Section 4) may proceed via new mechanisms. We could have 

contributions from fourth generation fermions (which have mass O(Mw) and 

therefore avoid the GIM-cancellation), right-handed currents, additional “be- 

yond standard” Higgs particles, “horizontal” gauge bosons, unknown effects due 

to lepton substructure, etc. 

In the following sections we discuss these various possibilities. All “beyond 

standard” theories correspond to a new energy scale A >> Mw. The actual value 

of A may be anywhere between 1 TeV and the Planck mass. It is clear that if A 

is at the GUT scale or at the Planck scale, it is unlikely to lead to fast neutrino 

decays, and - through the see-saw mechanism - will produce neutrino masses well 

below 1 eV. 

Our best hope for heavier left-handed neutrinos and for faster neutrino decays 

which could be consistent with the cosmological bounds is from new physics at 

relatively “nearby” scales around, say, 1 TeV to 1 PeV. Such scales are consistent 

with Left-Right symmetric models, horizontal symmetries, and substructure. We 

will therefore pay special attention to these last cases. 

In the remaining of the present section we briefly discuss the case of theories at 

the GUT scale or the Planck scale. In Sections 6, 7 and 8 we discuss, respectively, 

the specific cases of Left-Right symmetry, horizontal symmetry and neutrino 

substructure, all of which could presumably appear below 1 PeV. In Sections 9 
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and 10 we discuss the most likely cases of new light particles appearing among 

the neutrino decay products: supersymmetric particles and Goldstone bosons 

(Majorons and familons) . 

5.2 GRAND UNIFIED THEORIES 

In the minimal SU(5) model, there are no right-handed neutrinos, and the 

left-handed neutrinos are massless. However, in other GUTS such as SO(lO), 

[SU(3)]3 c3 z 3 and &j, right-handed neutrinos are present. The left-handed neu- 

trinos have very small masses due to the see-saw mechanism. In the SO(10) 

theory, for example, a Higgs in the 126 representation is needed in order to give 

the right-handed neutrino a tree-level Majorana mass. If this Mujoruna muss is 

at the scale of the GUT-breaking, Mx = 0( 10 l4 GeV), the predicted neutrino 

musses are much smaller than the 65 eV limit on stable neutrinos (eq. (2.10)): 

m(4) L b(t)12 
Mx 

- low2 eV. (54 

All light neutrinos are expected to be lighter than the 65 eV limit even for 

intermediate breaking scales as low as 10 l1 GeV. They are certainly light if the 

new energy scale is the Planck scale O(10” GeV). 

In some versions of GUT, Higgs representations needed to give right-handed 

neutrinos Majorana masses at tree-level are absent. MR # 0 can still be a result 

of loop-diagrams. In such a case, there are several interesting consequences: 

a. The scale of the right-handed neutrino mass, R, is smaller than the GUT 

breaking scale, Mx. For example, in the minimal SO(10) model, MR arises 

at the two loop level [33]: 

R = [:I2 [M&)1 EMx (54 

where E is a mixing factor. Consequently, the light-neutrino mass may be 
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larger than 65 eV: 

F-3) 

which gives (for E = 0.1 and m(t) = 45 GeV): 

m(up) - 2 keV ; rn(v7) - 70 keV. (5.4) 

In other such models (e.g minimal &) MR arises at the one-loop level, and 

thus m(vi) are much smaller. 

b. The MR-matrix may have some hierarchy, which depends on the hierarchy 

in mg. In the minimal SO(10) model [33] 

m(4) m(ui) -N- MR cx mD - m(vj) mtuj> (5.5) 

The implications of such a relation are discussed in Section 11. 

c. The neutrino Dirac masses may be related to different fermionic sectors. 

As implied in the former equation, in the SO(10) model mD(&) - mD(Ui) 

at the GUT scale (ui are the up-sector quarks). 

We conclude that in most Grand Unified Theories or Gravity-related models, 

neutrino masses are inversely proportional to Mx and are well below 1 eV. In 

some rare cases, the theory may allow neutrino masses above 65 eV. However, 

in these cases, the decay mechanisms of these neutrinos will be either the ones 

discussed in Section 4 or additional mechanisms, in which the decay amplitude 

is inversely proportional to powers of Mx and the resulting lifetime cannot obey 

the cosmological constraints. Hence, the conclusions stated at the end of Sec- 

tion 4 remain valid in all models with Mujoranu masses at energy scales above 

O(lO’l) GeV including all GUTS. The only way around these conclusions are 

GUTS which contain LRS or’s horizontal symmetry at a lower energy scale. We 

discuss these two cases in the next two sections. 
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6. Neutrino decay in left-right symmetric models 

6.1 THE MODEL 

In LRS models, the electroweak group is extended to an sum 8 sum @ I 

U(~)B-L gauge group. Leptons transform as (f,O)-l + (0, +)-r representations. 

In the minimal LRS model [25], the Higgs fields a, AL and AR transform like 

(& &, (LO)2 and (O,l> 2 representations, respectively. The model is “minimal” 

in the sense that it has the minimal Higgs content that gives hierarchical symme- 

try breaking and predicts heavy right-handed neutrinos and very light left-handed 

ones. 

The neutral components of the @  field, 4: and r#~;, have v.e.v’s ICI and k2 

respectively, while those of AL and AR get v.e.v’s VL and VR respectively. The 

neutrino mass matrix is then: 

M = 

-hvL ;(hlh + h&2) 

$(hTkl + h;k2) hvR > 
(64 

hi and ha are the Yukawa coupling matrices (in generation space) of 41 and 42 

(defined in eq. (3.3)), while h is the Yukawa coupling matrix for AL and AR 

(note that the two couplings defined in eq. (3.4) are equal due to parity). The 

charged leptons masses are $(hzkl + hlk2). 

The v.e.v’s fulfill [25] 

VLVR = o(k2) (6.2) 

where k2 E kf + ki ( see Appendix A for a detailed analysis). This implies that 

one may consistently assume both vi >> k2 (necessary for WR to be heavier than 

WL) and k2 >> vi (necessary for M(WL) = M(Z) cos 0~). Thus we take 

Consequently, the matrix (6.1) is a see-saw matrix, as discussed in Section 3. 
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The AL Higgs field has Yukawa couplings to leptons [25]: 

where QL is the left-handed leptonic doublet, \EL = [::I, and C is the charge- 

conjugation matrix. Thus, Ai mediates the decay [34] vi + Djukvl (see Fig. 2a) 

with an amplitude proportional to 

hijhkl 
WN,] 2 * 

(6.5) 

In the uP case, the only possible mode is uP --) DeVeVe. The width of this decay 

is proportional to 

w-4 

We do not know the values of M(Ai), he, and he,. Consequently, we cannot 

derive a relation between m(vP) and r(vP). However [ 141, the Ai+ member of the 

AL Higgs triplet can mediate the decay /.,L- + e+e-e- (Fig. 2b). The amplitude 

for this decay is related to the VP-decay amplitude through the gauge symmetry. 

The Yukuwa couplings are exactly the same us in eq. (6.6). The decay width is 

thus proportional to 

All other factors are equal for both widths. The ratio between the widths is [14] 

r(vp + DeveVe) 
l?(p- -b e+e-e-) 

= [~y$]’ pJ5. (6.8) 

The three components of the AL-triplet are approximately degenerate, with mass- 
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squared O(vi) ( see Appendix A for a detailed study): 

Iw(a~+)12 - ww121 
w@,++)12 

-O[;] _.[~~~~]2<2.5x10-3 (6.9) 

As [ml”= 1 + 0( 10A3), eq. (6.8) reduces to [14]: 

r(vp + Deveve) m(vP) 
[ 1 

5 
- 

lY(p- + e+e-e-) - 
~. 
mm 

(6.10) 

The mass and the lifetime of the p-lepton are 

m(p) = 105.7 MeV ; T(P) = 2.2. 10V6 set, (6.11) 

and the experimental upper bound on the branching ratio is [35] 

BR(p + 3e) < 2.4. 10-12. (6.12) 

Then eq. (6.10) gives 

r(vp) [m(vp)15 2 1.2. 1O46 eV5 - sec. (6.13) 

Combining this with the cosmological bound (2.19) one obtains 

m(up) 2 35 MeV (6.14) 

in clear conflict with the experimental bound m(vp) < 250 keV. Within LRS 

models vp cannot be heavier than 65 e V. 

Can such a model accomodate a ur, with m(v7) anywhere between 65 eV and 

70 MeV ? We now analyze the AL-mediated V, decay. 
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In general, the Ai exchange provides L+ with six different decay modes: 

- VT + VpVpVp, DpVpVe, DpVeVe, DeVpVp, DeVpVe, DeVeVe- (6.15) 

The decay width, summed over all six modes, is proportional to 

(6.16) 

However, there are also six possible decay modes for the r lepton, mediated by 

the Ai+ Higgs particle: 

7 + fi+cL-CL-9 P + P -e-, p+e-e-, e+p-p- , e+p-e-, e+e-e-. (6.17) 

The total decay width for these modes is proportional to 

(6.18) 

The combinations of Yukawa couplings which appear in eqs. (6.16) and (6.18) 

are identical. The same argument as in the case of vP decay now yields: 

(6.19) 

The mass and the lifetime of the r lepton are 

m(T) = 1784 MeV ; T(T) = 2.9 - lo-l3 sec. (6.20) 

The ARGUS collaboration has recently reported a new experimental upper bound 
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for all channels of r + 3.L They obtain [36]: 

BR(T --+ 34 5 3.8 - 10-5. (6.21) 

Then eq. (6.19) gives 

r(v7) [m(v7)15 2 1.4 . 1O38 eV5 - sec. (6.22) 

Combining this with the cosmological bound (2.19) we obtain: 

m(v,) 2 900 keV. (6.23) 

We conclude: Within LRS models, in order to obejl the co$mologicul bound on 

the neutrino muss and lifetime, m(v7) must be either below 65 eV or between 0.9 

MeV and 70 MeV. 

6.3 v, + e+e-v. 3 

The Ai particle may mediate the decay vr --+ e+e-vj. This process is related 

to the Ai-mediated decay discussed in this section. However, there are three 

differences between the decay rates: 

a. The phase-space factor may be important for the ve+e- final state. This 

process has a threshold energy of 1 MeV. 

b. While there are six possible final states for njvkvl (eq. (6.15)), there are 

only two for the e+e-vj final state, namely j = e or p. 

c. The Yukawa couplings are different (the relations are given by Clebsh- 

Gordan coefficients). 

All of these differences lead to: 

r(& + e+e-vj) 5 r(vT 4 pjvkvl). (6.24) 

As discussed in Section 2, when there are charged particles among the decay prod- 

ucts, additional astrophysical bounds apply. The strongest of these comes from 
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Deuterium photodisintegration. We have followed the calculations by Lindley in 

Ref. [21]. We conclude that one obtains a strong limit on the vT lifetime (of order 

lo4 set) for v7 heavier than about 10 MeV and a non-negligible BR(v, + e+e-v) 

(e.g 2 10e4). H owever, no range of VT-muss is excluded by this effect. Conse- 

quently, our conclusions do not change when taking into account this decay mode 

and, in particular, a v,-mass above 0.9 MeV is allowed. 

6.4 Vi+Vj7 [37] 

Left-right mixing may enhance the radiative neutrino decay, due to the lack 

of GIM-cancellation. However, the decay rate depends on the mixing between 

WL and WR. The smaller the mixing, the smaller is the enhancement. Thus, 

the effect is not large enough to allow a fast radiative decay, so as to avoid the 

cosmological constraints. There is no enhancement of the two photon decay. 

We conclude: in the minimal LRS model, the musses of up and v, are con- 

strained to be in the range: 

m(vp) 165 eV 

m(vT) 
(6.25) 

165 eV or 0.9 MeV 5 m(v7) 5 70 MeV. 

7. Neutrino decay with generation-changing gauge bosons 

In order to explain the “generations puzzle”, different “horizontal” symme- 

tries were suggested. The horizontal group may be discrete - in which case it does 

not lead to additional mechanisms for neutrino decays - or continuous. If it is 

continuous, it can be global or local. The caSe of a global symmetry is discussed 

in Section 10. Here we discuss the implications of a horizontal gauge group, H. 

There are severe limitations on the group H, coming from both the require- 

ment of theoretical consistency and phenomenology. These limitations make it 
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difficult to construct a completely satisfactory model. There is also the possi- 

bility of a horizontal gauge symmetry in which generation-changing interactions 

can be “diagonalized away”. 

For our purposes, the only case we must consider is a model with a gauge 

group G @  H where G acts within a generation and fulfills G > SU(2),5 @ U(l)y, 

and the structure of H and its breaking are such that flavor-changing gauge 

interactions are induced. 

The leptonic interaction states are eigenstates of the diagonal generators of 

both G and H. As G and H commute, SU(2),5 partners have the same quantum 

numbers under H. 

The mass eigenstates are related to the interaction eigenstates by the follow- 

ing transformations: 

( 

Ve 

v/J 
VT 

(74 

As explained in Section 3, UN is approximately unitary (UL is exactly unitary). 

Moreover, us the leptonic mixing angles are small, UN = UL. 

The coupling of the horizontal gauge boson Ha to the neutrinos ViDj is 

gdipT;qu;q, where gH is the gauge coupling and T is a generator of the group H. 

Again, we do not know either the mass of Ha or its gauge couplings and we can- 

not calculate the decay rate. However, Ha has exactly the same coupling to the 

charged leptons eiej . + Consequently, the amplitude for the Ha-mediated decay 
-- 

vi + vjvkol (Fig. 3a) is exactly equal to the amplitude for the decay ef + lj ek .f!T 

(Fig. 3b): all couplings, mixing angles and the intermediate boson mass are the 

same for both amplitudes. Thus, the ratio between the decay widths is just the 

ratio between the phase-space factors. 
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Both vP and ~1 have one such possible mode, with the relation: 

r(v, + VeVeDe) mt4 5 
qp+ e-e-e+) = m(P) [ 1 P-2) 

This is exactly the result (6.10), and thus the same conclusions follow: within 

horizontal models, where the horizontal gauge group commutes with the standard 

model gauge group, vP should be lighter than 65 eV. 

As for v7 decay, the Ha exchange may provide v, with the same six decay 

modes of the LRS model (eq. (6.15)) (two of these modes, DpVpVe and DevpVe, 

have now each two possible diagrams. This does not change any of our results). 

At the same time, it provides r with six possible decay modes (eq. (6.17)). For 

each v,-decay amplitude there is a corresponding, exactly equal, amplitude for r 

decay. The sum of the squared amplitudes is exactly equal, and we get: 

r(v, -+ 34 m(h) 5 
r(7j3-t) = m(7) * [ 1 (7.3) 

The conclusions of eq. (6.19) follow again: within models with horizontal gauge 

symmetry, m(v,) must be either below 65 eV or between 0.9 and 70 MeV. 

The analysis of the v, + e+e-vj mode is similar to the LRS case, with 

the same conclusions. Once the algebra H and the leptonic representations are 

specified, all the couplings are known, and the branching ratio for this decay is 

determined. 

The radiative decays cannot be mediated by the horizontal gauge bosons 

which are electrically neutral. 

These bounds on the masses of vP and v7 apply to a much broader class of 

models: in any model where the dominant decay mode is the 3v decay through an 

SU(2)L-singlet exchange, the bounds obtained here are valid. The same particle 

couples to both neutrinos and charged leptons which are their Sum partners, 
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and with equal strength. Thus the bounds (6.13) and (6.22) hold, leading together 

with the cosmological bound to 

m(vp) 165 eV 

m(v,) 165 eV or 0.9 MeV < m(v,) 5 70 MeV 
(7.4 

Simple group theoretical considerations show that these limits also apply to the 

case of a Higgs triplet with B - L = 0, namely: the same Higgs particle couples 

to neutrinos and their Sum partners, and with equal strength. Consequently 

the same results apply. 

The allowed range for the mass and the lifetime of vr, if it decayed via the 

channels discussed so far, is shown in Fig. 4. 

8. Substructure models 

Another possible future direction for physics beyond the standard model is 

the hypothesis of quark and lepton substructure, possibly accompanied by a 

substructure of Higgs particles, W and 2. At present, there are no convincing 

explicit substructure models. However, we can describe possible low energy ef- 

fects of such schemes in terms of effective interaction terms. In particular, if 

neutrinos have substructure at a typical energy scale A, we expect effective terms 

like 

(8-l) 

where v is a left-handed or a right-handed neutrino or antineutrino and g may 

be an effective strong coupling constant. Such terms could contribute to decays 

like vi + vjvkvl and analogous terms could induce other neutrino decays. 

The present model-independent bounds of A for all leptons and quarks are 

around A - O(TeV). However, model-dependent bounds involving generution- 

changing transitions (e.g. p + ey, p + 37, K + ep, AM(Kg - Kg), K -+ rep) 

lead to higher values of A, typically between 100 TeV and a few PeV [38]. 
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Since all neutrino decays involve generation-changing transitions, we must 

use the latter range of A-values. We obtain, e.g. 

rh + vjvkvl) - 
b(Vi)15 

A4 

or 

7(vi)[m(yi)15 - IooATev [ 1 
4 

7 s 1040 eV5sec. 

This, together with the cosmological bounds, gives 

A [ 1 419 
m(vi) 2 9 MeV 

100 TeV 

(8.2) 

(8.3) 

(84 

If neutrinos have substructure, and the dominant contribution to their decay 

comes from amplitudes with the characteristic substructure scale, then vP is 

lighter than 65 eV and v, is either lighter than 65 eV or between 9 and 70 MeV. 

9. Supersymmetry 

Supersymmetry introduces many additional particles. These particles, if 

lighter than the neutrino, may allow additional final states for neutrino decays. 

For each decay mode discussed in the previous sections there is a corresponding 

mode with two of the final particles replaced by their super-partners, provided 

that the final particles are lighter than the decaying neutrino. 

9.1 Vi ---) Vjtt 

Of particular interest is the scalar partner of the neutrino, the sneutrino fi. 

There are no model-independent bounds on the sneutrino masses. However, there 

are model-dependent lower bounds: 
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(ii;) Exchange of particles that arise in models beyond the supersymmetric stan- 

dard model, e.g. a AL Higgs triplet, a horizontal gauge boson, or their 

supersymmetric partners. In these cases, the amplitude is inversely pro- 

portional to powers of the mass of the intermediate particle. The SU(~)L- 
- a 

related process, & -+ !j&&, is forbidden because the charged leptons are 

experimentally known to be lighter than their spurtners. 

If the decays of vcl and/or v, proceed via the mechanisms (ii) or (ii;), their 

lifetime may be short enough to evade the cosmological bounds. In such a sce- 

nario both v,, and v, may have masses in all the experimentally allowed range. 

However, this requires the existence of one extremely light sneutrino, an unlikely 

possibility. 

9.2 OTHER DECAY MODES 

Charged sleptons have a lower bound on their masses, of order 20 GeV. 

Consequently, the mode v7 + ee”fi is kinematically forbidden. 

The photino may be massless. In this case, quark-lepton universality together 

with the lower bounds on squark masses (2 60 GeV) forbid an extremely light 

sneutrino in a large class of models [41]. C onsequently, vi + qfi is forbidden. 

The decay mode vi + y?vj is not excluded. However, it is expected to be 

suppressed by powers of compared to vi + 7rvj, and therefore is not 

relevant to our discussion. 

We conclude: present experimental bounds on spurticles musses allow ud- 

ditionul neutrino decay modes which may, in principle, fulfill the cosmological 

bounds for any neutrino muss. However, the spurticle muss spectrum needed for 

this scenario does not appear to arise in any reasonable known model. 
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IO. Spontaneously broken global symmetries 

When a global symmetry is spontaneously broken, mussless Goldstone bosons 

appear. This may suggest new decay modes: vi --+ vj + Goldstone boson. 

The decay rates depend on the symmetry breaking scale. If the Goldstone 

boson interacts with charged fermions, there are bounds on this scale. These 

bounds come from 

a. Astrophysical considerations of stellar energy loss [42,43]. 

b. Experimental bounds on charged lepton decay through a Goldstone boson 

emission [44]. 

There are no limits on the interaction scale of Goldstone bosons that interact 

with neutrinos only. 

There are several models with global symmetry which are relevant to neutrino 

decays: 

a. The triplet Majoron model [45]. H ere, neutrinos are light as a result of new 

physics at a scale much smaller than the weak interaction scale. However, 

as explained in the introduction, we believe that such a possibility is un- 

natural. We assume that the extreme lightness of neutrinos is a result of 

new physics at a high energy scale. Thus, we do not discuss this possibility 

any further. 

b. The singlet Majoron model [lo]. 

c. The familon model [46]. 

d. Other, more “exotic” models, which we briefly mention in the end of this 

section. 
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lo. 1 LEPTON-NUMBER SYMMETRY 

The minimal standard model has a global lepton-number symmetry. Once 

right-handed neutrinos are introduced, terms of the form VRVR may appear (due 

to VR being a gauge singlet). This leads to the breaking of the lepton-number 

symmetry. This breaking can be spontaneous, if the standard model is further 

extended to include an Sum @ U(l)y Higgs singlet S that carries L = -2. 

When S gets a v.e.v: 

a. The right-handed neutrinos get a Majorana mass term, h (S) VRVR. Here 

h is a Yukawa coupling. The mass scale of MR is R = h (S). 

b. A massless Goldstone boson appears, the Majoron J = Im S. 

In Section 3 we showed that the light neutrino mass matrix is (eq. (3.8)) 

%hD& -I- UTm$Ua -I- UTMRU~. (10.1) 

The Majoron couples to right-handed neutrinos only. As J = Im S, its coupling 

to the right-handed neutrinos is @- As the light neutrinos have a small right- 

handed component, the Majoron couples to them. The Yukawa coupling matrix 

in the light sector is derived by the U-rotation: 

(10.2) 

As the matrices (10.1) and (10.2) cannot, in general, be simultaneously diagonal- 

ized, the Majoron has non-diagonal couplings in the light neutrino sector. These 

couplings allow the decay [lo] 

(10.3) 

When taking U, and U, as given in eq. (3.9)) one finds that the mass matrix 

for the light neutrinos (10.1) is , while the Yukawa 

coupling matrix (10.2) is & . Consequently, the Yukawa 
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coupling matrix and the mass matrix can be simultaneously diagonalized up to 

0%. ( > 
The leading non-diagonal Ju,v, Yukawa coupling is 0 $$ . This is 

( > 
the result obtained in ref. [27]. H owever, the MaJ*oron does not have any coupling, 

diagonal or non-diagonal, to a massless neutrino. The decay (10.3) is not allowed 

if the decay product vj is exactly massless. This is because the Majoron couples to 

a light neutrino only if this neutrino has a right-handed component. An exactly 

massless neutrino, however, is purely left-handed. Consequently, it is decoupled 

from the Majoron. 

The most likely situation is that Vi is much lighter than ui, but not massless. 

Then the amplitude for the decay vi + JDj is proportional to q. 

The decay width is estimated 

The masses of the light neutrinos are m(vk) - j??l$k)l2. This gives 

h2 m(vi) 4 
I’(v~ + JDj) = z 7 [ 1 m(vj)- 

For h = 0.1, R = 1 TeV and m(vj) = 65 eV we get: 

7(vi)[m(vi)]4 = 5 - 1O34 eV4sec. 

The cosmological bound (2.19) gives for V~ 

m(vp) 2 13 MeV [q4 [-L]1’2 [!-E]‘i8, 

Thus, with R > 1 TeV we cannot have ZJ~ heavier than 65 e V. 

(10.4) 

(10.5) 

(10.6) 

(10.7) 

However, as the tree-level interactions of the Majoron are with neutrinos only, 

there is no experimental or astrophysical lower bound on the scale of the lepton- 

number symmetry breaking (when taking into account higher-order processes, 
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one may derive a very weak lower bound from stellar energy loss considerations 

[42]). We remarked in Section 3 that R is most likely to be above 1 TeV, but 

that on the basis of presently available direct experimental information it can 

still be as low as 50 GeV. If one assumes that R is indeed 50 Ge V (leading to 

VP-mass near its upper experimental bound), the Majoron-emission decay of vP 

may be consistent with the cosmological bound [47]. If the global lepton-number 

symmetry is broken at a scale smaller than Mw, the decay (10.3) allows vP with 

a mass between 70 keV and 250 keV. 

Note that the sum 8 U(l)y -singlet Higgs field S carrying L = -2 with a 

v.e.v below a TeV, cannot exist in LRS models or in any GUT (like SO(lO), 

[SU(3)13 or Es) which contains the LRS group. It can only exist as an ad-hoc 

field, invented for the sole purpose of allowing a Majoron emission of a vP with 

a mass close to its experimental limit. Note also that the above “window” for 

vP is valid only if the cosmological limit (2.19) is saturated. If the universe is 

open with R < 0.5 or if its present age is at least 1.2 x lOlo years (rather than 

lOfo years), the resulting strengthening of the cosmological bound prevents vP 

decay even for R = 50 GeV. 

For uT we get 

m(v,) 2 11 MeV [y]“’ [g-J2 [y$‘. (10.8) 

Even if vP has a mass at the upper experimental limit, namely 250 keV, u, should 

be heavier than 4 MeV. 

We conclude: If global lepton-number symmetry breaking takes place at a 

scale larger than Mw, uP is lighter than 65 eV and v7 is either lighter than 65 

eV or heavier than a few MeV. If, however, the scale of global lepton-number 

symmetry is smaller than Mw, it is possible to have vP between 70 keV and 250 

keV. 
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lo.2 GLOBAL HORIZONTAL SYMMETRY 

The spontaneous breaking of a global horizontal symmetry implies massless 

Goldstone bosons, the “familons”. Neutrinos may decay [46] through 

Vi + fVj (10.9) 

where f is a familon. While estimating the decay rate, two important differences 

from the Majoron emission decay should be taken into account: 

a. As familons carry no lepton number, they do not contribute to the Majorana 

mass of neutrinos. Consequently, there is no simultaneous diagonalization 

of the mass matrix and the familon couplings. 

b. Charged leptons may decay into each other through familon emission. This 

gives a lower bound on the scale F of the familon interaction [43,44]: 

F > lOlo GeV - (10.10) 

The coupling of the familon to light neutrinos of different generations is es- 

timated [46] to be h - [WI. Here h is a Yukawa coupling. For F = lOlo GeV 

and h = 0.1 we get 

7(vi)[m(vi)]3 = 3.5 - 1O26 eV3 sec. 

This and the cosmological constraints (2.19) give: 

m(vi) 2 1.7 MeV 
[lO1&eV]’ [?I’ 

(10.11) 

(10.12) 

For usual values of Yukawacouplings, the familon model does not allow vP heavier 

than 65 eV. If we take h > 0.3, this mode may allow vP with a mass near its 

upper experimental limit (for h = 1, we obtain m(vP) 2 17 keV). 

We conclude: the jamilon model does not allow vp heavier than 65 e V, unless 

the Yukawa couplings of the jtimilon are large (h 2 0.3). The decay is fast enough 

(with F - lOlo GeV) for v7 heavier than a few Me V. 
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lo.3 OTHER MODELS WITH GLOBAL SYMMETRIES 

The sequential lepton-number model is an extension of the Majoron model, 

designed to give faster neutrino decays [48]. The main ingredients are: 

a. The leptons in each generation have a different lepton number Zi. 

b. There are several Higgs fields (we study only the multiple singlets model), 

each with a different lepton number Lj. 

We find that only very restricted choices of the lepton-numbers L, allow this 

decay mode (various combinations lead to either a degeneracy between neutrinos, 

or purely diagonal Majoron couplings). Just as in the original Majoron model, if 

the light neutrino is exactly massless, it decouples from the Majoron. We obtain 

the following relation (for m(vj) = 65 eV, h = 0.1) 

T(Vi)(77Z(Vi)]2 = 5s10fo & [ 1 
2 

eV2sec (10.13) 

Consequenly, the cosmological bound sets an upper bound on the scale of Zepton- 

number breaking, R 5 6. lo7 GeV. As the MaJ*oron does not couple to charged 

leptons, there is no other detectable implication of the model. 

Several other models with global symmetry breaking were suggested: 

a [U(l)]” symmetry group carried by leptons and additional Higgs fields [49], a 

U(1) group carried by only Higgs doublets added to the LRS model [50], etc. 

They all require a similar degree of complexity. 

Our overall conclusion in this section is that neutrino decays into Majorons or 

familons may be consistent with the cosmological bounds only when we assume 

very unusual values of the parameters (e.g. R = 50 GeV or h - 1) or when 

extremely complicated ad-hoc assumptions are invoked. 
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11. Additional constraints from the see-saw mechanism 

In all models discussed so far (except for the unlikely ad-hoc schemes men- 

tioned in Section lo), we could not have vP heavier than 65 eV and v, with a 

mass above 65 eV and below 900 keV. These bounds are independent of the 

specific form of the neutrino mass matrix. In this section we consider possible 

additional constraints which may be imposed on neutrino masses by the see-saw 

mechanism. 

11.1 MASS RATIOS AMONG NEUTRINOS AND THE “REASONABLE SEE- 

SAWn 

For the sake of definiteness, we study the see-saw mechanism in the minimal 

LRS model described in Section 6. However, our conclusions are quite general. 

The neutrino mass matrix is given in eq. (6.1): 

M = 

-hvL ;(M + h2k2) 

$(h;kl + hifka) hvR > 
(11.1) 

The h’s are Yukawa coupling matrices. As mentioned earlier 

a. VL - g is very small and we neglect it. 

b. The Dirac mass matrix of the charged leptons is i(hzkl + hl kz), and is 

expected to be of the same order of magnitude as mD(v). For simplicity we 

replace mD (v) + mD(f?). (We note that this assumption is not better than 

a similar assumption on the up and the down quark masses. We remember 

that the masses of the two quarks in the same doublet may differ even by 

an order of magnitude). 

We do not know the form of the h-matrices. Two “reasonable” possibilities 

are: 

(i) The new physics that leads to the Majorana mass matrix MR is “blind” 

to whatever mechanism which is responsible for the mass hierarchy among 
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generations. In the basis where MR is diagonal this means 

h, - h, - h, (11.2) 

If ??Zg and MR can be diagonalized simultaneously we get m(vi) 

and in particular: 

ml; a 
4& , 

4-4 44 2 -N mw [ 1 m(f4 (11.3) 

(;z) The mechanism that gives the mass hierarchy among generations in mD 

acts in a similar way in MR. In the basis where MR is diagonal this gives 

h, : h, : h, oc m(e) : m(,u) : m(T) (11.4) 

If ?Y%D were diagonal at the same time, mass ratios between neutrinos would 

be similar to those between charged leptons, and in particular: 

m(v4 m(4 -N 
mh) mo’ 

(11.5) 

In the general case, mD and MR cannot be simultaneously diagonalized. 

However, it turns out that in most cases, a “reasonable see-saw” matrix, namely 

one that follows either of the assumptions (i) and (ii) gives: 

m(4) 44) ’ -N - 
m(vj) [ 1 m(ej) 

with 1 5 p < 2. (11.6) 

In order to have p > 2 we need, in general, a matrix MR with an inverted 

hierarchy, e.g. k - #. We do not know any sensible model with such a 

prediction, but we cannot completely exclude it and we discuss this possibility 

in Section 11.2. 

The bound p 2 1 is somewhat less certain for the following reasons: 
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a. Neglecting the contribution of VL may be unjustified. For example, the mass 

differences among different generations may result from different v.e.v’s of 
kiwz several 4’s. If there is just one Higgs triplet, we generally have VL - vR, 

In such a case, all the light neutrinos masses are expected to be of the same 

order of magnitude, m(v) - Lrnq. C onsequently, we may obtain p = 0. 

b. If MR vanishes at tree level but gets a large contribution at the one or two 

loop level, then it may depend on Yukawa couplings of h1,2. This may lead 

to hi CC [m(li)]” with q 2 1. For example [51], in the [SU(3)]3 @ 23 GUT, 

q = 3, leading to an inverted hierarchy among the light neutrinos and to 

p=-1. 

We conclude that 1 5 p 5 2 is “reasonable” and likely, but cannot be proven. 

The p 5 2 assumption is somewhat more solid than the p 2 1 assumption. In 

the following sections we will refer to the inequality (11.6) as the “reasonable 

see-saw” assumption. 

11.2 HOW DIFFICULT IS IT TO EVADE THE “REASONABLE SEE-SAW” 

ASSUMPTION? 

Before proceeding to derive significant new results with the aid of the “reason- 

able see-saw” assumption, we wish to consider examples of schemes which manage 

to evade this assumption. By studying the complexities involved in such schemes, 

we can get a good feeling for the validity of the assumption. 

The “reasonable see-saw”assumption (eq. (11.6)) consists of two inequalities: 

p 2 1 and p 5 2. In the previous section we discussed ways of avoiding p > 1. 

Since our strongest results will depend mainly on the p < 2 assumption, we will 

now consider several scenarios which actually lead to p > 2. We will see that, 

while such scenarios cannot be ruled out mathematically, we cannot really find 

any good physical motivation.for them. We will therefore maintain our conclusion 

that p 5 2 is very likely but cannot be proven. 
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Our first scenario refers to the case in which mD and MR can be simultane- 

ously diagonalized. In that case, we have: 

hi- m(f?i) 2-p 
hj - [ 1 m(ej) 

(11.7) 

where hi, hi are the Yukawa couplings in the Majorana masses of the ;,j gener- 

ations. For p > 2 this requires an “inverted hierarchy” in the Majorana masses. 

For instance, in order to obtain: 

m(v4 m(7) 3 -N mh) [ 1 m(CL) 
we need: 

(11.8) 

(11.9) 

We are not aware of any simple “see-saw” which would lead to such an inversion. 

The only scenario we can offer for it involves an extended type of “see-saw” which 

actually appears in some GUTS [52] and string inspired models [53]. In such 

theories, VR does not acquire a Majorana mass, but there are additional fermions 

which are singlets of the gauge group and may acquire Majorana masses. This 

gives an “extended” see-saw matrix of the form: 

M=(+ ; ;;) (11.10) 

where ?ng, MD and Mx may correspond to three different mass scales. For the 

purpose of evaluating the light neutrino masses, we can replace this “extended 

see-saw” by a simple effective see-saw matrix with the substitution: 

MR = -MDM~‘M$ (11.11) 
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The light neutrinos mass matrix is then 

mD(M~)-‘Mx(MD)-‘rn~ (11.12) 

If, for some reason, Mx has a hierarchy among generations (as in mD), but MD 

is “generation-blind”, then the eflective MR has an inverted hierarchy and we end 

up with p = 3. On the other hand, if both MD and Mx have no hierarchy, or if 

both have a similar hierarchy, the “reasonable see-sawnremains valid. Even with 

this complicated scenario which may allow p = 3, we find it difficult to imagine 

reasons for obtaining p > 3 values. This will become important in Section 11.3. 

Our second scenario relates to the more likely case in which the submatrices 

mD and MR cannot be simultaneously diagonalized. We have to assume some 

explicit form for the non-diagonal mass matrices. An attractive (though not 

unique) possibility is the Fritzsch form [54] (f or simplicity we assume a symmetric 

Yukawa matrix) : 

hepk3 0 

0 h,,kl (11.13) 

h,,h h&o 

where ki are v.e.v’s of different Higgs fields 4i and hij are Yukawa couplings. 

This form may arise in a variety of models and is presently consistent with 

all data on quark masses and mixing angles. Typically, we have a hierarchy of 

the form 

h,,ko > h,,kl > h,,ks (11.14) 

The simplest way of obtaining the Fritzsch form is to assume that fermions as 

well as Higgs fields carry a spontaneously broken “generation-number” (which we 

label G). In such a case, Yukawa couplings that do not conserve G vanish. For 

example, if G,, G, and G, are 2, 1 and 0 respectively, and there are three Higgs 

doublets with G=O, 1 and 3 ,that obtain v.e.v’s ko, kl, k3 as in eq. (11.13), we 

obtain a Fritzsch form. The hierarchy is completely determined by ko > kl > kg 
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and all Yukawa couplings may be of the same order of magnitude. The same 

type of matrix arises when the fermion G-values are -l,+l and 0 with only two 

Higgs doublets carrying G = 0 and 1, but then there should be some hierarchy 

among the Yukawa couplings as well. 

If we assume that mD and MR have Fritzsch forms, in which all matrix 

elements are either comparable to each other or obeying a hierarchy similar to 

eq. (ll.l4), we usually obtain light neutrino masses which are consistent with 

the “reasonable see-saw” assumption. 

We have searched through all possible matrices of this type and found only 

several artificial examples in which, by making ad-hoc assumptions we could 

extract neutrino mass ratios which violate the “reasonable see-saw”hypothesis 

and yield p - 3 values. These examples are described in Appendix B. 

After considering a large variety of possibilities we therefore conclude that 

avoiding the “reasonable see-saw”is artificial, unlikely but not impossible. We 

now proceed to study the consequences of the “reasonable see-saw”. 

11.3 CONSEQUENCES OF UREASONABLE SEE-SAW” MATRICES 

As we have shown, the cosmological bound on the energy density of the 

universe can be fulfilled only if 

m(vcl) 5 65 eV ; m(v,) 5 65 eV or m(v7) 2 0.9 MeV (11.15) 

On the other hand, the “reasonable see-saw” assumption puts an upper limit on 

the mass ratio (the p 5 2 limit of eq. (11.6)): 

mw < m(r) 2 - 300 [ 1 44 - mb.) 
(11.16) 

However, if v, is heavier than 0.9 MeV, the same mass ratio must obey 
m ur 
-i-i m up 2 14000, demanding p 2 3.4, in clear conflict with the “reasonable see- 

saw”. We have seen in the previous section that p - 3 values are quite unlikely 
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and p > 3 is even less plausible. This leads to the conclusion 

m(vp) 2 65 eV ; m(v7) I 65 eV (11.17) 

If neutrinos are light as a consequence of a %easonable see-saw” mechanism, 

then it is impossible to accomodate the cosmological constraints on their masses, 

unless they are all lighter than 65 eV. 

The strong limits obtained in eq. (11.17) have further implications. The 

lower bound on the mass ratio among neutrinos (the p 2 1 limit of eq. (11.6)) 

can be combined with m(v,) 5 65 eV to give: 

m(vp) 5 4 eV ; m(v,) 5 0.002 eV. (11.18) 

Thus, the ureasonable see-saw” hypothesis, together with our previous conclu- 

sions, leads us to an extremely strong new upper bound on the masses of v7, vP 

and v,. 

As the mass of v, is assumed to be approximately given by m(v7) = Lrnq, 

the above upper bound on m(v,) gives a lower bound on the scale R: 

R > [m(r)12 
- 65 eV 

- 50 PeV. (11.19) 

This is a very significant bound if R is the scale of LRS-breaking or of a horizontal 

gauge-symmetry breaking. This bound is not significant for GUTS, in which the 

breaking-scale is known to be much higher. 

We can see only two possible ways of evading the conclusions (11.17)-(11.19): 

a. Avoid the ureasonable see-saw” assumption, so that eq. (11.16) is not valid. 

We discussed this possibility in Section 11.2 and in Appendix B. 

b. Find additional decay channels for vP and/or v7. Such decay modes should 

either have no relation to analogous decays of charged leptons, or be heavily 

suppressed in the charged sector. In this way, eq. (11.15) may be circum- 

vented. We have discussed such cases in Section 10. 
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12. A fourth leptonic generation 

12.1 up AND v, DECAYS 

One of the simplest extensions of the standard model is the addition of a 

fourth fermionic generation. We label the fourth charged lepton by CT, and the 

corresponding neutrino by v~. As yet, there is no experimental evidence for their 

existence. There is a direct experimental lower limit [55] m(a) 2 41 GeV. The 

p-parameter measurement puts an upper limit [56] on the mass-splitting between 

o and v,: if vC is very light, Q cannot be heavier than 300 GeV. If the fourth 

generation neutrino v, is sufficiently heavy (e.g. m(va) > 4.2 GeV) it can be 

stable or unstable (see eq. (2.14)). Still, the existence of a fourth generation 

could affect the decays of lighter neutrinos. We first study these effects, and 

calculate whether our former conclusions remain valid. 

The existence of a fourth generation enhances the radiative decay vi -+ “jr 

for i = p,r [31]. Th e reason is that as long as all charged leptons masses are 

much smaller than Mw , this decay channel is suppressed by a GIM-mechanism. 

The existence of a charged lepton with a mass comparable to Mw eliminates the 

GIM-suppression. To see this effect, we note that in the expression for the decay 

width (eq. (4.13)), 

1 
2 

lT(Vi --) Vj7) = 
aGf[m(vJ15 

64~~ c ujauiaF(ra) 3 
a 

(12.1) 

the term in square brackets is approximately given by UiaUja[F(rc) - F(O)]. The 

function [F(ra) -F(O)] varies slowly from a to 4 as r. varies from 1 to infinity. In 

the limit that ra approaches infinity, the lifetime for the radiative decay is [31]: 

r(vi)[m(vi)]5 = (UicUjb)-2 1O36 eV5sec. (12.2) 

The requirement for radiative lifetime shorter than lo4 set, cannot be satisfied 

for vP. In the v, case, we are again led to the range of masses above 10 Me V. 
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In all other processes, the existence of a heavier leptonic doublet does not 

affect the decay rate. Thus, our former conclusions remain valid: up is lighter 

than 65 eV; vr can be heavier than 0.9 MeV (if it is unstable), but if we assume 

a “reasonable see-saw”, m(vr) 5 65 eV as well. 

12.2 v, DECAYS WITHIN THE STANDARD MODEL 

As mentioned before, v, could be stable or unstable, with a mass larger than 

4.2 Ge V. However, if we make the “reasonable see-saw” assumption we obtain 

m(4 2 m(h) I - [ 1 m(d m(h). t (12.3) 

This is exactly the assumption which led us to m(v7) 5 65 eV. The charged 

lepton mass is bounded by the p-measurement, m(a) 5 300 GeV. Putting these 

limits into eq. (12.3) gives 

m(v,) 5 2 MeV. (12.4) 

Can we have a V~ with a mass larger than 65 eV and lighter than 2 MeV? To 

answer this question, we repeat our analysis for the various possible v, decay 

modes. 

The rate of the Z-mediated decay into three lighter neutrinos depends on 

the coupling of 2 to neutrinos of different generations, which is 0 g . As ( > 
m(a) 5 300 GeV, and R 2 50 PeV (eq. (11.19)), g 5 10-l’, which makes this 

channel irrelevant to our discussion. 

The W-mediated decay into e+e-v, depends on the ve -v, mixing. The same 

upper bounds as in the v, case (eq. (4.12)) apply here and, consequently, the 

decay is too slow for m(vo) < 10 MeV. 

The radiative decay lifetime is given (for v, lighter than 2 MeV) by eq. (12.2) 

with i = cr. The double photon decay is given by eq. (4.17). Both are much too 

slow to allow a v, in the mass range in question. 
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We conclude that in the extended standard model (with right-handed neu- 

trinos and fourth generation fermions) with a “reasonable see-saw” mass-matrix, 

m(vc) < 65 eV. 

12.3 vc DECAY IN LRS AND HORIZONTAL MODELS 

The fourth neutrino vu may still be heavier than 65 eV and lighter than 2 

MeV, if it decayed into three neutrinos through one of the channels described in 

Sections 6 and 7. We cannot rule out such a decay, because we have no upper 

limit on the decay of the hypothetical charged o into three charged leptons. 

However, we can reverse the argument, assume m(vO) > 65, eV, and study the 

implications on charged leptons decays. In the models of Sections 6 and 7, there 

is a relation between v, and u decays: 

qa + 34 m(u) 5 
r(vg -+ 3~) = m(v,) ’ [ 1 

We are interested in the branching ratio 

B _ rb --) 34 
r(0 4 evv) 

(12.5) 

(12.6) 

where o + evD is the unormal”, W-boson mediated decay which occurs in the 

standard model. We have: 

r(0 -+ evv) m(u) 5 
r(7 -+ evv) = m(r) [ 1 

The three equations (12.5), (12.6) and (12.7) together give: 

(12.7) 

(12.8) 

If m(v,) > 65 eV, the 3v firial states provide the main decay modes and thus 

I’(v, + 3v) = [r(~~)]-~. Th e v, lifetime must fulfill the cosmological bound 
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(2.19): 

[m(vc)12 r(v,) 5 2 - 1020 eV2 set 

and we assume the “reasonable see-saw” relation (12.3): 

4-4 2 m(h) 5 - [ 1 m(4 44, 

(12.9) 

(12.10) 

with m(v7) 5 65 eV. Using eqs. (12.8), (12.9) and (12.10) we then obtain a 

lower bound: 

I’(0 -+ 3e) 

I+-+evv) 

> 3 
’ 
6 [ 41 GeV 

- m(u> 1 6 , * 
(12.11) 

This leads to an overall branching ratio Fi<zh between 28% (for m(a) = 
-73 

41 GeV, m(vC) > 65 eV) and 0.5% (for m(a) - Mw, m(vfl) > 65 eV). A 

branching ratio of the order of 28% at m(a) - 41 GeV would have probably 

been observed by the UAl detector and is presumably already ruled out. 

We conclude: the “reasonable see-saw” assumption leads to the conclusion 

that m(v,) 5 2 MeV. If m(vo) > 65 eV, it should decay into 3v through AL 

or Ha-exchange. The decay of o into three charged leptons is then an important 

decay mode. 

If, however, a fourth generation generation lepton is observed and its branch- 

ing ratio for the 3.!? final state is found to be smaller than the bound (12.11), we 

will be led to conclude that v, is also lighter than 65 eV. In that case, the “rea- 

sonable see-saw”assumption will allow us to further decrease the upper bounds 

for m(vr), m(vP) and m(v,). All three bounds (eqs. (11.17), (11.18)) become 

smaller by a common factor ,” z . 3-i 
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12.4 A FOURTH GENERATION IN THE MAJORON SCHEME 

In all “beyond standard” models with a scale above 1 TeV, the “reasonable 

see-saw” assumption leads to the conclusion that v,, vP and ZJ, are lighter than 

65 eV, while u, is lighter than 2 MeV. In Section 10 we mentioned that if one 

assumes that global lepton-number symmetry is broken at a scale as low as 50 

GeV, the neutrinos can have masses near the upper experimental bounds [47]. If 

experiments find m(a) - 50 GeV, the mass of v, is predicted to be O(50 GeV) as 

well. Such a neutrino can be stable or unstable without violating the cosmological 

bounds. 

We conclude: In the Majoron scheme, with the masses of all three known 

neutrinos near their upper experimental bounds [47], it is possible that all Zeptons 

of the fourth generation (a, U,L, v,~) have their masses around 50 GeV. 

13. Conclusions 

In our analysis we have used five different ingredients: 

(i) Direct experimental bounds on neutrino masses. 

(ii) Cosmological bounds on the masses of stable neutrinos and on the relation 

between the masses and the lifetimes of unstable neutrinos. 

(iii) Theoretical calculations of neutrino decay rates and their relations to neu- 

trino masses in models in which all relevant parameters are known (partic- 

ularly the standard model, but also some “beyond standard” models). 

(iv) Experimental bounds on specific decays of charged leptons and theoretical 

relations between such decays and neutrino decays. These relations are 

helpful in models (i.e. LRS-theory, horizontal symmetry, substructure) in 

which the relevant parameters are not known. 

(v) The “reasonable see-saw” assumption. 
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The first four ingredients are based on experimental data, on the standard 

cosmological model, on the standard electroweak theory and on very conservative 

and general assumptions concerning “beyond standard” models. We consider 

these ingredients to be very reliable. The fifth ingredient (“reasonable see-saw”) 

is slightly less solid, but is still likely to be valid. 

By combining the first four ingredients we conclude: 

m(u,) 5 18 eV 

m(up) 5 65 eV 

m(u7) 5 65 eV or 0.9 MeV 5 m(v,) 5 70 MeV 

(13.1) 

By combining all five ingredients we conclude: 

m(u,) 5 0.02 eV 

m(uP) 2 4 eV (13.2) 

m(vT) 5 65 eV. 

This last conclusion has additional important implications. A see-saw mech- 

anism together with an upper bound on a left-handed neutrino mass, imply a 

lower limit on the Majorana mass of the corresponding right-handed neutrino: 

(13.3) 

(1 PeV = lo3 TeV). F or a “see-saw” driven by the GUT scale or the Planck 

scale, this bound is useless. However, for LRS theories it implies (assuming 

hAvv L gweak ): 

AI 2 50 PeV (13.4) 

and for a “see-saw” driven by a horizontal symmetry we obtain: 

M(Ha) 2 50 PeV (13.5) 

Both of these limits are very significant. In the case of LRS theories they imply 

that no right-handed W or 2 will be produced in experiments within the next 
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several decades and that most effects (including CP-violation) which are due 

to right-handed currents are negligible. Previous bounds on the scale of right- 

handed currents [57,58,59] were in the range of a few TeV, well below our new 

bound. In the case of horizontal symmetry, the new bound is stronger than 

previous bounds [60,38] obtained from rare processes such as /JN + eN, ~1 + 

3e, p + ey, K” --+ ep, K+ + z+pe and AM(Kz - Ki). 

All our bounds seem to be valid within the framework of all currently popular 

“beyond standard” models (with the possible exception of the ad-hoc schemes 

mentioned in Section 10). We believe that these bounds are theoretically signifi- 

cant. The upper bounds on m(v7), rn(VJ, m(v,) are, respectively, six, five and 

three orders of magnitudes below the corresponding experimental bounds. The 

lower bound on M(WR) is four orders of magnitude above the previous bounds. 

From the pure experimental point of view, these bounds imply that direct exper- 

iments in the foreseeable future have no chance of observing neutrino masses or 

right-handed W-bosons. 

Can we expect additional information from experiments in the next few years? 

Improvements in the direct bound on m(v,) may help eliminate the small “win- 

dow” allowed by the model of Ref. [47]. If a f ourth generation lepton is discovered 

and if it does not decay to three charged leptons, we may obtain bounds which 

are even stronger than eq. (13.2). Improvements of the bounds on r + 3e may 

strengthen our confidence in the consequences of the “reasonable see-saw”. 

The resulting range of allowed neutrino masses is perfectly consistent with 

models which produce a see-saw based on the Planck scale, the GUT scale or the 

so-called intermediate scale (- 1011 GeV). It is also consistent with the neutrino 

mass range required for explaining the solar neutrino puzzle in terms of resonant 

neutrino oscillations in matter [61]. 

We wish to thank H. Haber and M. Karliner for helpful discussions. One of 

us (Y.N) acknowledges the support of a Fulbright fellowship. 
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APPENDIX A 

THE HIGGS SECTOR IN THE MINIMAL LRS MODEL 

We study the masses of the Higgs particles in the minimal LRS model [25]. 

The Higgs sector consists of: 

The v.e.v’s of the Higgs fields are of the general form: 

(A-1) 

(A-2) 

The four v.e.v’s are complex, in general. However, by an appropriate sum 63 

Su(2)R tranformation, we can make kr .& and VL’VR real. We define c f arg(ki) 

and q - arg(vl;). From now on, we denote by Icr, k2, VL, VR the absolute values 

of the v.e.v’s. At the minimum of the potential: 

vL = _ (711 + m)kh cos@~) + m{k,2 c+(rl + s)] + k; co@(rl - s)]} 

[/‘3 - 2(/‘1 + P2)]‘JR 

(A 3) 
. 

where the 7’s and the p’s are coefficients in the Higgs potential defined in Ref. 

[25]. Thus, assuming vb >> k2 = kf + kz, we naturally get vi < k2. The mass 

56 



matrix for the charged gauge bosons is: 

-f&k2 

24 + k2 > 
(A.4 

COnSeqUently, M(WR) >> kf(WL) and the mixing between them, c = p, is R 
very small even if one does not assume 2 < 1 [59]. 

We first consider the masses of the Higgs particles [62] that arise only from 

the SU(2)R-breaking (i.e. k 2 - 2 - 0). As the AL-triplet is an su(2)R singlet, - vL - 

its three members are degenerate in mass: 

[MIX =PV; t (A-5) 

where p E ps - 2(pr + ~2). With no fine-tuning, we expect p = O(l), and thus 

the AL-triplet has its mass at the scale of SU(2)R-breaking (the consequences of 

assuming p < 10h8 are discussed in Ref. [63]). 

The masses of the right-handed triplet members are: 

[M(A;+)12 = -2~~4 ; [M(A;)12 = 0 ; [M(A;)]” = -(PI + p2)4 (A.6) 

A& and Im[A’&] are the Goldstone bosons. The mass matrix for the neutral cj 

fields is: 

pw0)12 = 4 
a11 + a22 + Pll 2w2 + P12 

2Q12 + P12 ml + a22 + P22 > 
(A-7) 

where the CY’S and p’s are defined in Ref. [25]. The mass matrix for the charged 

C#I fields is similar to the matrix (A.7). W e now “switch-on” the v.e.v’s ICI and k2, 

and study the new mass terms that arise to O(kvR): 

Ai+ : The mass of the doubly-charged Higgs gets no corrections to this order. 

Thus: 

[M(A,++)12 = pv; + O(k2) (A-8) 

A;: The singly-charged Higgs field mixes with the 4+ fields. The mixing term is 

a function of all the 7ij-coefficients, f(y)kvR. The mass-squared difference 
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between Ai and q3+ is a function of all the pi, crii and &-coefficients, 

g(p, a, P>v&. Thus, 

WN)12 = 
PV; i- O(kvR) if 7 5 k; VR 
PV; + O(k2) otherwise. 

(A-9) 

A:: The neutral Higgs field mixes with the do fields. The mixing term is related 

to the mixing term for the AL through a Clebsh-Gordan coefficient. The 

mass differences are exactly the same in both cases. Thus, our conclusions 

are similar to (A.9). 

We conclude: Assuming that all the coeficients in the Higgs potential are 

O(l), and that there are no accidental cancellations among them, the mass split- 

tings within the AL triplet are: 

IwN+N2 - ww121 
wPQ+I12 

d[$] _.[;;~\]2<2.5x10-3 (A.lO) 

If we fine-tune the Higgs potential parameters to 0 

_O[;] wO[;[;i] <5~10-~ (A.ll) 
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APPENDIX B 

GENERATION NUMBERS AND EXCEPTIONAL MASS RATIOS 

We survey matrices MR with no hierarchy, but with special forms dictated 

by some horizontal - discrete, global or local - symmetery, which may give 

zgj’ [zy’. 

As discussed in Section 11.2, we assume that fermions as well as Higgs fields 

carry a spontaneously broken “generation number” which we label G. For the 

sake of definiteness, we take Ge, G, and G, to be 2, 1 and 0 respectively, and 

assume that there are three Higgs doublets with G=O, 1 and 3, that obtain 

v.e.v’s ko, kl and k3, respectively. Similar results are obtained from other sets 

of G-values. The resulting mass matrix is of the Fritzsch form [54] 

heph 0 

0 h&l 

h,rh h&o 

VW 

We first study matrices MR with three eigenvalues different from zero. We 

find that a necessary condition for E$+- [a$]” is that the matrix elements of 

MR fulfill [MR] 11 = 0, [M~]l2 = O(R). (In th e 1 anguage of generation numbers: 

there is no AR multiplet with G = 4, while there is one with G = 3). 

We denote the v.e.v of the G = 3 Higgs by vs. If there is also a Higgs with 

G = 0 then 

We are assuming that there are no AR fields with G = 1, 2. With ?ng of the 

form (B.l) we get 

44 b(r)12 -N . - N 3 4.103. 
mC”cl) [m(e)]li2 [m(p)]“j2 Z vO 

W) 

If 213 - vo, this is equivalent to It is interesting to note that a 
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The peculiar scenarios described in this Appendix are the simplest examples 

we could find for see-saw matrices which evade the “reasonable see-saw” hypoth- 

esis. Their extreme ad-hoc nature strengthens our belief in the validity of that 

hypothesis. 
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