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ABSTRACT

We study the constraints imposed on the masses of v., v, and v; on the basis
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1. Introduction

If the known left-handed neutrinos are ezactly massless, neutrino physics
becomes relatively simple. There are no neutrino oscillations, no mixing among
different generations, no neutrino decays, no mass pattern to explain, no interplay
between Dirac and Majorana masses, etc. There is “only” one problem: We must
find some ezact symmetry which prevents the neutrinos from acquiring masses
to all orders in the standard model as well as in the presence of all possible
new physics effects which go beyond the standard model. No such principle is
known and most theories beyond the standard model actually allow a variety
of contributions to the neutrino mass. Consequently, it is widely believed that
neutrinos do have masses. In this paper we assume that neutrinos are light, but

not massless.

If the neutrinos do have masses, we immediately face a long list of new ques-
tions. We may have right-handed neutrinos with new interactions. The number
of fundamental parameters of the standard model increases. We have not only
unknown masses but also Cabibbo-like generation mixing among leptons and at
least one KM phase leading to C P-violation. All the unsolved problems con-
cerning the masses and mixing angles of quarks and charged leptons, suddenly
arise in the neutrino sector. We are likely to have neutrino oscillations in vac-
uum, possibly enhanced in matter. Neutrinos are likely to decay in various ways,
raising the question of their lifetimes and decay branching ratios. We may have
both Dirac and Majorana mass terms, leading to neutrino mass matrices even in
the case of one generation and to interesting mass patterns in the realistic case

of several generations.

The existing experimental information on all of these issues consists only
of upper limits. There is no conclusive evidence for neutrino masses, mixing,
oscillations or decays. No one has seen evidence for right-handed neutrinos,

Majorana masses or C P-violation in the leptonic sector.

The present direct limits on the masses of the three known left-handed neu-



trinos are 1,2, 3]:
mr,) <18 eV
mfv,) <250 keV (1.1}
m(v;) <70 MeV

It is very clear that these neutrinos are much lighter than the corresponding
quarks and charged leptons in the same generations. How can we explain this
fact? Im principle, the Dirac masses of the neutrinos are free arbitrary parameters
of the standard model. In order to *account for” the tiny v, mass, all we have
to do is to declare that the single Higgs doublet of the minimal standard model
couples to v, with a Yukawa coupling which is smaller than 1071°. This would be
unsatisfactory for two independent reasons. We do not understand the reason for
such a small Yukawa coupling and, even if we did, we do not know why it applies
only to neuirinos and not to any other fermions in the standard model. Such
a situation cannot be rigorously ruled out but it would be extremely unnatural

and we assume that ¢t does not occur.

An alternative possibility is to assume that left-handed neutrinos have only
Majorana masses which are due to their direct coupling to a Higgs triplet carrying
two units of lepton number. However, in order for these masses to be extremely
small we must have either a tiny vacuum expectation value for the Higgs triplet
or, again, extremely small Yukawa couplings. Such a possibility is as unlikely

and unnatural as the previous one and we assume that it does not occur,

There must be a good explanation for the fact that left-handed neutrinos are
much lighter than all other fermions. Fortunately, we have a general mechanism
which can lead to such an explanation. Assuming that we have some physics
beyond the standard model and that it corresponds to a new energy scale
A > My, we may describe its low energy effects in terms of an effective La-

grangian. Such a Lagrangian may include a dimension-five term of the form

%¢¢VLVL (1.2)
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where ¢ is the usual Higgs doublet of the standard model, vy, is any left-handed
neutrino and h is an unknown dimensionless effective coupling constant. With
the usual symmetry breaking of the standard model, such a term would vield 2

neutrino Majorana mass of the general order of magnitude of:

h 2

M) = M8 (1.3)

A
Ordinary fermion masses are of order k' (¢), where &' is the usual Yukawa coupling
of ¢ to fermions. It is therefore clear that the resulting neutrino (Majorana) mass
is substantially smaller than the normal {Dirac) mass of an ordinary fermion

(quark or charged lepton) by a ratio:
M{y) _ h{4)

MG - wa <1 (1.4)

For sufficiently large A we can easily get extremely small neutrino masses.

The above scenario is sufficiently general to accomodate a wide variety of
theoretical ideas which go beyond the standard model. The only crucial ingredi-
ent is the existence of a new energy scale A and the ability of the new physics to
induce an effective term of the necessary form (or, possibly, a higher dimension
term yielding a neutrino mass which is inversely proportional to a higher power of
A). The best known realization of the above mechanism is the “see-saw” maftrix

[4] for neutrino masses.

In this paper we assume that the general mechanism responsible for the
small neutrino masses is of the type described above. We combine information
coming from cosmological considerations, theoretical particle physics arguments
and indirect relations to experimental measurements of other processes in order

to set severe upper bounds on the masses of the three known neutrinos.

Our analysis runs along the following lines [5]: Cosmology leads to a well

known bound on the masses of stable neutrinos [6,7]. However, neutrinos with



masses (except the lightest one) are practically certain to be unstable. In that
case, cosmology provides us only with a relation between the mass and the life-
time of the unstable neutrino [8]. Such a relation, by itself, cannot exclude any
neutrino mass-value. However, for any given neutrino decay-mode in any given
model {“standard” or “beyond standard”) we may derive additional relations
between the mass and the lifetime of the decaying neutrino. By combining the
cosmological and the particle-physics constraints for the decay modes of the same
neutrino we may then be able to exclude certain mass ranges and to derive strong

bounds on the neutrinc mass.

Neutrino decays within the standard model as well as some neutrino decay
modes in some “beyond standard” models were discussed by earlier authors. In
this paper we attempt to complete the discussion for all decay modes in all “pop-
ular” classes of theories which go beyond the standard model. For completeness,
we briefly review previous results and combine them with our own results in order
to draw our final conclusions. We find that, under very reasonable assumptions
which we clearly state, the masses of v, and v must be smaller than 65 eV. Un-
der slightly stronger assumptions we further conclude that v, is probably lighter
than 4 €V and v, is lighter than 0.02 ¢V. We also conclude that the scale A re-
sponsible for the neutrino masses is probably above 50 PeV (1 PeV = 10° TeV).
These results are significant as they improve upon the direct experimental limits

by three to six orders of magnitude.

The structure of this paper is as follows:
In Section 2 we rederive the cosmological bounds on neutrino masses and life-
times. In Section 3 we introduce the see-saw mechanism and set our notations
for the neutrino mass matrices and mixing angles. Sections 4 — 10 are devoted
to the study of neutrino decays within the framework of several classes of mod-
els. The case of the standard model is described in Section 4. In Section 5 we
set the stage for discussing neutrino decays “beyond the standard model” and
briefly mention some models which introduce extremely high energy scales. We

continue with Left-Right Symmetric {LRS) models (Section 6), horizontal sym-



metries (Section 7), substructure (Section 8), supersymmetry {Section 9) and
models with spontaneously broken global symmetries {Section 10). All models
of Sections 4 — 10, together with the cosmological constraints of Section 2, lead
to strong bounds on the neutrino masses. In Section 11 we study the see-saw
mechanism in some detail, introduce a so-called “reasonable see-saw” assumption
and show that it implies even more stringent bounds on neutrino masses. The

combined information obtained in Sections 2 — 11 gives:
mv,) < 65 eV; mvy) < 4 €V; mve) < 0.02 eV. (1.5)

In Section 12 we study the implications of the cosmological bounds on the decays
of hypothetical fourth-generation leptons. Finally, in Section 13 we discuss our
conclusions on neutrino masses, and their implications on the scale of physics

beyond the standard model.

2. Cosmological bounds
2.1 COSMOLOGICAL PARAMETERS

Massive neutrinos contribute to the energy density of the universe. The
requirement that this contribution should not exceed the present energy density
of the universe, excludes a certain range of masses for stable neutrinos [6,9,7], and
defines an allowed range for the mass and the lifetime of unstable neutrinos [8, 10).
There are two cosmological parameters that determine these limits: the Hubble
parameter Hg, and the present energy density of the universe py. Equivalently,

we can use the two parameters h and (1 defined by:

Ho =h - 100 {km/[sec/Mpc]

(2.1)
po ={p.
p. is the critica! density, corresponding to a flat universe:
pe = 3H§ _ 1.1-10* A? [eV /em?). (2.2)
¢ 8nG ’



Current estimates of A and {2 are [11,12]:

1
—<h<1
2 (2.3)

1 <2

Once h and 1 are known, the cosmic scale factor R is determined through Ein-
stein’s field equations. Consequently, the age of the universe ¢ is given in terms

of these parameters {13,9,14]:

1
9.8 109 —1/2
to = years / (1 04 ) dz. (2.4)
4]

p = 1 for a matter-dominated (MD] universe, and p = 2 for a radiation-
dominated (RD} universe. We will approximate the numerical factor in eq. (2.4)
by 100 years. The age of the universe is estimated (independently of the esti-
mates (2.3)) to be [11]:

10'° years <ty < 210" years (2.5)
and more probably, in the range {1.2 — 1.8) - 10*® years. We define the function

f(02) by rewriting eq. (2.4) as tp = _(hﬂl 100 years. The lower limit in eq. (2.5)

puts an additional bound on £ and {1, namely

h < F(Q). (2.6)



2.2 STABLE NEUTRINOS

For stable primordial neutrinos we require

> _In(w)lom () < o (2.7)

where [n{v;)|o is the present number density of the neutrino 1;. The sum runs over
ail neutrino flavors. Neutrinos decouple at a temperature T, when the expansion
rate of the universe becomes larger than their interaction rate: Tp = 5 MeV.
Neutrinos with a mass m{y;} < Tp decoupled when their number density was
equal (up to a statistical factor of order 1) to the photons number density. The

present number density of each such flavor of neutrino is
3 3
[n{vy))o = ﬁ[n,,]o 7~ 110/em (2.8)
Using egs. {2.1), (2.2) and (2.8), we get from eq. (2.7):
) miy;) < 100 01 A% eV (2.9)

From eq. (2.6), the weakest limit is derived when Q[f(2)]? is maximal. For a
MD universe, this corresponds to 1 = 2 and h = 0.57:

Y min) <65 eV (2.10)

For a RD universe, the upper limit corresponds to {1 =1 and h = %:

Y m{y) <25 eV (2.11)

The larger the age of the universe, the more stringent these limits are. For
example, if tp = 1.3 10%¢ years, the limit is 25 (6.3) eV for a MD (RD) universe.
The standard cosmological model assumes that the universe has been MD for

most of the time. Thus we use eq. {2.10) as the limit on stable neutrinos mass.



Note that in order to saturate the bound (2.10) we must assume that the
universe is closed (2 > 1) and that all or most of the dark matter consists of
neutrinos. If the universe is flat ({1 = 1) or open (£I < 1} or if particles other
than neutrinos have an important contribution to the dark matter, we may obtain

much smaller upper bounds.

For neutrinos heavier than a few MeV, eq. (2.8) does not hold: if at the time
of decoupling Tp < m(y;), the neutrino density [n{v;)]p, is much smaller than the
number density of the photons. If these neutrinos had foliowed their equilibrium
density till the time of decoupling, their number density would have been smaller
by the Boltzmann factor exp[—m(1;}/kTp|. However, the small number density
suppresses the anibilation rate of the neutrinos long before Tp is reached. The

actual number density obeys {7, 15]
() = (040} {[n(14)]* = [neg(4)|*} — 3Hn(1;) (2.12)

where {o4v) is the thermal average of the anihilation rate, and n.4(r;) is the
number density of the neutrino at equilibrium. This equation is solved numer-
ically. It is found [7,15] that in the relevant range of mass, the dependence
of the neutrino number density on the neutrino mass can be approximated by
n{v;) « [m{y;)] 3. Requiring that the contribution of such neutrinos to the mass
density of the universe should not exceed the present upper limit of that density,

gives [16]

m(v;) > 3.4 GeV QR 7Y/2 (2.13)

for stable Majorana neutrinos (for Dirac neutrinos the limit is lower by approxi-

mately a factor of 2). The weakest limit corresponds to {1 = 2 and h = 0.57:
m(y;) > 4.2 GeV. (2.14)

Thus, a stable neutrino must be either lighter than 65 eV or heavier than 4.2

GeV.



2.3 UNSTABLE NEUTRINOS

Neutrinos with masses between 65 eV and 4.2 GeV may exist, provided that
they are unstable: once they decay, the energy densily of the decay products
decreases as R4, instead of the R~2 dependence of the mass density before the

decay.

The contribution of an unstable neutrino to the present energy density of the

universe, is related to its mass density at the time of decay 7, through

4
Pro To
—— =1 = . 2.15
e =(z) (215)
The relation between the neutrino mass density at the time of decay and at the

time of decoupling is

pu(T) :i(ﬁ)s (2.16)

Egs. {2.15) and (2.16) give:

oo = | aultn )(%)3 (?) (2.17)

The quantity in square brackets is the would-be present mass density of the

neutrino if it were stable. For a RD universe t « T~ 2. Thus the limits on

unstable neutrinos, anclogous to eqs. (2.9) and (2.13) are:

Em (v \/ <100 Qh% eV  [for m(v;) <a few MeV|
Z[m(ut)] 2\{ ( i) <107 QR eV™? [for m(v;) > a few MeV]

(2.18)

(where in the second equation we used the approximation n(v;) o« [m(14)]73).
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The weakest limits [14] correspond to @ =1 and h = 1:

[m(e)2r (1) <2-10% V2. s5ec  [for m{ys) < a few MeV| 210
[m{v)] () <1.5-10722 eV~ . sec [for m(v;) > a few MeV| (2.19)

Again, if the universe is older than the lower limit in eq. (2.5), or if there
are important non-neutrino contributions to the dark matter, the bounds (2.19)
become more stringent. For example, if to = 1.3 - 10!° years, both bounds in eq.

(2.19) are lowered by a factor of 12.

If there are charged particles or photons among the decay products of the

neutrinos, there are additional astrophysical effects to be considered:
a. The black-body radiation background should not be distorted [17,18].
b. Primordial nucleosynthesis should not be affected [17,19].

¢. The flux of -y rays at the positronium anihilation line should not exceed the

observed flux [20].
d. Deuterium should not be destroyed by photodisintegration [21,22].

Each of these effects leads to an allowed range for the lifetime of such a
neutrino. When combined, they give an upper bound of order 10* sec on the
lifetime [23].

If there exist both stable and unstable neutrinos, the bounds on the stable
neutrinos masses may be modified: if an unstable neutrino decays into stable
neutrinos, their number density increases and the bound on their mass is more
stringent; if there are charged particles or photons among the decay products,
they affect the temperature of the photon gas but not that of the neutrinos and
consequently, the limit on the mass of the stable neutrinos is somewhat relaxed
[24].

To summarize: Stable neutrinos are esther lighter than 65 eV or heavier than

4.2 GeV. Unstable neutrinos may have a mass in the “forbidden range”, if their

11



lifetime fulfills the bounds (2.19). The bounds on the neutrino mass and lifetime

are shown in Fig. 1.

3. Neutrino mass-matrices and mixing
3.1 SEE-SAW MATRICES

In the introduction, we discussed how new physics at a scale larger than the
SU(2)-breaking scale may explain the lightness of the neutrinos. The best-

known realization of this mechanism is the see-saw mass matrix [4].
The general form of the neuirino mass matrix is
My mp
M= T . (3.1)
my Mg

In the n generation case, M is a 2n X 2n matrix, and each of the sub-matrices in
eq. (3.1) is an n X n matrix. We define L, D and R, the mass scales of My, mp

and Mg respectively:
L=[det ML ]'/* ; D=|[detmp]/™ ; R =[det Mg]'/" (3.2)
mp is the Dirac mass matrix:

(mD):'j = hcﬁv;,.‘ﬁz,,‘ (‘;b) (3'3)

where h is a Yukawa coupling and ¢ is the usual Higgs doublet of the standard
model. As ¢ is needed in order to give mass to other fermions, mp # 0 unless
additional symmetries are invoked. In general, D should be comparable to the
charged fermions masses. Mg and My are the Majorana mass matrices for right-

handed and left-handed neutrinos respectively:

(MR):'J' =hSFL£5‘L5 (S>

(3.4
(ML)ij =hﬁf.vuvz._f (AL}

where S is a Higgs singlet and Aj, is a Higgs triplet.

12



The Weinberg relation, My = Mz cos 0w, is in good agreement with exper-
iment. In order to preserve it we must have (Ar) < (¢). At the same time,
{S}) does not break the gauge symmetry of the standard model. Consequently, it
may obtain arbitrarily large values. It is likely that {S) is determined by some
new physics beyond the standard model. All such models have scales A > TeV,
and some even have A » TeV. Hence R » D. If ¢, S and Ay are all present,
minimization of the Higgs potential gives [25,26] (AL) (S) ~ {(#)*, consistent

with the above hierarchy of v.e.v’s.

In the following discussion we assume that M is negligible or zero. The

neutrino mass matrix of eq. (3.1) acquires the form:

1] m
M= (m% Mi)' )

Diagonalization of M gives n light mass eigenstates, with masses O (%3) . This
is the see-saw principle: the higher the scale R, the lighter are these neutrinos.

The other n mass eigenstates are heavy, with masses O(R).

Mg may be induced by (S} but it may also be an explicit singlet mass term
or a result of a higher order correction in some “beyond standard” theory. We
assume that R > TeV, and give our results in units of [T%]. There is no
convincing theoretical model with R < TeV. However, on purely experimental
grounds, the limits (1.1) are consistent with R-values as low as 50 GeV. Some

ad-hoc models may actually assume R = 50 GeV.

The ratio % must be very small. For R > 1 TeV and D < m(7), we expect
D <0.002. Even if R~ 50 GeV, 2 < 0.04.

13



3.2 LEPTON MIXING

Neutrinos with a non-vanishing mass imply possible mixing among genera-

tions: the mass eigenstates may differ from the weak interaction states.

The mass matrix {3.5) can be brought into a block-diagonal form by a unitary

transformation, M — UTMU. We write U in terms of four n x n submatrices:

U= da 3.6
T\ U Ug (36)

uImbu, + Ul mple + USMpl. =0. (3.7)

which have to fulfill:

The light neutrinos mass matrix is:
Ulmpll, + UTmBU, + U MgU.. (3.8)

The solution of eq. {3.7), to order (%:—) is [27):

T 1 2

— 1 -2, T 12 3.9

Yo, 7 —1 2

The mass matrix for the light neutrinos {eq. (3.8)) is

[—mDMglm'{) +0 (%)] (3.10)

The mass matrix is brought into a diagonal form by an additional unitary trans-
formation, YT MU — YTUTMUY. The matrix V is of the form

V. 0
v=(0 %) (3.11)

14

Both V,; and V; are unitary.



We diagonalized M in two stages, because in this way the information about
the mixing between lefi-handed and right-handed neutrinos is contained in U,

while V depends on the mixing among generations.

The left-handed neutrinos are related to the mass eigenstates by the following

transformation

vy = Ug Vet + Up Vo (3.12)

Vi(x) are the light (heavy) mass eigenstates. The light neutrinos are almost purely
(to O [Z]) left-handed. The mixing matrix (among the light states) for the
charged W-boson interactions is U = UgV,. As U, is different from the unit
matrix only by terms of O (%:—), we can take as a good approximation U = V,.
Thus, U is unitary to a good approximation. The mixing matrix for the neutral
Z-boson interactions is {1 = 'V:f' ug“uava, which is somewhat different from the

unit matrix because U, is not unitary.

3.3 EXPERIMENTAL CONSTRAINTS

As yet, there is no conclusive experimental evidence for non-vanishing lepton
mixing. There are two kinds of experiments that put constraints on the mixing

terms in U:

a. Depletion experiments, in which the known flux of the neutrino produced
in the experiment, is compared to the flux of the same flavor of neutrino

at some distance.

b. Oscillation experiments, in which the known flux of the produced neutrino

is compared to the flux of a different flavor at some distance.

These experiments lead to constraints on the mixing angles for sufficiently
large AmZ; = |[m? — m?|, but to no limits on these angles for smaller Am?. For
all the range of masses that we are snterested in (Amfj larger than tens of eV?),

the asymptotic consirainis on U apply. The strongest upper limits on Uy, U

15



and Uy, come from the BNL [28] and Fermilab [29] experiments:
Upy <0020 ; U, <017 ; Uy <0.031 (3.13)

These upper bounds were derived under the simplifying assumptions that the
mixing matrix is real, and that for each two flavors one may use an effective 2 x 2

mixing matrix.

U,, is further limited by # — ev experiments [30]. The limits are obtained
by search for monoenergetic peaks in this decay, and by its branching-ratio mea-

surement. The limits are mass-dependent. Typical values are

U,r <0.05 [for m{v,) > 1 MeV|
(3.14)
Ugr <0.003 [for m{v;) > 20 MeV|

For most of the decay modes that we study, mizing angles as given in egs. (3.13)
and (3.14) are negligible, and we sdentify the weak doublets with the physical
states. We will explicitly use the bounds (3.13) and (3.14) whenever a non-

vanishing mixing is significant.

4. Neutrino decays in the extended standard model

The minimal standard model contains neither right-handed neutrinos nor
Higgs triplets. Thus, left-handed neutrinos are ezactly massless. We begin our
discussion of neutrino masses by studying an extended standard model, in which
right-handed neutrinos are added. In that case, left-handed neutrinos will have
masses and may decay. The possible final states for the decay of an unstable

neutrino v; into two or three final particles are;
vitupty s vitet e vty vyt (4.1)

where v, Vg, 1 represent any neutrino or antineutrino lighter than v;. The vete™
decay mode is allowed only for ¢ = 7 {as m(;) > 2m/(e) is required). Decays into
four or more particies can be safely neglecied. We now consider each of these

decay modes.
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4.1 vy v+t g

Unlike other fermions, neutrinos may have flavor changing neutral currents
at tree level. A non-vanishing Majorana-mass for right-handed neutrinos breaks
down the GIM argument {24], and the Z-boson can mediate a neutrino decay
into three lighter ones: v; — v;14D. As shown in Section 3, the mixing matrix
is 0 = VIUTU,V,. Thus, the mixing terms are O (%;):

(4:2)

ﬂ,‘j = ['Vg'mDMgzm'f)va]
We choose to work in a basis where mp is diagonal. For example, in the two

mp(ve) 1]
mD:( 0 mp(u#)) (4.3)

In such a basis, the charged leptons mass matrix may be non-diagonal, but this

generation case

does not affect 2. The matrix Mg is a general symmetric matrix. The matrix

V., diagonalizes the light neutrinos mass matrix mDMglmg. Typically [Va]i; ~

%:—;;— Then eq. (4.2) gives:

mp(v;)mp{vy)
R2

5 ~ (4.4)
As the neutrino masses are m(y;) ~ [m—"gﬂﬁ, we conclude that the coupling of

the Z-boson to neutrinos of different generations is

m(v)m(v;)

. (4.5)

[f25]* ~

The width for the Z-mediated decay into three neutrinos is then estimated to be

(s = vymae) ~ |0 [T 1 (1.6

17



For the vy — vev, 7, decay, we assume m(i,) < 18 eV and R > 1 T'eV and obtain
T(vu)im{vu)]® = 1.6 - 10%7 eV Csec. (4.7)

This, together with the cosmological bounds (2.19}, gives

IRLE m{ve) ~1/10
m{v,) > 80 MeV [1 TeV] [18 eV] (4.8)

in clear contradiction with the experimental upper bound. We therefore conclude
that, if v, — vevel, via Z-exchange were the only decay mode of vy, we must
have m(v,) < 65 eV.

We may now consider the decay v, — v;1; 0. There are four possible modes,
with each of 7 and k¥ = e or u. We assume m{v,) < 18 eV, m{v,) < 65 €V,
R > 1 TeV. We obtain

m{v:)[m(v,)]® > 1.7- 10°° eVOsec. (4.9)

The cosmological bound can be fulfilled with

(4.10)

ve) + m(v#):lnllw

B V5 [m
- R
m(v,) 2 65 MeV [1 TeV] [ 83 eV

Even if we allow R to be as low as 50 GeV, we still get m{v,) > 35 MeV. If
neutrinos dominantly decay into three lighter neutrinos (via Z-exchange), then
vy ts lighter than 65 eV and v, is either lighter than 65 eV or heavier than 35
MeV.

18



4.2 vy o veete

If v, is heavier than 2m(e), it can also decay to a final v.ete™ state. The

dominant contribution is by W-exchange. The decay width can be written as:

5
- m(v
(v, — veete™) = UL [ m((;))] T(r — vrbee) (4.11)
This gives the relation
r(vr)[m(ur)]s = (Uer)_2 3-10% eV5sec (4.12)

The cosmological bound on the energy density (eq. {2.19)) can be fulfilled with
m{v;) > 5 MeV. However, as charged particles are produced in this mode, the
additional astrophysical constraints described in section 2 apply [22]. Thus we
should have 7(v;) < 10%sec, which can be fulfilled only for m(v;) > 10 MeV.

4.3 yovptn

The decay v; — v;7 is described by one-loop diagrams, with a W-boson {or a
charged Higgs boson) and a charged lepton in the loop. This mode was analyzed
in detail in Ref. [31]. The decay width is

2
[m )]
Py = v = — 1 ZU Ui F(r (4.13)
where 1, = [m(£,)/M(WL)}? and the function F(r) is given by
3 o . 2rfinr
_ (2 , 4.14
R = g o |25+ + (4.14)

For the three known generations r, < 1, in which case F(rs) — —3 + 2r,. From

the analysis in Section 3 we get 3 U U;s = O (g;) Thus we expect T' o rZ,
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which gives [31]:
() [m(p)® = (Ui Ujp) 7% 4 - 10%° eV Psec. (4.15)

This and the cosmological bound (2.19} give

20 MeV

2 T

(4.16)

However, the requirement that the radiative lifetime should be shorter than

10% sec completely excludes this mode.
4.4 vy o v+t

The v; — vjvy decay [32] proceeds via a box-diagram. Although it is a
higher order process than the one-photon decay, it is not GIM suppressed. The
dominant contribution comes from the lightest charged lepton which is heavier
than the decaying neutrino. Thus, the decay width depends on the u couplings
rather than the 7 couplings. The decay width is

which gives the relation {32]
m(v;)[m(v))® = (U,-‘uU_m)_2 6107 eV sec. (4.18)

This and the cosmological bounds (2.19) give

20 MeV

S -
m(l/:) = (UipUj#)zlla

(4.19)

Again, when the astrophysical constraints are taken into account, this mode is

excluded.

Thus, within an extended standard model, only v, can fulfill the cosmological
constraints on a heavy neutrino, provided that its mass is between 10 MeV and
70 MeV.
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5. Beyond the standard model
5.1 NEW DECAY MODES AND DECAY MECHANISMS

In the previous section we concluded that, v, should be lighter than 65 eV
and vy is either lighter than 65 eV or with a mass in the range 10 - 70 MeV.

Can these bounds be evaded in models beyond the standard model?

In such models we may have additional neutrino decay modes, correspond-
ing to new light particles suggested by the models. These could be Majorons,
familons, sneutrinos and possibly other new particles. In addition, the four modes
discussed above (Section 4) may proceed via new mechanisms. We could have
contributions from fourth generation fermions {which have mass O({Myw ) and
therefore avoid the GIM-cancellation), right-handed currents, additional “be-
yond standard” Higgs particles, “horizontal” gauge bosons, unknown effects due

to lepton substructure, etc,

In the following sections we discuss these various possibilities. All “beyond
standard” theories correspond to a new energy scale A > My . The actual value
of A may be anywhere between 1 TeV and the Planck mass. It is clear that if A
is at the GUT scale or at the Planck scale, it is unlikely to lead to fast neutrino
decays, and - through the see-saw mechanism - will produce neutrino masses well

below 1 &V,

Qur best hope for heavier left-handed neutrinos and for faster neutrino decays
which could be consistent with the cosmological bounds is from new physics at
relatively “nearby” scales around, say, 1 TeV to 1 PeV. Suchscales are consistent
with Left-Right symmetric models, horizontal symmetries, and substructure. We

will therefore pay special atiention to these last cases.

In the remaining of the present section we briefly discuss the case of theories at
the GUT scale or the Planck scale. In Sections 6, 7 and 8 we discuss, respectively,
the specific cases of Lefi-Right symmetry, horizontal symmetry and neutrino

substructure, all of which could presumably appear below 1 PeV. In Sections 9
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and 10 we discuss the most likely cases of new light particles appearing among
the neutrino decay products: supersymmetric particles and Goldstone bosons

(Majorons and familons).

5.2 GRAND UNIFIED THEORIES

In the minimal SU(5) model, there are no right-handed neutrinos, and the
left-handed neutrinos are massless. However, in other GUTs such as SO(10),
[SU(3)]® ® Z35 and Es, right-handed neutrinos are present. The left-handed neu-
trinos have very small masses due to the see-saw mechanism. In the SO(10)
theory, for example, a Higgs in the 126 representation is needed in order to give
the right-handed neutrino a tree-level Majorana mass. If this Majorana mass is
at the scale of the GUT-breaking, Mx = O(10' GeV), the predicted neutrino

masses are much smaller than the 65 eV limit on stable neutrinos (eq. (2.10)):

t 2

m(y;) < O | 16-2 v, (5.1)
Mx

All light neutrinos are expected to be lighter than the 65 eV limit even for

intermediate breaking scales as low as 10! GeV. They are certainly light if the

new energy scale is the Planck scale O(10'% GeV).

In some versions of GUT, Higgs representations needed to give right-handed
neutrinos Majorana masses at tree-level are absent. Mp # O can still be a result

of loop-diagrams. In such a case, there are several interesting consequences:

a. The scale of the right-handed neutrino mass, R, is smaller than the GUT
breaking scale, Mx. For example, in the minimal SO(10) model, Mg arises

at the two loop level [33]:

Pl e

where ¢ is a mixing factor. Consequenily, the light-neutrino mass may be
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larger than 65 eV:

o[ P ()

which gives (for ¢ = 0.1 and m(t) = 45 GeV):

mivy) ~ 2 keV 5 my;) ~ 70 keV. (5.4)

In other such models {e.g minimal Eg) Mp arises at the one-loop level, and

thus m(;) are much smaller.

b. The Mp-matrix may have some hierarchy, which depeﬁds on the hierarchy
in mp. In the minimal SO(10} model {33]

Mpoxmp — ~ : (6.5)

The implications of such a relation are discussed in Section 11.

¢. The neutrino Dirac masses may be related to different fermionic sectors.
As implied in the former equation, in the SO(10) model mp{v;} ~ mp(u;)
at the GUT scale {(u; are the up-sector quarks).

We conclude that in most Grand Unified Theories or Gravity-related models,
neutrino masses are inversely proportional to Mx and are well below 1 eV. In
some rare cases, the theory may allow neutrino masses above 65 eV. However,
in these cases, the decay mechanisms of these neutrinos will be either the ones
discussed in Section 4 or additional mechanisms, in which the decay amplitude
is inversely proportional to powers of Mx and the resulting lifetimne cannot obey
the cosmological constrainis. Hence, the conclusions stated at the end of Sec-
tion § remain valid in all models with Majorana masses at energy scales above
O{10'1) GeV including all GUTs. The only way around these conclusions are
GUTs which contain LRS or a horizontal symmetry at a lower energy scale. We

discuss these two cases in the next two sections.
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6. Neutrino decay in left-right symmetric models
6.1 THE MODEL

In LRS models, the electroweak group is extended to an SU(2)y ® SU(2)gr ®
U(1)g-L gauge group. Leptons transform as (%,0)”1 + (0, %)_1 representations.
In the minimal LRS model [25], the Higgs fields ®, Ar and Ap transform like
(3:3)g> (1,0)2 and (0,1); representations, respectively. The model is “minimal”
in the sense that it has the minimal Higgs content that gives hierarchical symme-
try breaking and predicts heavy right-handed neutrinos and very light left-handed

OnEes.

The neutral components of the & field, ¢¢ and ¢3, have v.ev’s ki and &k
respectively, while those of Ay and Ap get v.e.v’s vr and vg respectively. The

neutrino mass matrix is then:

M — ( 1( —hvyg, %(hlkl + hgkz) )
b3

6.1
h{fq + hg.kz) hvg ( )

hi and hy are the Yukawa coupling matrices (in generation space) of ¢; and ¢»
(defined in eq. (3.3)), while & is the Yukawa coupling matrix for Ay and Apg

(note that the two couplings defined in eq. (3.4) are equal due to parity). The

charged leptons masses are % (hok) + hiks).

The v.e.v’s fulfill [25]

vpvp = O(k?) {6.2)

where k? = k? + kZ (see Appendix A for a detailed analysis). This implies that
one may consistently assume both vfz > k* (necessary for Wg to be heavier than
Wi) and &% > vi (necessary for M(Wr) = M(Z)cos fw). Thus we take

vh > k%> vl (6.3)

Consequently, the matrix (6.1) is a see-saw matrix, as discussed in Section 3.
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6.2 ;= Dy

The Ay, Higgs field has Yukawa couplings to leptons [25]:

D ha¥I,CinAr¥y, (6.4)

ab=e,pu,1

where Wy, is the left-handed leptonic doublet, ¥; = [‘;i'], and C is the charge-
conjugation matrix. Thus, A} mediates the decay [34] v; — ;v (see Fig. 2aj

with an amplitude proportional to

hijhy

Ak E— 6.5
[M(aY)]* (6:2)

In the v, case, the only possible mode is v, — Deveve. The width of this decay

is proportional to
heuhee)® 5

el fnf . (©5)

[M(A3)]
We do not know the values of M{AY), he. and h.,. Consequently, we cannot
derive a relation between m{v,) and 7{1,). However [14], the A} Y member of the
Ap Higgs triplet can mediate the decay = — ete~e™ (Fig. 2b). The amplitude
for this decay is related to the v,-decay amplitude through the gauge symmetry.
The Yukawa couplings are exactly the same as in eq. {6.6). The decay width is
thus proportional to

2
paiat e ©

All other factors are equal for both widths. The ratio between the widths is [14]

Dv, = seviers) _ [M(Azﬂr [mw]*‘.

I‘(p,‘ - e+e_e_) M(A%) m(p) (6.8)

The three components of the A y-triplet are approximately degenerate, with mass-
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squared O{v}) (see Appendix A for a detailed study):

MATHE — MAYP] 8] o [MOD)]* .
[M(AE_'—)P 0 L%] O [M(WR)] <2.5x10 (6.9)

++174
As [MW(—"—%% )] =1+ 0(1073), eq. (6.8) reduces to |14]:

e - ) 610
The mass and the lifetime of the p-lepton are
m(p) = 105.7 MeV ; 7(u) =2.2-107° sec, (6.11)
and the experimental upper bound on the branching ratio is [35]
BR(u — 3¢) < 2.4.1071% (6.12)
Then eq. (6.10) gives
(V) [m{ve)]P > 1.2-10% eV° . sec. (6.13)
Combining this with the cosmological bound (2.19) one obtains
mv,) > 35 MeV (6.14)

in clear conflict with the experimental bound m({v,) < 250 keV. Within LRS

models v, cannot be heavier than 65 eV,

Can such a model accomodate a vy, with m{r,) anywhere between 65 ¢V and

70 MeV 7 We now analyze the Ajp-mediated v, decay.
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In general, the AOL exchange provides v, with six different decay modes:
Ur = Dululp, Dulule, DulieVe, DeVuly, Delyle, Deliele. (6.15)

The decay width, summed over all six modes, is proportional to

> ik (hrehjk)?
(M)

T(v; — Bvvg) [m(v;))®. (6.16)

However, there are also six possible decay modes for the 7 lepton, mediated by

the AJ* Higgs particle:

roptuTuT, wtpme, pteTe, eTuTuT, efuTeT, eteTe. (6.17)

The total decay width for these modes is proportional to

Z:c'jk(hﬂ'hfk i
[M(at*)]*

T(r~ — £7£4;47) x [m(r))®. (6.18)

The combinations of Yukawa couplings which appear in egs. (6.16) and (6.18)

are identical. The same argument as in the case of v, decay now yields:

_ 5
T{v, — V‘-uiv;i) _ [m(u,)] (6.19)
T(r= — 7€ 6) m(7)
The mass and the lifetime of the 7 lepton are
m{r) = 1784 MeV ; 7(r) = 2.9-107" sec. (6.20)

The ARGUS collaboration has recently reported a new experimental upper bound
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for all channels of 7 — 3£. They obtain [36]:
BR{r — 3£) <3.8-107°. (6.21)
Then eq. {6.19) gives
7{vs) [1rn(u.;)]5 > 1.4-10% V5 - sec. (6.22)
Combining this with the cosmological bound {2.19} we obtain:
m(vy) > 900 keV. (6.23)

We conclude: Within LRS models, in order to obey the cosmological bound on
the neutrino mass and lifetime, m(v,) must be either below 65 eV or between 0.9
MeV and 70 MeV .

8.3 v, —oetey;

The AE particle may mediate the decay vr — e*e~v;. This process is related
to the A9-mediated decay discussed in this section. However, there are three

differences between the decay rates:

a. The phase-space factor may be important for the vete™ final state. This

process has a threshold energy of 1 MeV.

b. While there are six possible final states for Z;vx1; (eq. (6.15)), there are

only two for the ete~v; final state, namely j = e or p.

¢. The Yukawa couplings are different (the relations are given by Clebsh-

Gordan coefficients).

All of these differences lead to:
I‘(V-,- — 8+6*Uj) < I‘(Dr — ?jb’kb’g). (6.24)

As discussed in Section 2, when there are charged particles among the decay prod-

ucts, additional astrophysical bounds apply. The strongest of these comes from
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Deuterium photodisintegration. We have followed the calculations by Lindley in
Ref. [21]. We conclude that one obtains a strong limit on the v; lifetime (of order
10* sec) for v; heavier than about 10 MeV and a non-negligible BR(vr — ete™v)
(e.g > 10~*). However, no range of v,-mass is excluded by this effect. Conse-
quently, our conclusions do not change when taking into account this decay mode

and, in particular, a v,-mass above 0.9 MeV is allowed.
6.4 v; o vy [37]

Left-right mixing may enhance the radiative neutrino decay, due to the lack
of GIM-cancellation. However, the decay rate depends on the mixing between
Wi and Wg. The smaller the mixing, the smaller is the enhancement. Thus,
the effect is not large enough to allow a fast radiative decay, so as to avoid the

cosmological constraints. There is no enhancement of the two photon decay.

We conclude: sn the minimal LRES model, the masses of v, and v, are con-

strained to be in the range:

mvy,) <65 eV
(6.25)
m{v;) <65 eV or 0.9 MeV < m{y;) <70 MeV.

7. Neutrino decay with generation-changing gauge bosons

In order to explain the “generations puzzle”, different “horizontal” symme-
tries were suggested. The horizontal group may be diserete - in which case it does
not lead to additional mechanisms for neutrino decays - or continuous. If it is
continuous, it can be global or local. The case of a global symmetry is discussed

in Section 10. Here we discuss the implications of a horizontal gauge group, H.

There are severe limitations on the group H, coming from both the require-

ment of theoretical consistency and phenomenology. These limitations make it
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difficult to construct a completely satisfactory model. There is also the possi-
bility of a horizontal gauge symmetry in which generation-changing interactions

can be “diagonalized away”.

For our purposes, the only case we must consider is a model with a gauge
group G'® H where G acts within a generation and fulfills G D SU{2)L @ U{1}y,
and the structure of H and its breaking are such that flavor-changing gauge

interactions are induced.

The lepionic interaction states are eigenstates of the diagonal generators of
both G and H. As G and H commute, SU(2)L pariners have the same gquantum

numbers under H.

The mass eigenstates are related to the interaction eigenstates by the follow-

ing transformations:

Ve v e et

N i ETIN I
ve | =U v | 5 e ]=U"{ (7.1)
Yy .V:. T T"

As explained in Section 3, U~ is approximately unitary (UL is exactly unitary).

Moreover, as the leptonic mizing angles are small, UN =~ UL,

The coupling of the horizontal gauge boson H® to the neutrinos v;D; is
grlpTs, u;q, where gz is the gauge coupling and T is a generator of the group H.
Again, we do not know either the mass of H® or its gauge couplings and we can-
not calculate the decay rate. However, H® has exactly the same coupling to the
charged leptons E;E}'. Consequently, the amplitude for the H*-mediated decay
v; — vivpo (Fig. 3a} 1s exactly equal to the amplitude for the decay £, — 2;3;2;"
(Fig. 3b): all couplings, mixing angles and the intermediate boson mass are the
same for both amplitudes. Thus, the ratio between the decay widths is just the

ratio between the phase-space factors.
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Both v, and u have one such possible mode, with the relation:

D(vy — verel)  [m(vu)]°
(g — e~e"et) B [m(,u) ] (72

This is exactly the result (6.10), and thus the same conclusions follow: within
horizontal models, where the horizontal gauge group commutes with the standard

model gauge group, v, should be lighter than 65 eV,

As for v, decay, the H® exchange may provide v, with the same six decay
modes of the LRS model (eq. (6.15)) {two of these modes, s, v, and Zeryve,
have now each two possible diagrams. This does not change any of our results).
At the same time, it provides 7 with six possible decay modes (eq. {6.17}). For
each v,-decay amplitude there is a corresponding, exactly equal, amplitude for r

decay. The sum of the squared amplitudes is exactly equal, and we get:

- [ -

The conclusions of eq. (6.19) follow again: wsthin models with horizontal gauge

symmetry, m{v,) must be either below 65 eV or between 0.9 and 70 MeV .

The analysis of the v, — e“'e‘vj mode is similar to the LRS case, with
the same conclusions. Once the algebra H and the leptonic representations are
specified, all the couplings are known, and the branching ratio for this decay is

determined.

The radiative decays cannot be mediated by the horizontal gauge bosons

which are electrically neutral.

These bounds on the masses of v, and v; apply to a much broader class of
models: in any model where the dominant decay mode is the 3 decay through an
SU(2)-singlet exchange, the bounds obtained here are valid. The same particle

couples to both neutrinos and charged leptons which are their SU(2)1 partners,
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and with equal strength. Thus the bounds (6.13) and {6.22) hold, leading together

with the cosmological bound to

m(v,) <65 eV (r.4)
7.4

m(v,) <65 eV or 0.9 MeV < m(v;) <70 MeV
Simple group theoretical considerations show that these limits also apply to the
case of a Higgs triplet with B — L = 0, namely: the same Higgs particle couples
to neutrinos and their SU{2);, partners, and with equal strength. Consequently

the same results apply.

The allowed range for the mass and the lifetime of vy, if it decayed via the

channels discussed so far, is shown in Fig. 4.

8. Substructure models

Another possible future direction for physics beyond the standard model is
the hypothesis of quark and lepton substructure, possibly accompanied by a
substructure of Higgs particles, W and Z. At present, there are no convincing
explicit substructure models. However, we can describe possible low energy ef-
fects of such schemes in terms of effective interaction terms. In particular, if
neutrinos have substructure at a typical energy scale A, we expect effective terms
like

g
A2V (8.1)

where v is a left-handed or a right-handed neutrino or antineutrino and g may
be an effective strong coupling constant. Such terms could contribute to decays

like v; — v and analogous terms could induce other neutrino decays.

The present model-independent bounds of A for all leptons and quarks are
around A ~ O{TeV). However, model-dependent bounds involving generation-
changing transitions (e.g. g — ev, g — 37, K — ey, AM(KJ — K3), K — weu)
lead to higher values of A, typically between 100 TeV and a few PeV [38].

32



Since all neutrino decays involve generation-changing transitions, we must

use the latter range of A-values. We obtain, e.g.

5
miyg
Iy — vivger) ~ ()’ fi;)] (8.2)
or
A 1
() [m(y)]* ~ [W] 7-10% eV 5seec. (8.3)
This, together with the cosmological bounds, gives
A 4/9
) >9 . .
m(y;) > 9 MeV [100 TeV] (8.4)

i neutrinos have substructure, and the dominant contribution to their decay
comes from amplitudes with the characteristic substructure scale, then v, is

lighter than 65 eV and v, is either lighter than 65 eV or between 9 and 70 MeV .

9. Supersymmetry

Supersymmetry introduces many additional particies. These particles, if
lighter than the neutrino, may allow additional final states for neutrino decays.
For each decay mode discussed in the previous sections there is a corresponding
mode with two of the final particles replaced by their super-partners, provided

that the final particles are lighter than the decaying neutrino.
9.1 y;—ov;v

Of particular interest is the scalar partner of the neutrino, the sneutrino .
There are no model-independent bounds on the sneutrino masses, However, there

are model-dependent lower bounds:
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e. The apparent absence of the decays §; — 23-13551- implies a lower bound on
the sum of the masses of any two different sneutrinos [39]:
m(r) + m{be,u) 2 m(r)

9.1
m(Py) + m(i) 2 m(p) o1

This bound holds if the mass of the wino My, is not much larger than My .

b. The process ete~ — ~D should enhance the single-photon production in

ete” anihilation. If Mj; < 60 GeV, one gets lower bounds on sneutrino
masses (e.g. m(D) > 10 GeV for My ~ 30 GeV') [40].

c. If the difference between the masses of up-squarks and sneutrinos is large,
universality may be violated [41]. The bounds depend on the masses of the

wino and the photino.

Thus, if M;, ~ My , there is at most one extremely light sneutrino. We label
W

such a hypothetical sneutrino by .

We do not know any reasonable model which predicts an extremely light
sneutrino. In the limit of exact SUSY, sneutrino squared masses are O (%)
When local SUSY is broken in a hidden sector, all the sneutrinos acquire a
common mass-squared which is expected to be at least tens GeV. At tree level
we expect the sneutrinos to be heavy compared to the neutrinos, and almost
degenerate. Even if radiative corrections are significant, an extreme fine-tuning
is needed to render the sneutrino practically massless. This is very unlikely, but

we cannot rigorously rule it out.

Assuming the existence of a sneutrino % lighter than the neutrinos, a neu-
trino may decay via v; — ;. This mode may proceed via the following

mechanisms:

(1) Z-boson exchange. This is suppressed by the smaliness of the neutral mix-

ings, as discussed in Section 4.

(1) Zino exchange. The amplitude is proportional to the mixing between o

and a neutrino of a different generation.
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(i7¢) Exchange of particles that arise in models beyond the supersymmetric stan-
dard model, e.g. a A; Higgs triplet, a horizontal gauge boson, or their
supersymmetric partners. In these cases, the amplitude is inversely pro-
portional to powers of the mass of the intermediate particle. The SU(2)-
related process, £; — 23-5050, 15 forbidden because the charged leptons are

experimentally known to be lighter than their spartners.

If the decays of v, and/or v; proceed via the mechanisms (i¢) or (2iz), their
lifetime may be short enough to evade the cosmological bounds. In such a sce-
nario both v, and v, may have masses in all the experimentally allowed range.
However, this requires the existence of one extremely light sneutrino, an unlikely

possibility.
9.2 OTHER DECAY MODES

Charged sleptons have a lower bound on their masses, of order 20 GeV.

Consequently, the mode v, — eéir is kinematically forbidden.

The photino may be massless. In this case, quark-lepton universality together
with the lower bounds on squark masses (> 60 GeV) forbid an extremely light

sneutrino in a large class of models [41]. Consequently, v; — ¥ is forbidden.

The decay mode v; — 43v; is not excluded. However, it is expected to be
suppressed by powers of [’%(-(%l] compared to v; — yvv;, and therefore is not

relevant to our discussion.

We conclude: present experimental bounds on sparticles masses allow ad-
ditional neutrino decay modes which may, tn principle, fulfill the cosmological
bounds for any neutrino mass. However, the sparticle mass spectrum needed for

this scenario does not appear to arise in any reasonable known model.

35



10. Spontaneously broken global symmetries

When a global symmetry is spontaneously broken, massless Goldstone bosons

appear. This may suggest new decay modes: i; — v; + Goldstone boson.

The decay rates depend on the symmetry breaking scale. If the Goldstone
boson interacts with charged fermions, there are bounds on this scale. These

bounds come from
a. Astrophysical considerations of stellar energy loss [42,43).
b. Experimental bounds on charged lepton decay through a Goldstone boson
emission {44].
There are no limits on the interaction scale of Goldstone bosons that interact

with neutrinos only.

There are several models with global symmetry which are relevant to neutrino

decays:

a. The triplet Majoron model [45]. Here, neutrinos are light as a result of new
physics at a scale much smaller than the weak snteraction scale. However,
as explained in the introduction, we believe that such a possibility is un-
natural. We assume that the extreme lightness of neutrinos is a result of
new physics at a high energy scale. Thus, we do not discuss this possibility

any further.
b. The singlet Majoron model [10].
c. The familon model [46].

d. Other, more “exotic” models, which we briefly mention in the end of this

section.
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10.1 LEPTON-NUMBER SYMMETRY

The minimal standard model has a global lepton-number symmetry. Once
right-handed neutrinos are introduced, terms of the form vpvy may appear (due
to vp being a gauge singlet). This leads to the breaking of the lepton-number
symmetry. This breaking can be spontaneous, if the standard model is further
extended to include an SU(2)y, ® U(l)y Higgs singlet S that carries L = —2.
When § gets a v.ev:

a. The right-handed neutrinos get a Majorana mass term, h (S) vrrg. Here

h is a Yukawa coupling. The mass scale of My is R = h {5).
b. A massless Goldstone boson appears, the Majoron J = Im §.

In Section 3 we showed that the light neutrino mass matrix is (eq. (3.8))
UTmpl, + UTmTU, + UT MRU.. (10.1)

The Majoron couples to right-handed neutrinos only. As J = Im 8, its coupling
to the right-handed neutrinos is %%? As the light neutrinos have a small right-
handed component, the Majoron couples to them. The Yukawa coupling matrix

in the light sector is derived by the U-rotation:

1

(S>u3"MRu.,. (10.2)

As the matrices (10.1) and (10.2) cannot, in general, be simultaneously diagonal-
ized, the Majoron has non-diagonal couplings in the light neutrino sector. These

couplings allow the decay [10]

v; — Jb;. (10.3)

When taking U, and U, as given in eq. (3.9}, one finds that the mass matrix
for the light neutrinos (10.1} is [—mDMglm% + O (g—;—)], while the Yukawa

coupling matrix {10.2) is é)- [mDM ZmL +0 (}‘%;-)] . Consequently, the Yukawa
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coupling maitrix and the mass matrix can be simultaneously diagonalized up to
O (%:-). The leading non-diegonal Jv.v, Yukawa coupling s O (%) This is
the result obtained in ref. [27]. However, the Majoron does not have any coupling,
diagonal or non-diagonal, to a massless neutrino. The decay (10.3) is not allowed
if the decay product v; 15 ezactly massless. This is because the Majoron couples to
a light neutrino only if this neutrino has a right-handed component. An exactly
massless neutrino, however, is purely left-handed. Consequently, it is decoupled

from the Majoron.

The most likely situation is that v; is much lighter than 14, but not massless.
Then the amplitude for the decay v; — Ji; is proportional to m—D('—’M.
The decay width is estimated

T{y; — Jﬂj) =

h? [ [mp{v:)1®(mp(v;)

T 75 ]2] m(1y). (10.4)

The masses of the light neutrinos are m(vy) ~ [m—"g—"m This gives

T(v; — Jp;) = R? [m(!’f)

4
—_— -, 0.5
167 | R ] () (105)
For h =0.1, R =1 TeV and m(y,) = 65 eV we get:
7{v)[m(¥;))* = 5- 10 eVisec. (10.6)

The cosmological bound (2.19) gives for v,

m{u,) > 13 MeV [9:1-]1/4[ K ]1/2 [18 “"V]lla. (10.7)

h 1 TeV miv,)

Thus, with B > 1 TeV we cannot have v, heavier than 65 eV,

However, as the tree-level interactions of the Majoron are with neutrinos only,
there is no experimental or astrophysical lower bound on the scale of the lepton-

number symmetry breaking (when taking into account higher-order processes,
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one may derive a very weak lower bound from stellar energy loss considerations
[42]). We remarked in Section 3 that R is most likely to be above 1 TeV, but
that on the basis of presently available direct experimental information it can
still be as low as 50 GeV. If one assumes that R is indeed 50 GeV (leading to
v,-mass near its upper experimental bound), the Majoron-emission decay of v,
may be consistent with the cosmological bound [47|. If the global lepton-number
symmetry 1is broken at a scale smaller than My, the decay (10.8) allows v, with
a mass between 70 keV and 250 keV .

Note that the SU(2); ® U(1)y-singlet Higgs field S carrying L = —2 with a
v.e.v below a TeV, cannot exist in LRS models or in any GUT (like §O(10),
[SU(3)]® or Es) which contains the LRS group. It can only exist as an ad-hoc
field, invented for the sole purpose of allowing a Majoron emission of a v, with
a mass close to its experimental limit. Note also that the above “window” for
vy is valid only if the cosmological limit (2.19) is saturated. If the universe is
open with {1 < 0.5 or if its present age is at least 1.2 x 100 years (rather than
101° years), the resulting strengthening of the cosmological bound prevents v,
decay even for B = 50 GeV.

For v, we get

(10.8)

0.1]‘/4 [ R ]1/2 [65 ev]”a
- .

> V | —
m(vr) 2 11 Me [ 1 TeV m{vy)

Even if v, has a mass at the upper experimental limit, namely 250 keV, v; should
be heavier than 4 MeV.

We conclude: If global lepton-number symmetry breaking takes place al a
scale larger than Mw, v, is lighter than 65 eV and v, 1s either Lighter than 65
eV or heavier than a few MeV . If, however, the scale of global lepton-number
symmetry is smaller than My, it is possible to have v, between 70 keV and 250
keV .
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10.2 GLOBAL HORIZONTAL SYMMETRY

The spontaneous breaking of a global horizontal symmetry implies massless

Goldstone bosons, the “familons”. Neutrinos may decay [46] through
vi — fv; {10.9)
where f is a familon. While estimating the decay rate, two important differences

from the Majoron emission decay should be taken into account:

a. As familons carry no lepton number, they do not contribute to the Majorana
mass of neutrinos. Consequently, there is no simultaneous diagonalization

of the mass matrix and the familon couplings.

b. Charged leptons may decay into each other through familon emission. This

gives a lower bound on the scale F of the familon interaction [43,44):

F >10'° Gev {10.10)

The coupling of the familon to light neutrinos of different generations is es-
timated [46] to be h - [ﬂ;l] Here h is a Yukawa coupling. For F = 1010 GeV
and i = 0.1 we get

r{15)im{1)]® = 3.5 - 10%® V3 sec. (10.11)

This and the cosmological constraints (2.19) give:

F 1*T017?

For usual values of Yukawa couplings, the familon model does not allow v, heavier
than 65 eV. If we take A > 0.3, this mode may allow v, with a mass near its

upper experimental limit (for A = 1, we obtain m(v,) > 17 keV).

We conclude: the familon model does not allow v, heavter than 65 eV, unless
the Yukawa couplings of the familon are large (h > 0.3). The decay is fast enough
(with F ~ 1019 GeV) for v, heavier than a few MeV.
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10.3 OTHER MODELS WITH GLOCBAL SYMMETRIES

The sequential lepton-number model is an extension of the Majoron model,

designed to give faster neutrino decays [48]. The main ingredients are:
a. The leptons in each generation have a different lepton number {;.

b. There are several Higgs fields (we study only the multiple singlets model),

each with a different lepton number L;.

We find that only very restricted choices of the lepton-numbers L,, allow this
decay mode {various combinations lead to either a degeneracy between neutrinos,
or purely diagonal Majoron couplings). Just as in the original Majoron model, if
the light neutrino is exactly massless, it decouples from the Majoron. We obtain

the following relation (for m{v;) = 65 eV, h = 0.1}

2
r{v)im()]* = 5- 10" [ﬁ{%f_] eV isec {(10.13)

Comnsequenly, the cosmological bound sets an upper bound on the scale of lepton-
number breaking, R < 6 - 107 GeV. As the Majoron does not couple to charged

leptons, there is no other detectable implication of the model.

Several other models with global symmetry breaking were suggested:
a [U(1)]® symmetry group carried by leptons and additional Higgs fields [49], a
U(1) group carried by only Higgs doublets added to the LRS model [50], etc.

They all require a similar degree of complexity.

Qur overall conclusion in this section is that neutrino decays into Majorons or
familons may be consistent with the cosmological bounds only when we assume
very unusual values of the parameters (e.g. B = 50 GeV or h ~ 1) or when

extremely complicated ad-hoc assumptions are invoked.
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11. Additional constraints from the see-saw mechanism

In all models discussed so far {except for the unlikely ad-hoc schemes men-
tioned in Section 10}, we could not have v, heavier than 65 ¢V and v, with a
mass above 65 eV and below 900 keV. These bounds are independent of the
specific form of the neutrino mass matrix. In this section we consider possible
additional constraints which may be imposed on neutrino masses by the see-saw

mechanism.

11.1 MASS RATIOS AMONG NEUTRINOS AND THE “REASONABLE SEE-
SAW”

For the sake of definiteness, we study the see-saw mechanism in the minimal
LRS model described in Section 6. However, our conclusions are quite general.

The neutrino mass matrix is given in eq. (6.1}):

(11.1)

M - —-—th %(h]k}_ + hgkz)
%(h:{kl + hg.kz) hvp

The h’s are Yukawa coupling matrices. As mentioned earlier

kz

a. vg ~ - is very small and we neglect it.

b. The Dirac mass matrix of the charged leptons is (hzk1 + hiks), and is
expected to be of the same order of magnitude as mp(v). For simplicity we
replace mp(v) — mp(f). (We note that this assumption is not better than
a similar assumption on the up and the down quark masses. We remember
that the masses of the two quarks in the same doublet may differ even by

an order of magnitude).

We do not know the form of the h-matrices. Two “reasonable” possibilities

are:

(t) The new physics that leads to the Majorana mass matrix Mp is “blind”

to whatever mechanism which is responsible for the mass hierarchy among
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generations. In the basis where Mp is diagonal this means

he ~ hy ~ hy (11.2)
If mp and Mg can be diagonalized simultaneously we get m(y;} ~ & L 2,
and in particular:
2
m(ve) [m(r)] (11.3)
m{v,) m(u)

(77) The mechanism that gives the mass hierarchy among generations in mp

acts in a similar way in Mg. In the basis where Mp is diagonal this gives
he t byt by o« mfe) - m{p) : m(7) (11.4)

If mp were diagonal at the same {ime, mass ratios between neutrinos would

be similar to those between charged leptons, and in particular:

m{vr) | mir)
mve)  mlp)

(11.5)

In the general case, mp and Mg cannot be simultaneously diagonalized.
However, it turns out that in most cases, a “reasonable see-saw” maftrix, namely

one that follows either of the assumptions (i} and (i) gives:

mvi) [m(fa‘)

m(uj) m(fj)]p with 1 <p<2. (11.6)

In order to have p > 2 we need, in general, a matrix Mp with an inverted
hierarchy, e.g. ;’:—;— ~ %’;—‘% We do not know any sensible model with such a
prediction, but we cannot completely exclude it and we discuss this possibility

in Section 11.2.

The bound p > 1 is somewhat less certain for the following reasons:
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a. Neglecting the contribution of vy, may be unjustified. For example, the mass

differences among different generations may result from different v.e.v’s of

2z
krnax

YR

In such a case, all the light neutrinos masses are expected to be of the same

several ¢’s. If there is just one Higgs triplet, we generally have vy ~

2
order of magnitude, m(v) ~ &gl]» Consequently, we may obtain p = 0.

b. If Mg vanishes at tree level but gets a large contribution at the one or two
loop level, then it may depend on Yukawa couplings of 21,3. This may lead
to h; o [m(¢;)]? with ¢ > 1. For example [51], in the [SU(3)]* ® Z3 GUT,
g = 3, leading to an inverted hierarchy among the light neutrinos and to

p=-—1.

We conclude that 1 < p < 2 is “reasonable” and likely, but cannot be proven.
The p < 2 assumption is somewhat more solid than the p > 1 assumption. In
the following sections we will refer to the inequality (11.6) as the “reasonable

see-saw” assumption.

11.2 HOW DIFFICULT IS IT TO EVADE THE “REASONABLE SEE-SAW”
ASSUMPTION?

Before proceeding to derive significant new results with the aid of the “reason-
able see-saw” assumption, we wish to consider examples of schemes which manage
to evade this assumption. By studying the complexities involved in such schemes,

we can get a good feeling for the validity of the assumption.

The “reasonable see-saw” assumption {(eq. {11.6)) consists of two inequalities:
p > 1 and p < 2. In the previous section we discussed ways of avoiding p > 1.
Since our strongest results will depend mainly on the p < 2 assumption, we will
now consider several scenarios which actually lead to p > 2. We will see that,
while such scenarios cannot be ruled out mathematically, we cannot really find
any good physical motivation for them. We will therefore maintain our conclusion

that p < 2 is very likely but cannot be proven.

44



Our first scenario refers to the case in which mp and Mg can be simultane-

ously diagonalized. In that case, we have:

ol -

where h;, h; are the Yukawa couplings in the Majorana masses of the 7,7 gener-
ations. For p > 2 this requires an “inverted hierarchy” in the Majorana masses.

For instance, in order to obtain:

m(vr) [m(f) ]3 | (11.8)

m(vy)  m{e)

we need:

Mp(vr) _ m(u)
M)~ m(7)

(11.9)

We are not aware of any simple “see-saw” which would lead to such an inversion.
The only scenario we can offer for it involves an extended type of “see-saw” which
actually appears in some GUTs [52] and string inspired models [53]. In such
theories, vp does not acquire a Majorana mass, but there are additional fermions
which are singlets of the gauge group and may acquire Majorana masses. This

gives an “extended” see-saw matrix of the form:

0 mp 0
M=|mL o Mp (11.10)
0 Mg My

where mp, Mp and Mx may correspond to three different mass scales. For the

purpose of evaluating the light neutrino masses, we can replace this “extended

0 mp
see-saw” by a simple effective see-saw mafrix - with the substitution:
Mp = —MpMz*M} (11.11)
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The light neutrinos mass matrix is then
mp(MBL)*Mx(Mp) 'mE (11.12)

If, for some reason, Mx has a hierarchy among generations (as in mp), but Mp
is “generation-blind”, then the effective Mg has an inverted hierarchy and we end
up with p = 3. On the other hand, if both Mp and Mx have no hierarchy, or if
both have a similar hierarchy, the “reasonable see-saw” remains valid. Even with
this complicated scenario which may allow p = 3, we find it difficult to imagine

reasons for obtaining p > 3 values. This will become important in Section 11.3.

QOur second scenario relates to the more likely case in which the submatrices
mp and Mp cannot be simultaneously diagonalized. We have to assume some
explicit form for the non-diagonal mass matrices. An atiractive (though not
unique) possibility is the Fritzsch form [54] {for simplicity we assume a symmetric
Yukawa matrix):

0 hepks 0
mp = | heuks 0 hyrky (11.13)
0 hurkr  hyrko

where k; are v.e.v’s of different Higgs fields ¢; and &;; are Yukawa couplings.

This form may arise in a variety of models and is presently consistent with
all data on quark masses and mixing angles. Typically, we have a hierarchy of

the form

hrfk{] o> h#fkl g hey,k3 (11.14)

The simplest way of obtaining the Fritzsch form is to assume that fermions as
well as Higgs fields carry a spontaneously broken “generation-number” (which we
label G). In such a case, Yukawa couplings that do not conserve & vanish. For
example, if G,, G, and G, are 2, 1 and O respectively, and there are three Higgs
doublets with G=0, 1 and 3 that obtain v.e.v’s ko, k1, k3 as in eq. (11.13), we
obtain a Fritzsch form. The hierarchy is completely determined by ko > k) > k3
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and all Yukawa couplings may be of the same order of magnitude. The same
type of matrix arises when the fermion G-values are -1,+1 and 0 with only two
Higgs doublets carrying G = 0 and 1, but then there should be some hierarchy

among the Yukawa couplings as well.

If we assume that mp and Mg have Fritzsch forms, in which all matrix
elements are either comparable to each other or obeying a hierarchy similar to
eq. {11.14), we usuvally obtain light neutrino masses which are consistent with

the “reasonable see-saw” assumption.

We have searched through all possible matrices of this type and found only
several artificial examples in which, by making ad-hoc assumptions we could
extract neutrino mass ratios which violate the “reasonable see-saw” hypothesis

and yield p ~ 3 values. These examples are described in Appendix B.

After considering a large variety of possibilities we therefore conclude that
avoiding the “reasonable see-saw”is artificial, unlikely but not impossible. We

now proceed to study the consequences of the “reasonable see-saw”.

11.3 CONSEQUENCES OF “REASONABLE SEE-SAW” MATRICES

As we have shown, the cosmological bound on the energy density of the

universe can be fulfilled only if
m{v,) <65 eV ; mlv;) <65 eV or m{v,} > 0.9 MeV (11.15)

On the other hand, the “reasonable see-saw” assumption puts an upper limit on

the mass ratio (the p < 2 limit of eq. (11.6)):

< [m(f)r ~ 300 (11.16)

However, if v, is heavier than 0.9 MeV, the same mass ratio must obey
%:—’% > 14000, demanding p > 3.4, in clear conflict with the “reasonable see-
[

saw”. We have seen in the previous section that p ~ 3 values are quite unlikely
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and p > 3 is even less plausible. This leads to the conclusion
mv,) <65eV ; mir) <65eV (11.17)

If neutrinos are light as a consequence of a “reasonable see-saw” mechanism,
then st 15 tmpossible to accomodate the cosmological constrainis on their masses,

uniess they are all lighter than 65 eV.

The strong limits obtained in eq. (11.17) have further implications. The
lower bound on the mass ratio among neutrinos (the p > 1 limit of eq. (11.6})

can be combined with m(r;) < 65 eV to give:
mv,) < 4eV ; miv.) <0.002 V. (11.18)

Thus, the “reasonable see-saw” hypothesis, together with our previous conclu-
sions, leads us to an extremely strong new upper bound on the masses of v, v,

and v,.

As the mass of v, is assumed to be approximately given by m(v;) = Iﬂg-)ﬁ,

the above upper bound on m(i;) gives a lower bound on the scale R:

[m(r)]
> — - .
> o ~ 50 PeV (11.19)

This is a very significant bound if R is the scale of LRS-breaking or of a horizontal
gauge-symmetry breaking. This bound is not significant for GUTs, in which the

breaking-scale is known to be much higher.
We can see only two possible ways of evading the conclusions (11.17)-(11.19):

a. Avoid the “reasonable see-saw” assumption, so that eq. (11.16} is not valid.

We discussed this possibility in Section 11.2 and in Appendix B.

b. Find additional decay channels for v, and/or v;. Such decay modes should
either have no relation to analogous decays of charged leptons, or be heavily
suppressed in the charged sector. In this way, eq. (11.15) may be circum-

vented. We have discussed such cases in Section 10,
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12. A fourth leptonic generation
12.1 v, AND v, DECAYS

One of the simplest extensions of the standard model is the addition of a
fourth fermionic generation. We label the fourth charged lepton by o, and the
corresponding neutrino by v,. As yet, there is no experimental evidence for their
existence. There is a direct experimental lower limit [565] m{c) > 41 GeV. The
p-parameter measurement puts an upper limit [56] on the mass-splitting between
o and v,: if v, is very light, o cannot be heavier than 300 GeV, If the fourth
generation neutrino v, is sufficiently heavy (e.g. m{v,) > 4.2 GeV) it can be
stable or unstable (see eq. (2.14)). Still, the existence of a fourth generation
could affect the decays of lighter neutrinos. We first study these effects, and

calculate whether our former conclusions remain valid.

The existence of a fourth generation enhances the radiative decay v; — v,y
for i = u,r [31]. The reason is that as long as all charged leptons masses are
much smaller than My, this decay channel is suppressed by a GIM-mechanism.
The existence of a charged lepton with a mass comparable to My eliminates the
GIM-suppression. To see this effect, we note that in the expression for the decay

width {eq. (4.13)),

2

— : (12.1)

T(v; — v) = aGrlm(v)P [EU U F(r

the term in square brackets is approximately given by U, U [ F(rs) — F(0)]. The
function |F(rs) — F(0)] varies slowly from § to  as r; varies from 1 to infinity. In

the limit that r, approaches infinity, the lifetime for the radiative decay is {31}
() [m(n))® = (UipUjo) 72 10%° €V °sec. (12.2)

The requirement for radiative lifetime shorter than 10* sec, cannot be satisfied

for v,. In the v, case, we are again led to the range of masses above 10 MeV.
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In all other processes, the existence of a heavier leptonic doublet does not
affect the decay rate. Thus, our former conclusions remain valid: v, is lighter
than 65 eV'; v; can be heavier than 0.9 MeV (if it is unstable}, but if we assume

a “reasonable see-saw”, m{r,) < 65 eV as well.

12.2 v, DECAYS WITHIN THE STANDARD MODEL

As mentioned before, v, could be stable or unstable, with a mass larger than

4.2 GeV. However, if we make the “reasonable see-saw” assumption we obtain

2
m(o)
< . ‘ 12.

m(yo') —= [m(r)] m(VT) ( 3)
This is exactly the assumption which led us to m(r,;) < 65 eV. The charged
lepton mass is bounded by the p-measurement, m(c) < 300 GeV. Putting these
limits into eq. (12.3) gives

mvs) <2 MeV. (12.4)

Can we have a v, with a mass larger than 65 ¢V and lighter than 2 MeV? To
answer this question, we repeat our analysis for the various possible v, decay

modes.

The rate of the Z-mediated decay into three lighter neutrinos depends on
the coupling of Z to neutrinos of different generations, which is O (%;) As
m{o) < 300 GeV, and R > 50 PeV (eq. (11.19}}, %; < 10719, which makes this

channel irrelevant to our discussion.

The W-mediated decay into e¥e~ v, depends on the v, — 1, mixing. The same
upper bounds as in the v, case (eq. (4.12)) apply here and, consequently, the
decay is too slow for m(v,) < 10 MeV.

The radiative decay lifetime is given (for v, lighter than 2 MeV') by eq. (12.2)
with ¢ = 6. The double photon decay is given by eq. (4.17). Both are much too

slow to allow a v, in the mass range in question.
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We conclude that in the extended standard model {with right-handed neu-
trinos and fourth generation fermions) with a “reasonable see-saw” mass-maftrix,

m(v,) <65 eV.
12.3 v, DECAY IN LRS AND HORIZONTAL MODELS

The fourth neutrino v, may still be heavier than 65 ¢V and lighter than 2
MeV , if it decayed into three neutrinos through one of the channels described in
Sections 6 and 7. We cannot rule out such a decay, because we have no upper
limit on the decay of the hypothetical charged ¢ into three charged leptons.
However, we can reverse the argument, assume m(v,) > 65 eV, and study the
implications on charged leptons decays. In the models of Sections 6 and 7, there

is a relation between v, and o decays:

I'(c — 3¢) m(o) 1°
= . 12.5
(v, — 3v) [m(v,,) (12.5)
We are interested in the branching ratio

I'{o — evv)

where 0 — evi is the “normal”, W-boson mediated decay which occurs in the

standard model. We have:

re i = i) =

The three equations (12.5), (12.6) and (12.7) together give:

_ T(ve = 30) [ m(r) 5
B= T{r — evv) I:m(vg)] ) (128)

If m{v;) > 65 eV, the 3v final states provide the main decay modes and thus

T{v, — 3v) = [r(,)]!. The v, lifetime must folfill the cosmological bound
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(2.19):

[meo)|? r{ve) < 2- 102 eV? sec (12.9)

and we assume the “reasonable see-saw” relation {12.3):

m{o)

mive) < | ]zm(u,), (12.10)

m(r)
with m({v;) < 65 eV. Using egs. (12.8), {12.9) and (12.10) we then obtain a
lower bound:
[{c — 3¢)
T{o — evv)

41 Gev)®
: (12.11)

=36 [ m(o)

This leads to an overall branching ratio g g__:fé between 28% (for m{c) =
41 GeV, m{v,) > 65 eV) and 0.5% (for m{o} ~ My, m{v,) > 65 eV). A
branching ratio of the order of 28% at m(o) ~ 41 GeV would have probably
been observed by the UA1 detector and is presumably already ruled out.

We conclude: the “reasonable see-saw” assumption leads to the conclusion
that m(v,) < 2 MeV. If m(v,) > 65 eV, it should decay into 3v through Ay,
or H%exchange. The decay of o into three charged leptons is then an imporiant

decay mode.

If, however, a fourth generation generation lepton is observed and its branch-
ing ratio for the 3¢ final state is found to be smaller than the bound (12.11}), we
will be led to conclude that v, is also lighter than 65 eV. In that case, the “rea-
sonable see-saw” assumption will allow us to further decrease the upper bounds
for m{v,), m{v,) and m(v,). All three bounds {egs. (11.17), (11.18)) become
smaller by a common factor %8—
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12.4 A FOURTH GENERATION IN THE MAJORON SCHEME

In all “beyond standard” models with a scale above 1 TeV, the “reasonable
see-saw” assumption leads to the conclusion that v, v, and v, are lighter than
65 eV, while v, is lighter than 2 MeV. In Section 10 we mentioned that if one
assumes that global lepton-number symmetry is broken at a scale as low as 50
GeV, the neutrinos can have masses near the upper experimental bounds {47]. If
experiments find m(o) ~ 50 GeV , the mass of vy is predicted to be O(50 GeV') as
well. Such a neutrino can be stable or unstable without violating the cosmological

bounds.

We conclude: In the Majoron scheme, with the masses of all three known
neutrinos near their upper experimental bounds [47], st is possible that all leptons

of the fourth generation (0, VoL, Vsr) have their masses around 50 GeV.

13. Conclusions

In our analysis we have used five different ingredients:
(f) Direct experimental bounds on neutrino masses.

(17) Cosmological bounds on the masses of stable neutrinos and on the relation

between the masses and the lifetimes of unstable neutrinos.

(277) Theoretical calculations of neutrino decay rates and their relations to neu-
trino masses in models in which all relevant parameters are known (partic-

ularly the standard model, but also some “beyond standard” models).

(tv) Experimental bounds on specific decays of charged leptons and theoretical
relations between such decays and neutrino decays. These relations are
helpful in models (i.e. LRS-theory, horizontal symmetry, substructure) in

which the relevant parameters are not known.

(v) The “reasonable see-saw” assumption.
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The first four ingredients are based on experimental data, on the standard
cosmological model, on the standard electroweak theory and on very conservative
and general assumptions concerning “beyond standard” models. We consider
these ingredients to be very reliable. The fifth ingredient (“reasonable see-saw”)

is slightly less solid, but is still likely to be valid.
By combining the first four ingredients we conclude:
mv,) < 18 eV
m(vy) < 65 eV (13.1)
m{v,) < 65 eV or 0.9 MeV <m(v;) < 70 MeV

By combining all five ingredients we conclude:
m(v,) < 0.02 eV
m(vu) < 4 eV (13.2)
mv;) < 65 eV.

This last conclusion has additional important implications. A see-saw mech-

anism together with an upper bound on a left-handed neutrino mass, imply e

lower limit on the Majorana mass of the corresponding right-handed neutrino:

M(vg) ~ () 5 56 pev. (13.3)

m(vr)
(1 PeV = 102 TeV). For a “see-saw” driven by the GUT scale or the Planck

scale, this bound is useless. However, for LRS theories it implies {assuming
have < gweak):

M{WEg) > 50 PeV (13.4)
and for a “see-saw” driven by a horizontal symmetry we obtain:
M(H®) > 50 PeV (13.5)

Both of these limits are very significant. In the case of LRS theories they imply
that no right-handed W or Z will be produced in experiments within the next
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several decades and that most effects (including C P-violation) which are due
to right-handed currents are negligible. Previous bounds on the scale of right-
handed currents 57,58, 59] were in the range of a few TeV, well below our new
bound. In the case of horizontal symmetry, the new bound is stronger than
previous bounds [60,38] obtained from rare processes such as uN — eN, p —
3e, u — ey, KO — ep, K+ — 7t pe and AM(KJ — K9).

All our bounds seem to be valid within the framework of all currently popular
“beyond standard” models (with the possible exception of the ad-hoc schemes
mentioned in Section 10). We believe that these bounds are theoretically signifi-
cant. The upper bounds on m(v;), m(v.), m(v.) are, respectively, six, five and
three orders of magnitudes below the corresponding experimental bounds. The
lower bound on M(Wg) is four orders of magnitude above the previous bounds.
From the pure experimental point of view, these bounds imply that direct exper-
iments in the foreseeable future have no chance of observing neutrino masses or

right-handed W-bosons.

Can we expect additional information from experiments in the next few years?
Improvements in the direct bound on m(v,) may help eliminate the small “win-
dow” allowed by the model of Ref. [47]. If a fourth generation lepton is discovered
and if it does not decay fo three charged lepions, we may obtain bounds which
are even stronger than eq. (13.2). Improvements of the bounds on 7 — 3£ may

strengthen our confidence in the consequences of the “reasonable see-saw™.

The resulting range of allowed neutrino masses is perfectly consistent with
models which produce a see-saw based on the Planck scale, the GUT scale or the
so-called intermediate scale (~ 10*! GeV). It is also consistent with the neutrino
mass range required for explaining the solar neutrino puzzle in terms of resonant

neutrino oscillations in matter [61].

We wish to thank H. Haber and M. Karliner for helpful discussions. One of
us (Y.N) acknowledges the support of a Fulbright fellowship.
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APPENDIX A

THE HIGGS SECTOR IN THE MINIMAL LRS MODEL

We study the masses of the Higgs particles in the minimal LRS model [25].

The Higgs sector consists of:

11, [ 4
1

LA AR
Ap =(1,0); = ( Zo 1A+ (A.1)
L TRAL
A1 At ATt
AR=(0,1)2=(*’%R N +)
A ——==A
R 20R

The v.e.v’s of the Higgs fields are of the general form:

ky O
@-(% )
6 O
(Ar) = (vL 0) (4.2)

A_oo
<R>_URG)

The four v.e.v’s are complex, in general. However, by an appropriate SU{2)r @
SU(2)g tranformation, we can make & -k3 and vy -vg real. We define ¢ = arg(k;)
and n = arg{vy). From now on, we denote by ki, k2,vr,vr the absolute values

of the v.e.v’s. At the minimum of the potential:

(11 + Yoz ) k1 k2 cos(2n) + z{k? cos[2(n + ¢)} + k2 cos[2(n — )]}

vy = —
L lpz — 2{p1 + p2)]vr

(4.3)

where the ~+’s and the p’s are coefficients in the Higgs potential defined in Ref.
[25]. Thus, assuming v} > k? = k? + k2, we naturally get v? « k%. The mass
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mairix for the charged gauge bosons is:

202 + k%2 2k
(M) = g2 | 7 v (A4.4)
2 —2kiks 2‘0?2 + k2

Consequently, M(Wg) 3> M(Wg) and the mixing between them, & = ¥k s

L
YR

very small even if one does not assume % < 1 [59].

We first consider the masses of the Higgs particles [62] that arise only from
the SU(2)p-breaking (i.e. k* = v} = 0). As the Ap-triplet is an SU(2)r singlet,

its three members are degenerate in mass:
[M(AL)]? = pvk; : (A.5)

where p = p3 — 2(p1 + p2). With no fine-tuning, we expect p = O(1), and thus
the Ar-triplet has its mass at the scale of SU{2)g-breaking (the consequences of
assuming p < 1078 are discussed in Ref. [63]).

The masses of the right-handed triplet members are:
[M(AET)? = ~2000% 5 [M(AR) =0 5 [M(AR)) = —(o1 + p2)vi (A:6)

A} and Im[A%)] are the Goldstone bosons. The mass matrix for the neutral ¢
fields is:

(47)
2a03 + Big 11 + a2 + B

(M) = v} (&11 + ag2 + Bn 2aq2 + iz )

where the a’s and B’s are defined in Ref. [25). The mass matrix for the charged
¢ fields is similar to the matrix (A.7). We now “switch-on” the v.e.v’s k; and k3,

and study the new mass terms that arise to O(kvg):

AE"' : The mass of the doubly-charged Higgs gets no corrections to this order.
Thus:

IM(ALF)]? = pvk + O(K?) (4.8)

A}:: The singly-charged Higgs field mixes with the ¢* fields. The mixing term is

a function of all the ~;;-coefficients, f(v)kvg. The mass-squared difference
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between AE and ¢* is a function of all the p;, a;; and Sj;-coefficients,
9{p, @, B)v%. Thus,

pvy + Olkvg) if% < %;

2 2 : (4.9)
pvyp + O(k*)  otherwise.

sy -

A%: The neutral Higgs field mixes with the ¢° fields. The mixing term is related
to the mixing term for the AE through a Clebsh-Gordan coefficient. The
mass differences are exactly the same in both cases. Thus, our conclusions

are similar to (A.9).

We conclude: Assuming that all the coefficients in the Higgs potential are
0O(1), and that there are no accidental cancellations among them, the mass split-

tsngs within the Aj, triplet are:

IMATDY — [MA [k"‘] ~ O [M(WL)]Z <25x10°  (A.10)

[M(ALF)E vh

YR

If we fine-tune the Higgs potential parameters to O (%) , we still get:

][M(A};[*;&%F;‘]i(ﬂg)m 0 [i] 0 [M(WL)] <5x10-2 (A1)

58



APPENDIX B
GENERATION NUMBERS AND EXCEPTIONAL MASS RATIOS

We survey matrices Mp with no hterarchy, but with special forms dictated
by some horizo;lta.l - discrete, global or local - symmetery, which may give
- (5]

As discussed in Section 11.2, we assume that fermions as well as Higgs fields
carry a spontaneously broken “generation number” which we label G. For the
sake of definiteness, we take G,, G, and G, to be 2, 1 and O respectively, and
assume that there are three Higgs doublets with G=0, 1 and 3, that obtain
v.e.v’s kg, k3 and ks, respectively. Similar results are obtained from other seis

of G-values. The resulting mass matrix is of the Fritzsch form [54)

mp = | heuks G hurky (B.1)
0 hpfkl hffko

We first study matrices Mg with three eigenvalues different from zero. We
2
find that a necessary condition for %ﬁ—;} > [%&3] is that the mairix elements of
Mp, fulfill (Mg} =0, [MRg]i2 = O{R). (In the language of generation numbers:
there is no A multiplet with G = 4, while there s one with G = 3).

We denote the v.e.v of the G = 3 Higgs by vs. If there is also a Higgs with
G =0 then

0 vz O
MR ~ vy O 0 (BZ)
0 0 wuw

We are assuming that there are no Ap fields with G = 1, 2. With mp of the
form (B.1) we get

my) | m@OF v v s (B.3)
m(v)  [m(e)] ()P vo o

3
If v3 ~ vg, this is equivalent to %}:—:‘% ~ [%] . It is interesting to note that a
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single Ap with G = 0 (and G, = +1,—1,0) could give the same result, but
its Yukawa couplings should have an opposite hierarchy to those of the Higgs
doublet ¢ with G = 0.

Another possibility is to have the additional Higgs field with G = 2, but no
G =0, 1 fields:

0 U3 V2
Mp~ ] vy vo O (B.4)
va 0 O

With mp in the Fritzsch form we get the same dependence as in {B.3), only with
3

a factor [%3] . The above two cases are based on patterns which are especially

concocted for the purpose of producing p > 3 examples. We have found no other

such cases with three eigenvalues of O (R).

If m{v;) is at the MeV range, it is comparable to the electron mass. It is then
possible that only the v, and v, masses are derived from a see-saw mechanism
and the v; mass is mostly a Dirac mass. In that case we may consider Mp
matrices with only two eigenvalues of O(R). To be specific, assume the Fritzsch
form (B.1) with the appropriate generation-numbers, and that there is only a
single Ap multiplet, with G = 1:

0 0 0
Mp=|0 0 R (B.5)
0 R 0

The light neutrino masses are:

m{vs) =0 {[m(e)m{um)]"* }

V13 2 )11/ (B.6)
() =0 {1 OV () }

The mass of v, is a few MeV, and that of v, can be made arbitrarily small by

taking a higher scale for R. In order to obtain m(v,) < 65 eV we must have

R > 12 PeV.
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The peculiar scenarios described in this Appendix are the simplest examples
we could find for see-saw matrices which evade the “reasonable see-saw” hypoth-
esis. Their extreme ad-hoc nature strengthens our belief in the validity of that

hypothesis.
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FIGURE CAPTIONS

. Cosmological bounds on the mass and the lifetime of neutrinos. The ex-
perimental bounds on the known neutrinos masses and the observational

bounds on the age of the universe are also shown.

. Ap-exchange decays in LRS models: (a) 1 — Dy (b) £ — £76,8.

. H%-exchange decays in models with a horizontal gauge symmetry: (a) v; —
Vv g, (b) E: — 2;5;8?-

. The mass and the lifetime of v,. The shaded regions are those allowed in
the models of Sections 4-7. The solid line gives the cosmological constraints,
the dotted line gives the particle-physics constraints and the dashed-dotted
line gives the direct experimental limit. The age of the universe is shown

in dashed line.
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