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Summary 

Specific configurations of horizontal and vertical bending magnets are given 

that, when acting on the spin polarization vector of a particle beam, generate 

- a group of 24 operators isomorphic to the group of rotational symmetries of a 

cube, known as the octahedral group. Some of these configurations have the 

-. .- . feature of converting transversely polarized beams to longitudinally polarized 
c 

beams (or vice versa) at the midpoint of the configuration for, in principle, all 

beam energies. Since the first order optical transfer matrix for each half of these 

configurations is nearly that of a drift region, the external geometry remains 

unchanged and midpoint dispersion is not introduced. 

. , _zz. 

Changing field strengths and/or polarities allows a configuration to serve 

as either a Snake(lst or 2 nd kind) or a Rotator, where in both cases the spin 

polarization is longitudinal at the midpoint. 

Practical applications using these configurations for electron or proton beams 

- can be envisioned. The requisite-high integrated field strengths will limit these 

applications for electrons. 

Submitted to Particle Accelerators 
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Introduction 

The concept of inserting into a ring accelerator the spin rotating devices that 

were subsequently called Siberian Snakes was first proposed by the Soviet authors 

Y. A. Derbenev and A. M. Kondratenko of Novosibirsk, USSR.[” There are sev- 

eral known types of Siberian Snakes[2’31 for manipulation of a beam polarization 

vector. 

The Snake of the lst kind rotates the polarization vector about the longi- 

tudinal axis of the beam (a rotation of 90’ for each one-half of a snake). A 

particular magnet sequence representing a Snake of the lst kind was proposed by 

K. Steffen.[” It has the elegance of not introducing dispersion nor affecting the 

beam trajectory external to the system. It has a wide range of operating energies 

but, unfortunately, is not useful by itself in converting transverse polarization 

into longitudinal polarization. 

- 

_-..._ . 
-. 

-._ 

The Snake of the 2nd kind rotates the polarization vector about the transverse 

axis (this axis is horizontal in Ref. 2 and, again, the rotation is 90° for one-half of 

a snake). This Snake does rotate transverse polarization into longitudinal polar- 

ization, making it more interesting to those doing polarized beam experiments. 

However, known versions of this snake do introduce midpoint dispersion and may 

have a limited range of operating energies and/or variable geometry. 

Two other novel versions of the Siberian Snake have been proposed.[5’ They 

are the Left and Right Pointed Snakes which represent rotations of 180’ about 

axes lying in the plane containing the horizontal axis and the axis of the beam 

direction. The direction cosines of this rotation axis have a magnitude of i$ 

with respect to the coordinate axes mentioned. 
. ’ .r- 

~-.- e In general then, a Siberian Snake has been defined in -Reference 2 to consist of 

_ .:_* a sequence of magnets that rotate the spin vector by 180’ about an arbitrary axis 

lying in a plane containing the horizontal axis and the axis of the beam direction. 

This definition requires that a Snake always invert the vertical component of the 

spin polarization vector. 
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* ,c- 
The importance of Snakes in circular machines has been extensively described 

. 
but we will refer only to a review article by Montague.16’ One of the uses de- 

scribed in this review and attributed to Derbenev and Kondratenko, applies to 

electron storage rings. It is explained that two snakes placed in a ring at diamet- 

rically opposing positions, one of the lst kind and the other of the 2nd kind, can be 

used to achieve a spin tune of 0.5, with the vertical component of the spin vector 

parallel to the field in one half of the machine and antiparallel in the other half, 

independent of energy. Such a procedure, according to Montague, reduces “sub- 

stantially the effects of large energy spread and imperfection resonances at high 

energies, permitting polarized beams to be obtained up to perhaps 100 GeV.” In 

his review Montague develops an elegant method that uses spinor algebra and 

unitary transformations for describing spin transformations and calculating spin 

tune. This method is used in proving that the configuration described above has 

a spin tune of 0.5 which means, he points out, that “any arbitrary spin vector 

- 

closes upon itself after two revolutions,” around the ring. 

-__ 

vertical component of the polarization vector into the longitudinal direction at 

the midpoint (Interaction Point) and then restoring the original direction. These 

systems are useful for polarized beam physics. Montague has shown that, in 

general, if such a system is constrained to be fully antisymmetric about the 

midpoint, then the overall spin transformation is the identity, independent of 

beam energy or the details of the field strengths. This is an important point to 

which we will again refer. Most Rotators operate at only a specified beam energy 

or with changing geometry (see Refs. 3 and 6). 
. - _-e_ 

~- . - One of the configurations of,magnets which we will describe is identical in 

- ..* appearance to that of the Snake of the lst kind as given in Reference 4. Either 

Snakes or Rotators can be generated with this configuration. In addition, its 

function can be easily changed by adjusting field strengths or polarities. Rather 

_-..._ . 
- 

There are also systems called Rotators (see Ref. 3). This name has been 

used to classify systems of magnets which have the property of rotating the 

_ than having several names for a single system depending upon which purpose it 
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serves we have chosen to simply use the name, Serpent, when referring to this 

. 
configuration. We will point out when this configuration is serving as a Snake or 

Rotator. 

Another half Snake or half Rotator we have named the half Up-Down Snake. 

It shares many of the properties of the Serpent but is sufficiently different that 

it requires another name. Now, we will describe the Serpent, and return to a 

description of the Up-Down Snake later. 

- 

_-..._ . 
- 

-__ 

Figure 1 represents the configuration of horizontal and vertical bend magnets 

that will generate one-half of a Serpent. This configuration is identical to that of 

one-half of the Snake of the lSt kind described in Ref. 4, except that for the Serpent 

the magnitude of the fields are to be doubled. It retains the nice features of the lst 

kind in that it has an extremely wide range of operating energies and acceptance, 

does not introduce dispersion(at end of half of system), and the beam entering 

the snake (head) is collinear with the beam exiting (tail) so geometrically it can 

replace a drift region. The first order optical transfer matrix of this configuration 

is also essentially that of a drift region except for the small focusing effects and 

momentum compaction factor produced by the dipole magnets. The magnetic 

fields are determined by the desired precession angles independently of beam 

energy. Hence, the deviation from the drift matrix decreases with increasing 

- 

beam energy. Corrections can compensate for these effects and may or may not 

be necessary depending upon application. 

For the remainder of this discussion we limit ourselves to only those configu- 

rations of magnets that do not introduce dispersion or change external geometry 

as a function of beam energy. 

. - _F_ 
~- . - ;. 
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Precession Angie* in Horizonial Dipoles 

Precession Ang le * in Vertical Dipoles 

* Propor t iona I to Bend Angle 
4-86 
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Figure 1. 

Before proceeding further, we will comment on notation, write some useful 

- relationships, and define a coordinate system. 

One half of a Serpent rotates the spin polarization vector about an axis that 

can be graphically represented by a vector connecting opposite corners of a cube 

(the rotation angle is 120° for one half of a Serpent). It may be seen immediately 

that such an operation can perform an even or cyclic permutation of the coor- 

dinates of the polarization vector and thus permute transverse and longitudinal 

coordinates. Four such non-orthogonal axes are chosen for our representation. 

_-..._ . 
- 

-__ 

They will be defined later as vectors having direction cosines all equal in magni- 

tude but with varying signs. We define directions for these axes and the magnetic 

fields such that for an electron, a positive rotation about these axes obeys the 

right hand rule. The reader will note that in general such a rotation applied & 
. - _P_ 

~- . - three times results in an identity,_If represented operationally, A3(1200) = I, or - 

A2(1200) = A-l (12OO) = A( -12OO). We will choose to write A-l (120’) instead - .-* 
of A2 ( 12OO). 

5 



The precession angle of the spin polarizationvector is given by the relation- 
. ship 

In which 4 is the bending angle of the beam in the transverse magnetic field. l/lP 

is the precession angle for the polarization vector of an on-momentum particle 

about the direction of the field in the coordinate system following the beam (orbit 

frame). 7 is the Lorentz factor, and a is a measure of the particle’s anomalous 

magnetic moment (see Ref. 6 for discussion of the Thomas-BMT equation and 

detailed references). For electrons 

= 1.159652 x 1O-3 , 

whereas for protons 

- a = 1.792846 . Pb) 

_-..._ . 
- 

-_-. 

It is also useful to express $J~ in terms of the s Bde of the applied field since 

for ultra-relativistic particles the energy dependence factors out. For electrons 

& = 0.680 
J 

Bdl (radians, T-m) (3) 

- 

for protons the coefficient becomes 0.573. Note that an integrated field of 

2.31(2.74) T- m will precess the electron(proton) spin polarization vector by 7r/2 

or 90° independent of beam energy. This fact will be referred to later. 

. At the beam energies of the Stanford Linear Collider (~-50 GeV), and higher L _r_ 
- ~- --- e energies, the bending angle of thebeam is small (< lo) in traversing such a field. 

Hence, the spin precession angle when measured in laboratory coordinates or 

beam coordinates is nearly the same. 
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* ,c- 
Figure 2 shows the coordinate system following the beam and the definitions 

. 
of certain vectors. 

Y 

B = Bj For Horizontal Bend 

B= Bi For Vertical Bend 
3-06 

q = -e For Electrons 5364A2 

Figure 2. 

- In this coordinate system the electron spin polarization vector is expressed 

in terms of its initial coordinates and it is assumed that its magnitude has been 

_-..._ . 
- 

normalized to a value between 0.0 and 1.0. This vector is expressed as 

p=Hi+Vj+Sk , 

or alternatively as the column vector 

H 

p= v . 0 S 

- 

e 

- .-.e- 

For an electron traversing a horizontal bend magnet, the spin polarization 

vector will precess through an angle 0, where positive 13 is defined by the right 

hand rule representing rotation about the y axis. The resultant polarization 
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; ,-- vector kill be given by 
. 

p’ = H(+e)p 

where H(+O) is an orthogonal matrix operator defined by 

cos 0 0 sin 8 

p’= i 0 1 0 
- sin8 0 case 

(Horizontal Bend) (4 

For a vertical bend magnet the precession angle T/J, again is defined as positive 

by the right hand rule about the x axis, and 

- 

P’ = V(++)p 

- 
where the orthogonal matrix V(+$) is defined by 

p’ = (i c.~.; ;iy) ( f ) . (Vertical Bend) (5) 

With these definitions we now represent the effect on the spin polarization 

vector of the combined vertical and horizontal bend magnets that were shown in 

Figure 1 by 

.  
_F_ p’ = H(+e)V(+$)H(-N)V(-W)H(+~)V(&)P . 

;. 
(6) -I 

Note that the beam sees a vertical bending magnet first in this configuration, 

so the first matrix operating on p is V(+$), therefore, one reads the matrices 

from right to left to reconstruct a configuration. 



; ,L- 

Wewill represent this configuration by the notation, V(+$, +0), which indi- 
. 

cates that the first magnet seen by the beam is a vertical bending magnet with 

a positive precession angle, and the second magnet (horizontal) also has positive 

precession. Other configurations will follow the same patterns, so H(++,-8), 

where the arguments are not transposed, would represent a horizontal magnet 

first with negative precession angle followed by a vertical magnet with positive 

precession angle. 

We write Eq. (6) as 

p’ = V(+$, +e)p . 

Serpent 

If we now select field strengths such that + = +90° and 0 = +90° (recalling 

that the required integrated fields are independent of beam energy having values 

given by equation 3.) then 

p’ = V(+90, +9o)p . 
-. .- . 
c 

Or in the expanded form of the equation, 

p’ = H(+9O)V(+9O)H(-l8O)V(-180)H(+90)V(+90)p . 

Calculation using Eqs. (4) and (5) gives 

p’ = 

or 
. , _zz_ S 

1. 
p’= H . 

- .---- 
0 V 

We see that the vertical component of the initial polarization vector has now 

been rotated into the longitudinal direction. This configuration performs a cyclic 
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. 
permutation of initial coordinates with no changes of sign. It can be represented 

by a positive rotation of 120’ about the axis, al, given by 

We now define a matrix operator, Ar(+120) where 

- 

Ar(+120) = V(+90,+90) = 

AS noted earlier, Ar3(+120) = I and 

Ar2(+120) = A3+120) = Ar(-120) . 

Since the rotation angle will be understood to be 120’ for this and three following 

operators, we shorten the notation further to 

Ar=(K p %) and A;‘=(% i K). 

_. . ..- 

c 

We now select three other axes of rotation given by 

az=l/S(+hi-&j-&k) , 

as=1/3 (-&i+dj-&k) , 

and 

a4=l/3 (-hi-hj+hk) . 

These will be eigenvectors (rotation axes) for corresponding operators 

i2, A3, A4 , 

and their inverses 

A;‘, A& Ai1 . 

e 
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i ,=- 
With these definitions we find the following correspondence between config- 

. 
urations and operators for half Serpents: 

0 0 1 
V(+90,+90) = ( 1 0 0 

0 1 0 

0 0 -1 
V(+90,-90) = ( -1 0 0 

0 1 0 

0 0 1 

V(-90,+90) = i -1 0 0 0 -1 0 1 
i 

0 0 -1 

V(-go,-90) = 1 0 0 
- 0 -1 0 

0 1 0 

- . ..- . c H(+90, +90) = 0 0 -1 
-1 0 0 

0 -1 0 
-._ H(+90,-90) = 0 0 -1 

1 0 0 

H(-90,+90) = 

_ _zz_ 0 1 0 

- H(-90, -90) =: 0 0 1 

- ..* 1 0 0 

=A1 

=A2 

= A3 

=A4 

= Ah1 

zz Agl 

= Ai1 

- 

. 

H -V 

0 0 

v * -s 

S H 

H -V 

0 0 

v*s 

S .-H 

-H 
-- 

V 

0 0 

V’ * s 

S H 
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And, of course, 

100 
V(O,O) = H(O,O) = 010 

0 01 

H H 0 0 v * v . 

S S 

- 

With one-half of a Serpent, there are eight interesting final states where the 

transverse polarization has been rotated to longitudinal polarization. They are 

all cyclic (even) permutations of coordinates with some changes of sign. The total 

number of such permutations and sign changes is 24 (3 even permutations and 

8 possible assignments of sign). If both even and odd permutations are included 

the total is 48. Of that set, a subset of 24 would have a determinant of +l 

and represent rotations. Both even and odd permutations can be generated by 

rotations. The subset of 24 operators having a determinant -1 would include 

a reflection of right-handed coordinates to left-handed coordinates. The nine 

operators we have found thus far do not form a group. 

- 

--..._ . 
-. 

-__ 

Reversing direction of the longitudinal polarization requires that the fields 

of at least half of the magnets reverse polarity. For electrons the total s Bdl 

required is 18.4 T-m. This high value coupled with the need for low fields to 

limit synchrotron radiation will require long magnets and hence, large energy 

dependent beam excursions within the system. Spin depolarization effects may 

also be enhanced. Applications for electron beams are limited by these consider- 

ations. For protons the required integrated field is only slightly more but, shorter 

magnets can be used. The purpose here is to proceed to investigate other inter- 

esting properties of these configurations which, at least in principle, may have 
; 

_ _P_ applications. 
;- 
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z ;- 
We”now seek additional final states by combming two one-half Serpents, end 

. 
to end. This gives us three new operators, Cl, C2 and C3 (see Table I) that 

can be made in a number of ways. They do not change transverse to longitudinal 

polarization. In fact, Cl is the operation defining a Snake of the lst kind, whereas 

the operation C2 is that defining a Snake of the 2nd kind. These two operators 

and all operators corresponding to a snake will, by definition, invert the vertical 

component. 

i -1 0 0 -1 0 0 0 0 1 1 

i 0 0 1 -1 0 0 -1 0 0 1 

-1 0 0 

- i 

0 10 
0 0 -1 1 --..._ . - 

=cl (;)+) 

H 

= c2 

0 0 
v ====s -v 
S -S 

AC3 j;) () 

H -H 

v===+v 

S -S 

-__ 

Note that Cl 2 = C22 = Cs2 = I, and C&j = CiCi = Ck for i # j # Ic. 

The set of 4 operators {Cl, C2, C3, I} forms a commutative group with re- 

spect to matrix multiplication. 

The rotation angle is 180’ for operators Cl, C2, and C3 about eigenvectors 

cl = hk, 

.  .  
-1. 

--- 

c2 = fi, 
1. 

and - -* 

c3 = kj 

respectively. 
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r ,*-. 

. 

. . - 

AT1 

AZ1 

A;1 

Ah1 

A4 

A3 

A2 

Al 

TABLE1 : 
Multiplication Table for 

combinations of two half Serpents 

Al A2 A3 A4 

AT1 A;' A;' A,' C2 C3 I cl 

A;' AT1 A;' A;l C3 C2 Cl I 

- The operators in the top row represent the first half serpent as seen by the 

beam (or the right hand matrix operator). Those in the left column are for the 

-- . ..- . second half serpent (or the left hand matrix operator). The identity operator has - 
been omitted as a multiplier. 

For example: 

and 

The set of 12 operators 

- . .C  

forms a non-commutative group with respect to matrix multiplication. Therefore, 

combining three or more half Serpents will not generate any additional final states 

or new operators. 

14 



As mentioned, it is shown in TABLE I that either the Snake of the lst 

kind or the Snake of the 2nd kind can be generated by the proper combination 

of half Serpents. There is an important difference, however, between these new 

combinations and those known earlier. This difference stems from the fact that 

half Serpents do not rotate about eigenvectors confined to the plane containing 

the unit vectors i and k. If the first half serpent as seen by the beam corresponds 

to one of the operators Al, AZ, A3 or A4 there is the bonus of having rotated 

the vertical component into the longitudinal direction at the interaction region 

(midpoint). For the first time, we can obtain snakes of either the Ist or ,Pd 

kind with midpoint longitudinal polarization for all energies above a lower limit 

determined by magnet apertures. 
- 

- 

_-..._ . 
- 

Combinations ALlAi = I, where i = 1,2,3,4 could be used as Rotators. 

These Rotators would retain their properties for all beam energies above a lower 

-limit. Notice also that these Rotators are fully antisymmetric with respect to the 

midpoint, a property that Montague has shown will always result in an identity 

spin transformation. We can, therefore, reverse the direction of the longitudi- 

nal polarization at the midpoint by ramping magnets from one configuration to 

another while maintaining this antisymmetry. 

Example 

To illustrate how, in principle, these devices could be used in a circular ma- 

chine we will emulate the example cited by Montague. As in his example an 

electron ring is assumed but the new features important to this article can be 

applied equally well to proton machines. We will use in this example a circular 

machine having four symmetrically placed straight sections or drifts and assume r; 
_ . -1. an interaction point (IP) at the midpoint of each. Each drift will be equipped 

-.- i- 
with an identical assemblage of magnets as shown in Figure 3. 

- -c 
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+90 -180 +90 I-90 +I80 -90 . 
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View 

! 

I+--+ 
Beam 
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-- - - 

4-66 Al PI-1 
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Figure 3. 
- 

- 

--..._ . 
- 

The configuration chosen for illustration in Figure 3 represents the fully an- 

tisymmetric Rotator given by A,‘Ar = I. It can be made apparent by pairing 

these magnets, starting with the two adjacent to the IP, that the antisymmetry 

ensures the identity transformation for the spin. Furthermore, if care is taken 

to preserve the correct field relationships within each of the four triplets of mag- 

nets, the overall optical transfer matrix (that of a drift) is preserved for all field 

strengths. It follows that these magnets (forming a Rotator) can be ramped 

if this symmetry and field strength relationship are maintained. This will not 

be true for the snakes that can also be formed by this assemblage as the spin 

transformation changes during ramping. In this figure the first half serpent as 

seen by the beam would always be represented by an operator Ar , AZ, AS, A4 

or I selected by choosing the proper fields and polarities. The first four of these 

operators would allow longitudinal polarization at the IP. The second half ser- 

pent can generate operators Al’, A;‘, Agl, AT1 or I. Other operators that can 

be formed by these assemblages are not included in this example and will be c _ . _zz_ 
~- - -rc discussed later. : i- 
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I  ,* - .  

Pr io r  to  a  p a r ticu la r  m a c h i n e  r u n n i n g  p e r i o d :a  se lect ion is m a d e , d e s i g n a tin g  
. 

two d i a m e trically o p p o s e d  in teract ion reg ions  to  serve  as  snakes.  T h e  e x p e r i m e n ts 

a t th e s e  in teract ion p o i n ts c a n  still b e n e fit by  hav ing  long i tud ina l ly  po la r i zed  

b e a m s  avai lab le ,  b u t c h a n g e  o f d i rect ion f rom para l le l  to  a n tipara l le l  c a n  n o t b e  

read i ly  m a d e . 

W e  n u m b e r  th e  in teract ion p o i n ts 1  th r o u g h  4  c o u n te r  clockwise, a n d  a rb i -  

trari ly select IP  1  a n d  IP  3  to  serve  as  snakes.  T h e  fie lds  a n d  polar i t ies o f IP  1  

a r e  ad jus ted  to  p e r fo r m  th e  o p e r a tio n  A B ’A l =  C 2  ( S n a k e  o f th e  2 n d  k ind)  a n d  

th o s e  o f IP  3  to  p e r fo r m  th e  o p e r a tio n  A T IA 1  =  Cl  ( S n a k e  o f th e  lst k ind).  Fo r  

n o w , th e  m a g n e ts a t IP  2  a n d  IP  4  a r e  left wi th z e r o e d  fie lds.  -  

-  

--..._  . 
-  

- _ _  

T h e  c o n fig u r a tio n  just desc r ibed  is s h o w n  in  F igu re  4 a  w h e r e  th e  d i rect ion 

o f a  vert ical ly po la r i zed  sp in  vector  is ind ica ted  in  var ious  reg ions .  This  vector  

o r  a n  a n tipara l le l  vector  b e c o m e s  long i tud ina l  a t IP  1  a n d  3 . T h e  init ial d i rec-  

tio n  ( u p  o r  d o w n )  o f th is  vector  is arb i t rary  as  th e r e  is n o  p r e fe r r e d  po lar iza t ion  

d i rect ion in  th is  c o n fig u r a tio n . .That is b e c a u s e  th e  p r e s e n c e  o f th e  snakes  wil l  

cause  a n y  vert ical  c o m p o n e n t to  b e  para l le l  to  th e  b e n d  fie lds  in  o n e  hal f  o f th e  

m a c h i n e  a n d  a n tipara l le l  to  th e  fie lds  in  th e  o th e r  half.  T h e  Soko lov -Te rnov  p o -  

lar iz ing m e c h a n i s m  (see  R e f. 6 )  is th u s  tu r n e d  o ff. As  p o i n te d  o u t by  M o n ta g u e , 

a n  a l te rnate  po la r iz ing  m e c h a n i s m  such  as  w igg le rs  w o u l d  h a v e  to  b e  p rov ided . 

This  c o n fig u r a tio n  h a s  a  sp in  tu n e  o f 0 .5 , as  p o i n te d  o u t by  D e r b e n e v  a n d  K o n -  

d r a te n k o , wh ich  m e a n s  th a t a fte r  two revo lu t ions th e  sp in  po lar iza t ion  vector  

wil l  c lose u p o n  itself. 

1 7  
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. Snake of 
1st Kind 

--..._ 
- 

ri A,= C2 e Snake of 2nd Kind 

(b) 

C2=+ Snake of 2nd Kind 

Figure 4. 

- 

Snake of 1st Kind 
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R o ta tors  a r e  n o w  in t roduced  as  s h o w n  in  F igu re  4 b . T h e  hal f  s e r p e n ts a t 
. 

IP  2  a n d  IP  4  a r e  r a m p e d  u p  as  prev ious ly  desc r ibed  to  act as  R o ta tors. B o th  

in teract ion reg ions  h a v e  b e e n  g i ven  a  c o n fig u r a tio n  i d e n tica l  to  th a t s h o w n  in  

F igu re  3 . T h e  resul t ing long i tud ina l  po lar iza t ion  in  o n e  r e g i o n  is th e  reve rse  o f 

th a t in  th e  o th e r . W h e n  des i red ,  th e  po lar iza t ion  a t e i ther  o f th e s e  reg ions  c a n  b e  

reve rsed  i n d e p e n d e n tly o f al l  o thers.  Fo r  instance,  by  r a m p i n g  on ly  th e  vert ical  

m a g n e ts in  IP  2  to  th e  oppos i te  polar i ty,  th e  o p e r a tio n  A llA  =  I b e c o m e s  

A ,‘A z =  I a n d  a t th e  in teract ion p o i n t th e  long i tud ina l  po lar iza t ion  is reversed.  

C o m b i n a tio n s  with hal f  S n a k e s  

-  

--..._  . 
-  

S ince  a  g i ven  hal f  S e r p e n t c a n  b e  conver ted  to  a  hal f  S n a k e  o f th e  lat k ind  

by  just ha lv ing  th e  fie l d  st rength,  w e  m a y  cons ide r  c o n fig u r a tio n s  w h e r e  th e s e  

two a r e  c o m b i n e d  e n d  to  e n d . As  it tu rns  o u t, e i g h t n e w  ro ta tio n  o p e r a to rs  

a r e  fo u n d  in  th is  way.  They  a r e  n o t cyclic o r  e v e n  p e r m u ta tio n s . Ins tead  th e y  

r e p r e s e n t a n  o d d  (1  o r  3 )  n u m b e r  o f t ransposi t ions o f init ial coo rd ina tes; th e y  

a lso  c h a n g e  coo rd ina te  signs. T h e s e  o p e r a to rs  a r e  in terest ing in  th a t th e y  a lso  

r o ta te  t ransverse to  long i tud ina l  po lar izat ion.  

First, w e  calcu late th e  o p e r a to rs  S 3  a n d  S T ’, wh ich  a r e  o b ta i n e d  by  o n e  hal f  

o f a s n a k e  o f th e  lst k ind  (90°  r o ta tio n  a b o u t e igenvec to r  s3  =  k). 

V (f45, f45 )  =  H (745 , f45 )  =  

_  . 
_ e .  V (f45,745)  =  H( f4 5 , f45 )  =  

~ - . - rc 2 . 

As  n o te d  ear l ier ,  

-  

i 

s32  =  (sy’)2  =  Cl  . 
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C o m b i n i n g  S 3  a n d  S ,’ with th e  o p e r a to rs  fo r  o n e  hal f  o f a  S e r p e n t 
. 

(Al,  A a , A 3 , A 4  a n d  inverses,  s e e  T A B L E  II), g ives th e  n e w  o p e r a tors. 

i - 1  0  0  - 1  0  0  - 1  0  0  1  
i 0  0  1  - 1  0  0  0  0  1  I 
i -1  0  0  0  0  1  0  0  1  1  

0  0  -1  
0 1 0  

-  i 1 0  0  1  
i -1  0  0  

--..._ . 0  0  -1  
-  

0  -1  0  1  
- __  

_  . 
-1 .  

- .-  

i -1  0  0  0  0 1  1  0  0  1  i 0  0 1 0  1 0  0  -1  0  1  i 0 :o  0  1  - 1  0  0  0  1  1  

=  D 1  

=  D 2  

=  D 3  

=  D ;l 

=  E l 

=  E 2  

=  E 3  

--v 

( f)*(Z)  
H  S  0  0  v = = = +  -v 

S  H  

- S  0  0  v*v 
S  

(;I 

H  

tH1 

-H 

v * -s 

S  i 1  - V  

H  -H 

v = = + s  

S  i 1  V  

H  H  

0  0  

v  = = = +  -s 

S  V . 

H  H  0  0  v-* s  

S  - V  

T h e s e  o p e r a to rs  al l  r o ta te  t ransverse to  long i tud ina l  po lar izat ion.  A lso n o te  th a t 

D 1 2  =  Dz2  =  E l2  =  E z 2  =  I. D 1  a n d  D 2  invert  th e  vert ical  c o m p o n e n t. 

2 0  
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,?- 

. 

--..._ . 
- 

__ 

. . _ 

Ai’ 

A4 

A3 

A2 

Al 

TABLE II :- 
Multiplication Table for 

combinations of two half snakes of the lSt kind 

and/or half Serpents 

Al A2 A3 A4 A ;’ Agl A ;’ A-l S3 S-l 1 3 

A;’ A ;’ AT1 AC1 C3 C2 Cl I D2 D3 

The operators in the top row represent the first half serpent or half snake as 

seen by the beam (the right hand matrix operator). Those in the left column are 

for the second half serpent or half snake (the left hand matrix operator). The 

identity operator has been omitted as a multiplier. 
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The. rotation angle is 180’ for operators Dr j D2, El, and E2 about eigen- 

. 
vectors 

dl = l/2 (h&? i 7 fi k) , 

d2 = l/2 (&fi i f fi k) , 

and 

e2=1/2(+fijffik) , - 

respectively. 

Whereas, the rotation angle for D3 and Es is 90’ like that of S3 with their 

respective eigenvectors given by 

- 

&=+j , 

--..._ . 
- 

and 

es=+i . 

__ 

Again, it can be shown that either the set of operators 

or the set 
. . _ .=- 

--cc {E1,E2,E3,E31,C1,C2,C3,1} 

i 

will form a non-commutative group with respect to matrix multiplication. 
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As pointed out, conversion between Snakes .of the lst kind and Serpents is 
. 

easy, requiring only a change in field strengths. Also reversing polarity of fields 

generates different configurations. However, it is difficult to convert a magnet 

from  horizontal to vertical bend (mechanical rotation required), but if configu- 

rations are constructed using seven magnets as shown in Figure 5, where one 

magnet is normally turned off, then we can convert from  H($,O) to V($J,~) 

configurations if desired. 

(a) 0 8 -28 8 
Turned 

TOP Off 
View - Beam 

V(+JI,+8) 

_-..._ . - 
OR 

(b) 8 -29 8 0 

-._ 
Tap 
View 

TF ied m  + Beam 
H (+‘I’,+@ 

4-66 JI ‘W  JI 6364AS 

Figure 5. 
id 

- 

i 
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Left-Right Snakes and Half Up-Down Snakes 

It may have been noticed, that the operators Dr and D2 correspond to the 

definitions of Left and Right pointed Snakes. These snakes are shown in Figure 

6a and were conceived (see Ref. 5) as a practical means of achieving a spin 

tune of 0.5. They are efficient in that the total s Bde required is only 16.1 

T-m whereas for two half Snakes of the lst kind the s Bde is 18.4 T-m. These 

Snakes rotate about eigenvectors dr or dz by 180°, operations which we have 

shown not only invert the vertical component, but also rotate the horizontal 

component of the spin polarization vector into the longitudinal direction. This 

fact immediately suggests that if a Left-Right Snake were to be converted to half 

an Up-Down Snake (see Figure 6b) by mechanically rotating it about the direction 

of the beam, then the eigenvectors would become er and ez with corresponding 

operators El and E2 which we have shown will rotate the vertical component of 

the spin polarization vector into the longitudinal direction. 
- 

--..._ . 
- 

We proceed to examine these types of snakes using the same methods as 

before and similar notations, understanding that the configurations are given in 

Figure 6. 

For the Left-Right Snakes we write 

__ 

P’ = LR(llr, 0) p . 

and for hdf of an Up-Down Snake we write 

p’=UD(+,e) P . _ 

- -rc It will be shown later that snakes-can be made by combining’two half Up-Down 

Snakes. 
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(a) Left - Right Snake 

+45O -90” +90” -45” 

- . . - 

c 

._ 

+90° -90” -90” +90° 

(b) Half Up- Down Snake 
+ 90” -90” -90” +90” 

- 

4-66 +45O -90” +90” -90” 6364A4 

Figure 6. 

c 

25 



With these definitions we find the following ,Correspondence between config- 
. 

urations and operators for L-R Snakes and half U-D Snakes: 

0 0 -1 
LR(+90,+45) = = D1 

-1 0 0 

0 0 -1 

LR(-90, +45) = = D1 
-1 0 0 

LR(+90,-45) = = D2 

LR(-90,-45) = =D2 
- 

- . . - . UD(+45, +90) = = E2 c 

-_ UD(+45, -90) = = E2 

-1 0 0 
UD(-45,+90) = = El _ _ _T_ 
UD(-45,~60) = = El 

- .-* 

(S)-(Z) 
(I)-(Z) 
ii)+-3 
0 0 v * -v 

S 

(;I 

S 

H 

-H 

v* s 

S 

t;i 

i 1 V 

(;I 

-H 

v* s 

S i 1 V 

-H 

v ==+ -s 

S i 1 .- V 

:;I 0 

Ii -H 

v ‘* -s 

S -V 
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With L-R Snakes (as expected) or half U-D Snakes we find that they duplicate 
. 

operations which heretofore required a combination of two half snakes. Again, 

we inquire about combining these half U-D snakes with others. We lim it these 

combinations to only those in which the vertical component of the polarization 

vector is rotated to longitudinal at the m idpoint. The intention is to summarize 

such combinations that can be used either as Snakes or Rotators (i.e. operators 

Cl, C2,Dl,D2 or I). Combinations such as these are shown in TABLE III. 

Again, we find that combining these configurations give two new operators 

Sr and S2. This brings the total number of found operators to 24. All have a 

determ inant of +l as expected for rotations and represent half of the 48 operators - 

which would include all permutations and all changes of sign. 

Note that Sr 2 = Sz2 = I. Aga’ m , it can be shown that the set of operators 

forms a non-commutative group with respect to matrix multiplication. 

The rotation angle is 180’ for operators Sr and Sz about eigenvectors 

sl=lf2(fhifdQ , 

and 

s2 =1/2 (hhirxhj) . 
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. . - TABLE III : 
Multiplication Table for combinations of two half serpents 

or half snakes, where vertical spin becomes longitudinal at midpoint. 

- . . - 

c 

E2 

A4 

A3 

A2 

AI 

DI 
D2 

s3 

Dp D3 DI D2 c2 I 

Dl D2 D;1 D3 I c2 

A,’ A;l Al1 Ai1 S,’ s2 

AT1 A;’ Agl AT1 s3 Sl 

A;1 A;1 Ah1 A,’ Sl s3 

Al1 Ah1 A,’ AT1 s2 S,l 

c2 I Cl I c3 I I Dill D2 

The operators in the top row represent the first half serpent or half snake as 

seen by the beam. Those in the left column are for the second half serpent or 

half snake. 

Combinations resulting in Cl, C2, D1 or Da are Snakes. Combinations that 

result in I are Rotators. For example, ElE2 = C2, is a combination that forms 

a Snake of the 2nd kind. Whereas, E2E2 = I, is a Rotator. 
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In -TABLE IV we summarize the 24 operators that have been found by 
. 

combining half serpents or half snakes of various kinds. 

This set of operators forms a group with respect to matrix multiplication. 

The group is isomorphic to the group of rotational symmetries of a cube, known 

as the octahedral group. [‘I 

TABLE IV 
Summary of 24 Operators 

with respective rotation angles and eigenvectors (rotation axes) 

- . . - 

c 

-__ 

.  
_T_ 

AI, A;’ +120°, -120° al = 1/3(+&i + &j + fik) 

A2,A,1 +120°, -120° a2 = 1/3(+&i - fij - fik) 

& I, AT1 +120°, - 120° a3 = l/3(-fii + &j - &k) 

& , Ai1 +120°, -120° a4 = l/3(-fii - fij + &k) 

Cl 180’. cl = fk 

c2 180’ c2 = hi 

c3 180’ c3 = &j 

I O0 

DI 180’ dl = 1/2(ffii 7 fik) 

D2 180’ da = 1/2(ffii f fik) 

D3, D;l +90°, -go0 d3 = +j 

El 180’ el = 1/2(ffij p fik) 

E2 180’ e2 = 1/2(ffij f fik) 

Es, Eyl +90°, -go0 e3 G fi 

Sl : 180’ ‘- sl = l/2(&& f &j) 

s2 180° s2 = 1/2(&&i q= fij) 

s3,sg1 +90°, -go0 s3 = +k 

- 
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It is interesting to note that the operators I&, Es and S3 along with their 

. 
inverses are but special cases of the spin operations performed by single mag- 

nets: horizontal bending (eq. 4.), vertical bending (eq. 5) or a solenoidal field 

magnet, respectively. It is not surprising then that it is simple to show that 

these operators, representing rotations about the 4-fold symmetry axes, generate 

all operators of the octahedral group. The isomorphism of the operators gener- 

ated by various configurations to the octahedral group which represents rotations 

about all the axes of rotational symmetry for a cube furnishes a useful tool for 

the visualization of spin manipulation and the action of this manipulation on 

each component of the spin vector. In an example below, we will use this tool 

to generate two new types of snake each with midpoint longitudinal polarization. 

Before doing so we first provide an operational representation of a general snake. 

- 

- 

In the Introduction, the definition of a snake was cited as the single operation 

of rotating the spin polarization vector by 180’ about an arbitrary axis in the 

horizontal plane. An alternate way of describing this operation as the product 

of two operations is also given in Reference 2. This description can be expressed 

using operators which have been defined here. The first operation represents a 

rotation of 180’ about the axis +i (corresponding to operators Ea2, (ET1)” or C2 

given in TABLE IV) followed by an arbitrary spin precession through an angle 

Q! about +j (corresponding to the operator H(a) for a horizontal bend magnet 

given by eq. 4). 

The product defining a snake is then H(o) C2 . 

The arbitrary axis referred to in the initial definition of a snake is defined as 

the vector a , which is now given by 
c 

L. 

For example, the special cases describing L-R snakes are obtained by setting 
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a = f90°,--since 

H(+90) C2 = D3 C2 = D1 = LR(f90,+45) (7) 

and 

H(-90) C2 = D;l C 2 = D2 = LR(fSO,-45). (8) 

Similarly, H(0) C2 = C 2 and H(180) C2 = C3 C2 = Cl define Snakes 

of the 2nd and lst kind, respectively. 

- 

- 

In TABLE III we show that Dr or Dz(the L-R Snake operators) appearing 

in eqs. 7 and 8 can also be obtained by the product of two operators where the 

first operator rotates the vertical spin component into the longitudinal direction. 

This suggests that such configurations may be capable of generating snakes with 

longitudinal polarization at the midpoint and an arbitrary precession angle Q. See 

References 2. and 6. for detailed references and discussion of the advantages of 

achieving an arbitrary precession angle CI! . 

-. . ..- . As an example, we assume that the first operator is given by Al which 
c 

provides midpoint longitudinal polarization and the second operator (to be found) 

is given by M. Equating their product to the product defining a snake gives 

M A1 = H(a) C2 

or 

M = H(a) C2 A;’ . 

Reducing gives 

i 

-since cos a 0 L- 
M= 0 0 -1 . 

-cosa -since 0 I- 

If we again set o = +90° then M = Er and M A1 = Er Ar = Dr as shown 

in TABLE III. The operator Er is generated by one half of a U-D snake. This 
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;- 
suggests that practical solutions for a chosen value of (II near 90° may be found 

by examining UD ($J, 0) configurations for values of II, and 6’ that will generate 

the operator M . 

Still assuming that the first operator is given by Ar , similar considerations 

for CY near 0’ would indicate examination of the configuration corresponding to 

operator AT1 and for Q! near 180’ the configuration corresponding to the operator 

Agl. Taking these last two cases as examples and using the aid of a computer it 

can be shown that for o = +20° 

H(+20) C2 = H(+86.67, +90.96) V(+93.33, t-89.52) 

and for CI! = +160° 

H(+160) C2 = H(+86.67, -90.19) V(+86.67, +90.19) . 

- 

Both of these snakes with arbitrarily chosen values for a have longitudinal polur- 

- ..- . izution of 99.8% at the interaction point assuming vertical polarization elsewhere. 

__ 

In these two cases the angle a is determined by the change in strength of the 

vertical bend magnets from the initial value of 90°, whereas, the smaller changes 

in the horizontal bends allowed the simultaneous reduction to zero of four small 

residual matrix elements. 

Using our knowledge of configurations which can perform rotations about all 

the symmetry axes of a cube we have easily found two new snakes with special 

properties. 
; 

.  
_ _T_ CONCLUSIONS 

L- 

- . ..- By combining two half serpents or half snakes of various kinds, we have 

found a group of 24 rotation operators. The isomorphism to the octahedral 

group suggests that efficient means of obtaining arbitrary rotations for particular 

applications are achievable. 
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. 
Several combinations, as shown in Tables II’ and Tables III, result in lon- 

gitudinal polarization at the midpoint (interaction point) and also invert the 

vertical component. In principle, these or other combinations representing rota- 

tors would be useful in circular machines. 

For electrons the total s Bdf? required for these combinations ranges from 

32.2 T-m to 36.8 T-m. These high values may limit the usefulness of these 

configurations in some applications due to synchrotron radiation, which implies 

long magnets and large beam excursions. In proton machines shorter magnets 

can be used. 

- 

One half of a serpent could be used to rotate longitudinal to vertical polar- 

ization for transporting and injecting electrons into a high energy (M 10 GeV) 

damping ring of a Super Linear Collider. Another half serpent would restore the 

longitudinal polarization in the damped beam. The need for solenoidal fields the 

strength of which scale as yu,- would be eliminated. 

- 

At the Stanford Linear Collider (SLC) presently under construction, com- 

plications due to the precession of a longitudinally polarized beam in the mile - . . ..- . 
c long Arcs could be avoided if the polarization was made to be parallel to those 

fields. The desired longitudinal polarization at the interaction point then could 

be achieved by introducing the proper half serpent. Unfortunately, the required 

drift space (10 to 20 m) is not presently available. 
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