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1. INTRODUCTION 

The Stanford Linear Collider (SLC) is the first linear collider 
to be built. The repetition rate of a linear collider is much lower 
than that of a circular collider. To recover the luminosity, the 
emittance and beam size at collision point have to be one or 
two orders of magnitude smaller than a conventional collider. 
Therefore, for the SLC, the small beam emittance created from 
the damping ring has to be kept small by all possible means to 
preserve the luminosity potential for the physics experiment. 

To minimize emittance growth of electron and positron 
beams in the SLC Arcs, bending magnets with very strong 
quadrupole components have to be used. In addition, a sex- 
tupole component is included to eliminate the second order chro- 
matic and geometric aberrations. Consequently, in the presence 
of magnet misalignments, both orbit error and optical distortion 
can be generated. This report will concentrate on the genera- 
tion and correction of orbit errors. The optical distortions are 
treated in another paper in this conference.’ 

Our analysis is applicable to any periodic lattice structure 
with periodic arrangement of beam monitors and correctors. 
The unique feature of SLC Arcs is that the orbit errors are cor- 
rected by moving magnets. We will establish a general stability 
criterion for the orbit correction in Sec. 2. In Sec. 3, the rms 
orbit errors and corrector strengths will be calculated. Finally, 
in Sec. 4, the formulation will be applied to the design of SLC 
to obtain estimates for residual orbit distortion after correction. 

2. STABILITY CRITERION 

Consider a transport line which consists of periodic cells. Let 
the beam position monitors and the orbit correctors be located 
with the same period as the cells and let the BPM’s and the 
corrector distributions interlace each other as shown in Fig. 1. 
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Fig. 1. Periodic array of monitors and correctors in a 
periodic lattice. 

Consider the n-th cell in the transport line. Let errors in 
this cell be such that they produce an orbit displacement e, and 
angle ek at the end of the cell where the n-th BPM is located. 
The orbit at the entrance to the n-th cell has been corrected so 

that it has a zero displacement with an error in angle z:-r. 
At this point, we leave the type of orbit correctors open, 

except that its strength in the n-th cell will be specified by D,. 
The orbit at the end of the n-th cell is then given by 

(.;) = T (J,) +qJ + (1;) (1) 
where T is the 2 x 2 transfer matrix for the cell, d and d’ are 
the orbit responses to the corrector at the end of the cell. 
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If the corrector is represented as a short dipole kick, then 
D, is the kick angle and d, d’ are the 12- and 22- elements of the 
transfer matrix from the corrector to the monitor. 

Eq. (1) can be rewritten as two equations 

z,, = tlzz’,-l + dD, + e, , (14 
z’, = t2p’,-, + d’D, + e’, . (4 

The corrector strength D,, is determined by the condition that 
z,, = 0. This gives, using Eq. (la), 

D, = 
t12z’,-l + en 

d - (2) 

Substituting into Eq. (lb), then gives the angle at the exit 
of the n-th cell 

z:, = A&, + B, (3) 

where 

d’ 
A = t22 - -112 

d 
, (44 

B, = ei - se,, . (4b) 

Equation (3), showing the angular divergence of the orbit at the 
BPM’s after orbit correction, contains two terms. The first term 
comes from the propagation of the residual angular divergence 
upstream of the cell under consideration. The second term is 
the noise contribution from errors in the cell. Furthermore, the 
first term is “damped” by the factor A per cell (when 1 A 1 < 1). 
As a result the orbit, containing a damping on the one hand and 
a noise on the other hand, as a balance between those two terms 
will acquire an equilibrium value. 

It is instructive to apply the results to the caSe when the 
corrector is a &function kick. We have 

D, = kick angle , 

d’ = J E (cos Cc, - a, sin $J) , 

where the subscripts c and m  refer to the corrector and monitor 
locations, respectively; tl, is the phase advance from corrector to 
monitor. In addition, we have 

tl2 = Pm sin ticeu , (64 
t22 = cos d-b4 - am sin &dl , 634 

where &n is the phase advance per cell. Substituting Eqs. (5) 
and (6) into (4a), the coefficient A is found to be 

A = -sin (tic,11 - ti,) 
sin tl, * (7) 
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The coefficient A plays the role of a “damping con- 
stant.” Note that Eq. (7) is independent of the &functions. 
A strong damping (which is preferred) requires A closer to 0. 
This is achieved if &ll- Cc, (the phase advance from monitor to 
corrector) or a multiple of rr and if tc, (the phase advance from 
corrector to the next monitor) is away from a multiple of rr. For 
instance, one optimum arrangement is to have 90” cells and to 
haye the correctors immediately downstream of the monitors, 
which is a very common practice. 

The figure of merit indicating the quality of orbit correction 
is the rms orbit slope at the BPM’E. AS mentioned before, this 
rms value is determined by the balance between a damping effect 
and a noise diffusion effect. From Eq. (3), we have 

I 
=n =B,+AB,-1+A2B,-2+... . (8) 

Squaring the quantity and taking the expectation value, assum- 
ing no correlations among errors in different cells, we obtain 

(d2) = (B’) (1 + A2 + A’ + . . .) 

= 1 

g$ if IAI< 1 (9) 
diverges if 1 A I> 1 

The orbit correction scheme breaks down if 1 A 12 1. What hap- 
pens then is that the orbit slope at the BPM’E continue to grow 
as shown in Fig. 2. 
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Fig. 2. Divergent orbit with increasing angle error if A > 1. 

Equation (9) gives the value of (zn) at the BPM’E once A 
and (B2) are known. It is clear that to keep the rms orbit small, 
we need to make A not too close to 1 and to keep (B2) small. 

To obtain an expression for (B2), we need to know the pos- 

sible sources of errors. Let the k-th error have strength Dk and 
its orbit at the end of the cell be e = Dkdk and el = Dkdi. Then 
we have 

(B2) = x(0:) (d; - ;dk)’ , 
k 

where the summation is over all possible sources of error in one 
cell. Note that if the error source is the same as that used as the 
corrector, it does not contribute to orbit error after correction 
since d = dk and d’ = di. 

3. RMS ORBIT ERRORS 
AND CORRECTOR STRENGTHS 

So far we have assumed that the orbit displacements at the 
BPM’s are perfectly corrected. This will not be the case if the 
BPM readings have an rms error A. To include this effect, a more 
complicated calculation similar to that of the previous section 
is carried out. The result is that instead of Eq. (9) we have 

(j) = (B2) -+(A’) [(f)2+&g] (11) 
where 

d’ 
K = tal - ; (tll - A) . 02) 

Compared with Eq. (9), the rms orbit has acquired another 
term proportional to (Al). To obtain a feeling for the coefficient 
K, consider the case of a C-function corrector. We have 

t-J1 = -f (1 + &) sin 1cI,d , (134 m  

which gives 

tll = ~0s tidl+ am sin &I , W) 

1 sin &d K _ 
An- * sin’ rl, (14) 

To minimize the effect of BPM errors, we have to make 
K2/(1 - A2) as small as possible. This requirement is not the 
same as the previous requirement that 1 A 1 should be minimized. 
Depending on the magnitude of the BPM errors, therefore, some 
compromise has to be made. For example, if the corrector is 
immediately downstream of the monitor and r+!~,--ll = 90’ as the 
example we mentioned before, we have A = 0 and Eq. (11) reads 

(d2) = (B2) + (A2)y . 

The corrector strength in the absence of BPM errors is given 
by Eq. (2). If the BPM errors are included, the rms corrector 
strength is found to be 

(QL) = -$(A’) + (2)’ (zr2) + $(e’) (16) 

where (zf2) is given by Eq. (11) and 

(e2) = x(D:)d: . 
k 

4. APPLICATION TO SLC ARCS 

A cell in the SLC Arc consists of two magnets. In this section 
we consider horizontal orbit correction with the arrangement 
shown in Fig. 3. The corrector is assumed to be moving the 
F-magnets horizontally.2 The corrector strength D is chosen to 
be the amount of movement (in pm). The relevant parameters 
in the SLC design3 are 

tll = -2.812, t12 = 3.821 
tzl = -1.877, t22 = 2.194 

d = 5.514 pm/l pm movement 
d’ = 3.449 prad/I pm movement. 

The coefficient A is then found from Eq. (4a) to be 

A = -0.196 . 

Fig. 3. SLC Arc orbit correction scheme. F-magnet serves as 
corrector in horizontal plane. 
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The orbit errors are assumed to come from magnet mis- 
alignments. The misalignment of the F magnet (which is the 
corrector) does not contribute to orbit error after correction. 
The misalignment of the D magnet gives, using Eq. (IO), 

(B’) = (0’) (db - ;dD)’ . (17) 

Again using 2nd order TURTLE, we find 

dD = 1.702 , d, = 1.573 . 

If the rms magnet misalignment is (D2)‘i2 = 100 pm, we have 
from Eq. (17) 

(B2)‘i2 = 50.84 prad . 

Substituting the values of A and (B2) into Eq. (9) gives 

(z’)~/~ = 51.85 prad . 08) 

The orbit angle calculated above should be rather accurate. 
To translate it into a rough estimate of the orbit, note that the 
orbit has been corrected to zero at the monitor so that maxi- 
mum orbit displacement tends to occur at the center of the D- 
magnets. Transferring (z rz II2 to the orbit in the D-magnets ) 
gives an orbit of 103.07 pm. A similar transfer gives an orbit of 
59.6 pm and 79.3 pm at the center of the F-magnet and the gap 
between the two magnets, respectively. If we take the rms orbit 
to be the rms of the orbit at the BPM, the F and D magnets, 
and the gap, we obtain 

(z2)li2 = 71.5 pm . (19) 

To take into account the BPM errors, we use Eq. (11). Sub- 
stituting the values into Eq. (12) yields 

K = -0.241 . 

If we assume (A2)ri2 = 100 pm, then 

(z*)~/~ = 84.68 prad . (20) 

The rms orbit error due to this (zn)l12 is about 116.8 pm. On 
top of this, there is a contribution from the BPM misalignments. 
Adding the contributions together gives an rms orbit error of 

(z’)~/* = 153.7 pm . (21) 

Comparing Eqs. (19) and (21), it is clear the BPM errors 
contribute significantly to the Arc orbit correction and must be 
taken into consideration. Furthermore, Eq. (21) shows that for 
100 pm rms misalignment and 100 pm BPM error, the resultant 
rms orbit error is about 150 pm which are used in Ref. 1 to 
estimate the optical perturbations. 

To find the rms corrector strength, one can use Eq. (16). 
The result is 

(D%,)‘/2 = 121.34 pm 

for the needed rms magnet movements. This number becomes 
110.65 pm if there are no BPM errors. The movement dou- 
bles if magnets are moved with one end fixed. The results of 
orbit errors and corrector strength after orbit correction are 
summarized in Table I. 

Table I. Horizontal orbit error with 100 pm misalignments 
after corrections. 

BPM Error = 0 BPM Error = 100 pm 

51.9 prad 84.7 prad 
71.5 pm 153.7 pm 

110.7 pm 121.34 pm 

AS a comparison, one might ask what if the D magnets are 
used 89 the horizontal correctors? Such a correction scheme does 
not work at all. Because then the damping factor A = -1.337 
and the corrected orbit diverges as shown in Fig. 2. However, 
for the vertical orbit correction, the D magnets will be moved 
instead of the F magnets. Due to the symmetry between vertical 
and horizontal lattices, the vertical orbit error after correction 
should be smilar to that of the horizontal orbit. 

Here we only diECUE the case of random misalignments. The 
case of systematic misalignments or energy errors have been 
studied by T. Fieguth’ and M. Sands.’ Actual commissioning 
experiences on the perturbations and corrections of the orbits 
in North Arc are discussed in another paper presented at this 
Conference.s 
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