$$
\begin{aligned}
& \text { SLAC - PUB }-4177 \\
& \text { LBL }-22797 \\
& \text { January } 1987 \\
& \text { T/E }
\end{aligned}
$$

Search for Heavy Neutrino Production at PEP*

C.Wendt, G.Abrams, D.Amidei, ${ }^{a}$ A.R.Baden, ${ }^{b}$ T.Barklow, A.M.Boyarski, J.Boyer, P.R.Burchat, ${ }^{c}$ D.L.Burke, F.Butler, J.M.Dorfan, G.J.Feldman, G.Gidal, L.Gladney, ${ }^{d}$ M.S.Gold, G.Goldhaber, L.Golding, ${ }^{e}$ J.Haggerty, ${ }^{f}$ G.Hanson, K.Hayes, D.Herrup, R.J.Hollebeek, ${ }^{d}$ W.R.Innes, J.A.Jaros, I.Juricic, J.A.Kadyk, D.Karlen, S.R.Klein, A.J.Lankford, R.R.Larsen, B.W.LeClaire, M.Levi, N.S.Lockyer, ${ }^{d}$ V.Lüth, C.Matteuzzi, ${ }^{g}$ M.E.Nelson, ${ }^{h}$ R.A.Ong, M.L.Perl, B.Richter, K.Riles, P.C.Rowson, ${ }^{i}$ T.Schaad, ${ }^{j}$ H.Schellman, ${ }^{a}$ W.B.Schmidke, P.D.Sheldon, G.H.Trilling, C.de la Vaissiere, ${ }^{k}$ D.R.Wood, and J.M.Yelton ${ }^{l}$
Stanford Linear Accelerator Center Stanford University, Stanford, California 94305
and
Lawrence Berkeley Laboratory and Department of Physics University of California, Berkeley, California 94720
and
Department of Physics
Harvard University, Cambridge, Massachusetts 02138

Submitted to Physical Review Letters

[^0]
ABSTRACT

We report a search for long-lived heavy neutrinos produced by the neutral weak current in $e^{+} e^{-}$annihilation at 29 GeV at PEP. Data from the Mark II detector are examined for evidence of events with one or more separated vertices in the radial range of 2 mm to 10 cm . No events were found that were consistent with the search hypothesis, ruling out heavy neutrinos with mean decay lengths of 1 to 20 cm in the mass range 1 to $13 \mathrm{GeV} / \mathrm{c}^{2}$.

There is a natural interest in looking for fermions belonging to a fourth family as the simple extrapolation of the structure already observed. Supposing that neutrinos have masses which progress like the e, μ, and τ masses and considering the limits on masses of ν_{e}, ν_{μ} and ν_{τ}, one easily imagines a fourth neutrino at several GeV / c^{2}. Aside from this naive consideration, searching for such heavy neutral leptons is especially interesting because they appear in conjunction with the "see-saw" mechanism in left-right symmetric models ${ }^{1}$ and models of horizontal gauge symmetry, ${ }^{2}$ and also in the $\mathrm{O}(18)$ family unification model which predicts five additional neutral leptons below $40 \mathrm{GeV} / \mathrm{c}^{2} .^{3}$ In each of these scenarios the possibility exists that the particles would be produced in an $e^{+} e^{-}$ collider and their flight paths before decay would be observable.

We are reporting a search for long-lived heavy neutrino pairs produced by the neutral weak current in $e^{+} e^{-}$annihilation at 29 GeV at PEP. ${ }^{4}$ Although this search applies also to other long-lived heavy neutral particles, we have parametrized the results in terms of an hypothesized fourth generation massive Dirac neutrino ν_{4}. This neutrino is supposed to occur in a fourth leptonic family together with a charged lepton ℓ_{4}^{-}which is so heavy that it has not yet been observed. If the fourth family were to mix principally with one other family, say τ, the weak isodoublets could be written: ${ }^{5}$

$$
\binom{\nu_{\tau} \cos \epsilon+\nu_{4} \sin \epsilon}{\tau^{-}}_{L} \quad\binom{\nu_{4} \cos \epsilon-\nu_{\tau} \sin \epsilon}{\ell_{4}^{-}}_{L}
$$

For appropriate values of the Cabibbo-like mixing angle ϵ, the path length before decay of the ν_{4} (Fig. 1) would be experimentally observable. Unitarity of the mixing matrix and measurements of $e-\mu$ and $\tau-\mu$ weak universality ${ }^{6,7}$ place constraints on the experimentally allowed mixings. For example, if ν_{4} mixed
only with ν_{τ} then the τ lifetime measurement requires $\sin ^{2} \epsilon<0.20$ at the 90% confidence level.

In this model, the lifetime of the heavy neutrino is calculable given the mixing angle ϵ. It can be expressed in terms of the muon lifetime as

$$
\tau\left(\nu_{4} \rightarrow \ell^{-} \mathrm{X}^{+}\right)=\left(\frac{m_{\mu}}{m_{4}}\right)^{5} \frac{\tau(\mu \rightarrow \mathrm{e} \nu \bar{\nu}) \mathrm{B}\left(\nu_{4} \rightarrow \ell^{-} \mathrm{e}^{+} \nu\right)}{\mathrm{f}\left(m_{4}, \ell\right) \sin ^{2} \epsilon}
$$

where m_{4} is the mass of ν_{4}, ℓ represents the lepton (e, μ or τ) to which ν_{4} primarily couples, and f is a phase space correction which differs appreciably from unity only when $\ell=\tau$. We have calculated the partial widths for the various ν_{4} decay modes in analogy with the case of τ decay, ${ }^{8}$ obtaining the branching fraction $\mathrm{B}\left(\nu_{4} \rightarrow \ell^{-} \mathrm{e}^{+} \nu\right)$ as a function of m_{4} and ℓ. We found that B varies between 0.20 and 0.12 over the mass range relevant to our search. For the case $\ell=\tau$, the result of the phase space integration can be approximated as $1 / f\left(m_{4}, \tau\right) \cong 1+15 / \Delta m^{4}-15 / \Delta m^{3}+20 / \Delta m^{2}$ where $\Delta m=m_{4}-m_{\tau}$.

The cross section for producing a $\nu_{4} \bar{\nu}_{4}$ pair via the weak neutral current in $e^{+} e^{-}$annihilation is

$$
\begin{aligned}
& \frac{d \sigma}{d \cos \theta}=\frac{1}{64 \pi} \frac{G_{F}^{2} s}{\left(1-s / M_{Z}^{2}\right)^{2}+\Gamma_{Z}^{2} / M_{Z}^{2}}\left[\left(1-4 \sin ^{2} \theta_{W}+8 \sin ^{4} \theta_{W}\right) \beta\left(1+\beta^{2} \cos ^{2} \theta\right)\right. \\
&\left.+2\left(1-4 \sin ^{2} \theta_{W}\right) \beta^{2} \cos \theta\right]
\end{aligned}
$$

where θ measures the angle of production with respect to the $e^{+} e^{-}$beam axis, β is the speed of the particles produced in the center of mass frame and \sqrt{s} is the center of mass energy. At the PEP energy of 29 GeV , this cross section is only $0.34 \mathrm{pb},{ }^{9}$ but the accumulated Mark II data of $208 \mathrm{pb}^{-1}$ would yield 71 produced events and thus allows a reasonable search.

The search was conducted with the Mark II detector at PEP. The detector has been described in detail elsewhere. ${ }^{10}$ We recall here the details relevant to this analysis. In the following, z is the coordinate along the beam axis, the $x y$ plane is perpendicular to it, and $r_{x y}^{2}=x^{2}+y^{2}$. The origin is defined by the center of the main drift chamber. Charged particles are tracked by the combination of a high-precision drift chamber, known as the vertex chamber, and a main drift chamber which surrounds it. The vertex chamber has one band of axial sense wires arranged into four layers near $r_{x y}=11.2 \mathrm{~cm}$ and another band of three layers near $r_{x y}=31.2 \mathrm{~cm}$. The main drift chamber consists of 16 layers of axial and stereo sense wires in the range $41.4 \mathrm{~cm}<r_{x y}<144.8 \mathrm{~cm}$. Together these chambers track charged particles efficiently for $|\cos \theta|<0.80$, where θ is the polar angle between the track and the beam axis. They are immersed in a 2.3 kG axial magnetic field. When projected onto the $x y$ plane, the resolution σ_{b} in the extrapolation of tracks is approximately $\sigma_{b}=(95 \mu)\left(1+1 / p_{x y}^{2}\right)^{1 / 2}$ near the collision point, where $p_{x y}$ is the $x y$ projection of track momentum in GeV / c. The momentum dependent term in σ_{b} is mostly due to multiple Coulomb scattering. Photons are detected by a liquid argon calorimeter yielding an energy resolution $14 \% / \sqrt{E}(\mathrm{GeV})$ for $|\cos \theta|<0.70$.

The basic strategy was to look for events with two back-to-back vertices that are separated from the interaction point and with no tracks coming from the interaction point. There are several ways hadronic events might simulate this signature. Charm and bottom decays can give rise to back-to-back displaced vertices, and tracking inefficiencies and statistical fluctuations could cause there to be no additional reconstructed primary tracks. However, by requiring each decay to be further than 2 mm from the beam, this background becomes negligible.

Another mechanism is due to the presence of fake secondary vertices. These can arise from strange particle decay tracks, tracking errors, and untracked motion of the interaction point. For example, the primary could move to one side of the assumed beam position, and a fake vertex might appear on the other. To minimize these possibilities, we required certain tracks in an event to satisfy tracking quality cuts, eliminated K_{s} and Λ decay tracks from consideration, and removed runs where the beam position was unstable.

Candidate events were required to have charged energy $E_{c h}>3.6 \mathrm{GeV}$ and total energy $E_{\text {tot }}>7 \mathrm{GeV}$. They also had to have four or more charged tracks, since each ν_{4} must decay into at least two charged particles. There must have been no primary vertex within $r_{x y}<1 \mathrm{~mm}$, where the vertex was defined as any three tracks each passing within $2 \sigma_{b}$ of the same point in the $x y$ plane. ${ }^{11}$ (The beam spot size is approximately 1 mm wide and 0.3 mm high.) Also, two good tracks had to miss the interaction point by three standard deviations. ${ }^{12}$ We considered a good track one which had at least 2 hits in the innermost band of 4 layers in the vertex chamber, did not overlap another track near these hits, had ≥ 12 hits total with $\chi^{2} /$ DOF <10 and satisfied $200 \mathrm{MeV} / \mathrm{c}<p_{x y}<$ $15 \mathrm{GeV} / \mathrm{c}$. This requirement of hits in the vertex chamber is needed because incorrect assignment of hits in the 4 innermost layers leads to a large error when extrapolating a track to the interaction region. Also, if the track fitting routine was not able to assign hits in these layers to a given track, it may be because there is a kink in the track due to scattering or decay in flight. For real events with charged multiplicity similar to the hypothesized signal, about 70% of tracks (which are otherwise satisfactory) satisfy the vertex chamber hits requirement.

We defined the signal by identifying one or both decay vertices occurring on
opposite sides of the interaction point. We used only tracking information in the $x y$ plane, since the resolution is much poorer in the z direction. Because the major backgrounds are different, we treated separately events with four tracks and events with more than four.

For four-prong events, we required two 2-prong forward decays each with charge zero, on opposite sides of the interaction point, inconsistent with the interaction point at the level ${ }^{13} \chi^{2}>9$ and separated from it by at least 2 mm . At least one vertex had to consist of two good tracks (as defined above) and satisfy $r_{x y}<10 \mathrm{~cm}$. The prongs from the other vertex did not have to be good tracks. The back-to-back condition stated that the angle between the two decays and centered at the beam spot had to be 180° to within 14° or three standard deviations. The forward decay stipulation disallowed any track which decayed more than 150° from the flight path of the decaying particle $\left(90^{\circ}\right.$ if the track passed within two standard deviations ${ }^{12}$ of the beam spot).

If there were more than four tracks in an event, we required one three-prong vertex in $2 \mathrm{~mm}<r_{x y}<10 \mathrm{~cm}$ and inconsistent with the interaction point with significance ${ }^{13} \chi^{2}>9$. Specifically we searched for the point in $2 \mathrm{~mm}<r_{x y}<$ 10 cm consistent with the largest number of forward decaying good tracks. A track was considered consistent with a point if it passed within $3 \sigma_{b}$ and 500μ of that point. We attempted similarly to group any remaining good tracks into a vertex on the opposite side with $2 \mathrm{~mm}<r_{x y}<10 \mathrm{~cm}$. If the first vertex was less than 3 mm from the beam spot center, we required a second decay vertex to exist. (This removed hadronic events where the primary interaction was in the tail of the beam spot distribution.) In general some good tracks were not assignable to either vertex, tending to contradict the hypothesis of back-to-back
decays. We rejected the event if any such tracks passed within two standard deviations ${ }^{12}$ of the $e^{+} e^{-}$interaction point. (In the hadronic background many tracks are consistent with the primary.) If the main decay vertex had only the minimum 3 tracks and there was no back-to-back vertex found, we allowed no unassigned good tracks; otherwise we allowed up to two. An event was rejected if the main decay vertex was consistent with an interaction in the beam pipe, $7.41 \mathrm{~cm}<r_{x y}<8.01 \mathrm{~cm}$.

After applying these cuts, only three events remained. (A Monte Carlo simulation predicted that we would see two events from hadronic background at this point in the analysis.) On further examination of these events, we found that they were all incompatible with the hypothesis of ν_{4} pair production. In one event the position of the beam spot had moved 3 mm from its assumed position. This was determined by examining the primary vertex of the events immediately preceding and following the candidate event. A second event had only three charged particles present. The remaining tracks were from two independent photon conversions in the chamber. The final event was kinematically incompatible with the ν_{4} pair hypothesis because it had a backward-going $8 \mathrm{GeV} / c$ track. We interpret the result as zero signal events.

The acceptance of this search was primarily limited by two effects. The requirement that both decays occur beyond 2 mm and that one occur inside 10 cm defined the shape of the efficiency curve as a function of mean decay length. When the decays were in the sensitive region, the efficiency was restricted by the requirement of 2 good hits in the innermost 4 layers of wires for each track used to define a vertex. A Monte Carlo event generator was written to refine our estimates numerically. We simulated the ν_{4} decays in all modes and mapped
out the dependence of the acceptance on m_{4} and lifetime. An adjustment was made to the calculated acceptance because the efficiency of the tracking quality cuts for real hadronic data was found to be only 90% of that predicted by the Monte Carlo. We also considered the effect of uncertainties in tracking precision, in calculations of branching fractions for ν_{4} decays, in luminosity and in possible extra noise tracks in real data events. These were added in quadrature and subtracted from our efficiency estimates. Also, 9% of the data was unusable because of the beam stability requirement. The maximum acceptance was about 25%.

Figures 2 and 3 show the excluded regions for $m_{4} v s$. decay length and m_{4} vs. $\sin ^{2} \epsilon$ at the 90% confidence level. Figure 2 shows that decay lengths between 1 and 20 cm are excluded for $1<m_{4}<13 \mathrm{GeV} / c^{2}$. In Figure 3 these results are translated to limits on $\sin ^{2} \epsilon$ between unity and 10^{-8} depending on m_{4}.

For a recent survey of other experiments covering various regions of the m_{4} vs. $\sin ^{2} \epsilon$ plane, see Ref. 14. Also, the NA3 collaboration has recently looked for ν_{4} up to 2 GeV including somewhat smaller mixing angles than those we were able to consider. ${ }^{15}$ A search similar to ours has been carried out with the CELLO detector at PETRA, with similar results. ${ }^{16}$

We would like to thank F. Gilman and Y. Nir for helpful conversations. This work was supported in part by the Department of Energy, contracts DE-AC0376SF00515 (SLAC), DE-AC03-76SF00098 (LBL), and DE-AC02-76ER03064 (Harvard).

REFERENCES

1. R. N. Mohapatra and G. Senjanovic, Phys. Rev. Lett. 44, 912 (1980); Phys. Rev. D23, 165 (1981).
2. A. Davidson and K. Wali, Phys. Lett. 98B, 183 (1981); E. Papantonopoulos and G. Zoupanos, Phys. Lett. 110B, 465 (1982).
3. J. Bagger and S. Dimopoulos, Nucl. Phys. B244, 247 (1984); J. Bagger et al., Phys. Rev. Lett. 54, 2199 (1985); Nucl. Phys. B258, 565 (1985).
4. This type of search heas been discussed in R. Thun, Phys. Lett. 134B, 459 (1984).
5. The extension to a general mixing matrix is straightforward.
6. D. A. Bryman et al., Phys. Rev. Lett. 50, 7 (1983); Phys. Rev. D33, 1211 (1986).
7. J. A. Jaros, in The Sixth Quark: Proceedings of the 12th SLAC Summer Institute, July 1984, edited by P. M. McDonough (Stanford University, Stanford, 1985), p. 427.
8. J. D. Bjorken and C. H. Llewellyn Smith, Phys. Rev. D16, 887 (1973); F. J. Gilman and D. H. Miller, Phys. Rev. D17, 1846 (1978); H. B. Thacker and J. J. Sakurai, Phys. Lett. 36B, 103 (1971); Y. S. Tsai, Phys. Rev. D4, 2821 (1971) and Phys. Rev. D19, 2809 (1979).
9. This value allows for a -5% radiative correction. We have used the values $G_{F}=1.166 \times 10^{-5} \mathrm{GeV}^{-2}$ for the Fermi constant, $M_{Z}=93 \mathrm{GeV}$ and $\Gamma_{Z}=2.7 \mathrm{GeV}$ for the mass and width of the Z^{0}, and $\sin ^{2} \theta_{W}=0.219$ for the weak mixing angle.
10. R. H. Schindler et al., Phys. Rev. D24, 78 (1981); J. A. Jaros, in Proceedings of the International Conference on Instrumentation for Colliding Beam Physics, Stanford, California, 1982, ed. W. Ash, Stanford Linear Accelerator Center Report No. 250 (unpublished), p. 29.
11. In order to remove beam-gas interactions, at an early stage of the analysis we required the z separation between the primary vertex and the interaction point to be less than 20 cm . This primary vertex was constructed from the observed tracks in an event, and if the tracks did not form a vertex the z value was found as an average over tracks at their closest approach to the beam spot.
12. Here the standard deviation in the impact parameter of a track with respect to the interaction point, which we call σ_{t}, combines the extrapolated track measurement error and the error ellipse defining the beam spot: $\sigma_{t}^{2}=\sigma_{b}^{2}+$ $\sigma_{x}^{2} \sin ^{2} \phi+\sigma_{y}^{2} \cos ^{2} \phi$ where σ_{x} and σ_{y} measure the beam spot size and ϕ is the azimuthal angle of the track with respect to the x axis.
13. This quantity reflects the uncertainty in the distance between two error ellipses, one fixed by the uncertainties for tracks used in constructing a decay vertex position and the other given by the beam spot size. The significance of separation of two points with error ellipses is given in terms of the separation ($\Delta x, \Delta y$) and the sum of error matrix terms $\sigma_{x x}, \sigma_{x y}$ and $\sigma_{y y}$ by

$$
\chi^{2}=\frac{\sigma_{y y} \Delta x^{2}+\sigma_{x x} \Delta y^{2}-2 \sigma_{x y} \Delta x \Delta y}{\sigma_{x x} \sigma_{y y}-\sigma_{x y}^{2}}
$$

14. F. Gilman, Comm. Nucl. Part. Phys. 16, 231 (1986).
15. J. Badier et al., Z. Phys. C31, 21 (1986).
16. R. Aleksan, in ' 86 Massive Neutrinos in Astrophysics and Particle Physics: Proceedings of the $6^{\text {th }}$ Moriond Workshop, ed. O. Fackler and J. Tran Thanh Van (Editions Frontieres, Gif-sur-Yvette, France, 1986), p. 241.

FIGURE CAPTIONS

1. ν_{4} decay.
2. The interiors of the curves are excluded at the 90% confidence level if ν_{4} couples to e, μ, or τ.
3. Excluded region for ν_{4} at the 90% confidence level as a function of $\sin ^{2} \epsilon$ and m_{4}.

Fig. 1

Fig. 2

Fig. 3

[^0]: * This work was supported in part by the Department of Energy, contracts DE-AC03-76SF00515 (SLAC), DE-AC03-76SF00098 (LBL), and DE-AC02-76ER03064 (Harvard).
 a Present address: U. of Chicago, Chicago IL 60637
 b Present address: Harvard U.,Cambridge, MA 02138
 c Present address: U. of California, Santa Cruz, CA 95064
 d Present address: U. of Pennsylvania, Philadelphia, PA 19104
 e Present address: Therma-Wave, Inc., Fremont, CA 94539
 f Present address: Brookhaven National Laboratory, Upton, NY 11973
 g Present address: CERN, CH-1211, Geneva 23, Switzerland
 h Present address: California Institute of Technology, Pasadena, CA 91125
 i Present address: Columbia U., New York, NY 10027
 j Present address: U. of Geneva, CH-1211 Geneva 4, Switzerland
 k Present address: LPNHE, U. Pierre Marie Curie, F-75230 Paris, France
 l Present address: Oxford U., Oxford, England

